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Abstract

Mastering games is a hard task, as games can be extremely complex, and still
fundamentally different in structure from one another. While the AlphaZero
algorithm has demonstrated an impressive ability to learn the rules and strategy of
a large variety of games, ranging from Go and Chess, to Atari games, its reliance
on extensive computational resources and rigid Convolutional Neural Network
(CNN) architecture limits its adaptability and scalability. A model trained to play
on a 19 × 19 Go board cannot be used to play on a smaller 13 × 13 board, despite
the similarity between the two Go variants. In this paper, we focus on Chess,
and explore using a more generic Graph-based Representation of a game state,
rather than a grid-based one, to introduce a more general architecture based on
Graph Neural Networks (GNN). We also expand the classical Graph Attention
Network (GAT) layer to incorporate edge-features, to naturally provide a generic
policy output format. Our experiments, performed on smaller networks than the
initial AlphaZero paper, show that this new architecture outperforms previous
architectures with a similar number of parameters, being able to increase playing
strength an order of magnitude faster. We also show that the model, when trained
on a smaller 5×5 variant of chess, is able to be quickly fine-tuned to play on regular
8 × 8 chess, suggesting that this approach yields promising generalization abilities.
Our code is available at https://github.com/akulen/AlphaGateau.

1 Introduction

In the past decade, combining Reinforcement Learning (RL) with Deep Neural Networks (DNNs) has
proven to be a powerful way to design game agents for a wide range of games. Notable achievements
include AlphaGo’s dominance in Go [17], AlphaZero’s human-like style of play in Chess and
Shogi [18], and MuZero’s proficiency across various Atari games [15]. They use self-play and Monte
Carlo Tree Search (MCTS) [6] to iteratively improve their performance, mirroring the way humans
learn through experience, or intuition, and game-tree exploration.

Previous attempts to make RL-based chess engines were unsuccessful as the MCTS exploration
requires a precise position heuristic to guide its exploration. Handcrafted heuristics such as the ones
used in traditional minimax exhaustive tree searches were too simplistic, and lacked the degree of
sophistication that the random tree explorations of MCTS expects to be able to more accurately
evaluate a complex chess position. By combining the advances in computing powers with the progress
of the field of Deep Learning, AlphaZero was able to provide an adequate heuristic in the form of a
Deep Neural Network that was able to learn in symbiosis with the MCTS algorithm to iteratively
improve itself.
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However, these approaches rely on rigid, game-specific neural network architectures, often repre-
senting games states using grid-based data structures, and process them with Convolutional Neural
Networks (CNNs), which limits their flexibility and generalization capabilities. For example, a model
trained on a standard 19× 19 Go board cannot easily adapt to play on a smaller 13× 13 board without
significant changes to its internal structure, manual parameter transfer, and retraining, despite the
underlying similarity of the game dynamics. This inflexibility is further compounded by the extensive
computational resources required for training these large-scale models from scratch for each specific
game or board configuration. If it was possible to make a single model train of various variants of a
game, and on various games at the same time, it would be possible to speed up the training by starting
to learn the fundamental rules on a simplified and smaller variant of a game, before presenting the
model with the more complex version. Similarly, if a model learned all the rules of chess, it could
serve as a strong starting point to learn the rules of Shogi, for example.

It could be possible to design a more general architecture for games such as Go, where moves can
be mapped one-to-one with the board grid, so that a model could still use CNN layers and handle
differently sized boards simultaneously, but this solution is no longer feasible when the moves become
more complex, including having to move pieces between squares, or even dropping captured pieces
back onto the board in Shogi.

Those moves evoke a graph-like structure, where pieces, initially positioned on squares, are moved to
different new squares, following an edge between those two squares, or nodes. As such, it is natural
to consider basing an improved model on a graph representation, instead of a grid representation.
We explore replacing CNN layers with GNN layers to implement that idea, and more specifically
consider in this paper attention-based GNN layers, reflecting how chess players usually remember
the structures that the pieces form, and how they interact with each other, instead of remembering
where each individual piece is placed, when thinking about a position.

Representing moves as edges in a graph also introduces the possibility to link the output policy size
with the number of edges, to make the model able to handle different game variants with different
move structures simultaneously. To do so, it becomes important to have edge features as well as
node features, as they will be used to compute for each edge the equivalent move logit. As the
classical attention GNN layer, the Graph Attention Network [19] (GAT) only defines and updates
node-features, we propose a novel modification of the GAT layer, that we call Graph Attention
neTwork with Edge features from Attention weight Updates (GATEAU), to introduce edge-features.
We also describe the full model architecture integrating the GATEAU layer that can handle differently
sized input graphs as AlphaGateau.

Our experimental results demonstrate that this new architecture, when implemented with smaller
networks compared to the original AlphaZero, outperforms previous architectures with a similar
number of parameters. AlphaGateau exhibits significantly faster learning, achieving a substantial
increase in playing strength in a fraction of the training time. Additionally, our approach shows
promising generalization capabilities: a model trained on a smaller 5 × 5 variant of chess can be
quickly fine-tuned to play on the standard 8 × 8 chessboard, achieving competitive performance with
much less computational effort.

2 Related Work

Reinforcement Learning. AlphaGo [17], AlphaZero [18], MuZero [15], and others have introduced
a powerful framework to exploit Reinforcement Learning techniques in order to generate self-play
data used to train from scratch a neural network to play a game.

However, those frameworks use rigid neural networks, that have to be specialized for one specific
game. As such, the training process requires a lot of computation resources. It is also not possible to
reuse the training on one type of game to train for another one, or to start the training on a smaller
and simpler variant of the game, before introducing more complexity.

Scalable AlphaZero. In the research of Ben-Assayag and El-Yaniv [2], using Graph Neural Networks
has been investigated as a way to solve those issues. Using a GNN based model, it becomes possible
to feed as input differently-sized samples, such as Othello boards of size between 5 and 16, enabling
the model to learn how to play in a simpler version of the game.
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Algorithm 1: Self-Play Training
Parameters: Niter = 100,Ngames = 256,Nsim = 128,ws = 106,Ntrain = 1, bs = 2048
θ ← model.init();
for i← 1 to Niter do

data← selfplay(θ,Ngames,Nsim) ; /* We generate self-play data */
frame_window← (data∣∣frame_window)[1 ∶ ws] ; /* The new frame window consists of
the newly generated data and a uniform sample of the previous window */

for j ← 1 to Ntrain do
frame_window← frame_window.shuffle();
for batch in frame_window.batches(bs) do

θ ← apply(θ,gradient(θ,batch));
end

end
end

This approach had promising results, with 10 times faster training time than the AlphaZero baseline.
It was however limited to Othello and Gomoku, and using the GNN layers (GIN layers [20]) only as
a scalable variant of CNN layers, keeping a rigid grid structure.

Edge-featured GNNs. There exists a large variety of GNN variants, specialized for different use
case s and data properties. For this work, a simple layer was enough to experiment with the merits of
the proposed approach, except it was critical that the chosen layer handled both node-features and
edge-features. We chose to use an attention-based layer.

Gong and Cheng [10] introduce the EGNN(a) layer, where each dimension of an edge-feature is
used for a different attention head. We wanted edge features to be treated as a closer equivalent to
node-features, so we did not use this layer.

The EGAT layer introduced by Chen and Chen [4] is better for our case, as they construct a dual
graph where edges and nodes have reversed roles, so the node features in the dual graph are edge
features for the initial graph. However, this method requires building the dual graph, and is quadratic
in the maximal node degree. As this was quite complex, we decided to introduce GATEAU, which
solves the problem in a simpler and more natural way.

3 Setting

Our architecture is based on the AlphaZero framework, which employs a neural network fθ with
parameters θ that is used as an oracle for a Monte-Carlo Tree Search (MCTS) algorithm to generate
self-play games. When given a board state s, the neural network predicts a (value, policy) pair
(v(s), π(s, ⋅)) = fθ(s), where the value v ∈ [−1,1] is the expected outcome of the game, and the
policy π is a probability distribution over the moves.

We utilize Algorithm 1 to train the models in this paper, with modifications to incorporate Gumbel
MuZero [7] with a gumbel scale of 1.0 as our MCTS variant.

4 Proposed Models

4.1 Motivation: Representing the Game State as a Graph

Many games, including chess, are not best represented as a grid. For example, chess moves are
analogous to edges in a grid graph, and games like Risk naturally form planar graphs based on the
map. As such, it makes natural sense to encode more information through graphs in the neural
network layers that are part of the model.

This research focuses on implementing this idea in the context of chess. This requires to answer two
questions: how to represent a chess position as a graph, and how to output a policy vector that is
edge-based, and not node-based.

The architecture presented in this paper is based on GNNs, but using node features to evaluate the
value head, and edge features to evaluate the policy head. As such, a GNN layer that is able to handle
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Table 1: Node features
Dimensions Description

12 The piece on the square, as a 12-dimensional soft one-hot
2 Whether the position was repeated before

98 For each of the previous 7 moves, we repeat the last 14 dimensions
to describe the corresponding positions

1 The current player
1 The total move count
4 Castling rights for each player
1 The number of moves with no progress

Table 2: Edge features
Dimensions Description

1 Is this move legal in the current position?
2 How many squares {to the left/up} does this edge move?
4 Would a pawn promote to a {knight/bishop/rook/queen} if it did this move?
2 Could a {white/black} pawn do this move?
4 Could a {knight/bishop/rook/queen} do this move?
2 Could a {white/black} king do this move?

both node and edge features is required. This paper will introduce the GATEAU layer, that is a natural
extension of the GAT layer [19] to edge features.

4.2 Graph Design

In AlphaZero, a chess position is encoded as an n × n × 119 matrix, where each square on the
n × n chess board is associated to a feature vector of size 119, containing information about the
corresponding square for the current position, as well as the last 7 positions, as described in Table 1.

We will instead represent the board state as a graph G(V,E), with the n × n squares being nodes
V , and the edges E being moves, based on the action design of AlphaZero. Each AlphaZero action
is a pair (source square, move), with n × n possible source squares. In 8 × 8 chess, the 73 moves
(resp. 49 in 5 × 5 chess) are divided into 56 queen moves (resp. 32), 8 knight moves (resp. 8), and
9 underpromotions (resp. 9) for a total of 4672 actions (resp. 1225). The edge associated with an
action is oriented from the node corresponding to the source square, to the destination square of the
associated move. In 8 × 8 chess, castling is represented with the action going from the king’s starting
square going laterally 2 squares. As this action encoding is a little too large, containing moves ending
outside of the board that do not correspond to real edges, the constructed graph only contains 1858
edges (resp. 455), corresponding only to valid moves.

The node and edge features, of initial size 119 and 15, are detailed in Tables 1 and 2, respectively.
Node features are based on AlphaZero’s features, including piece type, game state information,
and historical move data. Edge features encode move legality, direction, potential promotions, and
piece-specific move capabilities. In the case of 5×5 chess, we include the unused castling information,
in order to have the same vector size of the 8 × 8 models. It would be possible to preprocess the node
and edge features differently for different games or variants, but for simplicity we didn’t do it.

The starting positions for all games played in our experiments were either the classical board setup in
8 × 8 chess, or the Gardner setup for 5 × 5 chess, illustrated in Figure 1.

4.3 GATEAU: A New GNN Layer, with Edge Features

The Graph Attention Network layer introduced by Veličković et al. [19] updates the node features by
averaging the features of the neighbouring nodes, weighted by some attention coefficient. To be more
precise, given the node features h ∈ RN×K , attention coefficients are defined as

eij =Wuhi +Wvhj (1)

with parameters Wu,Wv ∈ RK×K′

. In the original paper, Wu =Wv, but as we are working with a
directed graph, we differentiate them to treat the source and destination node asymmetrically. Then
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we can compute attention weights α, and use them to update the node features:

α0
ij = softmaxj(LeakyReLU (aT ei⋅)) =

expLeakyReLU(aT eij)

∑k exp
LeakyReLU(aT eik)

, (2)

h′i = ∑
j∈Ni

α0
ijWhj (3)

with parameters W ∈ RK×K′′

and a ∈ RK′

.

The main observation motivating GATEAU is that in this process, the attention coefficients eij serve
a role similar to node features, being a vector encoding some information between nodes i and j. As
such, we propose to introduce edge features in place of those attention coefficients.

Our proposed layer, called Graph Attention neTwork with Edge features from Attention weight
Updates (GATEAU) takes the node features h ∈ RN×K and edge features gi,j ∈ RN×N×K′

as inputs.
We start by simply updating the edge features similarly to Eq. 1:

g′ij =Wuhi +Wegij +Wvhj (4)

with parameters Wu,Wv ∈ RK×K′

and We ∈ RK′×K′

. Then the attention weights are obtained as in
Eq. 2, by substituting the attention coefficients with our new edge features:

αij = softmaxj(LeakyReLU (aT g′i⋅)) (5)

with parameter a ∈ RK′

. Finally, we update the node features as in Eq. 3:

h′i =W0hi + ∑
j∈Ni

αij(Whhj +Wggij) (6)

with parameters W0,Wh ∈ RK×K′′

and Wg ∈ RK′×K′′

. We add the self-edges manually as it is
inconvenient for the policy head if they are included in the graph, and we mix back the values of the
edge features back in the node features.

4.4 AlphaGateau: A Full Model Architecture Based on AlphaZero and GATEAU

Following the structure of the AlphaZero neural network, we introduce AlphaGateau, combining
AlphaZero with GATEAU instead of CNN layers, and redesign the value and policy head to be able
to exploit node and edge features respectively to handle arbitrarily sized inputs with the same number
of parameters.

We define the following layers, which are used to describe AlphaGateau in Figure 2.

Attention Pooling. In order to compute a value for a given graph, we need to pool the features
together. Node features seem to be the more closely related to positional information, so we pool
them instead of edge features. For this, we use an attention-based pooling layer, similar to the one
described in Eq. 7 by Li et al. [14], which, for node features h ∈ RN×K and a parameter vector
a ∈ RK , outputs

αp
i = softmaxi(LeakyReLU (aTh⋅)),
H = ∑

i

αp
i hi, (7)

8 rmblkans
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPOPOPO
1 SNAQJBMR

a b c d e f g h

5 snaqj
4 popop
3 Z0Z0Z
2 POPOP
1 SNAQJ

a b c d e

Figure 1: The starting positions of 8 × 8 and 5 × 5 chess games

5

201 https://doi.org/10.52202/079017-0006



Nodes (squares)

Edges (moves)

Linear
hs

Linear
hs

h

g

ResGATEAU
hs

h′

g′

Value head

Policy head×L

Figure 2: The AlphaGateau network, hs is the inner size of the feature vectors, and L is the number of residual
blocks.
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Figure 3: Value head
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Policy
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Figure 4: Policy head

where H ∈ RK is a global feature vector.

Batch Normalization and Non-linearity (BNR). As they are a pair of operations that often occur,
we group Batch Normalization and a ReLU layer together under the notation BNR:

BNR(x) = ReLU(BatchNorm(x)). (8)

Residual GATEAU (ResGATEAU). Mirroring the AlphaZero residual block architecture, we
introduce ResGATEAU, which similarly sums a normalized output from two stacked GATEAU layers
to the input:

ResGATEAU(h, g) = (h, g) +GATEAU(BNR(GATEAU(BNR(h, g)))). (9)

5 Experiments

We evaluate AlphaGateau’s performance in learning regular 8× 8 chess from scratch and generalizing
from a 5 × 5 variant to the standard 8 × 8 chessboard. The metric used to evaluate the models is the
Elo rating, calculated through games played against other models (or players) with similar ratings.
Due to computational constraints, we couldn’t replicate the full 40 residual layers used in the initial
AlphaZero paper, and experimented with 5 and 6 layer models. We also started exploring 8 layers,
but these models required to generate a lot more data, which would make the experiment run an
order of magnitude longer. Our results indicate that AlphaGateau learns significantly faster than a
traditional CNN-based model with similar structure and depth, and can be efficiently fine-tuned from
5 × 5 to 8 × 8 chess, achieving competitive performance with fewer training iterations. 2 All models
used in these experiments are trained with the Adam optimizer [12] with a learning rate of 0.001. All
feature vectors have an embedding dimension of 128. The loss function is the same as for the original
AlphaZero, which is, for fθ(s) = π̃, ṽ,

L(π, v, π̃, ṽ) = −πT log(π̃) + (v − ṽ)2. (10)

2In Silver et al. [18], the training of AlphaZero is described in terms of steps, which each consists of one
mini-batch of size 4096, while the generation of games through self-play is done in parallel by other TPUs.
For our experiments, an iteration consists of generating 256 games through self-play, then doing one epoch of
training, split into 3904 mini-batches of size 256, after 7 iterations once the frame window is full. In terms of
positions seen, one iteration is equivalent to 244 steps.
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5.1 Implementation

Jax and PGX. As the MCTS algorithm requires a lot of model calls weaved throughout the tree
exploration, it is essential to have optimized GPU code running both the model calls, and the MCTS
search. In order to leverage the MCTX [8] implementations of Gumbel MuZero, all our models and
experiments were implemented in Jax [3] and its ecosystem [11] [9]. PGX [13] was used for the
chess implementation, and we based our AlphaZero implementation on the PGX implementation of
AZNet. We used Aim [1] to log all our experiments.

To estimate the Elo ratings, we use the statsmodels package [16] implementation of Weighted Least
Squares (WLS).

Hardware. All our models were trained using multiple Nvidia RTX A5000 GPUs (Learning speed
used 8 and Fine-tuning used 6), and their Elo ratings were estimated using 6 of those GPUs.

5.2 Evaluation

As each training and evaluation lasted a little under a week, we were not able to train each model
configuration several times so far. As such, each model presented in the results was trained only once,
and the confidence intervals that we include are on the Elo rating that we estimated for each of them,
as described in the following.

During training, at regular intervals (each 2, 5, or 10 iterations), the model parameters were saved,
and we used this dataset of parameters to evaluate Elo ratings. In this section, we will call a pair
(model, parameters) a player, and compute a rating for every player.

We initially chose 10 players, and simulated 60 games between each pair of players, to get initial
match data M . For each pair of players that played a match, we store the number of wins wij ,
draws dij , and losses lij : Mij = (wij , dij , lij). Using this data, we can roughly estimate the ratings
r ∈ RNplayers of the players present in M using a linear regression on the following set of equations:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

rj − ri = 400

log(10)
log
⎛
⎝
wij + dij + lij + 1

wij + dij+1
2

− 1
⎞
⎠

for i ∈M,j ∈Mi,

∑
i∈M

ri = ∣M ∣ × 1000.
(11)

We artificially add one draw to avoid extreme cases where there are only wins for one player and
no losses, in which case the rating difference would theoretically be infinite. This is equivalent to a
Jeffreys prior. The last equation fixes the average rating to 1000, as the Elo ratings are collectively
invariant by translation.

We then ran Algorithm 2 to generate a densely connected match data graph, where each player
played against at least 5 other players of similar playing strength. Finally, we used this dataset to
fit a linear regression model (Weighted Least Squares) to get Elo ratings that we used in the results
figures for the experiments. The confidence intervals were estimated by assuming that the normalized

match outcomes followed a Gaussian distribution. If p̂ij =
wij+

dij+1

2

wij+dij+lij+1 is the estimated probability
that player i beats player j, we approximate the distribution that pij follows as a Gaussian, and
using the delta method, we derive that rj − rj asymptotically follows a Gaussian distribution of

mean 400
log(10) log (

1
pij
− 1) and variance ( 400

log(10))
2

1
(wij+dij+lij)pij(1−pij) . The proof is detailed in

Appendix A.2. Using the WLS linear model of statsmodels [16], we get Elo ratings for every player,
as well as their standard deviations, which we use in the following to derive 2-sigma confidence
intervals.

5.3 Experiments

Learning Speed. Our first experiment compares the baseline ability of AlphaGateau to learn how to
play 8 × 8 chess from scratch, and compares it with a scaled down AlphaZero model. The AlphaZero
model has 5 residual layers (containing 10 CNN layers) and a total of 2.2M parameters, and the
AlphaGateau model also has 5 ResGATEAU layers (containing 10 GATEAU layers) and a total of
1.0M parameters, as it doesn’t need an Nnodes × hs ×Nactions fully connected layer in the policy
head, and the GATEAU layers use 2/3 of the parameters a 3 × 3 CNN does.
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Algorithm 2: Matching Players
Parameters: Ngames = 60,Nsim = 128
Input: M
for player in unmatched players do

for i← 1 to 5 do
r ← Elo_LR(M) ; /* The Linear Regression is run on Eq. 11 */
opponent← argminj∈M ∣rj − rplayer∣ ; /* If player /∈M, we set rplayer = 1000 */
(w,d, l) ← play(player, opponent, Ngames,Nsim);
Mplayer,opponent ←Mplayer,opponent + (w,d, l);
Mopponent,player ←Mopponent,player + (l, d,w);

end
end

For this experiment, we generated 256 games of length 512 at each iteration, totalling 131072 frames,
and kept a frame window of 1M frames (all the newly generated frames, and uniform sampling
over the frame window of the previous iteration), over 500 iterations. During the neural network
training, we used a batch size of 256. The training for AlphaGateau lasted 13 days and 16 hours,
while AlphaZero took 10 days and 3 hours.

We report the estimated Elo ratings with a 2-sigma confidence interval in Figure 5. AlphaZero was
only able to reach an Elo of 667 ± 38 in 500 iterations, and would likely continue to improve with
more time, while AlphaGateau reached an Elo of 2105 ± 42, with an explosive first 50 iterations, and
achieving results comparable to the final Elo of AlphaZero after only 10 iterations.

Although those results are promising, it is important to note that we only compared to a simplified
version of AlphaZero, using only 5 layers instead of the original 40, and without spending large
efforts to optimize the hyperparameters of the model. As such, it is possible that the performance
of AlphaZero could be greatly improved in this context with more parameter engineering. Both
AlphaGateau and AlphaZero have not reached a performance plateau after 500 iterations, showing
slow but consistent growth.

Fine-tuning. In our second experiment, we trained a AlphaGateau model with 10 residual layers on
5× 5 chess for 100 iterations, then fine-tuned this model on 8× 8 chess for 100 iterations. This model
has a total of 1.7M parameters.

For this experiment, we generated 1024 games of length 256 at each iteration on 5 × 5 chess, and 256
games of length 512 while fine-tuning on 8 × 8 chess, and kept a frame window of 1M frames. The
initial training lasted 2 days and 7 hours, and the fine-tuning 5 days and 15 hours.

We report the estimated Elo ratings with a 2-sigma confidence interval in Figure 6. The initial training
ended with an Elo rating of 807± 46 when evaluated on 8× 8 chess games, which suggests that it was
able to learn general rules of chess on 5×5, and apply them with some success on 8×8 chess without
having seen any 8 × 8 chess position during its training. Once the fine-tuning starts, the model jumps
to an Elo of 1181 ± 50 after a couple iterations, suggesting the baseline learned on 5 × 5 was of high
quality. After fine-tuning, the model had an Elo of 1876 ± 47, reaching comparable performances to
the smaller model using roughly the same amount of iterations and GPU-time, despite being twice as
big. Preliminary testing suggests that this model would become stronger if more data was generated
at each iteration, but that would linearly increase the training time, as generating self-play games
took half of the 5 days of training.

5.4 Impact of the Frame Window and the Number of Self-play Games

In order to train deeper networks, we experimented with the number of self-play games generated at
each generation, and with the size of the frame window. It seems from our results in Figure 7 that
having more newly generated data helps the model learn faster. However, the time taken for each
iteration scales linearly with the number of generated games, and the model is still able to improve
using older data. As such, keeping a portion of the frame window from previous iterations makes for
a good compromise. There are however options to improve our frame window selection:
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Figure 5: The Elo ratings of AlphaZero and Alpha-
Gateau with 5 residual layers trained over 500 iter-
ations. The AlphaGateau model initially learns ~10
times faster than the AlphaZero model, and settles after
100 iterations to a comparable speed of growth to that
of AlphaZero.
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Figure 6: The Elo ratings of the first 100 iterations of
the AlphaGateau model from Figure 5 was included for
comparison. The initial training on 5×5 chess is able to
increase its rating while evaluated on 8×8 chess during
training, even without seeing any 8 × 8 chess position.
The fine-tuned model starts with a good baseline, and
reaches comparable performances to the 5-layer model
despite being undertrained for its size.

• Which previous samples should be selected? We selected uniformly at random from the
previous frame window to complement the newly generated samples, but it might be
preferable to select fewer samples, but chosen as to represent a wide range of different
positions.

• Past samples are by design of dubious quality. As they come from self-play games with
previous model parameters, they correspond to games played with a lower playing strength,
and the policy output by the MCTS is also worse. Keeping a sample that is too old might
cause a drop of performance rather than help the model learn. We experimented a little with
keeping the 1M most recent samples, but with little success.

We also initially tried to increase the number of epochs in one iteration, but only saw marginal gains,
suggesting that mixing new data among the previous frame window helps the model extract more
training information from previous samples.
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AlphaGateau 256 games/131k window
AlphaGateau 256 games/1M window
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Figure 7: The two models with a frame window of size 131072 only kept the latest generated games in the
frame window. The model keeping no frame window and generating 256 games was trained in only 39 hours,
but had the worst performance. Adding a 1M frame window improved the performance a little and lasted 60
hours, while increasing the number of self-play games to 1024 performed the best, but took 198 hours.
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6 Conclusion

In this paper, we introduce AlphaGateau, a variant on the AlphaZero model design that represents
a chess game state as a graph, in order to improve performance and enable it to better generalize
to variants of a game. This change from grid-based CNN to graph-based GNN yields impressive
increase in performance, and seems promising to enable more research on reinforcement-learning
based game-playing agent research, as it reduces the resources required to train one.

We also introduce a variant of GAT, GATEAU, that we designed in order to handle edge features in a
simple manner performed well, and efficiently.

Future Work. As our models were relatively shallow when compared to the initial AlphaZero, it
would be important to confirm that AlphaGateau still outperforms AlphaZero when both are trained
with a full 40-deep architecture. This will require a lot more computing time and resources.

As discussed in Section 5.4, our design of the frame window is a little unsatisfactory, and a future
improvement would be to define an efficiently computable similarity metric between chess positions,
that helps the neural network generalize.

We focused on chess for this paper, but there are other games that could benefit from this new approach.
The first one would be shogi, as it has similar rules to chess, and the promising generalization results
from AlphaGateau could be used to either train a model on one game, and fine-tune it on the other, or
to jointly train it on both games, to have a more generalized game-playing agent. As alluded to in
the Graph Design 4.2, more features engineering would be required to have node and edge features
compatibility between chess graphs, and shogi graphs. It could also be possible to change the model
architecture to handle games with more challenging properties, such as the game Risk, which has
more than 2 players, randomness, hidden information, and varying maps, but is even more suited to
being represented as a graph.
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A Appendix / supplemental material

A.1 Elo

The Elo rating system was initially introduced as a way to assign a value to the playing strength of
chess players. The rating of each player is supposed to be dynamic and be adjusted after each game
they play to follow their evolution.

The Elo ratings are defined to respect the following property: If two players with Elo rating RA and
RB played a game, the probability that player A wins is

EA =
1

1 + 10
RB−RA

400

. (12)

A.2 Variance of estimated Elo rating difference

We assume that the outcome of a game between two players of Elo RA and RB is a Bernoulli trial,
with a probability that player A win being given by the central Elo equation 12. If we want to estimate
the Elo of both players, we need to estimate that probability p. To do so, we can make the two
players play n games, and sum the wins of player A, as well as half his draws, to get x = w + d

2
.

From this, we can estimate the value of p using the estimator p̂ = x
n

. In the case that one of the two
players is significantly stronger than the other, p̂ could be close to 0 or 1, in which case this estimator
is wildly inaccurate. To remedy this, we will instead rely on a Jeffreys prior, to get the estimator
p̂Jeffreys = x+1/2

n+1 . We will note this estimator p̂ in the following.

From our assumptions, we have that x follows a binomial distribution B(n, p), and we will approxi-
mate the distribution that p̂ follows by a normal distribution p̂ ∼ N(p, p(1−p)

n
).

By inverting the Elo equation 12, we can get the rating difference from the probability that A wins as

RB −RA =
400

log(10)
log (1

p
− 1) , . (13)

Therefore, posing g(y) = 400
log(10) log (

1
y
− 1), which is differentiable, we can use the delta method to

get that g(p̂) is asymptotically Gaussian. The derivative of g is

g′(y) = 400

log(10)
(− 1

y2
)
⎛
⎝

1
1
y
− 1
⎞
⎠

= − 400

log(10)
1

y2
y

y − 1

= − 400

log(10)
1

y(y − 1)
, (14)

which gives

R̂B − R̂A = g(p̂) ∼ N (g(p),
p(1 − p)

n
(g′(p))2)

∼ N
⎛
⎝

400

log(10)
log (1

p
− 1) , p(1 − p)

n
(− 400

log(10)
1

p(p − 1)
)
2⎞
⎠

∼ N ( 400

log(10)
log (1

p
− 1) , 4002

log(10)2
p(1 − p)

n

1

(p(p − 1))2
)

∼ N ( 400

log(10)
log (1

p
− 1) , 4002

log(10)2
1

np(p − 1)
) . (15)

A.3 Comparison with BayesElo

We also used BayesElo [5] to evaluate the Elo ratings of our models using all the PGN files that
were generated recording the games played between all our models. In Figure 8, we plotted a point
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Figure 8: The difference between BayesElo ratings and the Elo ratings according to our method. We removed
to each Elo the average Elo of all players in its respective method, such that the average effective Elo for both
BayesElo and our method is 0
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Figure 9: A copy of Figure 5 for comparison.
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Figure 10: Using running time instead of iteration for
Figure 5 doesn’t change much, as AlphaZero is only a
little bit faster than AlphaGateau.

on (x, y) for each player where x is its Elo rating following our method and y is the difference in
predicted Elo between our method and BayesElo.

In practice, weaker models tend to be overrated by our method compared with BayesElo, while
stronger models are underrated. As this relation is smooth and monotone, this suggests that both
methods order the relative strength of all players similarly, with small differences only being due to
noise. The main difference being that our range of Elo ratings is compacted towards the extremes,
which we assume is due to our practical Jeffreys prior, that implies that strong models drew at least
one game against all their opponents, handicapping their Elo, and similarly weak models always
manage to not lose at least one game.

A.4 FLOPs comparison

We didn’t record the FLOPs of our models, however, we did record the time taken for each iteration.
In Figure 10, 12, and 14, we plotted the three main plots of the main paper using that data on the
X-axis. As some experiments were run using 6 GPUs instead of *, we multiplied their recorded time
by a factor 6

8
for better comparison.

A.5 PGNs

We include with Figure 15, 16, and 17 a few PGNs showing games played by our models.
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Figure 11: A copy of Figure 6 for comparison.
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Figure 12: Using running time instead of iteration for
Figure 5. Training the deeper model takes roughly 40
hours longer, for a similar amount of generated games
and training steps.
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Figure 13: A copy of Figure 7 for comparison.
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Figure 14: Using running time instead of iteration
for Figure 5 shows that although using more newly
generated games instead of relying on a frame window
of previous data makes the model improve more per
iteration, it does result in a slower training in practice.

Figure 15 contains the PGN of a game played on 8 × 8 chess by the last iteration of the 5 × 5
AlphaGateau model of our fine-tuning experiment, to showcase its playing style while having never
seen an 8 × 8 board during its training.

Figure 16 and 17 contains the PGNs of games played by the last iteration (iteration 499) of the full
AlphaGateau model of our first experiment as white and black respectively, selected among the games
played against other models to evaluate all the Elo rankings, selected using the script book.py in the
GitHub repo, following the most played move each ply. The game played as white in Figure 16 is
played against the iteration 61 of a fine-tuned AlphaGateau model using 8 layers, 1024 generated
games per iteration, but only 32 MCTS simulations, with an estimated Elo rating of 2124. The game
played as black in Figure 17 is played against the iteration 439 of the same model.

A.6 Lichess Evaluation

We ran the final iteration of the 5-layer AlphaGateau model on Lichess, as the bot AlphaGateau
(https://lichess.org/@/AlphaGateau). We let it play against other bots and some human
players in bullet, blitz, and rapid time formats by varying the number of MCTS simulations to
adjust the time required to play each move. This was implemented using the default Lichess bot
bridge (https://github.com/lichess-bot-devs/lichess-bot), and the relevant code is in
the lichess folder of our GitHub repo.

At the end of October 2024, after between 100 and 200 games per time format, AlphaGateau was
able to reach a bullet Elo of 1991, a blitz Elo of 1829, and a rapid Elo of 1884.
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1. e4 c6 2. h3 h6 3. Be2 Na6 4. g4 g6 5. a4 Rh7 6. f4 f6 7. Nf3 Bg7 8. h4 d5 9. e5 Nb4 10. c3 Bxg4
11. cxb4 Bh5 12. Ng1 Bh8 13. Nc3 d4 14. Rh3 a5 15. exf6 Nxf6 16. bxa5 e6 17. Bxh5 gxh5 18. b4
Ng8 19. Rd3 Nf6 20. Nge2 Ng4 21. Qc2 Qxh4+ 22. Ng3 Qh2 23. Nge4 Qh1+ 24. Ke2 Rg7
25. Rxd4 Qh2+ 26. Kf3 Qh1+ 27. Ke2 Rf7 28. Rd3 Qg2+ 29. Ke1 Rg7 30. Ra2 Qh1+ 31. Ke2
Ke7 32. Rg3 Re8 33. Qd3 Rd8 34. Qc4 Qh4 35. Ra1 Rf7 36. Ra2 Rxf4 37. d4 Rf7 38. Be3 Rg7
39. Rc2 Kf7 40. Qc5 Ke8 41. Rf3 Qh2+ 42. Kd3 Qh1 43. Rf4 Nxe3 44. Kxe3 Rg1 45. Re2
Rxd4 46. Nf2 Rxf4 47. Nxh1 Rh4 48. Nf2 Kd7 49. b5 Rg3+ 50. Kd2 Bxc3+ 51. Kc2 Bh8
52. Qb6 Kd6 53. a6 bxa6 54. Qd8+ Kc5 55. Qxh4 Rg8 56. bxc6 Kxc6 57. Qf4 Bg7 58. Rxe6+
Kd5 59. Qf5+ Kc4 60. Qf3 Kb4 61. Qxh5 Kxa4 62. Rxa6+ Kb4 63. Qf5 Rh8 64. Ra7 Bd4
65. Rb7+ Bb6 66. Nd3+ Ka4 67. Re7 h5 68. Qf6 Bd8 69. Qf4+ Kb5 70. Re5+ Kb6 71. Nf2
Kc7 72. Ne4 Kc6 73. Kc3 Kb6 74. Kd4 Kc6 75. Ng3 Kb6 76. Kc4 Kb7 77. Qf3+ Kc7 78. Kd5
h4 79. Ne2 h3 80. Qf4 Kd7 81. Ng3 Kc7 82. Rh5+ Kd7 83. Rxh8 h2 84. Rxh2 Bc7 85. Qf2 Kc8
86. Qf5+ Kb7 87. Qd7 Ka8 88. Ke4 Bb8 89. Rh6 Ba7 90. Rf6 Bg1 91. Rf5 Kb8 92. Rf8#
Figure 15: Game played by a model fully trained only on 5 × 5 chess as white. White is able to use their white
bishop to eliminate black’s white bishop, but seems to undervalue their knight on move 14, probably because it
is a worse piece in 5 × 5 chess due to being more constrained and harder to effectively employ

1. e4 c5 2. Nb1c3 e6 3. Ng1f3 Nb8c6 4. d4 d4 5. Nf3d4 Ng8f6 6. Nd4c6 c6 7. e5 Nf6d5 8. Nc3e4
Qd8c7 9. f4 Qc7b6 10. Bf1e2 Bc8a6 11. Be2a6 Qb6a6 12. a3 h5 13. Qd1e2 Qa6e2 14. Ke1e2
f5 15. Ne4c3 a5 16. Nc3d5 d5 17. Bc1e3 Bf8e7 18. c3 Rh8g8 19. Ke2f3 g5 20. g3 g4 21. Kf3e2
h4 22. b4 Ke8f7 23. Ra1c1 h3 24. Be3b6 b4 25. b4 Ra8a3 26. Rc1c7 Rg8b8 27. Bb6c5 Be7c5
28. Rc7c5 Rb8b4 29. Rc5c2 d4 30. Rh1d1 Kf7e7 31. Ke2f2 Ra3f3 32. Kf2g1 d3 33. Rc2c3
Rb4b2 34. Rc3d3 Rf3d3 35. Rd1d3 Rb2c2 36. Rd3d1 Rc2g2 37. Kg1h1 Rg2a2 38. Kh1g1
Ke7e8 39. Rd1b1 Ra2g2 40. Kg1h1 Rg2c2 41. Kh1g1 Rc2c3 42. Rb1b8 Ke8e7 43. Rb8b1
Rc3c2 44. Rb1b7 Rc2c1 45. Kg1f2 Rc1h1 46. Kf2e2 Rh1h2 47. Ke2f1 Rh2g2 48. Rb7b3
Rg2d2 49. Kf1g1 Ke7f7 50. Rb3b7 Kf7f8 51. Rb7b8 Kf8f7 52. Kg1h1 Rd2g2 53. Rb8b7
Kf7e7 54. Rb7d7 Ke7e8 55. Rd7d3 Rg2f2 56. Rd3d6 Ke8e7 57. Rd6c6 Rf2f3 58. Rc6c7 Ke7d8
59. Rc7c6 Kd8d7 60. Rc6d6 Kd7e7 61. Kh1h2 Rf3f2 62. Kh2h1 Rf2f3 63. Kh1h2 Rf3f2
64. Kh2h1 Rf2g2 65. Rd6d3 Rg2c2 66. Rd3d4 Rc2c3 67. Kh1h2 Rc3a3 68. Rd4d2 Ra3a6
69. Rd2e2 Ra6a5 70. Re2d2 Ra5a1 71. Rd2b2 Ra1a8 72. Kh2h1 Ra8c8 73. Kh1g1 Rc8a8
74. Rb2b6 Ke7d7 75. Rb6d6 Kd7e7 76. Kg1h1 Ra8a3 77. Kh1h2 Ra3a2 78. Kh2h1 Ra2a7
79. Kh1g1 Ra7a1 80. Kg1h2 Ra1a2 81. Kh2h1 Ra2e2 82. Rd6d4 Re2g2 83. Rd4d3 Ke7e8
84. Rd3a3 Rg2e2 85. Ra3d3 Re2e1 86. Kh1h2 Re1e2 87. Kh2h1 Re2b2 88. Rd3c3 Rb2a2
89. Rc3c6 Ke8d7 90. Rc6d6 Kd7e7 91. Rd6c6 Ra2e2 92. Rc6c3 Re2g2 93. Rc3d3
Figure 16: AlphaGateau starts with a closed Sicilian, transposing into the Four Knights Sicilian, following a
popular line until move 10, when white moves its white bishop to e2. The pawn structure locks the situation by
move 35. Nothing much happens before the game ends in a draw, besides an interesting stalemate trick on move
54

1. e4 e5 2. Nf3 Nc6 3. Bb5 Nf6 4. d3 Bc5 5. Bxc6 dxc6 6. O-O Qe7 7. Bg5 O-O 8. Bh4 h6
9. Nbd2 b5 10. Qe1 a5 11. h3 Bb6 12. Bg3 Re8 13. Bxe5 a4 14. Bc3 Nh5 15. a3 Nf4 16. Kh2 f5
17. Qd1 Rf8 18. exf5 Rxf5 19. Qe1 Qf7 20. g4 Rc5 21. Ne4 Rd5 22. Rg1 Ne6 23. Nh4 Ng5
24. Nf6+ gxf6 25. f4 Ne6 26. Rg3 Nd4 27. Qe4 Bd7 28. Re1 Re8 29. Qg2 Rxe1 30. Bxe1
Qe6 31. Bf2 Ne2 32. Bxb6 cxb6 33. f5 Qe5 34. Nf3 Qxg3+ 35. Qxg3 Nxg3 36. Kxg3 Bc8
37. Kf4 Rd7 38. Nd2 Kf7 39. Ne4 Ba6 40. h4 c5 41. g5 fxg5+ 42. hxg5 hxg5+ 43. Nxg5+ Kg7
44. Ke5 Re7+ 45. Ne6+ Kf7 46. Kd6 Bc8 47. Ng5+ Kf6 48. Ne4+ Kf7 49. Ng5+ Kf8 50. f6
Rd7+ 51. Kc6 c4 52. Ne6+ Kf7 53. Nf4 Kxf6 54. Nd5+ Ke6 55. Nxb6 cxd3 56. cxd3 Bb7+
57. Kxb5 Rxd3 58. Nxa4 Kd6 59. Kc4 Rh3 60. Nc3 Kc6 61. b4 Bc8 62. a4 Be6+ 63. Kd4 Bb3
64. a5 Rh4+ 65. Ke5 Rxb4 66. a6 Kb6 67. Nb1 Bc2 68. Nc3 Bb3 69. Ne2 Kc5 70. Nf4 Ra4
71. Nd3+ Kc6 72. Nf4 Bc4 73. Ng6 Bxa6 74. Nf4 Bc4 75. Ng2 Bb3 76. Nf4 Bc2 77. Ne6 Re4+
78. Kf5 Re1+ 79. Kf6 Kd6 80. Nf4 Rg1 81. Ne2 Rf1+ 82. Kg5 Ke5 83. Ng3 Rf7 84. Nh5 Bd3
85. Ng3 Rg7+ 86. Kh4 Rg8 87. Kh3 Kf4 88. Nh5+ Kg5 89. Ng3 Rh8+ 90. Kg2 Kf4 91. Nf1
Rb8 92. Ng3 Rb2+ 93. Kh3 Bg6 94. Nh5+ Bxh5 95. Kh4 Rh2#
Figure 17: AlphaGateau starts playing a Berlin defence, without any book, and diverts by move 4 into a popular
line, with a rare bishop move on move 7. The middlegame revolves around black strong knight, until white is
forced to give up its remaining rook to stop the attack, leaving black up a rook for a pawn.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The results discussed in the experiments and illustrated in Figures 5, 6, and 7
support the claims in the abstract and the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our main limitations are that we had limited computing resources and had
models of depth 5 or 10 when 40 would be better, and we only focused on chess and not
other games. We could also only run the experiments once in the time available to us, so
the confidence intervals only apply to the rating estimations, and were not extimated over
several training runs.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The only theoretical result is the closed form derivation of the confidence
interval for the estimated Elo ratings, included in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We included all the experimental hyperparameters and methodology in the
paper, and include all the code that was used in the GitHub repository mentioned in the
abstract. However, as the parallelized GPU code is not fully deterministic, it is not possible
to replicate the exact training results we present, so we will also publish in the git repository
some important model parameter checkpoints that we saved.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The full code is published in the GitHub repository Akulen/AlphaGateau.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The full training procedure is described in the paper, and the provided code
contains the implementation details, such as the gpu data split procedure.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide confidence intervals on our estimated Elo ratings, however, as each
model was only trained once, they are incomplete confidence intervals.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include the number and type of GPU, as well as the experiment run time.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

19

215 https://doi.org/10.52202/079017-0006

https://neurips.cc/public/EthicsGuidelines


Justification: We introduce an improvement to an existing DRL architecture to train a game
agent. There should be no direct societal impact from this, as the results are currently limited
to making research on this topic more accessible, due to the training efficiency gains.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The released models are way less powerful than current existing chess engines,
as they are limited in size and depth for compute reasons, so there is no risk in publishing
them.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite every non-standard python library used to develop and run the exper-
iments presented in this paper. We do not use any previous dataset or asset besides those
libraries.

20

216https://doi.org/10.52202/079017-0006



Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The Git repo that will be published along the paper will have well structured
code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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