2024 International Conference on **Machine Learning and Applications (ICMLA 2024)**

Miami, Florida, USA 18-20 December 2024

Pages 1-643

IEEE Catalog Number: CFP24592-POD ISBN:

979-8-3503-7489-6

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP24592-POD

 ISBN (Print-On-Demand):
 979-8-3503-7489-6

 ISBN (Online):
 979-8-3503-7488-9

ISSN: 1946-0740

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2024 International Conference on Machine Learning and Applications (ICMLA) ICMLA 2024

Table of Contents

Preface xxxix Keynotes xli
MC1: Main Conference (In Person, Regular Papers)
Concurrent Learning of Bayesian Agents with Deep Reinforcement Learning for Operational Planning
Learning from Uncertainty: Improving Churn Prediction using Conformal Confidence Intervals 9 Yameng Guo (Ghent University, Belgium) and Seppe Vanden Broucke (Ghent University, Belgium; KU Leuven, Belgium)
Domain Adaptation Utilizing Texts and Visions for Cross-Domain Recommendations with No Shared Users
Multi-Layer Attention-Based Explainability via Transformers for Tabular Data
MultiLangMemeNet: A Unified Multimodal Approach for Cross-Lingual Meme Sentiment Analysis 33 Md. Kishor Morol (Cornell University, USA; St. Thomas University, USA; EliteLab.AI), Shakib Sadat Shanto (American International University-Bangladesh (AIUB), Bangladesh; EliteLab.AI), Zishan Ahmed (American International University-Bangladesh (AIUB), Bangladesh; EliteLab.AI), and Ahmed Shakib Reza (BRAC University (BRACU), Bangladesh; EliteLab.AI)

Leveraging A* Pathfinding for Efficient Deep Reinforcement Learning in Obstacle-Dense Environments	41
Junior Samuel Lopez Yepez (Thales Digital Solutions, Canada), Antoine Fagette (Thales Digital Solutions, Canada), Charles Dansereau (Thales Digital Solutions, Canada), and Filipe Carvalhais Sanches (Thales Digital Solutions, Canada)	
Squeeze-and-Remember Block Rinor Cakaj (University of Stuttgart, Germany), Jens Mehnert (Signal Processing, Robert Bosch GmbH, Germany), and Bin Yang (University of Stuttgart, Germany)	47
Detection of Behavioral Health Challenges in High School Students	55
Enhancing High-Frequency Trading with Deep Reinforcement Learning using Advanced Positional Awareness Under a Directional Changes Paradigm	63
Deep Neural Networks for Comprehensive Environmental Noise Estimation in European Cities Jivitesh Sharma (Norwegian Institute for Air Research), Stefan Jetschny (Universitat Autònoma de Barcelona), Miquel Sáinz De la Maza Marsal (Universitat Autònoma de Barcelona), Nuria Blanes Guardia (Universitat Autònoma de Barcelona), Eulalia Peris (European Environment Agency (EEA)), Jaume Fons Esteve (Universitat Autònoma de Barcelona), and Mohamed-Bachir Belaid (Norwegian Institute for Air Research)	71
A Machine Learning Approach for Identifying HLA Variants Associated with Symptomatic and Asymptomatic COVID-19 Atul Rawal (Hemostatis Branch, Division of Plasma Protein Therapeutics, Center for Biologics Evaluation & Reserach, Food and Drug Administration, USA), Rayan Jawa (Hemostatis Branch, Division of Plasma Protein Therapeutics, Center for Biologics Evaluation & Reserach, Food and Drug Administration, USA), and Zuben Sauna (Hemostatis Branch, Division of Plasma Protein Therapeutics, Center for Biologics Evaluation & Reserach, Food and Drug Administration, USA)	79
iTRACE: In-Depth Trends and Root Cause Analysis of Canadian Public Service Employee Survey <i>Ashkan Ebadi (Digital Technologies Research Centre, National Research Council Canada, Canada)</i>	85
A Global-Local Probsparse Self-Attention Transformer for LEO Satellite Orbit Prediction	91
ProtoGMM: Multi-Prototype Gaussian-Mixture-Based Domain Adaptation Model for Semantic Segmentation	99

Capturing Uncertainty Over Time for Spiking Neural Networks by Exploiting Conformal Prediction Sets	107
Daniel Scholz (Infineon Technologies Dresden, Germany), Oliver Emonds (Technical University of Munich, Germany), Felix Kreutz (Infineon Technologies Dresden, Germany), Pascal Gerhards (Infineon Technologies Dresden, Germany), Jiaxin Huang (Infineon Technologies Dresden, Germany), Klaus Knobloch (Infineon Technologies Dresden, Germany), Alois Knoll (Technical University of Munich, Germany), and Christian Mayr (Technische Universität Dresden, Germany)	
Spatial Transformer Network YOLO Model for Agricultural Object Detection	115
Wave-Based Neural Network with Attention Mechanism for Damage Localization in Materials : Fatahlla Moreh (Kiel University, Germany), Yusuf Hasan (Aligarh Muslim University, India), Zarghaam Haider Rizvi (University of Waterloo, Canada), Frank Wuttke (Kiel University, Germany), and Sven Tomforde (Kiel University, Germany)	122
Enhancing EEG Motor Imagery Time Point Signal Classification Through Reinforcement Learning and Graph Neural Networks Htoo Wai Aung (University of Technology Sydney, Australia), Jiao Jiao Li (University of Technology Sydney, Australia), Yang An (University of Technology Sydney, Australia), and Steven W. Su (University of Technology Sydney, Australia)	130
ReL-SAR: Representation Learning for Skeleton Action Recognition with Convolutional Transformers and BYOL Safwen Naimi (University of Québec (TÉLUQ), Canada), Wassim Bouachir (University of Québec (TÉLUQ), Canada), and Guillaume-Alexandre Bilodeau (LITIV lab., Polytechnique Montréal, Canada)	136
Graph Integration for Diffusion-Based Manifold Alignment	144
On the Performance and Robustness of Linear Model U-Trees in Mimic Learning	152
Leveraging Machine Learning Models to Predict the Outcome of Digital Medical Triage Interviews Sofia Krylova (Platform24 AB, Sweden; School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Sweden), Fabian Schmidt (School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Sweden), and Vladimir Vlassov (School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Sweden)	160
Learning-Based Attitude Estimation with Noisy Measurements and Unknown Gyro Bias	168

LLM for Generating Simulation Inputs to Evaluate Path Planning Algorithms	. 176
Unsupervised Anomaly Detection in Urban Water Networks Using a Hierarchical Deep Learning Model Guillem Escribà (Universitat Pompeu Fabra, Spain), David Pérez (Universitat Pompeu Fabra, Spain), Nicolás Vila (Universitat Pompeu Fabra, Spain), Daniel Marín (Universitat Pompeu Fabra, Spain), and Miquel Oliver (Universitat Pompeu Fabra, Spain)	. 182
A3: Active Adversarial Alignment for Source-Free Domain Adaptation	190
An Efficient Model-Agnostic Approach for Uncertainty Estimation in Data-Restricted Pedometric Applications Viacheslav Barkov (Osnabrück University, Germany; Department of Agromechatronics, Leibniz Institute for Agricultural Engineering and Bioeconomy, Germany), Jonas Schmidinger (Osnabrück University, Germany; Department of Agromechatronics, Leibniz Institute for Agricultural Engineering and Bioeconomy, Germany), Robin Gebbers (Department of Agromechatronics, Leibniz Institute for Agricultural Engineering and Bioeconomy, Germany), and Martin Atzmueller (Osnabrück University, Germany; German Research Center for Artificial Intelligence (DFKI), Germany)	. 198
Qualitative Diagnosis of LLMs as Judges using LevelEval	. 206
Learnable Deep Wavelet Packet Transform for Speech Emotion Recognition in High-Risk Suicide Calls	. 214
Adarmer: An Adaptive Transformer for Direct Normal Irradiance Forecasting	222
Intelligent Fall Detection and Emergency Response for Smart Homes Using Language Models Malithi Mithsara Wanniarachchi Kankanamge (Southern Illinois University, USA), Abdur Rahman Bin Shahid (Southern Illinois University, USA), and Ning Yang (Southern Illinois University, USA)	. 230

Deep Learning Based Inverse Modeling for Materials Design: From Microstructure and Property to Processing	236
Kewei Wang (Northwestern University, USA), Yuwei Mao (Northwestern University, USA), Mahmudul Hasan (Virginia Tech, USA), Md Maruf Billah (Virginia Tech, USA), Muhammed Nur Talha Kilic (Northwestern University, USA), Vishu Gupta (Northwestern University, USA), Wei-keng Liao (Northwestern University, USA), Alok Choudhary (Northwestern University, USA), Pinar Acar (Virginia Tech, USA), and Ankit Agrawal (Northwestern University, USA)	
Natural Adversarial Attacks	242
Diffusion Equation Based Subspace Extraction of Image Data for Fast K-Means	250
Developing the Temporal Graph Convolutional Neural Network Model to Predict Hip Replacement using Electronic Health Records	256
New Class Labeling and Evaluation Methodology for Balanced and Highly Imbalanced Data Mary Anne Walauskis (Florida Atlantic University) and Taghi M. Khoshgoftaar (Florida Atlantic University)	264
Oracle Embeddings for Chemical Detection	272
Towards Physically Consistent Deep Learning For Climate Model Parameterizations Birgit Kühbacher (Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Germany; Technical University of Munich, Germany; Helmholtz Munich, Germany), Fernando Iglesias-Suarez (Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Germany), Niki Kilbertus (Technical University of Munich, Germany; Helmholtz Munich, Germany; Munich Center for Machine Learning (MCML), Germany), and Veronika Eyring (Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Germany; Technical University of Munich, Germany; University of Bremen, Germany)	280
On Contrastive Learning for Domain Generalization	288
Reinforcement Learning as an Improvement Heuristic for Real-World Production Scheduling Arthur Müller (Department of Machine Intelligence, Fraunhofer IOSB-INA, Germany) and Lukas Vollenkemper (Bielefeld University of Applied Sciences and Arts, Germany)	296

An Evaluation of Low-Shot Learning Techniques for the Detection of Credit Card Fraud
Learning Interpretable Policies in Hindsight-Observable POMDPs Through Partially Supervised Reinforcement Learning
Multimodal Fusion Networks for Workload Modeling
Matrix-Based Representations and Gradient-Free Algorithms for Neural Network Training
Hierarchical Representation for Multi-Source Domain Adaptation via Wasserstein Barycenter 333 Mourad El Hamri (Université Paris Cité, France), Issam Falih (Université Clermont-Auvergne, France), and Yves Rozenholc (Université Paris Cité, France)
GADLE: A Robust Alternative to Reinforcement Learning for Systematic Investment
Data-Driven Graph Construction of Power Flow Graphs for Electric Power Transmission Networks
Multi-Margin Cosine Loss: Proposal and Application in Recommender Systems
Let's Federate - Effective Communication Strategy for Dynamic Client Participation
Enhancing Multivariate Time Series-Based Solar Flare Prediction with Multifaceted Preprocessing and Contrastive Learning
Temporal Dynamics of Classroom Stress: Insights from Wearable Sensors and Machine Learning377 Latherial Calbert (College of Charleston, USA) and Navid Hashemi Tonekaboni (College of Charleston, USA)

Effectively Prompting Small-Sized Language Models for Cross-Lingual Tasks via Winning Tickets
Mingqi Li (Clemson University, USA) and Feng Luo (Clemson University, USA)
SAFARI: Self-Regulated Clustered FederAted Learning in a HeteRogeneous EnvIronment
Learning Extended Forecasts of Soil Water Content via Physically-Inspired Autoregressive Models
Ozmen Erkin Kokten (Oregon State University, OR), Raviv Raich (Oregon State University, OR), James Holmes (Ciel du Cheval Vineyard, WA), and Alan Fern (Oregon State University, OR)
YOLO-SCSA: Enhanced YOLOv8 with Spatially Coordinated Shuffling Attention Mechanisms for Skin Cancer Detection
Hypergraph Contrastive Learning with Graph Structure Learning for Recommendation
FastMapSVM/FastMapSVR for Predictive Tasks on CSPs, SAT, and Weighted CSPs
Exploring Multi-Label Data Augmentation for LLM Fine-Tuning and Inference in Requirements Engineering: A Study with Domain Expert Evaluation
Identifying Hierarchical Community Structures in Content-Based Scholarly Social Networks 440 Md Asaduzzaman Noor (Montana State University, USA), John Sheppard (Montana State University, USA), and Jason Clark (Montana State University, USA)
Whitening Consistently Improves Self-Supervised Learning
FL-EGM: Decentralized Federated Learning using Aggregator Selection with Enhanced Global Model

Enhancing Allergy Prediction Accuracy through Machine Learning and ProteinBERT	:62
Comparative Analysis of Inference Performance of Pre-Trained Deep Neural Networks in Analog Accelerators	168
Evaluation of Few-Shot Learning Algorithms, Training Methods, Backbones and Learning Task for Crack Detection in Manufacturing	176
Towards a Feasible Palm Vein Verification Scheme Using Deep Autoencoder and Siamese Networks	183
Time Series Classification of Supraglacial Lakes Evolution over Greenland Ice Sheet	.9C
Hidden Pieces: An Analysis of Linear Probes for GPT Representation Edits	.98
RaceGAN: A Framework for Preserving Individuality While Converting Racial Information for Image-to-Image Translation	506
ECGInsight: A Web Application-Based Approach to Myocardial Infarction Detection From ECG Image Reports Utilizing ResNet	514
Real-Time Human-Classified Emotional MIDI Dataset Integration for Symbolic Music Generation	52 0

RFOOD: Real-Time Facial Authentication and Out-of-Distribution Detection with Short-Range FMCW Radar Sabri Mustafa Kahya (Technical University of Munich), Muhammet Sami Yavuz (Technical University of Munich), Boran Hamdi Sivrikaya (Technical University of Munich), and Eckehard Steinbach (Technical University of Munich)	528
Through the Looking Glass: LLM-Based Analysis of AR/VR Android Applications Privacy Policies Abdulaziz Alghamdi (University of Central Florida) and David Mohaisen (University of Central Florida)	534
Segmentation of Maya Hieroglyphs Through Fine-Tuned Foundation Models Fnu Shivam (West Virginia University, USA), Megan Leight (West Virginia University, USA), Mary Kate Kelly (Mount Royal University, Canada), Claire Davis (West Virginia University, USA), Kelsey Clodfelter (West Virginia University, USA), Jacob Thrasher (West Virginia University, USA), Chowdhury Mohammad Abid Rahman (West Virginia University, USA), Yenumula Reddy (West Virginia University, USA), and Prashnna Gyawali (West Virginia University, USA)	540
Uncertainty Quantified Deep Learning and Regression Analysis Framework for Image Segmentation of Skin Cancer Lesions Elhoucine Elfatimi (University of California, USA) and Pratik Shah (University of California, USA)	546
Intelligent Soccer Event Detection and Highlights Generation with Broadcast Cues Integration	554
Leveraging Language Models for Analyzing Longitudinal Experiential Data in Education	560
ChronoGAN: Supervised and Embedded Generative Adversarial Networks for Time Series Generation	567
SEATTNET: UNET Enhanced with Squeeze-Excited Attention Gates for Ice-Calving Front Segmentation Rohan Putatunda (University of Maryland Baltimore County, USA), Sanjay Purushotham (University of Maryland Baltimore County, USA), and Vandana P. Janeja (University of Maryland Baltimore County, USA)	575

Tensor Train Low-Rank Approximation (TT-LoRA): Democratizing AI with Accelerated LLMs 583 Afia Anjum (Theoretical Division, Los Alamos National Laboratory, USA; University of Texas at Arlington, USA), Maksim Eren (Advanced Research in Cyber Systems, Los Alamos National Laboratory, USA), Ismael Boureima (Theoretical Division, Los Alamos National Laboratory, USA), Boian Alexandrov (Theoretical Division, Los Alamos National Laboratory, USA), and Manish Bhattarai (Theoretical Division, Los Alamos National Laboratory, USA)
Implementation of Off-Road Panoptic-Segmentation Under Dynamic Lighting Conditions 591 Pankaj Deoli (University of Kaiserslautern-Landau, Germany), Koushik Samudrala (University of Kaiserslautern-Landau, Germany), and Karsten Berns (University of Kaiserslautern-Landau, Germany)
Analytically Determining the Robustness of Binarized Neural Networks
An Approach for Data Augmentation in HAR with Wearable Sensors Using TIMEGAN
Predicting Drug Effects from High-Dimensional, Asymmetric Drug Datasets by Using Graph Neural Networks: A Comprehensive Analysis of Multitarget Drug Effect Prediction
EDADepth: Enhanced Data Augmentation for Monocular Depth Estimation
Financial Fraud Detection Using Jump-Attentive Graph Neural Networks
APL: Adaptive Parameter Learning for Image Dehazing

Deep Multi-Agent Reinforcement Learning for Real-World Signalized Traffic Corridor Control 6 Salman Sadiq Shuvo (Pacific Northwest National Laboratory, Richland, WA), Sayak Mukherjee (Pacific Northwest National Laboratory, Richland, WA), Samrat Chatterjee (Pacific Northwest National Laboratory, Richland, WA), Sonja Glavaski (Pacific Northwest National Laboratory, Richland, WA), Draguna Vrabie (Pacific Northwest National Laboratory, Richland, WA), Geline Canayon (Aimsun, New York, NY), Matthew Juckes (Aimsun, New York, NY), and Raimundo Rodulfo (City of Coral Gables, FL)	544
Adaptation of Transformer Model for Numeric Case	52
Deep Learning-Based Method for an Assessment of Road Traffic Pollutant Estimation from Predicted Driving Behaviors 6 Suzanne Bussod (IFPEN, France) and Guillaume Sabiron (IFPEN, France)	558
UDBE: Unsupervised Diffusion-Based Brightness Enhancement in Underwater Images	64
Swef-UNet: Toward an Efficient Pure Transformer-Based Medical Image Segmentation	71
The Goofus & Gallant Story Corpus for Practical Value Alignment Md Sultan Al Nahian (University of Kentucky, USA), Tasmia Tasrin (University of Kentucky, USA), Spencer Frazier (Georgia Institute of Technology, USA), Mark Riedl (Georgia Institute of Technology, USA), and Brent Harrison (University of Kentucky, USA)	77
KG-Infused LLM for Virtual Health Assistant: Accelerated Inference and Enhanced Performance	685
Application of Machine Learning Techniques to Drive Immunological Insights Towards Malaria Prognosis Using Microarray Data	592

WindVibraTransformer: A Foundational Model for Precise and Robust Wind Turbine Condition Monitoring via Vibration Signals	97
Takuya Wakayama (Waseda University), Taiki Inoue (Waseda University), Jun Ogata (Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST)), Makoto Iida (The University of Tokyo), and Tetsuji Ogawa (Waseda University)	
BrainLeaks: On the Privacy-Preserving Properties of Neuromorphic Architectures Against	
Model Inversion Attacks	05
M-CELS: Counterfactual Explanation for Multivariate Time Series Data Guided by Learned Saliency Maps	13
Peiyu Li (Utah State University, USA), Omar Bahri (Utah State University, USA), Soukaina Filali Boubrahimi (Utah State University, USA), and Shah Muhammad Hamdi (Utah State University, USA)	
Critic Loss for Image Classification	19
Energy-Based Models Trained With Equilibrium Propagation are Inherently Robust	27
Neural Network Ensembling with Random Features	48
Quasi-Adam: Accelerating Adam Using Quasi-Newton Approximations	53
Recommendation Tool for Alleviating Depression and Suicidal Tendencies Through Healthier Social Media Use	60
Out-of-Distribution Detection for Contrastive Models Using Angular Distance Measures	66

Generalizing Functional Error Correction for Language and Vision-Language Models
CLE: Context-Aware Local Explanations for High Dimensional Tabular Data
MC1: Main Conference (In Person, Short Papers)
Deep Few-Shot Network for Protein Family Classification: Bridging the Gap Between Limited Data and High Performance
Empowering Tuberculosis Screening with Explainable Self-Supervised Deep Neural Networks 794 Neel Patel (University of Waterloo, Canada), Alexander Wong (University of Waterloo, Canada), and Ashkan Ebadi (Digital Technologies Research Centre, National Research Council Canada, Canada)
Applied Machine Learning for Surrogate Modeling: A Spatio-Temporal Approach 798 Warren D. Graham (Coastal Carolina University, USA), Leslie A. Horace (Coastal Carolina University, USA), William M. Jones (Coastal Carolina University, USA), Sean Tronsen (Los Alamos National Laboratory, USA), Sharmistha Chakrabarti (Los Alamos National Laboratory, USA), Vanessa Job (Los Alamos National Laboratory, USA), and Nathan A. DeBardeleben (Los Alamos National Laboratory, USA)
Typicality for Information Retrieval with Application on Sample Size Reduction of High Dimensional Data
Solar Image Synthesis with Generative Adversarial Networks
Optimizing 3D Geometry Reconstruction from Implicit Neural Representations
Spectral Wavelet Dropout: Regularization in the Wavelet Domain 822 Rinor Cakaj (University of Stuttgart, Germany), Jens Mehnert (Signal Processing, Robert Bosch GmbH, Germany), and Bin Yang (University of Stuttgart, Germany)

REFORMER: A ChatGPT-Driven Data Synthesis Framework Elevating Text-to-SQL Models 828 Shenyang Liu (University of Central Florida, USA), Saleh Almohaimeed (University of Central Florida, USA), and Liqiang Wang (University of Central Florida, USA)	8
Centralized Multi-Agent Proximal Policy Optimization with Attention 834 Hugo Cazaux (Reykjavik University, Iceland), Ralph Rudd (Reykjavik University, Iceland), Hlynur Stefánsson (Reykjavik University, Iceland), Sverrir Ólafsson (Reykjavik University, Iceland), and Eyjólfur Ingi Ásgeirsson (Reykjavik University, Iceland)	4
Impact of Transfer Learning on Transformers Networks for Prostate Image Segmentation	1
IntelliBeeHive: An Automated Honey Bee, Pollen, and Varroa Destructor Monitoring System 845 Christian Narcia-Macias (University of Texas Rio Grande Valley), Joselito Guardado (University of Texas Rio Grande Valley), Jocell Rodriguez (University of Texas Rio Grande Valley), Junseong Park (University of Texas Rio Grande Valley), Joanne Rampersad-Ammons (University of Texas Rio Grande Valley), Erik Enriquez (University of Texas Rio Grande Valley), and Dong-Chul Kim (University of Texas Rio Grande Valley)	5
Exploring Machine Learning for Faster Mapping and Scheduling of Automotive Applications on ADAS Platforms	1
Graph Polynomial Convolution Models for Node Classification of Non-Homophilous Graphs 856 Kishan Wimalawarne (University of Tokyo, Japan), Taro Sawaki (Japan Digital Design, Inc., Japan), Motokiyo Hirayama (Japan Digital Design, Inc., Japan), Takanobu Kawahara (Japan Digital Design, Inc., Japan), and Taiji Suzuki (University to Tokyo, Japan)	6
Towards Holistic Disease Risk Prediction Using Small Language Models	4
Variational Information Bottleneck with Gaussian Processes for Time-Series Classification	0
Predicting Temporal Patterns in Keyword Searches with Recurrent Neural Networks — Phenotyping Human Behaviour from Search Engine Usage	6
Deep Learning-Based Modeling of Daily Suspended Sediment Concentration and Discharge in Esopus	2

Robust Detection of Line Numbers in Piping and Instrumentation Diagrams (P&IDs)	888
Detecting Salmon Lice in Seawater Using Synthetic Datasets	894
Improving Audience Ratings Prediction of Japanese TV Dramas using Knowledge-Based Embeddings	900
New Product Sales Forecasting Model Leveraging Data Homogeneity and Ensemble Method: A Case Study on Smartphone	906
RAG Certainty: Quantifying the Certainty of Context-Based Responses by LLMs	912
Forecasting of Low Visibility Using Weather and Air Quality Data for Safe and Smooth Transportation Operation	918
Machine Learning Meets EEG: A Novel Approach to PGA-Based Authentication Systems	924
CyberLlama2 - MEDICALHARM Threat Modeling Assistant	930
Approximate Bisimulation Relation Restoration for Neural Networks Based On Knowledge Distillation	935
V-CAS: A Realtime Vehicle Anti Collision System Using Vision Transformer on Multi-Camera Streams Muhammad Waqas Ashraf (NUST, Pakistan), Ali Hassan (NUST, Pakistan), and Imad Ali Shah (University of Galway, Ireland)	939

Learning Time-Optimal Control of Gantry Cranes
Evaluating Text Summaries Generated by Large Language Models Using OpenAI's GPT
Fuels Demand Forecasting: Identifying Leading Feature Sets, Prediction Strategy, and Regressors
Graph Signal Processing Unearths the Best Locations for Soil Moisture Sensors
ECSGen and iZen: A New NLP Task and A Zero-Shot Framework to Perform It
CFC-ATE: Causal Feature Construction via Average Treatment Effect 975 Asmae Lamsaf (University of Beira Interior, Portugal), Hugo Proenca (University of Beira Interior, Portugal), and João Neves (University of Beira Interior, Portugal)
Combining Transfer Learning and Representation Learning to Improve Predictive Analytics on Small Materials Data
Pedestrian Detection: An Explainable Approach
Scheduled Sampling for Recursive Multi-Step GPU Temperature Forecasting

Cackling the Nonlinearity Problem in Inverse Modeling: Mixture Density Network-Backed Quantized AutoEncoder	997
Exploring Machine Learning Engineering for Object Detection and Tracking by Unmanned Aerial Vehicle (UAV)	. 1001
Gemporal Tensor Factorization: A Framework for Low-Rank Multilinear Time Series Gorecasting Jackson Cates (South Dakota Mines, USA), Randy C. Hoover (South Dakota Mines, USA), Kyle Caudle (South Dakota Mines, USA), David Marchette (Naval Surface Warware Center, USA), and Karissa Schipke (South Dakota Mines, USA)	. 1005
A Multi-view Android Malware Detection Model Through Multi-Objective Optimization	. 1011
Optimizing Parking Space Classification: Distilling Ensembles into Lightweight Classifiers Paulo Luza Alves (Universidade Federal do Paraná, Brazil), André Gustavo Hochuli (Pontifícia Universidade Católica do Paraná, Brazil), Luiz Eduardo de Oliveira (Universidade Federal do Paraná, Brazil), and Paulo Lisboa de Almeida (Universidade Federal do Paraná, Brazil)	. 1016
Enhancing Deep Neural Network Classification Performance Through Novel Weight nitialization: t-SNE Supported Walsh Matrix Approach	. 1021
Automated Shared Phenotype Discovery in Undiagnosed Cohorts for Rare Disease Research Aaron Masino (Clemson University, USA) and Ranga Baminiwatte (Clemson University, USA)	. 1025
Positional Tracking of Physical Objects in an Augmented Reality Environment Using Neuromorphic Vision Sensors	. 1031

4bit-Quantization in Vector-Embedding for RAG	1037
DOC-DICAM: Domain Aware One Class Defect Identification in Composite Aerostructure Material Austin Yunker (Argonne National Laboratory, USA), Rajkumar Kettimuthu (Argonne National Laboratory, USA), and Zachary Kral (Spirit AeroSystems, USA)	1043
3D Vehicle Detection in Roadside Traffic Flow Using Complex-YOLO Jonathan Cordova (California State University, Northridge, CA), Xunfei Jiang (California State University, Northridge, CA), Xudong Jia (California State University, Northridge, CA), and Bingbing Li (California State University, Northridge, CA)	1049
Discrepancy-Based Knowledge Distillation for Image Classification Restoration	1055
On the Effectiveness of a Hybrid Model for Volatility Prediction	1061
Multi-Task Learning for Material Property Prediction Chowdhury Mohammad Abid Rahman (West Virginia University), Nishat Binte Alam (West Virginia University), Amr S. El-Wakeel (West Virginia University), JuHyeong Ryu (West Virginia University), and Prashnna K. Gyawali (West Virginia University)	1065
Enhancing Dialogue Analysis in Multiparty Meetings Through Argument and Relation Classification Models Vishal Vaitla (San Jose State University, USA), Melody Moh (San Jose State University, USA), and Teng-Sheng Moh (San Jose State University, USA)	1071
Contrastive Representation Learning for Predicting Solar Flares from Extremely Imbalanced Multivariate Time Series Data	1077
Multi-Modal Contrastive Learning for Medical Image Classification with Limited Training Data Shengzhe Jiao (Osaka University, Japan), Yihong Zhang (Osaka University, Japan), Yuanyuan Wang (Yamaguchi University, Japan), Shingo Mabu (Yamaguchi University, Japan), Haoyang Xia (Yamaguchi University, Japan), and Takahiro Hara (Osaka University, Japan)	1083
Causal Inference in Finance: An Expertise-Driven Model for Instrument Variables Identification and Interpretation	1089

Shrinking: Reconstruction of Parameterized Surfaces from Signed Distance Fields
Pre-Train, Mixup and Fine-Tune: A Simple Strategy to Handle Domain Shift
Location Invariant Flood Prediction Using Fourier Neural Operator
CNN-JEPA: Self-Supervised Pretraining Convolutional Neural Networks Using Joint Embedding Predictive Architecture
Target Permutation for Feature Significance and Applications in Neural Networks
Improving Features for Multiple Sclerosis Disability Progression Prediction through Temporal Alignment of Hospital Visits
Multi-Label Behavioral Health Classification from Police Narrative Report
Evaluating Large Language Models in Vulnerability Detection Under Variable Context Windows 1131 Jie Lin (University of Central Florida) and David Mohaisen (University of Central Florida)
Quantifying Influencer Impact on Affective Polarization

Analyzing Inconsistencies Across Financial Services Machine Learning Algorithms and Implementations	1141
Enhancing Tabular GAN Fairness: The Impact of Intersectional Feature Selection	1146
Exploring Testing Methods for Large Language Models	1152
Deep Learning with Uncertainty Quantification for Predicting the Segmentation Dice Coefficient of Prostate Cancer Biopsy Images Audrey Xie (Media Arts & Sciences, Massachusetts Institute of Tech., USA), Elhoucine Elfatimi (University of California, USA), Sambuddha Ghosal (Media Arts & Sciences, Massachusetts Institute of Tech., USA), and Pratik Shah (University of California, USA)	1158
Explainable Transformer-Based Intrusion Detection in Internet of Medical Things (IoMT) Networks	1164
Evaluating Alignment Techniques for Enhancing LLM Performance in a Closed-Domain Application: a RAG Bench-Marking Study	1170
Enhancing Long-Term Re-Identification Robustness Using Synthetic Data: A Comparative Analysis	1176
The Theory of Probabilistic Hierarchical Supervised Ensemble Learning Ziauddin Ursani (University of Liverpool, United Kingdom), Dmytro Antypov (University of Liverpool, United Kingdom), Katie Atkinson (University of Liverpool, United Kingdom), Judith Clymo (University of Liverpool, United Kingdom), Matthew Dyer (University of Liverpool, United Kingdom), Matthew Rosseinsky (University of Liverpool, United Kingdom), Sven Schewe (University of Liverpool, United Kingdom), and Andrij Vasylenko (University of Liverpool, United Kingdom)	1182

Semi-Supervised Learning and Focal Masking for Vessel Segmentation in X-ray Coronary Angiography	188
Virtual-Coordinate Based Sampling and Embedding for Machine Learning with Graph Data 11 Zheyi Qin (Colorado State University, USA), Anura P. Jayasumana (Colorado State University, USA), and Randy Paffenroth (Mathematical Sciences, Computer Science, and Data Science, Worcester Polytechnic Institute, USA)	192
Enhancing Financial Fraud Detection with Human-in-the-Loop Feedback and Feedback Propagation	198
Media Haze Classification in Retinal Images Using Transfer Learning with Convolutional Neural Networks	204
Evaluating the Efficacy of Large Language Models in Automating Academic Peer Reviews 12 Weimin Zhao (Ontario Tech University, Canada) and Qusay Mahmoud (Ontario Tech University, Canada)	208
Learning Input Driven Dynamic Bayesian Networks with Measurement Noise	214
Gaussian Process Neural Network Embeddings for Collaborative Filtering	220
Contrastive Learning with Auxiliary User Detection for Identifying Activities	226
Novel L1-Based Neural Gas Clustering Algorithms	232
Enhanced Distribution Matching for Multiclass Quantification	238
Developing an Autonomous Robotics System Utilizing Camera and IMU Fusion with PID- Based Path Correction	243
Comparative Study of Machine Learning Techniques in Prediction of Superfund Sites	249

Spectral Recovery Via Spectral-Aware Perceptual Loss Ignacio Loayza Campos (Federico Santa María Tech. U., Chile), Ricardo Ñanculef Alegría (Federico Santa María Tech. U., Chile), and Roxana Trujillo Guiñez (Federico Santa María Tech. U., Chile)	1253
GEM-RAG: Graphical Eigen Memories For Retrieval Augmented Generation Brendan Hogan Rappazzo (Cornell University, New York), Yingheng Wang (Cornell University, New York), Aaron Ferber (Cornell University, New York), and Carla Gomes (Cornell University, New York)	1259
DeepCensored: Deep-Learning Based Probabilistic Forecasting Framework for Censored Data Jiahao Tian (University of Virginia, USA) and Michael D. Porter (University of Virginia, USA)	1265
Multi-Label Classification Using Self-Supervised Learning: Addressing Class Inter-Dependency and Data Imbalance Ghazaleh Mirzaee (West Virginia University, USA), Gianfranco Doretto (West Virginia University, USA), and Donald Adjeroh (West Virginia University, USA)	1271
Optimal Parameter Estimation of Biological Systems Through Deep Reinforcement Learning Fadil Santosa (Johns Hopkins University, USA) and Loren Anderson (University of Minnesota Twin Cities, USA)	1277
Mixture-of-Experts for Multi-Domain Defect Identification in Non-Destructive Inspection	1283
NSP: A Neuro-Symbolic Natural Language Navigational Planner William English (University of Florida, USA), Dominic Simon (University of Florida, USA), Sumit Kumar Jha (Florida International University, USA), and Rickard Ewetz (University of Florida, USA)	1289
Predicting Fold-Switching Protein Behavior Using Graph Neural Networks Avi Lekkelapudi (Bellarmine College Preparatory, USA) and Darnell Granberry (Inspirit AI, USA)	1295
MC2: Main Conference (Virtual, Regular Papers)	
LyriX : Automated Lyrics Transcription Using Deep Learning-Based Residual UNet Model Arijit Roy (vidyo.ai, India), Esha Baweja (Manipal University Jaipur, India), and Ashish Kumar (Manipal University Jaipur, India)	1301
Evaluating the Clinical Applicability of Neural Networks for Meningioma Tumor Segmentation on Multiparametric 3D MRI Diya Sreedhar (Troy High School, USA)	1308
Volumetric Feature Extraction from 2D Images Using Cubixels Sanad Aburass (Luther College, USA) and Maha Abu Rumman (Maharishi International University, USA)	1314

Comparative Evaluation of Autoencoders for Semi- Supervised Anomaly Detection on Univariate Time Series Data	21
Tijana Markovic (Mälardalen University, Sweden), Sara Moricz (Sensative AB, Sweden), and Miguel Leon (Mälardalen University, Sweden)	
S-Omninet: Structured Data Enhanced Universal Multimodal Learning Architecture	29
Student Mental Health Screening with Text Message Metadata	37
Special Session 1: Deep Learning and Applications (Regular Papers)	
A Comparative Analysis of Transformer and LSTM Models for Detecting Suicidal Ideation on Reddit	43
Enhancing Synthetic Well Logs with PCA-Based GAN Models	50
Mental Stress Classification by Attention-Based CNN-LSTM Algorithm of Electrocardiogram Signal	56
Multi-Spheres Anomaly Detection with Hyperspherical Layers	62
Depression Classification Algorithm Based on Voice Signals Using MFCC and CNN Autoencoders 1368 Jisun Hong (Chosun University, Korea), Jihun Lee (Chosun University, Korea), Deagil Choi (Chosun University, Korea), and Jaehyo Jung (Chosun University, Korea)	•••
WeedVision: Multi-Stage Growth and Classification of Weeds Using DETR and RetinaNet for Precision Agriculture	74
Efficient Retraining for Continuous Operability Through Strategic Directives	82

Evaluating Adversarial Attacks on Traffic Sign Classifiers Beyond Standard Baselines
Real-Time Automatic Checkout via Prompt-Based Product Extraction and Cross-Domain Learning 1396 Tobias Pettersson (University of Skövde, Sweden; Jönköping University, Sweden), Maria Riveiro (Jönköping University, Sweden), and Tuwe Löfström (Jönköping University, Sweden)
Edge-Centric Real-Time Segmentation for Autonomous Underwater Cave Exploration
Interpretable Deep Learning Model for Multiclass Brain Tumor Classification
Turn Down The Noise: Perceptually Constrained Attacks for Multi-Label Audio Classification1418 Erick Capulong (Naval Postgraduate School, USA), Marko Orescanin (Naval Postgraduate School, USA), Pedro Ortiz (Naval Postgraduate School, USA), and Patrick Mcclure (Naval Postgraduate School, USA)
Leveraging LLMs for Integrated Sentiment and Topic Analysis on African Social Media
Deep Fake Video Classification with Sequential Input Frames Using Hybrid Deep Learning Model and Bayesian Optimization
Finding an Optimal Small Sample of Training Dataset for Computer Vision Deep-Learning Models
Deep Learning Enhanced Gap Filling in Drosophila Melanogaster Genomic Data

A Dissimilarity-Based Countermeasure for Detecting Replay Attacks in Speaker Verification 145 Maria Eduarda Maciel Pinto (Pontíficia Universidade Católica do Paraná, Brazil), Alceu de Souza Britto (Pontíficia Universidade Católica do Paraná, Brazil), and Andre Gustavo Hochuli (Pontíficia Universidade Católica do Paraná, Brazil)	4
Towards Adversarial Robustness of Model-Level Mixture-of-Experts Architectures for Semantic Segmentation	0
Preserving Accuracy While Stealing Watermarked Deep Neural Networks	6
TriplePlay: Enhancing Federated Learning with CLIP for Non-IID Data and Resource Efficiency	4
Computer Vision Based Neurology Brain Activity Rejection Architecture and Implementation 148 Zag ElSayed (University of Cincinnati, USA), Makoto Miyakoshi (Cincinnati Children's Hospital Medical Center, USA), Nathan Suer (Cincinnati Children's Hospital Medical Center, USA), Craig Erickson (Cincinnati Children's Hospital Medical Center, USA), Grace Westerkamp (Cincinnati Children's Hospital Medical Center, USA), Ernest Pedapati (Cincinnati Children's Hospital Medical Center, USA), and Jack Yanchen Liu (Cincinnati Children's Hospital Medical Center, USA)	1
Variational Encoder Based Synthetic Alzheimer's Data Generation for Deep Learning, XGBoost and Statistical Survival Analysis	8
Dynamical System Autoencoders	6
Using Deep Neural Networks to Quantify Parking Dwell Time	4

Zero-Shot Detection and Sanitization of Data Poisoning Attacks in Wearable AI Using Large Language Models	10
Securing 3D Deep Learning Models: Simple and Effective Defense Against Adversarial Attacks 151 Rosina F. Kharal (University of Waterloo, Canada), Saif Al-Din Ali (Wilfrid Laurier University, Canada), Usama Mohiuddin (Wilfrid Laurier University, Canada), and Samir El Sayed (University of Waterloo, Canada)	16
The Innate Curiosity in the Multi-Agent Transformer	23
Data-Driven Estimation of Flowing Bottom-Hole Pressure in Petroleum Wells Using Long Short-Term Memory	30
Training Deep Neural Classifiers with Soft Diamond Regularizers	38
Tri-Level Optimization for Gradient-Based Neural Architecture Search	46
Special Session 1: Deep Learning and Applications (Short Papers)	
Predicting Vehicle Impact Severity With Deep Neural Network for Reinforcement Learning Based Autonomous Vehicle Simulators	53
An Innovative Approach for Human Activity Recognition Based on a Multi-Head Attention Mechanism	59
A Few-Shot Learning Approach for Sound Source Distance Estimation Using Relation Networks 156 Amirreza Sobhdel (Urmia University, Iran), Roozbeh Razavi-Far (University of New Brunswick, Canada), and Vasile Palade (Coventry University, UK)	54
Action Selection in Reinforcement Learning with Upgoing Policy Update	70

Comparative Evaluation of Deep Learning Architectures for Retinal Ganglion Cell Counting: FCRN-A, FCRN-A-v2, and U-Net
Leveraging Multimodal Shapley Values to Address Multimodal Collapse and Improve Fine-Grained E-Commerce Product Classification
Multi-Modal AI Approach for Multi-Class Skin Disease Classification
Domain-Invariant Crop Type Mapping Using Transformer-Based Time-Frequency Feature Extraction and Adaptation for Unlabeled Target Regions
KAN-Attn GAN: Map Generation with Kolmogorov-Arnold Networks and Attention-Based Queries Selection
Key Information Extraction from Invoices
Special Session 2: Machine Learning for Natural Language Processing (Regular Papers)
Tell Me More! Using Multiple Features for Binary Text Classification with a Zero-Shot Model
Chain-of-Factors: A Zero-Shot Prompting Methodology Enabling Factor-Centric Reasoning in Large Language Models

Sentiment Classification on Twitter(X) Through Ensemble Deep Random Vector Functional Links Pablo A. Henríquez (Universidad Diego Portales, Chile)	. 1628
Systematical Randomness Assignment for the Level of Manipulation in Text Augmentation Youhoo Cha (Seoul National University of Science and Technology, Republic of Korea) and Younghoon Lee (Seoul National University of Science and Technology, Republic of Korea)	. 1633
LingBERT, Linguistic Knowledge Injection into Attention Mechanism Based on a Hybrid Masking Strategy Toufik Mechouma (University of Quebec in Montreal, Canada), Ismail Biskri (University of Quebec in Trois-Rivirères, Canada), and Serge Robert (University of Quebec in Montreal, Canada)	. 1639
Using LLMs to Establish Implicit User Sentiment of Software Desirability	1645
Toward Robust Generative AI Text Detection: Generalizable Neural Model Harika Abburi (Deloitte & Touche Assurance & Enterprise Risk Services India Private Limited, India), Nirmala Pudota (Deloitte & Touche Assurance & Enterprise Risk Services India Private Limited, India), Balaji Veeramani (Deloitte & Touche LLP, USA), Edward Bowen (Deloitte & Touche LLP, USA), and Sanmitra Bhattacharya (Deloitte & Touche LLP, USA)	1651
Using Transformers for Emotion Recognition in Bangla Text: A Comparative Study of MultiBERT and BanglaBERT with Data Augmentation	1657
Detecting Cyberbullying in Visual Content: A Large Vision-Language Model Approach	1663

Tensor Factorization	
Tensor Factorization	1009
Division, Los Alamos National Laboratory, USA), Vessalin Grantcharov	
(University of New Mexico), Selma Wanna (University of Texas at	
Austin; Advanced Research in Cyber Systems, Los Alamos National	
Laboratory, USA), Maksim Eren (University of Maryland Baltimore	
County; Advanced Research in Cyber Systems, Los Alamos National	
Laboratory, USA), Manish Bhattarai (Theoretical Division, Los Alamos	
National Laboratory, USA), Nicholas Solovyev (Theoretical Division,	
Los Alamos National Laboratory, USA), George Tompkins (Analytics,	
Intelligence and Technology Division, Los Alamos National Laboratory,	
USA), Charles Nicholas (University of Maryland Baltimore County;	
Advanced Research in Cyber Systems, Los Alamos National Laboratory,	
USA), Kim Rasmussen (Theoretical Division, Los Alamos National	
Laboratory, USA), Cynthia Matuszek (University of Maryland Baltimore	
County; Advanced Research in Cyber Systems, Los Alamos National	
Laboratory, USA), and Boian Alexandrov (Theoretical Division, Los	
Alamos National Laboratory, USA)	
Empathetic Reflective Response Generation: Towards Conversation Models for Online Mental	
•	. 1677
Tootiya Ĝiyahchi (University of California, USA), Cornelia Pechmann	
(University of California, USA), and Ian Harris (University of	
California, USA)	
LLM-Based Sign Language Production	1685
Wellington Silveira (Federal University of Rio Grande, Brazil), Luca	1000
Mendonça (Federal University of Rio Grande, Brazil), and Rodrigo de	
Bem (Federal University of Rio Grande, Brazil)	
(
Consist Consists 2. Marking Larming for Dradictive Madelain	
Special Session 3: Machine Learning for Predictive Models in	
Engineering Applications (Regular Papers)	
Toward a Highly Efficient Amountly Detection for Duckiting Maintenance	1/01
Towards Highly Efficient Anomaly Detection for Predictive Maintenance	. 1691
for Machine Learning and Artificial Intelligence, Germany), Vanlal	
Peka (TU Dortmund University, Germany), Philipp Doebler (TU Dortmund	
University, Germany), and Emmanuel Müller (TÜ Dortmund University, Germany; Lamarr Institute for Machine Learning and Artificial	
Intelligence, Germany; Research Center Trustworthy Data Science and	
Security, Germany)	
An Evaluation and Comparison of Machine Learning Methods for Prediction of Lubricant Film	
Thickness	.1697
Caleb Combs (Rice University, USA), Edgar Avalos Gauna (Rice	
University, USA), and C. Fred Higgs (Rice University, USA)	
00 1	

On the Effectiveness of Heterogeneous Ensemble Methods for Re-Identification	.705
Mathieu Vandecasteele (Ghent University – imec, Belgium), Domenico Iuso (University of Antwerp, Belgium), Milad Hamidi Nasab (MaPS - Department of Mechanical Engineering, KU Leuven, Belgium), Dries Verhees (Flanders MAKE, Belgium), Joaquim Sanctorum (University of Antwerp, Belgium), Mohsen Nourazar (Ghent University – imec, Belgium), Abdellatif Bey-Temsamani (Flanders MAKE, Belgium), and Brian Booth (Ghent University – imec, Belgium)	1712
AssemAI: Interpretable Image-Based Anomaly Detection for Manufacturing Pipelines	1720
Brazilian free-Energy Market mid- and Long-Term Forecasting Using Multi-Source Ensemble Solution	1728
Fusion of Real and Synthetic Subtracted Contrast-Enhanced Mammograms for Enhanced Tumor Detection	1736
iPEERS: A Multi-Layered Expert Recommender System for Enhanced Customer Support	741

Harnessing Machine Learning and Stock Market Techniques for Signal Detection in Underwater Sensing Technologies	1747
Advancing Energy Monitoring: Deep Learning for Automated Non-Smart Gas Meter Readings Nastaran Enshaei (Concordia University, Canada), Stéphane Tremblay (Digital Technologies Research Centre, National Research Council Canada, Canada), Patrick Paul (Digital Technologies Research Centre, National Research Council Canada, Canada), and Ashkan Ebadi (Digital Technologies Research Centre, National Research Council Canada, Canada)	1753
Aircraft Engine Remaining Useful Life (RUL) Prediction Using Machine Learning	1759
Hierarchical Supervised Monte Carlo Ensemble Learning	1764
Enhancing Pipeline Monitoring: Optimizing Window Size with Monte Carlo Search and CB-AttentionNet	1772
A Game-Theoretic Framework for Approximation with Soft Sets	1780
Special Session 3: Machine Learning for Predictive Models in Engineering Applications (Short Papers)	
Clustered Federated Learning with Non-IID Data: Mitigating Accuracy Overestimates Through Hold-out Model Selection and Evaluation	1786

Domain Contextual and Relational Graph Model for Predictive Maintenance
Mixture of Projection Experts for Multivariate Long-term Time Series Forecasting
Localized Recommendation in Assembly Modeling: Employing GNNs for Targeted Part Placement 1804 Carola Lenzen (University of Augsburg, Germany) and Wolfgang Reif (University of Augsburg, Germany)
Special Session 4: Quantum Machine Learning Algorithms and
Applications (Regular Papers) Hierarchical Learning for Training Large-Scale Variational Quantum Circuits
Hierarchical Learning for Training Large-Scale Variational Quantum Circuits
Hierarchical Learning for Training Large-Scale Variational Quantum Circuits
Hierarchical Learning for Training Large-Scale Variational Quantum Circuits
Hierarchical Learning for Training Large-Scale Variational Quantum Circuits

Special Session 5: Machine Learning for Earth Observation (Regular Papers)

Towards Multi-Class Open-set Recognition by Use of Lower Dimensional Latent Space Embeddings
Detecting Important Drivers of Gridded Population Modeling With Machine Learning
Predicting Particulate Matter Values in Metropolitan Areas Using Machine Learning
Characterizing the Impact of Common Electro-Optical Sensor Anomalies on Maritime Image Classifiers
Pragmatic and ML Approaches to Backfilling Missing Data Within Time Series Datasets
Workshop 1: Human Aligned AI: Towards Algorithms that Humans Can Trust
Toward Measuring and Understanding the Overvalidation Phenomena 1872 Fabrizio Mori (University of Genoa, Italy), Antonio Emanuele Cinà (University of Genoa, Italy), Fabio Roli (University of Genoa, Italy), Davide Anguita (University of Genoa, Italy), and Luca Oneto (University of Genoa, Italy)
Mitigating Unfair Regression in Machine Learning Model Updates

Increasing Adversarial Robustness Around Uncertain Boundary Regions with Amodal Segmentation
Unifying Robust Activation Functions for Reduced Adversarial Vulnerability with the Parametric Generalized Gamma Function
An Efficient Approach For Enhancing GenAI Trustworthiness
Workshop 3: Green Algorithms: Shaping a Sustainable World with AI Innovation
Minimizing Hybrid Electric Power Generation Costs Using Smart Power Grid Solution
Mutual Information-Based Feature Selection for Federated Learning Environments
Iterative Feedback-Enhanced Prompting: A Green Algorithm for Reducing Household Food Waste 1920
Yuekai Wang (Rancho Bernardo High School, USA) Dynamic Prediction of Reblowing Necessity in BOF Steelmaking
MCMN Deep Learning Model for Precise Microcrack Detection in Various Materials

Author Index