2024 IEEE 36th International Conference on Tools with Artificial Intelligence (ICTAI 2024)

Herndon, Virginia, USA 28-30 October 2024

Pages 1-523

IEEE Catalog Number: CFP24091-POD **ISBN:**

979-8-3315-2724-2

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP24091-POD
ISBN (Print-On-Demand):	979-8-3315-2724-2
ISBN (Online):	979-8-3315-2723-5
ISSN:	1082-3409

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE 36th International Conference on Tools with Artificial Intelligence (ICTAI) ICTAI 2024

Table of Contents

Message from the General Chair	xxii
Message from the Program Chair	xxiii
Organizing Committee	xxv
Area Chairs	
Program Committee	xxvii

AI Foundations - 1

On Weighted Maximum Model Counting: Complexity and Fragments Max Bannach (Advanced Concepts Team, European Space Agency, The Netherlands) and Markus Hecher (Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, USA)	1
Lazy ad hoc Explanations for the Sum Constraint Suruthy Sekar (Huawei Technologies Ltd, France), Gaël Glorian (Huawei Technologies Ltd, France), Wijnand Suijlen (Huawei Technologies Ltd, France), Eric Monfroy (Angers University, France), and Arnaud Lallouet (Huawei Technologies Ltd, France)	10
Generative Constraint Programming Revisited Florian Régin (Université Côte d'Azur, France) and Elisabetta De Maria (Université Côte d'Azur, France)	18
Forgetting in Counting and Bounded Treewidth Johannes Fichte (Linköping University, Sweden) and Markus Hecher (Massachusetts Institute of Technology, USA)	27
IndiCon: Selecting SAT Encodings for Individual Pseudo-Boolean and Linear Integer Constraints Felix Ulrich-Oltean (University of York, UK), Peter Nightingale (University of York, UK), and James Alfred Walker (University of York, UK)	36
Parameterised Treewidth for Constraint Modelling Languages Justin Pearson (Uppsala University, Sweden)	43
Partitioned Linear Orders and Belief Revision Jérome Gaigne (Université de technologie de Compiègne, France), Khaled Belahcène (CentraleSupélec, France), and Sylvain Lagrue (Université de technologie de Compiègne, France)	49

Scheduling - Planning - Solving - 1

 Advancing the AI-Based Realization of ACAS X Towards Real-World Application	7
Comparing Diverse Planning Strategies with Continuous Monte Carlo Tree Search Applied to Hybrid Gene Regulatory Networks	5
 Extending Hierarchical Partial-Order Causal-Link Planning to Temporal Problem Solving	3
Synergizing Evolutionary Task Allocation with Learning-Driven Path Planning	1
Cross-Paradigm Modelling: A Study of Puzznic	9
 Vehicle Energy Consumption Prediction Under Real-World Driving Conditions	5

Classification - Sentiment - Semantic

SITH: Semantic Interpreter for Transformer Hierarchy Cheng Zhang (Tianjin University of Finance and Economics, China), Jinxin Lv (Tianjin University of Finance and Economics, China), Jingxu Cao (Beijing Institute of Technology, China), Jiachuan Sheng (Tianjin University of Finance and Economics, China), Dawei Song (The Open University, United Kingdom), and Tiancheng Zhang (Tianjin University, China)	102
PatentALL: Multi-Label Patent Classification Using Adaptive Label Learning Yifan Qiang (Shanghai University of International Business and Economics, China), Gaojie Sun (Shanghai University of International Business and Economics, China), and Hui Liu (Shanghai University of International Business and Economics, China)	.108

Job Runtime Prediction: A Two-stage Framework Beyond PQR2 with Fallback and Enhanced Classification <i>Rémi Lacaze-Labadie (Altair Engineering, France)</i>	116
Comparing Human and BERT-Siamese Network (BertSNN) in Product Domain Similarity Ranking for Cross-Domain Sentiment Analysis Haitao Zhao (Universiti Sains Malaysia, Malaysia) and Jasy Liew Suet Yan (Universiti Sains Malaysia, Malaysia)	122
 Explainable Object Classification: Integrating Object Parts/Attributes and Expertise Jan Stodt (Furtwangen University, Germany), Christoph Reich (Furtwangen University, Germany), Martin Knahl (Furtwangen University, Germany), and Nathan Clarke (University of Plymouth, UK) 	128
A Comparison of Low-Shot Learning Methods for Imbalanced Binary Classification Preston Billion-Polak (Florida Atlantic University) and Taghi M. Khoshgoftaar (Florida Atlantic University)	136

Recommendation Systems

Modeling Long & Short-Term Interests and Assigning Sample Weight for Multi-Behavior Sequential Recommendation Tianyang Li (Northeast Electric Power University, China), Hongbin Yan (Northeast Electric Power University, China), and Xingyun Wei (Research Institute of Petroleum Exploration & Development, China)
Biterm Tensor Topic Model for Short Reviews in Recommender System
Machine Learning Based Recommendation Queries For Constraint Acquisition
LSMRec: Leveraging Hash-Enhanced Semantic Mapping for Superior Sequential Recommendations 166 Haoyu Zhang (Zhongnan University of Economics and Law, China) and Wenfang Li (Hong Kong Chu Hai College, China)
Power of Suggestion: Strategic Feature Manipulation in Transformer-Based Models
An Ontology for Conversations with Virtual Research Assistants

Machine Learning - 1

 SUDS: A Strategy for Unsupervised Drift Sampling	37
Accelerating Prototype Selection with Spatial Abstraction) 3
 Physics-Informed Machine Learning for Better Understanding Laser-Matter Interaction) 9
 Continual Learning of 3D Point Cloud with Hyperbolic Manifold Replay)6
Toward Predictive Stock Trading with Hidformer Integrated into Reinforcement Learning Strategy	13
Unsupervised Learning and Effective Complexity: Introducing JPG and Neural Sophistication 22 Erick Gomez (Université Jean Monnet Saint-Etienne, France), Rémi Emonet (Université Jean Monnet Saint-Etienne, France; Institut Universitaire de France), and Marc Sebban (Université Jean Monnet Saint-Etienne, France)	21

Knowledge Graphs - 1

Adversarially Regularized Graph Embedding for User Identity Linkage Across Social Networks 226 Xiaoyu Guo (Henan Key Laboratory of Cyberspace Situation Awareness, China), Yan Liu (Henan Key Laboratory of Cyberspace Situation Awareness, China), and Fenlin Liu (Henan Key Laboratory of Cyberspace Situation Awareness, China)
Confident Labels: A Novel Approach to New Class Labeling and Evaluation on Highly Imbalanced Data
Quadratic Assignment Contrastive Loss and Application on Graph Matching

 Multi-Level Graph Convolutional Network for Document Information Extraction	7
Enhancing Medicare Fraud Detection: Random Undersampling Followed by SHAP-Driven Feature Selection with Big Data	5
CSFI for Social Media: Understanding and Predicting Cross-Community Information Propagation	F

Anomaly Detection - 1

Multi-Type Vulnerability Detection with Staged Feature Fusion and Group Data Balance	.70
 Exploring the Suitability of the Cerebras Wafer Scale Engine for the Fast Prototyping of a Multilingual Hate Speech Detection System	.76
 MN-Net: Multi-Scale Feature Fusion and Neighborhood Attention Self-Supervised Network for Industrial Spool Surface Anomaly Detection	.82
Fuzzy-Empowered Decision Making Integrated with DDDAS-Matrix Profile Framework for Anomal Detection in Radiation Measurements 2 Miltiadis Alamaniotis (University of Texas at San Antonio, USA) 2	ly 90

298
303

Neural Nets - 1

Enhanced Multimodal Sentiment Analysis via Tensor Decomposition and Hypergraph Convolutional Networks <i>Xinyin Zhang (University of Chinese Academy of Sciences, China),</i> <i>Yonghua Zhao (University of Chinese Academy of Sciences, China), Yang</i> <i>Liu (University of Chinese Academy of Sciences, China), and Dingye</i> <i>Zhang (University of Chinese Academy of Sciences, China)</i>	311
Where to go Next ? Social and Spatio-Temporal Learning for Next Points-of-Interest	319
AGFA-Net: Attention-Guided Feature-Aggregated Network for Coronary Artery Segmentation using Computed Tomography Angiography Xinyun Liu (Michigan Technological University, USA), Pengcheng Xiao (Kennesaw State University, USA), Michele Esposito (Medical University of South Carolina, USA), Manohar Raavi (Kennesaw State University, USA), and Chen Zhao (Kennesaw State University, USA)	327
Near-Linear Time Projection onto the ℓ1,∞ Ball; Application to Sparse Neural Networks Guillaume Perez (Université cote d'azur, France), Laurent Condat (King Abdullah University of Science and Technology (SDAIA-KAUST), Kingdom of Saudi Arabia), and Michel Barlaud (Université cote d'azur, France)	335
Contrastive Point Cloud Pretraining for Enhanced Transformers Divyashree Shivalingappa Koti (Middle Tennessee State University, USA), Joshua L. Phillips (Middle Tennessee State University, USA), and Frederick S. Cottle (Middle Tennessee State University, USA)	344
Multi-Task Learning of Visual Attributes for Image Aesthetics Assessment <i>Ting Yu (East China Normal University, China) and Jiahui Liu (East China Normal University, China)</i>	350

AI Foundations - 2

Linear Algebraic Partial Evaluation of Logic Programs
Optimizing Power Peaks in Simple Assembly Line Balancing through Maximum Satisfiability 363 Zhifei Zhang (Yunnan University, China), Sami Cherif (Université de Picardie Jules Verne, France), and Rui Sá Shibasaki (Université de Picardie Jules Verne, France)
The Power of Collaboration: Learning Large Bayesian Networks at Scale
Introducing Constraint Well-Founded Semantics for Constraint Logic Programming through Rewriting Transformations
 Virtual Network Embedding as Boolean Satisfiability
Counterfactual Explanation Through Constraint Relaxation
Fast Evasion Detection & Alert Management in Tree-Ensemble-Based Intrusion Detection Systems 404 Valency Oscar Colaco (Linköping University, Sweden) and Simin Nadjm-Tehrani (Linköping University, Sweden)

Scheduling - Planning - Solving - 2

A User Study on Contrastive Explanations for Multi-Effector Temporal Planning with	410
Non-Stationary Costs Xiaowei Liu (University of Bristol, UK), Kevin McAreavey (University of Bristol, UK), and Weiru Liu (University of Bristol, UK)	413
Benchmarking Autonomous Driving Systems Using a Modular and Scalable Simulation Environment	.420
Dávid Szilágyi (Babes-Bolyai University, Cluj-Napoca), Kuderna-Iulian	
Bența (Babes-Bolyai University, Cluj-Napoca), and Christian Săcărea	
(Babes-Bolyai University, Cluj-Napoca)	

Association of Multi-Sensor Data for Autonomous Car Driving: A Comparative Evaluation E. Ghiasi (CART Center, USA), G. Ghajari (CART Center, USA), M. Gottipati (CART Center, USA), P.S.S. Gogineni (CART Center, USA), R. Galla (CART Center, USA), and N. Bourbakis (CART Center, USA)	427
Planning With Incomplete Knowledge and Uncertain Goals: A Comparative Evaluation H. C. Nagalla (CART Center, USA), R. V. Nagireddypalli (CART Center, USA), S. B. Naidu (CART Center, USA), N. G. Nalamasa (CART Center, USA), K. P. Nalla (CART Center, USA), and N. Bourbakis (CART Center, USA)	437
Explainable AI Assisted Evolutionary Search of Engineering Designs Rahul Dubey (Missouri State University)	447
Intelligent Scheduling of Floating Nuclear Reactor Operation for Implementation of Distributed Smart Energy Systems in Remote Coastal Locations <i>Miltiadis Alamaniotis (University of Texas at San Antonio, USA)</i>	. 454

Large Language Models

 Memory and Schema in Human-Generative Artificial Intelligence Interactions
 Weakly Supervised Video Anomaly Detection with Large Language Models Knowledge Enhancement Framework
ESC-CoT: Easy-to-Hard Self-Comparative Chain-of-Thought for News Discourse Profiling
KB2Bench: Toward a Benchmark Framework for Large Language Models on Medical Knowledge . 485 Douglas Adjei-Frempah (University of California, Riverside), Lisa Chen (University of California, Riverside), and Paea LePendu (University of California, Riverside)
 An Evaluation of Large Language Models for Geological Named Entity Recognition
LLMs for Sentiment Analysis in Tourism Reviews: A Resource-Efficient Approach

Deep Learning

 Interpretable Deep Learning for Solar Flare Prediction	609
 A Systematic Analysis of Deep Learning Algorithms in High-Dimensional Data Regimes of Limited Size	515
 Domain Knowledge Guided Deep Neural Networks (DKG-DNN) for Prediction of Diaphragm wall Deformation Induced by Excavation	24
Remember Your Best: Improving Exploitation in Deep Q-Network	32
Phoneme Substitution: A Novel Approach for Backdoor Attacks on Speech Recognition Systems 54 Bicheng Xiong (Xiangtan University, China), Zedong Xing (Xiangtan University, China), and Weiping Wen (Peking University, China)	40
 Predicting Protein-Protein Binding Affinity with Deep Learning: A Comparative Analysis of CNN and Transformer Models	48

Anomaly Detection - 2

Stable Discrete Segmented Reverse Diffusion Model for Solving Class Imbalance in Malicious Websites Detection Jiyang Shen (University of Maryland, USA), Tianlan Wei (Johns Hopkins University, USA), and Cong Cao (Zhejiang University of Technology, China)	. 556
NNTailor: A Neural Network-Driven Fuzzer for DataBase Management Systems Shutao Chu (National University of Defense Technology, China), Yongjun Wang (National University of Defense Technology, China), Haoran Xu (National University of Defense Technology, China), Zhiyuan Jiang (National University of Defense Technology, China), and Yongxin Chen	. 564
(NUDT, China)	

AgileAD: Anchor-Guided Contrastive Learning with a General Data Augmentation Strategy for Time Series Anomaly Detection Yulong Tian (Sichuan University, China), Jiaxuan Xu (Sichuan University, China), Jie Zuo (Sichuan University, China), and Lei Duan (Sichuan University, China)	. 573
TSFeatLIME: An Online User Study in Enhancing Explainability in Univariate Time Series Forecasting Hongnan Ma (University of Bristol, UK), Kevin McAreavey (University of Bristol, UK), and Weiru Liu (University of Bristol, UK)	. 578
Patch-Aware Vector Quantized Codebook Learning for Unsupervised Visual Defect Detection Qisen Cheng (Samsung Display America Lab, USA), Shuhui Qu (Samsung Display America Lab, USA), and Janghwan Lee (Samsung Display America Lab, USA)	586
Evaluating the Potential of Reinforcement Learning for Stochastic Machine Scheduling Problems Mohammed Majthoub Almoghrabi (Technische Universität Berlin) and Guillaume Sagnol (Technische Universität Berlin)	. 593

Computer Vision & Pattern Recognition - 1

VRNet: Neighborhood Re-Ranking Based Method for Pedestrian Text-Image Retrieval Kehao Wang (Wuhan University of Technology, China), Yuhui Wang (Wuhan University of Technology, China), and Qifeng Li (Wuhan University of Technology, China)	598
Towards Releasing ViT from Pre-Training	604
3D-PSH: Lightweight 3D LiDAR Object Detection Using Adaptive Clustering and 3D Point Spatial Histograms	612
Low-Density 3D Point Cloud Classification	517
 ICLD: An Instance Contrastive Learning Domain Adaptive SAR Object Detection Network	524

Multi-Dimension Transformer with Attention-Based Filtering for Medical Image Segmentation 632 Wentao Wang (University of Alabama at Birmingham, USA), Xi Xiao (University of Alabama at Birmingham, USA), Mingjie Liu (Chongqing University of Posts and Telecommunications, China), Qizhen Lan (University of Alabama at Birmingham, USA), Xuanyao Huang (Chongqing University of Posts and Telecommunications, China), Qing Tian (University of Alabama at Birmingham, USA), Swalpa Kumar Roy (Alipurduar Government Engineering and Management College, India), and Tianyang Wang (University of Alabama at Birmingham, USA)

Knowledge Graphs - 2

LRIRL: Improving Knowledge Graph Reasoning Through Representation Learning-Based Rule Induction
Yingjie Liu (Hohai University, China), Yingchi Mao (Hohai University, China), Fudong Chi (Huaneng Lancang River Hydropower Inc, China), Bo Wu (Hohai University, China), Silong Ding (Hohai University, China), and Rongzhi Qi (Hohai University, China)
 KRLGI: Knowledge Representation Learning Based on Global Information for Reasoning
LLM-Based Digital Twin Water Conservancy Knowledge Graph Construction
Pruning Boolean d-DNNF Circuits Through Tseitin-Awareness
 Fuzzy Concession Strategy for Emotional Human-Computer Negotiation
Semi-Automatic Discovery of Dependency Relationships Among Properties for Ranking-Based Semantics

Agents

Autonomous Agents for Interrogation Merav Chkroun (Ariel University, Israel) and Amos Azaria (Ariel University, Israel)	686
An Efficient Approach for Cooperative Multi-Agent Learning Problems Ángel Aso-Mollar (Universitat Politècnica de València, Spain) and Eva	694
Onaindia (Universitat Politècnica de València, Spain)	

A Chatbot for Asylum-Seeking Migrants in Europe	02
Multi-Agent Path Finding in Continuous Environment	08
 Enhancing Multi-Agent Robustness: Addressing the Off-Diagonal Problem with Population-Based Training	'14
Learning Reliable PDDL Models for Classical Planning from Visual Data	22

Machine Learning - 2

A Machine Learning Based Tool to Estimate Coolant Engine Temperature Based on Motorcycle Riding Data Federico Pennino (University of Bologna, Italy), Davide Sette (Ducati Motor Holding, Italy), David Attisano (Ducati Motor Holding, Italy), and Maurizio Gabbrielli (University of Bologna, Italy)	729
Estimating Power Consumption of GPU Application using Machine Learning Tool Gargi Alavani Prabhu (BITS Pilani K K Birla Goa Campus, India), Tanish Desai (BITS Pilani K K Birla Goa Campus, India), Sharvil Potdar (BITS Pilani K K Birla Goa Campus, India), Nayan Gogari (BITS Pilani K K Birla Goa Campus, India), Snehanshu Saha (BITS Pilani K K Birla Goa Campus, India), and Santonu Sarkar (BITS Pilani K K Birla Goa Campus, India)	734
Subspace Rotation Algorithm for Training Restricted Hopfield Network Ci Lin (University of Ottawa), Tet Yeap (University of Ottawa), and Iluju Kiringa (University of Ottawa)	740
MDRPC: Music-Driven Robot Primitives Choreography Haiyang Guan (Fudan University, China), Xiaoyi Wei (Fudan University, China), Weifan Long (Fudan University, China), Dingkang Yang (Fudan University, China), Peng Zhai (Fudan University, China; Ji Hua Laboratory, China; Ministry of Education, China), and Lihua Zhang (Fudan University, China; Fudan University, China; Jilin Provincial Key Laboratory of Intelligence Science and Engineering, China)	748

InFusionLayer: a CFA-Based Ensemble Tool to Generate new Classifiers for Learning and	
Modeling	756
Eric Roginek (Fordham University, NY), Jingyan Xu (Fordham University,	
NY), and D. Frank Hsu (Fordham University, NY)	

Optimization - Classification

 Selecting Search Strategy in Constraint Solvers Using Bayesian Optimization
SyREC: A Symbolic-Regression-Based Ensemble Combiner
Renyi Entropy Search for Bayesian Optimization
Boosting Imperceptibility of Adversarial Attacks for Environmental Sound Classification
Rule-Based Constraint Elicitation For Active Constraint-Incremental Clustering
Neural Tangent Bayesian Optimization for Accurate and Efficient Influence Maximization

Natural Language - Text - Image

A Le	gal Multi-Choice Question Answering Model Based on DeBERTa and Attention M	/lechanism 814
Ŷ	ing Luo (Guangxi Normal University, China), Xudong Luo (Guangxi	
Ν	ormal University, China), and Guibin Chen (Guangxi Normal University,	
	hina)	

Worldafford: Affordance Grounding Based on Natural Language Instructions	s
Changmao Chen (University of Science and Technology of China), Yuren	
Cong (Leibniz University Hannover), and Zhen Kan (University of	
Science and Technology of China)	

MBTSAD: Mitigating Backdoors in Language Models Based on Token Splitting and Attention Distillation Yidong Ding (Shanghai Jiao Tong University, China), Jiafei Niu (Shanghai Jiao Tong University, China), and Ping Yi (Shanghai Jiao Tong University, China)	829
Identifying Logical Patterns in Text for Reasoning Pauline Armary (Universit'e de Bourgogne, France), Cheikh-Brahim El-Vaigh (Universit'e de Bourgogne, France), Antoine Spicher (R&D Department Anabasis Assets, France), Ouassila Labbani Narsis (Universit'e de Bourgogne, France), and Christophe Nicolle (Universit'e de Bourgogne, France)	837
ConsfomerST:Multilayer Transformer and Contrast Learning for Image Style Transfer Yuanfeng Zheng (Zhongshan Torch Polytechnic, China) and Honggang Zhao (Chongqing National Center for Applied Mathematics, China)	845
A DeBERTa-GPLinker-Based Model for Relation Extraction from Medical Texts Zhiqi Deng (Guangxi Normal University, China), Shutao Gong (Guangxi Normal University, China), Xudong Luo (Guangxi Normal University, China), and Jinlu Liu (Guangxi Normal University, China)	853

Machine Learning - 3

Investigating the Duality of Interpretability and Explainability in Machine Learning	1
Learning and Simulating Human Behaviour with Relational Decision Trees	8
Unnecessary Budget Reduction in Federated Active Learning	5
A Machine Learning Approach to Model Counting	1
Efficient Compensation of Action for Reinforcement Learning Policies in Sim2Real	9
On the Learning of Explainable Classification Rules Through Disjunctive Patterns	7

AI Applications

Explaining Teleo-Reactive Strategic Behaviour	905
Revisiting Frequent (Closed) Gradual Itemsets Mining	913
A Robust Random Search Approach for Matching Formulas in Math Information Retrieval Systems	921
Integrated Framework for Device and Service Descriptions in the Web of Things	929
An Improved Negative Selection Algorithm Based on a T Cell Multilayer Immune Tolerance Mechanism	937
A Robust UAV Tracking Solution in the Adversarial Environment	945
Recognizing Binary Code Semantics Towards Achieving Software Segmentation	953

Machine Learning - 4

Unfolding Particle Detector Acceptance in High Energy Physics with Generative AI	
Tareq Alghamdi (Old Dominion University, ŬSA), Tommaso Vittorini	
(Universitá degli Studi di Genova, Italy), Marco Spreafico (Universitá	
degli Studi di Genova, Italy), Marco Battaglieri (Universitá degli	
Studi di Genova, Italy), Nobuo Sato (Theory Center, Thomas Jefferson	
National Accelerator Facility, USA), and Yaohang Li (Old Dominion	
University, USA)	

Towards Designing an Energy Efficient Accelerated Sparse Convolutional Neural Network
Permutation Equivariant Deep Reinforcement Learning for Multi-Armed Bandit
Improved Pig Behavior Analysis Through Strategic Data Preprocessing Framework in Machine Learning
Pranjal Ranjan (Bradley Department of Electrical and Computer Engineering, USA), Sanjana Bharadwaj (Bradley Department of Electrical and Computer Engineering, USA), Yingqi Pei (Bradley Department of Electrical and Computer Engineering, USA), Kenan Burak Aydin (School of Animal Sciences, USA), Dong Sam Ha (Bradley Department of Electrical and Computer Engineering, USA), Gota Morota (School of Animal Sciences, USA), and Sook Shin (Bradley Department of Electrical and Computer Engineering, USA)
Detecting Environment Drift in Reinforcement Learning Using a Gaussian Process
Rapid Autonomy Transfer in Reinforcement Learning with a Single Pre-Trained Critic

Computer Vision & Pattern Recognition - 2

HTPSeg: A Semantic Segmentation Database for House-Tree-Person Psychological Test	. 1008
Hao Wang (China University of Petroleum (East China), China), Jin Wang	
(China University of Petroleum (East China), China). Ting Pan (China	
University of Petroleum (East China), China), Bingfeng Zhang (China	
University of Petroleum (East China), China), and Weifeng Liu (China	
University of Petroleum (East China), China)	
Temporal Scene Understanding using Contextually Unique Identification	. 1016
Sanjiv S. Jha (University of St.Gallen, Switzerland), Kimberly Garcia	
(University of St.Gallen, Switzerland), Yasmine Sheila Antille	
(University of St.Gallen, Switzerland), Marc Elias Solèr (University	
of St.Gallen, Switzerland), Simon Padua (University of Zurich,	
Switzerland), and Simon Mayer (University of St.Gallen, Switzerland)	

Investigating Performance Patterns of Pre-Trained Models for Feature Extraction in Image Classification
A Novel Multi-Pose Person Re-Identification Method Based on Semantic- and Pose-Guided Feature Fusion
Face Verification with Veridical and Caricatured Images Using Prominent Attributes
 Multi-Input Deep Learning Models for Weight Forecasting of Pigs Using Depth Images

Author Index