31st ISTE International Conference on Transdisciplinary Engineering (ISTE 2024)

Engineering for Social Change

Advances in Transdisciplinary Engineering Series Volume 60

London, United Kingdom 9-11 July 2024

Part 1 of 2

ISBN: 979-8-3313-1336-4

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Published by Sage Publications USA

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://creativecommons.org/licenses/by/4.0/.

Copyright© (2024) by the Authors All rights reserved.

ISBN (Print) 979-8-3313-1336-4

Printed with permission by Curran Associates, Inc. (2025)

For permission requests, please contact sagepub.com/journals-permissions

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: curran@proceedings.com Web: www.proceedings.com

Contents

Preface Adam Cooper, Irina Lazar, Richard Curran, Federico Trigos and Josip Stjepandić	V
About the Conference	viii
Part 1. Sustainable Development	
Co-Development of Technology for Measuring Faecal Contamination of Drinking Water Eleni Koutsoumpeli, Rhys Ashton, David Hunter, Hannah Walker, Kaniz Chowdhury, Daniel Vorbach, Jonathan Ensor, James W.B. Moir and Steven Johnson	2
Adapting a Transdisciplinary Approach to Regional Development in the Case of Facilitating Planning of Energy Systems Magnus Fredricson, Gary Linnéusson and Tehseen Aslam	12
Co-Designing the SnowApp Climate Service for Winter Tourism Industry in Northern Finland Ilona Mettiäinen, Martin Coath, Roxana Contreras, Jusu Toivonen and John C. Moore	22
Building Consensus in the Circular Economy: A Transdisciplinary Framework for Developing Collaborative Decision-Making Tools Mohamed Elnourani and Anna Öhrwall Rönnbäck	32
 Part 2. Improving Transport Safe Driving Behavior Model Construction for L2 and L3 Automated Driving <i>Yiteng Sun, Fan Li, Danni Chang, Ching-Hung Lee, Su Han</i> <i>and Chun-Hsien Chen</i> 	43
The Role of Interior and Exterior Design Quality in Public Acceptance of Shared Autonomous Vehicles <i>Han Chen and Jo-Yu Kuo</i>	52
Multi-Layered Integration of System Models and Roadmaps for the Implementation of Autonomous Ships <i>Takuya Nakashima, Hideaki Murayama, Ryota Wada and Bryan Moser</i>	62
Urban Public Transportation Service Evaluation and Design Based on Service Encounter Discovery and Peak-End Rule <i>Ching-Hung Lee, Zhichao Wang, Sujing Feng, Fan Li, Wanting Zhang</i> <i>and Chun-Hsien Chen</i>	72

Part 3. Engineering for Social Change

Engineering Community Resilience: A Transdisciplinary Early Career Researcher's Journey in Cultivating Bottom-Up Energy Initiatives Amidst Uncertainty <i>Vanja Djinlev</i>	83
The Role of Steemit as a Blockchain-Based Platform in Fostering Digital Financial Activism and Community Engagement Hatem Mabrouk, Federico Trigos and Francisco Valderrey	93
Text-Mining of E-Participation Platforms: Applying Topic Modeling on Join and iVoting in Taiwan Moritz Sontheimer, Jonas Fahlbusch, Tim Korjakow and Shuo-Yan Chou	105
Distributed Additive Manufacturing: A Social Change in Manufacturing James Gopsill	115
Part 4. Virtual and Augmented Reality	
XR-CISE: Towards Promoting Physical Activity with Inclusive Virtual Reality Exergaming Lucas Küntzer and Georg Rock	126
ARCTIC: Empowering Transdisciplinary Engineering Education Through Immersive Augmented Reality Experiences Kevin Kastner, Felix Wuehler, Florian Kolb, Julian Reichwald, Matthias Raedle and René Eiswirth	136
A Transdisciplinary Approach to Holographic Indoor Navigation Using Mixed Reality and Cloud Computing Alessio Morganti, Fabio Grandi, Riccardo Karim Khamaisi and Margherita Peruzzini	146
Using Immersive Technologies and Digital Twins in a Real World with Non-Orthogonal Coordinate Systems Nicolai Beisheim, Haydar Kayapinar, Sebastian Amann, Robér Frank, Xianbiao Jiang and Markus Linde	156
Part 5. Enabling Sustainability	
The Impact of Sustainable Design Strategies on User Experience Across Different Product Types <i>Ting-Yu Kuo, Jo-Yu Kuo and Guan-Qiao Mao</i>	165
Leveraging Data Ecosystems in Model-Based Systems Engineering for Ecological, Circular Added Value Iris Graessler, Jens Pottebaum, Martin Holland, Dominik Wiechel,	175

Thomas Dickopf and Josip Stjepandić

Enhancing Sustainable Behavior Through Design: A Case Study of Trash Disposal Area in Learning Environment Yun-Jou Hung, Guan-Qiao Mao, Hsing-Yu Liu, Jo-Yu Kuo and Shih-Chuan Chang	185
 What's in a Number? Lesson Learning from Transdisciplinary Energy Interventions in Mexico Karla G. Cedano Villavicencio, Karla F. Ricalde Cedano, Harriet Thomson, Ana Silvia Balderas Álvarez, Juan Carlos Castro Domínguez, Kennya García Bautista and Francisco Hernández Tamayo 	195

Part 6. The Digital Business

The Digital Transformation Competences for Brazilian Automotive Managers: A Transdisciplinary Engineering Approach Vagner Batista Ribeiro, Jorge Muniz Jr., Elaine Mosconi and Davi Nakano	206
Automating Collateral Management in Securities Lending: A Blockchain Approach Hironori Matsushita, Kento Maruoka, Yutaka Okada, Kenji Isiyama and Kenji Tanaka	216
Monitoring Schedule Adherence in High-Speed Manufacturing Lines John Bang Mathiasen and Jonas Munksgaard Mathiasen	226
AdaBoost-Based Transfer Learning Approach for Highly-Customized Product Quality Prediction in Smart Manufacturing <i>Chun-Hua Chien and Amy J.C. Trappey</i>	236

Part 7. Exploring Design Practice

Application of Scrum and Design Science Research in Crafting an Intelligent Battery Management System	246
Joelton Deonei Gotz, Milton Borsato and Maria Júlia Xavier Belém	
An Approach to Determine Similarity and Critical Path of Functions for Conceptual Design of Complex Products José Roberto Alcântara Lobo, Anderson Luis Szejka, Osiris Canciglieri Junior and Camilla Buttura Chrusciak	256
Revisiting the Philosophical Issues in the Practice of Engineering Design David Andrews	266
Supporting Transdisciplinary Research: Combining Design Research with Interactive Research Kristina Säfsten, Fredrik Elgh, Roland Stolt, Gary Linneusson and Joel Johansson	278

xiv

Part 8. Exploring Collaborative Practices

Aligning Stakeholders Viewpoints in Realizing Trustworthy CPS: Architectural Framework as a Boundary Object Muhammad Rusyadi Ramli, Fredrik Asplund, Gianfilippo Fornaro and Martin Törngren	289
Topological Analysis to Enhance the Understanding of Transdisciplinary Engineering Lauren E.J. Thomas-Seale, Barnaby Hawthorn, Sabrina Kombrink, Tony Samuel, John R. Bryson, Harriet Thomson and Thomas D. Montenegro-Johnson	299
Transdisciplinary Platform Assets – A Boundary Object Perspective Daniel Hussmo and Dag Raudberget	309
Explore Transdisciplinary Collaborations for Smart Device Development: Advancing Health-Related Smartwatch Designs for Social Impact <i>Amy J.C. Trappey, Angus K.C. Shen and Mandy C.J. Yu</i>	318
Part 9. Green Transitions	
Model-Based Project Design for Green Transformation of the Maritime Industry Ryota Wada, Bryan Moser and Takuya Nakashima	329
Construction of Green Technology Innovation Efficiency Indicators and Regional Comparative Analysis: Based on SBM-DEA Model <i>Ching-Hung Lee, Sujing Feng, Peng Zhong, Fan Li, Wanting Zhang</i> <i>and Chun-Hsien Chen</i>	339
The First Rule of Transition Engineering Is Define the Wicked Problem Florian Ahrens, Paolo Cherubini, Jack Boulton, Margaret Bartholomew and Susan Krumdieck	349
A Transdisciplinary Engineering and Systems Approach for Decarbonizing UK Home Heating Freya Wise, Adam Cooper and Claudia Eckert	359
Part 10. People and Behaviour	
Eye-Tracking Insights into Traffic Controllers' Situation Awareness Levels and Workload Conditions Martin Wong, Xiaoqing Yu, Chun-Hsien Chen and Ziqing Xia	370
A Study on Modelling Urban Pedestrians' Decision-Making Based on Time Series Prediction Yuri Mizuno and Kenji Tanaka	381
How to Prevent Short-Term Usage: Clarifying Wearer Requirements Through Model-Based Systems Approach and the Mind-Only School Perspective <i>Ka Yi Lung and Masahiro Niitsuma</i>	391

Transdisciplinary Engineering in Customer Behavior Analysis: Integrating RFM Modeling and K-Means Clustering for Predictive Insight <i>Pei-Yin Lin and Kenji Tanaka</i>	401
Part 11. Health and Wellbeing	
Scenario-Based Analysis of Smart Product Acceptance for the Elderly in Home-Based Care <i>Yilin Jiang, Tingwei Shen, Danni Chang, Peiyao Hu and Fan Li</i>	412
Sustainable Mobility Service Design Considering Economic and Transportation Efficiency in an Aging Society in Japan <i>Takuto Ojima and Kazuo Hiekata</i>	422
Automated Usability and User Experience Assessment for Smart Products Anoop Kumar Sinha, Christina Youngmi Choi and David W. Rosen	432
Detecting In-the-Wild Stress and Fatigue of Vessel Traffic Operators Based on Heart Rate Variability Meng-Hsueh Hsieh, Ziqing Xia, Wei Lun Lim and Chun-Hsien Chen	442
Part 12. Exploring Digital Twins	
Transdisciplinary Perspectives on Navigating Digital Twin Adoption James Tooth, Nilufer Tuptuk and Jeremy D.M. Watson	453
Harnessing the Power of Digital Twins, BIM and XR-Technologies Elevating Transdisciplinary Research Methodologies Florian Kolb, Tim Haeussermann, Alessa Rache, Kevin Kastner, Felix Wuehler, Joel Lehmann, Sebastian Amann, Nicolai Beisheim, Matthias Raedle and Julian Reichwald	463
Towards a Unified Approach Between Petri Net Modelling, WCM and Digital Twin for Reconfigurable Manufacturing System Igor Thonke, Anderson Luis Szejka and Osiris Canciglieri Junior	473
Promoting Cultural Heritage Through a Micro-Business by Means of a Digital Twin Andrej Bašić, Tomislava Majić and Josip Stjepandić	483
Part 13. Sustainability in Industry	
Transition Engineering Sprint with Oil Industry Experts: Finding the Possibility for Climate-Safe Business Strategies Jack Boulton and Susan Krumdieck	494
A Framework to Enhance Corporate Sustainability in Manufacturing Through Digital Technologies and System Thinking	504

Giuditta Contini, Fabio Grandi and Margherita Peruzzini

xvi

Platform-Enabled Product Realisation Supporting the Green Transition: On the Development of a Research Agenda <i>Kristina Säfsten, Fredrik Elgh, Kerstin Johansen and Roland Stolt</i>	514
A Transdisciplinary Approach to Optimising Distribution Efficiency: Integrating	
Human Factors for Sustainable Routing	526

Federico Trigos and María Lucila Osorio

Part 14. Improving Efficiency in Industry

Simulation-Based Service Business Process Design Method for Different Types of Demand Fluctuations	537
Yoichiro Suzuki, Kazuo Hiekata and Yan Jin	
Inventory Management Model Compromising the Three Trade-Offs in Ordering: Capital Efficiency, Opportunity Cost, and Transportation Cost <i>Kazuma Akashi, Daishi Sagawa and Kenji Tanaka</i>	547
Transdisciplinary Analysis of System Endurance due to Imbalanced Engineering Capability Using 3PE Modelling Framework <i>Matthew C. Cook and John P.T. Mo</i>	557
Practical Experiment of Inventory Decision Support System for Apparel Practitioners Based on New-Released Product Sales Forecast <i>Hinako Kanagaki and Kenji Tanaka</i>	567
Part 15. Digitalisation in Industry	
Digital Transformation in Industry X.0: Competency Management in Organizational Environment José Mauricio Mottin De Andrade, Eduardo de Freitas Rocha Loures, Anderson Luis Szejka and Osiris Canciglieri Junior	578
Towards a Digital Transformation and Human Factors Integrated Framework: Application of Structural Equation Modelling <i>Camilla Buttura Chrusciak, Anderson Luis Szejka, Jones Luis Schaefer</i> <i>and Osiris Canciglieri Junior</i>	588
Brazilian Digital Transformation Readiness: A Transdisciplinary Engineering	

 Brazilian Digital Transformation Readiness: A Transdisciplinary Engineering

 Approach in the Automotive Sector
 598

 Anderson Suzuki Costa, Jorge Muniz Jr., Timothy P. Munyon
 598

 and Kristina M. Eriksson
 598

 Digitalisation of Highly Regulated Sectors: Understanding Enablers for Digital
 608

Technology Adoption Cezara-Lidia Jalba, Dave Clark, Susan Lattanzio, Muhammad Basir and Linda Newnes xvii

Part 16. Engineering Innovation and Teamwork

Real-Time Measurement of Trust Dynamics in Global Virtual Teams Michal Delkowski, Divya Iyer, Ignacio Vazquez and Bryan R. Moser	619
Novel Approaches for Scaling up Engineering-Based Inclusive Innovation Pallavi Joshi, Dinar Kale and David Wield	632
Transdisciplinary Engineering and Co-Creation Towards Human-Centric Smart Automation <i>Kristina M. Eriksson, Anna Karin Olsson and Fredrik Danielsson</i>	642
Knowledge Sharing Sessions: A Transdisciplinary Approach for Crossing the Boundary Between Academia and Industry Paraskeva Wlazlak, Kristina Säfsten and Daniel Hussmo	653
Part 17. Key Issues in Transdisciplinary Engineering	
Interface Design Through Cultural Substrate—A Transdisciplinary Method Yann Méhat, Sylvain Sagot, Dominique Deuff and Egon Ostrosi	664
Empathy-Led Digital Adoption Towards Happy and Sustainable Workforce Mersha Aftab, Mey Goh, Iryna Yeveseyeva, Isaiah Nassiuma and Isabelle Sohret Uner	674
The Use of AI and Robotics in Armed Conflicts Alexis Meslin, Esger Ten Thij, Peter Novitzky and Channarong Intahchomphoo	684
Foundations of Transdisciplinary Engineering Theory: Sustainable Airport Application <i>Richard Curran</i>	694
Part 18. Engineering Education	
Transdisciplinary Engineering Education: The Student Perspective Natalie Wint and Irina Lazar	709
Ensuring Student Active Engagement in Engineering Education Duangthida Hussadintorn Na Ayutthaya, Pisut Koomsap and Cathal de Paor	719
Catching the Wanderer: Temporal and Visual Analysis of Mind Wandering in Digital Learning <i>Zhimin Li, Fan Li, Ching-hung Lee and Su Han</i>	729
Providing Inclusive Transdisciplinary Coursework Assessment: What Happened Next?	739
Aled W. Davies	
Socio-Ethical Challenges of Integrating Augmented Reality into Transdisciplinary Engineering Programs <i>Abdullah Ezzeldin, Nada Ayman, Omar Tawfik, Farah Ragheb</i> <i>and Mariam Makramalla</i>	749

xviii

Part 19. IP and Innovation

Patent Landscape of ADS Transdisciplinary Technologies and Their Impacts on a Country's Automotive Industry Development <i>Yuga Y.C. Lin, Amy J.C. Trappey and Ovid T.C. Shen</i>	760
IP Dispute Analysis for Multidisciplinary UAV Technologies and Their Patent Claims Roger S.C. Chou, Chiao Y.C. Lee, Amy J.C. Trappey and Charles Trappey	770
Measures of Diffusion of Innovations: 4GLTE & 5G Telecom Technology Victor Tang	780
Investigating the Transdisciplinary Nature of Air Traffic Management (ATM) Networks <i>Richard Curran, Yalin Li and Xiaojia Zhao</i>	794
Issues and Challenges of Innovations and Intellectual Properties for Social Changes Amy Trappey and Josip Stjepandić	807
Part 20. Exploring Digital Tools	
On the Assessment of People-Related Opportunities in Digitalisation Milton Borsato, Susan Lattanzio and Linda Newnes	814
Transdisciplinary Support for Digital Adoption: Exploring Legitimacy Cards Emily Carey, Will Brown, Manoela da Silva, Susan Lattanzio and Linda Newnes	824
Human Decision Making Assisted by Artificial Intelligence: Electricity Demand Forecasting in Japan <i>Yichuan Zhang and Kazuo Hiekata</i>	834
System Design of Behavioural Change Platform Service Using Digital Healthcare Technologies Shingo Kawai, Masako Toriya and Tetsuya Toma	844
Part 21. Engineering Sustainability	
School Run to Net Zero: A Transition Engineering Labs Use Case Report Florian Ahrens, Jack Boulton, Paolo Cherubini and Susan Krumdieck	855
Urban Carbon Management: A Transdisciplinary Engineering Challenge Will Brown and Kristen Macaskill	865
Corporate Organic Growth, Sustainability and Fulfilment of Climate Goals: A Transdisciplinary Approach Alexander Wollenberg, Juan Jose Cabrera Lazarini, Jose Guadalupe Octavio Cabrera-Lazarini and Gizela Nicol Olivares-Rodriguez	875

Trade-Offs for a Balanced Smart City: A Transdisciplinary Approach for Quality	
of Life and Sustainability	885
Aparna Kulkarni and Bruce Allen Hecht	

Part 22. Engineering Collaboration

Systems-Theoretic Concept Design: Synchronizing Transdisciplinary Mental Models Across Disparate Stakeholder Views <i>Alexander P. Hillman and Nancy G. Leveson</i>	896
Boundary Objects Supporting Knowledge Integration in Product Realisation – An Assessment Process <i>Kristina Säfsten, Paraskeva Wlazlak and Daniel Hussmo</i>	906
Identification and Facilitation: Can the Competencies for Multidisciplinary, Interdisciplinary, and Transdisciplinary Work Be Distinguished from One Another? <i>Hannah Gooding, Glenn Parry and Esat Alpay</i>	916
Extended Reality Methods for Transdisciplinary Asynchronous Engineering Anjela Mayer, Jivka Ovtcharova, Jean-Rémy Chardonnet, Sebastian Amann, Nicolai Beisheim and Xianbiao Jiang	926

Part 23. Transdisciplinarity in Management

Needs Analysis for Time-Based Management in Next Generation Air Traffic Management System Daichi Toratani, Yoichi Nakamura and Megumi Oka	937
Reframing Higher Education Management: A Transdisciplinary Digital Framework for University Administration Roberto Coronel and Federico Trigos	947
Professor-Course Affinity: A Transdisciplinary Approach to Standardize Faculty Staffing Roberto Coronel, Federico Trigos and Tonatzin Juarez	957
A Transdisciplinary Framework for Family Investments in Their Business Federico Trigos and Mario Doria	967
Part 24. Energy and Sustainability	
Multi-Regional Modelling for Energy Systems Optimization for Open Discussion Based on OSS and Open Data Yukihiro Sugita and Kazuo Hiekata	978
Leveraging Large Language Models for Analyzing Climate Change Mitigation Technology Dissemination: A Case Study of Wind Power in the UK <i>Kenji Yamada, Kosaku Nakano, Rintaro Tomita, Hiroyoshi Iwata,</i>	988

Seita Emori and Kenji Tanaka

xx

998
1008
1019
1029
1039
1049

xxi

Author Index