2024 IEEE International Conference on Data Mining (ICDM 2024)

Abu Dhabi, United Arab Emirates 9-12 December 2024

Pages 1-489

IEEE Catalog Number: CFP24278-POD **ISBN:**

979-8-3315-0669-8

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP24278-POD
ISBN (Print-On-Demand):	979-8-3315-0669-8
ISBN (Online):	979-8-3315-0668-1
ISSN:	1550-4786

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2024 IEEE International Conference on Data Mining (ICDM) ICDM 2024

Table of Contents

Message from General Chairs	xx i	i
Message from Program Committee Chairs	xxii	i

Regular Papers

Feature Map Purification for Enhancing Adversarial Robustness of Deep Timeseries Classifiers
Mubarak G. Abdu-Aguye (Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), UAE), Muhammad Zaigham Zaheer (Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), UAE), and Karthik Nandakumar (Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), UAE)
LISA: Learning-Integrated Space Partitioning Framework for Traffic Accident Forecasting on Heterogeneous Spatiotemporal Data
Normalizing Self-Supervised Learning for Provably Reliable Change Point Detection
Fast and Accurate Triangle Counting in Graph Streams Using Predictions
 Graph Contrastive Learning with Adversarial Structure Refinement (GCL-ASR)

 Towards Cross-Domain Few-Shot Graph Anomaly Detection	l
HomoMGC: Homophily-Enhanced Adaptive Graph Refinement for Multi-View Graph Clustering . 61 Man-Sheng Chen (Sun Yat-sen University, China), Xiao-Sha Cai (Sun Yat-sen University, China), Chang-Dong Wang (Sun Yat-sen University, China), Dong Huang (South China Agricultural University, China), Min Chen (South China University of Technology, China; Pazhou Laboratory, China), and Mohsen Guizani (Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), UAE)	L
A Novel Shadow Variable Catcher for Addressing Selection Bias in Recommendation Systems 71 Qingfeng Chen (Guangxi University, China), Boquan Wei (Guangxi University, China), Debo Cheng (University of South Australia, Australia), Jiuyong Li (University of South Australia, Australia), Lin Liu (University of South Australia, Australia), and Shichao Zhang (Guangxi Normal University, China)	L
Continuous Exact Explanations of Neural Networks	l
Counterfactual Brain Graph Augmentation Guided Bi-Level Contrastive Learning for Disorder Analysis	L
Resource2Box: Learning To Rank Resources in Distributed Search Using Box Embedding	L
Graph Community Augmentation with GMM-Based Modeling in Latent Space	L
 TROPICAL: Transformer-based Hypergraph Learning for Camouflaged Fraudster Detection121 Venus Haghighi (Macquarie University, Australia), Behnaz Soltani (Macquarie University, Australia), Nasrin Shabani (Macquarie University, Australia), Jia Wu (Macquarie University, Australia), Yang Zhang (Macquarie University, Australia), Lina Yao (University of New South Wales, Australia; CSIRO's Data61, Australia), Quan Z. Sheng (Macquarie University, Australia), and Jian Yang (Macquarie University, Australia) 	L
Scaling Disk Failure Prediction via Multi-Source Stream Mining	L

GQ*: Towards Generalizable Deep Q-Learning for Steiner Tree in Graphs
 HFGNN: Efficient Graph Neural Networks using Hub-Fringe Structures
Informative Subgraphs Aware Masked Auto-Encoder in Dynamic Graphs
ELiCiT: Effective and Lightweight Lossy Compression of Tensors
CounterFair: Group Counterfactuals for Bias Detection, Mitigation and Subgroup Identification
 RecCoder: Reformulating Sequential Recommendation as Large Language Model-Based Code Completion
Adaptive Graph Neural Networks for Cold-Start Multimedia Recommendation
Scalable Order-Preserving Pattern Mining 211 Ling Li (King's College London, UK), Wiktor Zuba (CWI, The 211 Netherlands), Grigorios Loukides (King's College London, UK), Solon 211 Pissis (CWI, The Netherlands; Vrije Universiteit, The Netherlands), and Maria Matsangidou (CYENS—Centre of Excellence, Cyprus)

 GADIN: Generative Adversarial Denoise Imputation Network for Incomplete Data
Scalable Graph Classification via Random Walk Fingerprints
Utilitarian Online Learning from Open-World Soft Sensing
Contrastive Learning for Adapting Language Model to Sequential Recommendation
Towards Efficient Ridesharing via Order-Vehicle Pre-Matching Using Attention Mechanism 261 Zhidan Liu (Hong Kong University of Science and Technology (Guangzhou)), Jinye Lin (Shenzhen University), Zhiyu Xia (Shenzhen University), Chao Chen (Chongqing University), and Kaishun Wu (Hong Kong University of Science and Technology (Guangzhou))
 Align Along Time and Space: A Graph Latent Diffusion Model for Traffic Dynamics Prediction 271 Yuhang Liu (Binghamton University, USA), Yingxue Zhang (Binghamton University, USA), Xin Zhang (San Diego State University, USA), Yu Yang (Lehigh University, USA), Yiqun Xie (University of Maryland, USA), Sahar Ghanipoor Machiani (San Diego State University, USA), Yanhua Li (Worcester Polytechnic Institute, USA), and Jun Luo (Logistics and Supply Chain MultiTech R&D Centre, China)
DFDG: Data-Free Dual-Generator Adversarial Distillation for One-Shot Federated Learning 281 Kangyang Luo (East China Normal University, China), Shuai Wang (East China Normal University, China), Yexuan Fu (East China Normal University, China), Renrong Shao (Naval Medical University, China), Xiang Li (East China Normal University, China), Yunshi Lan (East China Normal University, China), Ming Gao (East China Normal University, China), and Jinlong Shu (Shanghai Normal University, China)
 High-Fidelity Diffusion Editor for Zero-Shot Text-Guided Video Editing

Cross-Store Next-Basket Recommendation Liang-Chen Ma (Sun Yat-sen University, China), Ya Li (Guangdong Polytechnic Normal University, China), Zi-Feng Mai (Sun Yat-sen University, China), Fei-Yao Liang (Sun Yat-sen University, China), Chang-Dong Wang (Sun Yat-sen University, China; Guangdong Provincial Key Laboratory of Intellectual Property and Big Data, China), Min Chen (South China University of Technology, China; Pazhou Laboratory, China), and Mohsen Guizani (Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), UAE)	301
A Learned Approach to Index Algorithm Selection Chaohong Ma (Renmin University of China, China), Xiaohui Yu (York University, Canada), Yifan Li (York University, Canada), Aishan Maoliniyazi (Renmin University of China, China), and Xiaofeng Meng (Renmin University of China, China)	311
Enhancing Embeddings Quality with Stacked Gate for Click-Through Rate Prediction Caihong Mu (Xidian University, China), Yunfei Fang (Xidian University, China), Jialiang Zhou (Xidian University, China), and Yi Liu (Xidian University, China)	321
Generating Realistic Tabular Data with Large Language Models Dang Nguyen (Deakin University, Australia), Sunil Gupta (Deakin University, Australia), Kien Do (Deakin University, Australia), Thin Nguyen (Deakin University, Australia), and Svetha Venkatesh (Deakin University, Australia)	330
Improving Time Series Encoding with Noise-Aware Self-Supervised Learning and an Efficient Encoder	340
Duy A. Nguyen (University of Illinois Urbana - Champaign, USA), Trang H. Tran (Cornell University, USA), Huy Hieu Pham (VinUniversity, Vietnam), Phi Le Nguyen (Hanoi University of Science and Technology, Vietnam), and Lam M. Nguyen (Thomas J. Watson Research Center, USA)	
 Hierarchical Explanations for Text Classification Models: Fast and Effective Zhenyu Nie (Hunan University, China), Zheng Xiao (Hunan University, China), Huizhang Luo (Hunan University, China), Xuan Liu (Hunan University, China), and Anthony Theodore Chronopoulos (University of Texas, USA) 	350
Zhenyu Nie (Hunan University, China), Zheng Xiao (Hunan University, China), Huizhang Luo (Hunan University, China), Xuan Liu (Hunan University, China), and Anthony Theodore Chronopoulos (University of	

A Bayesian Hierarchical Model for Orthogonal Tucker Decomposition with Oblivious Tensor Compression
Solving Combinatorial Optimization Problem over Graph through QUBO Transformation and Deep Reinforcement Learning
ADOD: Adaptive Density Outlier Detection
 Financial Risk Assessment via Long-Term Payment Behavior Sequence Folding
ChronoCTI: Mining Knowledge Graph of Temporal Relations among Cyberattack Actions
 Transitivity-Encoded Graph Attention Networks for Complementary Item Recommendations 430 Jin Shang (Amazon.com, United States), Yang Jiao (Amazon.com, United States), Chenghuan Guo (Amazon.com, United States), Minghao Sun (Iowa State University, United States), Yan Gao (Amazon.com, United States), Jia Liu (The Ohio State University, United States; Amazon.com, United States), Michinari Momma (Amazon.com, United States), Itetsu Taru (Amazon.com, United States), and Yi Sun (Amazon.com, United States)
Efficient Network Embedding by Approximate Equitable Partitions
Debunking Fake News in Online Social Networks without Text Analysis

Margin-Bounded Confidence Scores for Out-of-Distribution Detection
 TAN: A Tripartite Alignment Network Enhancing Composed Image Retrieval with Momentum Distillation
SR-PredictAO: Session-Based Recommendation with High-Capability Predictor Add-On
Early Fire Detection based on Local Morphological Knowledge Matching
MOStream: A Modular and Self-Optimizing Data Stream Clustering Algorithm
 Bi-Level User Modeling for Deep Recommenders
Towards Dynamic University Course Timetabling Problem: An Automated Approach Augmented via Reinforcement Learning
APOLLO: Differential Private Online Multi-Sensor Data Prediction with Certified Performance
Probabilistic Matrix Factorization-Based Three-Stage Label Completion for Crowdsourcing

Combining Self-Supervision and Privileged Information for Representation Learning from Tabular Data
PROMIPL: A Probabilistic Generative Model for Multi-Instance Partial-Label Learning
HyperTime: A Dynamic Hypergraph Approach for Time Series Classification
 Adaptive Process-Guided Learning: An Application in Predicting Lake DO Concentrations
 DISCO: A Hierarchical Disentangled Cognitive Diagnosis Framework for Interpretable Job Recommendation
Designing an Attack-Defense Game: How to Increase the Robustness of Financial Transaction Models via a Competition
 Emotional Synchronization for Audio-Driven Talking-Head Generation

 EEiF: Efficient Isolated Forest with e Branches for Anomaly Detection
Dual Cross-Stage Partial Learning for Detecting Objects in Dehazed Images
 Traffic Pattern Sharing for Federated Traffic Flow Prediction with Personalization
 Adaptive Loss-aware Modulation for Multimedia Retrieval
Efficiently Manipulating Structural Graph Clustering Under Jaccard Similarity

Short Papers

An Explainable Recommender System by Integrating Graph Neural Networks and User Reviews . 669 Sahar Batmani (University of Kurdistan, Iran), Parham Moradi (RMIT University, Australia), Narges Heidari (Islamic Azad University, Iran), and Mahdi Jalili (RMIT University, Australia)
 SHADE: Deep Density-Based Clustering
Handling Non-IID Data in Federated Learning Using Metaheuristic Optimization Techniques 681 Amin Birashk (The University of Texas at Dallas, USA), Sadaf Md Halim (The University of Texas at Dallas, USA), and Latifur Khan (The University of Texas at Dallas, USA)
 SemiFDA: Domain Adaptation in Semi-Supervised Federated Learning
QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations 693 Jamie Duell (Nanyang Technological University), Monika Seisenberger 693 (Swansea University), Hsuan Fu (Université Laval), and Xiuyi Fan (Nanyang Technological University)
Unsupervised Domain Adaptation for Action Recognition via Self-Ensembling and Conditional Embedding Alignment
Influence-Aware Group Recommendation for Social Media Propagation
D-Cube: Exploiting Hyper-Features of Diffusion Model for Robust Medical Classification

DifFaiRec: Generative Fair Recommender with Conditional Diffusion Model
Graph Rhythm Network: Beyond Energy Modeling for Deep Graph Neural Networks
Channel-Attentive Graph Neural Networks
MoRE-LLM: Mixture of Rule Experts Guided by a Large Language Model
SplitSEE: A Splittable Self-Supervised Framework for Single-Channel EEG Representation Learning 741
Learning741Rikuto Kotoge (Osaka University, Japan), Zheng Chen (Osaka University, Japan), Tasuku Kimura (Osaka University, Japan), Yasuko Matsubara (Osaka University, Japan), Takufumi Yanagisawa (Osaka University, Japan), Haruhiko Kishima (Osaka University, Japan), and Yasushi
 Periodic Prompt on Dynamic Heterogeneous Graph for Next Basket Recommendation
Zero-Shot Link Prediction in Knowledge Graphs with Large Language Models
 Enhancing Entity Alignment on Probabilistic Knowledge Graphs
Hypergraph-Enhanced Contrastively Regularized Transformer for Multi-Behavior E-commerce Product Recommendation 767 Shuiying Liao (The Hong Kong Polytechnic University, Hong Kong) and P. 7 Y. Mok (The Hong Kong Polytechnic University, Hong Kong) 7
Controllable Visit Trajectory Generation with Spatiotemporal Constraints

CL4CO: A Curriculum Training Framework for Graph-Based Neural Combinatorial Optimization 779

Yang Liu (Chinese Academy of Sciences, China), Chuan Zhou (Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Peng Zhang (Guangzhou University, China), Zhao Li (Hangzhou Yugu Technology Co., Ltd., China), Shuai Zhang (Chinese Academy of Sciences, China), Xixun Lin (Chinese Academy of Sciences, China), and Xingdong Wu (Hefei University of Technology, China)
 AnomalyLLM: Few-Shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models
 FGLBA: Enabling Highly-Effective and Stealthy Backdoor Attack on Federated Graph Learning 791 Qing Lu (Sun Yat-sen University, China), Miao Hu (Sun Yat-sen University, China), Di Wu (Sun Yat-sen University, China), Yipeng Zhou (Macquarie University, Australia), Mohsen Guizani (Mohamed Bin Zayed University of Artificial Intelligence, UAE), and Quan Z. Sheng (Macquarie University, Australia)
Towards Expressive Graph Representations for Graph Neural Networks
IIFE: Interaction Information Based Automated Feature Engineering
Accurate and Fast Estimation of Temporal Motifs using Path Sampling
Multi-Hyperbolic Space-Based Heterogeneous Graph Attention Network

 Exploratory Combinatorial Optimization Problem Solving via Gauge Transformation
DynoGraph: Dynamic Graph Construction for Nonlinear Dimensionality Reduction
A Momentum Contrastive Learning Framework for Query-POI Matching
Rank Supervised Contrastive Learning for Time Series Classification
Constructing ε-Constrained Sparsified β ^s -Complexes using Space Partitioning Trees
 Futures Quantitative Investment with Heterogeneous Continual Graph Neural Network
ExoTST: Exogenous-Aware Temporal Sequence Transformer for Time Series Prediction
Survival Analysis with Multiple Noisy Labels

Interdependency Matters: Graph Alignment for Multivariate Time Series Anomaly Detection 869 Yuanyi Wang (Beijing University of Posts and Telecommunications, China), Haifeng Sun (Beijing University of Posts and Telecommunications, China), Chengsen Wang (Beijing University of Posts and Telecommunications, China), Mengde Zhu (Beijing University of Posts and Telecommunications, China), Jingyu Wang (Beijing University of Posts and Telecommunications, China), Wei Tang (Huawei Translation Services Center, China), Qi Qi (Beijing University of Posts and Telecommunications, China), Zirui Zhuang (Beijing University of Posts and Telecommunications, China), and Jianxin Liao (Beijing University of Posts and Telecommunications, China), And Jianxin Liao (Beijing University of Posts and Telecommunications, China), And Jianxin Liao (Beijing University of Posts and Telecommunications, China)
 Enhancing Distribution and Label Consistency for Graph Out-of-Distribution Generalization 875 Song Wang (University of Virginia, USA), Xiaodong Yang (Visa Research, USA), Rashidul Islam (Visa Research, USA), Huiyuan Chen (Visa Research, USA), Minghua Xu (Visa Research, USA), Jundong Li (University of Virginia, USA), and Yiwei Cai (Visa Research, USA)
PC3: Enhancing Concurrency in High-Conflict Transactions with Prior Cascading Control
An Efficient Graph Autoencoder with Lightweight Desmoothing Decoder and Long-Range Modeling
Hi-Gen: Generative Retrieval For Large-Scale Personalized E-Commerce Search
 MetaSTC: A Backbone Agnostic Spatio-Temporal Framework for Traffic Forecasting
Cascading Multimodal Feature Enhanced Contrast Learning for Music Recommendation

Matrix Profile for Anomaly Detection on Multidimensional Time Series
 Addressing Delayed Feedback in Conversion Rate Prediction: A Domain Adaptation Approach 917 Leisheng Yu (Rice University, United States), Yanxiao Cai (Rice University, United States), Lucas Chen (Rice University, United States), Minxing Zhang (Duke University, United States), Wei-Yen Day (Samsung Electronics America, United States), Li Li (Samsung Electronics America, United States), Rui Chen (Samsung Electronics America, United States), Soo-Hyun Choi (Samsung Electronics America, United States), and Xia Hu (Rice University, United States)
Generalized Sparse Additive Model with Unknown Link Function
A Parameter Update Balancing Algorithm for Multi-Task Ranking Models in Recommendation Systems
2DXformer: Dual Transformers for Wind Power Forecasting with Dual Exogenous Variables 935 Yajuan Zhang (Hebei University of Technology, China), Jiahai Jiang (Hebei University of Technology, China), Yule Yan (Hebei University of Technology, China), Liang Yang (Hebei University of Technology, China), and Ping Zhang (Hebei University of Technology, China)
Goal-Guided Generative Prompt Injection Attack on Large Language Models
Weakly-Supervised Graph Classification with Even a Single Key Subgraph Per Class
Reducing Unfairness in Distributed Community Detection

 CAKD: A Correlation-Aware Knowledge Distillation Framework Based on Decoupling Kullback-Leibler Divergence Zao Zhang (Chinese Academy of Sciences, China; The University of Sydney, Australia), Huaming Chen (The University of Sydney, Australia), Pei Ning (Wuhan University of Technology, China), Nan Yang (The University of Sydney, Australia), and Dong Yuan (The University of Sydney, Australia) 	959
 Exploitation or Exploration Next? User Behavior Decoupling and Emerging Intent Modeling for Next-Item Recommendation Nengjun Zhu (Shanghai University, China), Lingdan Sun (Shanghai University, China), Xiangfeng Luo (Shanghai University, China), Jian Cao (Shanghai Jiao Tong University, China), Qi Zhang (Tongji University, China), and Xinjiang Lu (Baidu Research, China) 	965
Multi-Modal Sarcasm Detection via Dual Synergetic Perception Graph Convolutional Networks Xingjie Zhuang (Guangxi Normal University, China) and Zhixin Li (Guangxi Normal University, China)	971

Author Index