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Abstract

Recent work has found that sparse autoencoders (SAEs) are an effective technique
for unsupervised discovery of interpretable features in language models’ (LMs)
activations, by finding sparse, linear reconstructions of those activations. We in-
troduce the Gated Sparse Autoencoder (Gated SAE), which achieves a Pareto im-
provement over training with prevailing methods. In SAEs, the L1 penalty used to
encourage sparsity introduces many undesirable biases, such as shrinkage — sys-
tematic underestimation of feature activations. The key insight of Gated SAEs is
to separate the functionality of (a) determining which directions to use and (b) esti-
mating the magnitudes of those directions: this enables us to apply the L1 penalty
only to the former, limiting the scope of undesirable side effects. Through train-
ing SAEs on LMs of up to 7B parameters we find that, in typical hyper-parameter
ranges, Gated SAEs solve shrinkage, are similarly interpretable, and require half
as many firing features to achieve comparable reconstruction fidelity.

1 Introduction

Mechanistic interpretability aims to explain how neural networks produce outputs in terms of the
learned algorithms executed during a forward pass [33, 34]. Much work makes use of the fact
that many concept representations appear to be linear [14, 19, 34, 39], i.e. that they correspond to
interpretable directions in activation space. However, finding the set of all interpretable directions
is a highly non-trivial problem. Classic approaches, like interpreting neurons (i.e. directions in
the standard basis) are insufficient, as many are polysemantic and tend to activate for a range of
different seemingly unrelated concepts [7, 15, 16]. Within the field, there has recently been much
interest [8, 11, 21, 22, 4] in using sparse autoencoders (SAEs; [32]) as an unsupervised method for
finding causally relevant, and ideally interpretable, directions in a language model’s activations.

Although SAEs show promise in this regard [26, 31], the L1 penalty used in the prevailing training
method to encourage sparsity also introduces biases that harm the accuracy of SAE reconstructions,
as the loss can be decreased by trading-off some reconstruction accuracy for lower L1. In this pa-
per, we introduce a modification to the baseline SAE architecture — a Gated SAE — along with an
accompanying loss function, which partially overcomes these limitations. Our key insight is to use
separate affine transformations for (a) determining which dictionary elements to use in a reconstruc-
tion and (b) estimating the coefficients of active elements, and to apply the sparsity penalty only to
the former task. We share a subset of weights between these transformations to avoid significantly
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Figure 1: Gated SAEs consistently offer improved reconstruction fidelity for a given level of sparsity
compared to prevailing (baseline) approaches. These plots compare Gated SAEs to baseline SAEs
at Layer 20 in Gemma-7B. Gated SAEs’ dictionaries are of size 2!7 =~ 131k whereas baseline
dictionaries are 50% larger, so that both types are trained with equal compute. This performance
improvement holds in layers throughout GELU-1L, Pythia-2.8B and Gemma-7B (see Appendix E).

increasing the parameter count and inference-time compute requirements of a Gated SAE compared
to a baseline SAE of equivalent width.?

We evaluate Gated SAEs on multiple models: a one layer GELU activation language model [28],
Pythia-2.8B [3] and Gemma-7B [18], and on multiple sites within models: MLP layer outputs,
attention layer outputs, and residual stream activations. Across these models and sites, we find Gated
SAE:s to be a Pareto improvement over baseline SAEs holding training compute fixed (Fig. 1): they
yield sparser decompositions at any desired level of reconstruction fidelity. We also conduct further
follow up ablations and investigations on a subset of these models and sites to better understand the
differences between Gated SAEs and baseline SAEs.

Overall, the key contributions of this work are that we:

1. Introduce the Gated SAE, a modification to the standard SAE architecture that decouples
detection of which features are present from estimating their magnitudes (Section 3.2);

2. Show that Gated SAEs Pareto improve the sparsity and reconstruction fidelity trade-off
compared to baseline SAEs (Section 4.1);

3. Confirm that Gated SAEs overcome shrinkage while outperforming other methods that also
address this problem (Section 5.2);

4. Provide evidence from a small double-blind study that Gated SAE features are comparably
interpretable to baseline SAE features (Section 4.2).

2 Preliminaries

In this section we summarise the concepts and notation necessary to understand existing SAE ar-
chitectures and training methods following Bricken et al. [8], which we call the baseline SAE. We
define Gated SAEs in Section 3.2.

As motivated in Section 1, we wish to decompose a model’s activation x € R" into a sparse, linear
combination of feature directions:

M
x~xo+ Y fi(x)d;, (1)
=1

where d; are dictionary of M > n latent unit-norm feature directions, and the sparse coefficients
fi(x) > 0 are the corresponding feature activations for x.> The right-hand side of Eq. (1) natu-
rally has the structure of an autoencoder: an input activation x is encoded into a (sparse) feature
activations vector f(x) € R, which in turn is linearly decoded to reconstruct x.

2Although due to an auxiliary loss term, computing the Gated SAE loss for training purposes does re-
quire 50% more compute than computing the loss for a matched-width baseline SAE.

3In this work, we use the term feature to refer only to the learned features of SAEs, i.e. the overcomplete
basis directions that are linearly combined to produce reconstructions. In particular, learned features are always
linear and not necessarily interpretable.
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Baseline architecture Using this correspondence, Bricken et al. [8] and subsequent works attempt
to learn a suitable sparse decomposition by parameterizing a single-layer autoencoder (f, %) defined
by:

f(X) := ReLU (Wenc (X - bdec) + benc) 2)
X(f) == Waecf + baec 3)

and training it using gradient descent to reconstruct samples x ~ D from a large dataset D of acti-
vations collected from a single site and layer of a trained language model, constraining the hidden
representation f to be sparse. Once the sparse autoencoder has been trained, we obtain a decompo-
sition of the form of Eq. (1) by identifying the (suitably normalised) columns of the decoder weight
matrix Wgee € RM*" with the dictionary of feature directions dj, the decoder bias by, € R™ with
the centering term xg, and the (suitably normalised) entries of the latent representation f(x) € RM
with the feature activations f;(x).

Baseline training methodology To train sparse autoencoders, Bricken et al. [8] use a loss function
with two terms that respectively encourage faithful reconstruction and sparsity:*

. 2

L(x) = [Jx = x(£(x)ll; + AIEE); - S
Since it is possible to arbitrarily reduce the L1 sparsity loss term without affecting reconstructions
or sparsity by simply scaling down encoder outputs and scaling up the norm of the decoder weights,

it is important to constrain the norms of the columns of Wy, during training. Following Bricken
et al. [8], we constrain norms to one. See Appendix G for further details on SAE training.

Evaluating SAEs Two metrics are primarily used to get a sense of SAE quality [8]: L0, a measure
of SAE sparsity, and loss recovered, a measure of SAE reconstruction fidelity. LO measures the
average number of features used by a SAE to reconstruct input activations. Loss recovered is a
normalised measure of the increase induced in a LM’s cross entropy loss when we replace its original
activations with the corresponding SAE reconstructions during the model’s forward pass. Both these
metrics are formally defined in Appendix B, where we also discuss shortcomings of and alternatives
to the loss recovered metric as it is defined in Bricken et al. [8]. Since it is possible for SAEs
to score well on these metrics and still fail to be useful for interpretability-related tasks [47], we
perform manual analysis of SAE interpretability in Section 4.2.

3 Gated SAEs

3.1 Motivation

The intention behind how SAEs are trained is to maximise reconstruction fidelity at a given level of
sparsity, as measured by L0, although in practice we optimize a mixture of reconstruction fidelity
and L1 regularization. This difference is a source of unwanted bias in the training of a sparse
autoencoder: for any fixed level of sparsity, a trained SAE can achieve lower loss (as defined in
Eq. (4)) by trading off a little reconstruction fidelity to perform better on the L1 sparsity penalty.

The clearest consequence of this bias is shrinkage [51]. Holding the decoder x(e) fixed, the L1
penalty pushes feature activations f(x) towards zero, while the reconstruction loss pushes f(x) high
enough to produce an accurate reconstruction. Thus, the optimal value falls somewhere in between,
and as a result the SAE systematically underestimates the magnitude of feature activations, without
necessarily providing any compensatory benefit for sparsity.’

How can we reduce the bias introduced by the L1 penalty? The output of the encoder f(x) of a
baseline SAE (Section 2) has two roles:

1. It detects which features are active (according to whether the outputs are zero or strictly
positive). For this role, the L1 penalty is necessary to ensure the decomposition is sparse.

“Note that we cannot directly optimize the LO norm (i.e. the number of active features) since this is not a
differentiable function. We do however use the LO norm to evaluate SAE sparsity.

SConversely, rescaling the shrunk feature activations [51] is not necessarily enough to overcome the bias
induced by by L1 penalty: a SAE trained with the L1 penalty could have learnt sub-optimal encoder and
decoder directions that are not improved by such a fix. In Section 5.2 and Fig. 7 we provide empirical evidence
that this is true in practice.
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Figure 2: The Gated SAE architecture with weight sharing between the gating and magnitude paths,
shown with an example input. See Appendix J for a pseudo-code implementation.

2. It estimates the magnitudes of active features. For this role, the L1 penalty is a source of
unwanted bias.

If we could separate out these two functions of the SAE encoder, we could design a training loss
that narrows down the scope of SAE parameters that are affected (and therefore to some extent
biased) by the L1 sparsity penalty to precisely those parameters that are involved in feature detection,
minimising its impact on parameters used in feature magnitude estimation.

3.2 Gated SAEs

Architecture How should we modify the baseline SAE encoder to achieve this separation of con-
cerns? Our solution is to replace the single-layer ReLU encoder of a baseline SAE with a gated
ReLU encoder. Taking inspiration from Gated Linear Units [43, 12], we define the gated encoder as

e (X)
f(x) = 1[(Wgate (X — baec) + bgare) > 0] ©@ ReLU(W 156 (X — byec) + brmag), 5)

Foe (%) Finag ()

where 1[e > 0] is the (pointwise) Heaviside step function and ® denotes elementwise multiplica-
tion. Here, fg,. determines which features are deemed to be active, while fy,,, estimates feature
activation magnitudes (which only matter for features that have been deemed to be active); 7r gy (X)
are the f,, sub-layer’s pre-activations, which are used in the gated SAE loss, defined below.

Training A naive guess at a loss function for training Gated SAEs would be to replace the sparsity
penalty in Eq. (4) with the L1 norm of fgaw(x). Unfortunately, due to the Heaviside step activation
function in fgye, no gradients would propagate to W gy and bg,.. To mitigate this, we instead apply
the L1 norm to the positive parts of the preactivation, ReLU (7 gy (x)). To ensure £y aids recon-
struction by detecting active features, we add an auxiliary task requiring that these same rectified
preactivations can be used by the decoder to produce a good reconstruction:

- 2
L guea(X) == Hx % (f(x)) H2 + X [ReLU (7 gaie (3)) |, + [ — Kerogen (ReLU (mrge(x))) |2 (6)
—_——

L sparsit La
Lrecons&rucl sparsity ux

where Xirozen 18 a frozen copy of the decoder, Xomen () := W’ £ + bg™”, to ensure that gradients
from L,,x do not propagate back to Wy, or by . This can be implemented by stop gradient
operations rather than creating copies. See Appendix J for pseudo-code for the forward pass and

loss function.

To calculate this loss (or its gradient), we have to run the decoder twice: once to perform the main
reconstruction for Lieconstruet and once to perform the auxiliary reconstruction for L£,.x. This leads
to a 50% increase in the compute required to perform a training update step. However, the increase
in overall training time is typically much less, as in our experience much of the training wall clock
time goes to generating language model activations (if these are being generated on the fly) or disk
I/O (if training on saved activations).
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Parameter reduction through weight-tying Naively, we appear to have doubled the number of
parameters in the encoder, increasing the total number of parameters by 50% with respect to baseline
SAEs. We mitigate this through weight sharing: we parameterize these layers so that the two layers
share the same projection directions, but allow the norms of these directions as well as the layer
biases to differ. Concretely, we define Wp,,, in terms of Wy, and an additional vector-valued

rescaling parameter I, € R as follows:
(Wmag)ij = (exp(rmag)); - (Wgate)z‘j . @)

See Fig. 2 for an illustration of the tied-weight Gated SAEs architecture. With this weight tying
scheme, the Gated SAE has only 2 x A more parameters than a baseline SAE. In Section 5.1, we
show that this weight tying scheme does not harm performance.

With tied weights, the gated encoder can be reinterpreted as a single-layer linear encoder with a non-
standard and discontinuous “JumpReLU” activation function [17], o4 (2), illustrated in Fig. 12. To
be precise, using the weight tying scheme of Eq. (7), f(x) can be re-expressed as f(x) = 06 (W g -
X + bmag), With the JumpReLU gap given by 6 = b,y — €™ © bgae; see Appendix H for an
explanation. We think this is a useful intuition for reasoning about how Gated SAEs reconstruct
activations in practice.

4 Evaluating Gated SAEs

In this section we benchmark Gated SAEs against baseline SAEs across a large variety of models
and at different sites. We show that they produce more faithful reconstructions at equal sparsity
and that they resolve shrinkage. Through a double-blind manual interpretability study, we find that
Gated SAEs produce features that are similarly interpretable to baseline SAE features.

4.1 Benchmarking Gated SAEs

Methodology We trained a suite of Gated and baseline SAEs, a family of each type to reconstruct
each of the following activations:

1. The MLP neuron activations in GELU-1L, which is the closest direct comparison to
Bricken et al. [8];

2. The MLP outputs, attention layer outputs (taken pre-Wy [21]) and residual stream activa-
tions in 5 different layers throughout Pythia-2.8B and four different layers in the Gemma-
7B base model.

For each model and reconstruction site, we trained multiple SAEs using different values of A (and
therefore LO), allowing us to compare the Pareto frontiers of LO and loss recovered between Gated
and baseline SAEs. We also use the relative reconstruction bias metric, v, defined in Appendix C
to measure shrinkage in our trained SAEs. This metric measures the relative bias in the norm of an
SAE’s reconstructions; unbiased SAEs obtain v = 1, whereas SAEs affected by shrinkage (which
causes reconstruction norms to be systematically too small) have v < 1.

Since Gated SAEs require at most 1.5x more compute to train than regular SAEs (Section 3.2) of
the same width, we compare Gated SAEs to baseline SAEs that have a 50% larger dictionary (hidden
dimension M) to ensure fair comparison in our evaluations.®

Results We plot sparsity against reconstruction fidelity for SAEs with different values of \. Higher
A corresponds to increased sparsity and worse reconstruction, so as in Bricken et al. [8] we observe
a Pareto frontier of possible trade-offs. We plot Pareto curves for GELU-1L in Fig. 3a and Pythia-
2.8B and Gemma-7B in Appendix E. At all sites tested, Gated SAEs are a Pareto improvement over
regular SAEs: they provide better reconstruction fidelity at any fixed level of sparsity.” For some
sites in Pythia-2.8B and Gemma-7B, loss recovered does not monotonically increase with LO; we
attribute this to difficulties training SAEs (Appendix G.1.3). Finally, full tables of results for Pythia
and Gemma can be found in Appendix K.

8Since wider SAEs provide better reconstructions (all else being equal), the gap between Gated SAEs’ and
baseline SAEs’ performance is even wider when we use baseline SAEs with equal width in the comparison.
This can be seen in the difference between the “1.5x width” and “equal width” baseline curves in Fig. 5.

7 Although both Gated and baseline SAEs have loss recovered tending to one for high enough LO.
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Figure 3: (a) Gated SAEs offer better reconstruction fidelity (as measured by loss recovered) at any
given level of feature sparsity (as measured by L0); (b) Gated SAEs address shrinkage. These plots
compare Gated and baseline SAEs trained on GELU-1L neuron activations; see Appendix E for
comparisons on Pythia-2.8B and Gemma-7B.

As shown in Fig. 3b, Gated SAEs’ reconstructions are unbiased, with v ~ 1, whereas baseline
SAEs exhibit shrinkage (y < 1), with the impact of shrinkage getting worse as the L1 coefficient A
increases (and LO consequently decreases). Fig. 10 shows that this result generalizes to Pythia-2.8B.

4.2 Interpretability

Although Gated SAEs provide more faithful reconstructions than baselines at equal sparsity, it does
not necessarily follow that these reconstructions are better suited to downstream interpretability-
related tasks. Currently, there is no consensus on how to systematically assess the degree to which a
SAE’s features are useful for downstream tasks, but a plausible proxy is to assess the extent to which
these features are human interpretable [8]. Therefore, to gain a more qualitative understanding of
the differences between their learned features, we conduct a blinded human study in which we rate
and compare the interpretability of randomly sampled Gated and baseline SAE features.

Methodology We study a variety of SAEs from different layers and sites. For Pythia-2.8B we
had 5 raters, who each rated one feature from baseline and Gated SAEs trained on each (site, layer)
pair from Fig. 8, for a total of 150 features. For Gemma-7B we had 7 raters; one rated 2 features
each, and the rest 1 feature each, from baseline or Gated SAEs trained on each (site, layer) pair from
Fig. 9, for a total of 192 features.

For each model, raters are shown the features in random order, without revealing which SAE, site,
or layer they came from.® To assess a feature, the rater decides whether there is an explanation of
the feature’s behavior, in particular for its highest activating examples. The rater then enters that
explanation (if applicable) and selects whether the feature is interpretable (“Yes’), uninterpretable
(‘No’) or maybe interpretable (‘Maybe’). All raters are either authors of this paper or colleagues,
who have prior experience interpreting SAE features. As an interface we use an open source SAE
visualizer library [27]; representative screenshots of the dashboards produced by this library are
shown in Fig. 14.

Results & analysis Fig. 4 shows interpretability rating distributions by SAE type and LM,
marginalising over layers, sites and raters.” To compare the interpretability of baseline and Gated
SAEs, we first pair our datapoints according to all covariates (model, layer, site, rater); this lets us

8 Although due to a debugging issue, Gemma-7B attention SAEs were rated separately, so raters were not
blind to that.

°95% error bars were obtained by modelling each frequency shown as binomial, with p set to the sample
frequency, and calculating the 2.5% and 97.5% quantiles.
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Figure 4: Proportions of SAE features rated as interpretable / uninterpretable / maybe interpretable
by SAE type (Gated or baseline) and language model. Gated and baseline SAEs are similarly inter-
pretable, with a mean difference (in favor of Gated SAEs) of 0.13 (95% CI [0, 0.26]) after aggregat-
ing ratings for both models.

control for all of them without making any parametric assumptions, and thus reduces variance in
the comparison. We then measure the mean difference between baseline and Gated labels, where
we count ‘No’ as 0, ‘Maybe’ as 1, and ‘Yes’ as 2, and compute a 90% BCa bootstrap confidence
interval. Thus we find that the mean difference in label scores is 0.13 (90% CI [0, 0.26]) in favour of
Gated SAEs, breaking down to mean difference Cls of [—0.07,0.33] and [—0.04, 0.29] on just the
Pythia-2.8B data and Gemma-7B data respectively. Since our central estimate for the mean differ-
ence in scores is positive, we also test the hypothesis that Gated SAEs may be more interpretable
than baseline SAEs. However, a one-sided Wilcoxon-Pratt signed-rank test on the paired scores does
not reject the null hypothesis that they are equally interpretable (p = 0.06). The contingency tables
used for these results are shown in Fig. 13. The overall conclusion is that Gated SAE features are
similarly interpretable to baseline SAE features, while also providing better reconstruction fidelity
(at fixed sparsity), as shown in the previous section. We provide more analysis of how these break
down by site and layer in Appendix I.

5 Why do Gated SAEs improve SAE training?

5.1 Ablation study

In this section, we vary several parts of the Gated SAE training methodology to gain insight into
which aspects of the training drive the observed improvement in performance. Gated SAEs differ
from baseline SAEs in many respects, making it easy to incorrectly attribute the performance gains to
spurious details without a careful ablation study. Fig. 5a shows Pareto frontiers for these variations;
below we describe each variation in turn and discuss our interpretation of the results.

Unfreeze decoder: Here we unfreeze the decoder weights in L, — i.e. allow this auxiliary task
to update the decoder weights in addition to training fg,.’s parameters. Although this (slightly)
simplifies the loss, there is a reduction in performance, suggesting that it is beneficial to limit the
impact of the L1 sparsity penalty to just those parameters in the SAE that need it — i.e. those used to
detect which features are active.

No rpag: Here we remove the rp,, scaling parameter in Eq. (7), effectively setting it to zero, further
tying foue’s and i, ’s parameters together. With this change, the two encoder sublayers’ preactiva-
tions can at most differ by an elementwise shift.!” There is a slight drop in performance, suggesting
I'mag coONtributes somewhat to the improved performance of the Gated SAE.

Untied encoders: Here we check whether our choice to share the majority of parameters between
the two encoders has meaningfully hurt performance, by training Gated SAEs with gating and ReLU
encoder parameters completely untied. Despite the greater expressive power of an untied encoder,
we see no improvement in performance — in fact a slight deterioration. This suggests our tying
scheme (Eq. (7)) — where encoder directions are shared, but magnitudes and biases aren’t — is effec-

0B ecause the two biases bgaie and bmag can still differ.
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Figure 5: (a) Our ablation study on GELU-1L MLP neuron activations indicates: (i) the impor-
tance of freezing the decoder in the auxiliary task L,.x used to train fy,.’s parameters; (ii) tying
encoder weights according to Eq. (7) is slightly beneficial for performance (in addition to yield-
ing a significant reduction in parameter count and inference compute); (iii) further simplifying the
encoder weight tying scheme in Eq. (7) by removing ry,e is mildly harmful to performance. (b)
Evidence from GELU-1L that the performance improvement of gated SAEs does not solely arise
from addressing shrinkage (systematic underestimation of latent feature activations): taking a frozen
baseline SAE’s parameters and learning ry,, and by,,s parameters on top of them (green line) does
successfully resolve shrinkage, by decoupling feature magnitude estimation from active feature de-
tection; however, it explains only a small part of the performance increase of gated SAEs (red line)
over baseline SAEs (blue line).

tive at capturing the advantages of using a gated SAE while avoiding the 50% increase in parameter
count and inference-time compute of using an untied SAE.

5.2 Isit sufficient to just address shrinkage?

As explained in Section 3.1, SAEs trained with the baseline architecture and L1 loss systematically
underestimate the magnitudes of latent features’ activations (i.e. shrinkage). Gated SAEs, through
modifications to their architecture and loss function, overcome these limitations.

It is natural to ask to what extent the performance improvement of Gated SAE:s is solely attributable
to addressing shrinkage. Although addressing shrinkage would — all else staying equal — improve
reconstruction fidelity, it is not the only way to improve SAEs’ performance: for example, Gated
SAEs could also improve upon baseline SAEs by learning better encoder directions (for estimating
when features are active and their magnitudes) or by learning better decoder directions (i.e. better
dictionaries for reconstructing activations).

Here we try to answer this question by comparing Gated SAEs trained as described in Section 3.2
with an alternative (architecturally equivalent) approach that also addresses shrinkage, but in a way
that uses frozen encoder and decoder directions from a baseline SAE of equal dictionary size.!! Any
performance improvement over baseline SAEs obtained by this alternative approach (which we dub
“baseline + rescale & shift”) can only be due to better estimations of active feature magnitudes, since
by construction an SAE parameterized by “baseline + rescale & shift” shares the same encoder and
decoder directions as a baseline SAE.

As shown in Fig. 5b, although resolving shrinkage only (“baseline + rescale & shift”) does improve-
ment baseline SAEs’ performance a little, a significant gap remains with respect to the performance
of Gated SAEs. This suggests that the benefit of the gated architecture and loss comes from learning
better encoder and decoder directions, not just from overcoming shrinkage. In Appendix D we ex-

"'Concretely, we do this by training baseline SAEs, freezing their weights, and then learning additional
rescale and shift parameters (similar to Wright and Sharkey [51]) to be applied to the (frozen) encoder pre-
activations before estimating feature magnitudes.
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plore further how Gated and baseline SAEs’ decoders differ by replacing their respective encoders
with an optimization algorithm at inference time.

6 Related work

Mechanistic interpretability Recent work in mechanistic interpretability has found recurring
components in small and large LMs [38], identified computational subgraphs that carry out spe-
cific tasks in small LMs (circuits; [50]) and reverse-engineered how toy tasks are carried out in
small transformers [30]. A central difficulty in this kind of work is choosing the right units of analy-
sis. Sparse linear features have been identified as a promising candidate in prior work [52, 46]. The
superposition hypothesis outlined by Elhage et al. [16] also provided a theoretical basis for this the-
ory, sparking a new interest in using SAEs specifically to learn a feature basis [42, §, 11, 21, 22, 4],
as well as using SAEs directly for circuit analysis [26]. Other work has drawn awareness to issues
or drawbacks with SAE training for this purpose, some of which our paper mitigates. Wright and
Sharkey [51] raised awareness of shrinkage and proposed addressing this via fine-tuning. Gated
SAEs, as discussed, resolve shrinkage during training. [35, 47, 2, 36] have also proposed general
SAE training methodology improvements, which are mostly orthogonal to the architectural changes
discussed in this work. In parallel work, Taggart [45] finds early improvements using a Jump ReLU
[17], but with a different loss function, and without addressing the problems of the L1 penalty.

Classical dictionary learning Research into the general problem of sparse dictionary learning
precedes transformers, and even deep learning. For example, sparse coding [13] studies how dis-
crete and continuous representations can involve more representations than basis vectors, and sparse
representations are also studied in neuroscience [48, 37]. One dictionary learning algorithm, k-SVD
[1] also uses two stages to learn a dictionary like Gated SAEs. Although classical dictionary learn-
ing algorithms can be more powerful than SAEs (Appendix D), they are less suited for downstream
uses like weights-based circuit analysis or attribution patching [44, 24], because they typically use
an iterative algorithm to decompose activations, whereas SAEs make feature extraction explicit via
the encoder. Bricken et al. [8] have also argued that classical algorithms may be ‘too strong’, in
the sense they may learn features the LM itself could not access, whereas SAEs uses components
similar to a LM’s MLP layer to decompose activations.

7 Conclusion

In this work we introduced Gated SAEs which are a Pareto improvement in terms of reconstruc-
tion quality and sparsity compared to baseline SAEs (Section 4.1), and are comparably interpretable
(Section 4.2). We showed via an ablation study that every key part of the Gated SAE methodology
was necessary for strong performance (Section 5.1). This represents significant progress on improv-
ing Dictionary Learning on LMs — at many sites, Gated SAEs require half the LO to achieve the same
loss recovered (Fig. 8). This is likely to improve work that uses SAEs to steer language models [31],
interpret circuits [26], or understand LM components across the full distribution [8].

Limitations & future work. Our benchmarking study focused on GELU-1L and models in the
Pythia and Gemma families. It is therefore not certain that these results will generalise to other
model families. On the other hand, the theoretical underpinnings of the Gated SAE architecture
(Section 3) make no assumptions about LM architecture, suggesting Gated SAEs should be a Pareto
improvement more generally. While we have confirmed that Gated SAE features are comparably in-
terpretable to baseline SAE features, it does not necessarily follow that Gated SAE decompositions
are equally useful for mechanistic interpretability. It is certainly possible that human interpretability
of SAE features is only weakly correlated with either: (i) identification of the causally meaningful
directions in a LM’s activations; or (ii) usefulness on downstream tasks like circuit analysis or steer-
ing. A framework for scalably and objectively evaluating the usefulness of SAE decompositions
(gated or otherwise) is still in its early stages [25] and further progress in this area would be highly
valuable. It is plausible that some of the performance gap between Gated and baseline SAEs could
be closed by inexpensive inference-time interventions that prune the many low activating features
that tend to appear in baseline SAEs, mimicking Gated SAEs’ thresholding mechanism. Finally,
we would be most excited to see progress on using dictionary learning techniques to further inter-

783 https://doi.org/10.52202/079017-0024



pretability in general, such as to improve circuit finding [10, 26] or steering [49] in language models,
and hope that Gated SAESs can serve to accelerate such work.
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Appendix
A Impact statement

This work introduces a method to obtain higher fidelity sparse decompositions of LM activations,
under the hypothesis that progress in this area will ultimately help us understand the representations
used by LMs. If successful, this could lead to greater understanding of how LMs complete tasks
and novel mechanisms for controlling their behavior. Greater understanding and control could be
put to beneficial uses such as mitigating the harms caused by current and future models, although
bad actors could also misuse these tools, for example to circumvent safety training and steer models
towards harmful behaviors. Currently, the SAE research program is in its early stages. For any po-
tential misuse of SAFEs, there is typically a more practical and effective way to achieve the same end
using existing tooling, e.g. fine tuning or activation editing. Therefore, we see negligible negative
societal impact in the short term. Longer term, advances in LM interpretability and control pose
similar benefits and risks to advances in Al capabilities in general.

B Maetrics for evaluating SAEs

SAEs are expected to decompose input activations sparsely, and yet in a manner that allows for
faithful reconstruction. LO and loss recovered are two metrics typically used [8] to measure sparsity
and reconstruction fidelity respectively. These are defined as follows:

* The L0 of a SAE is defined by the average number of active features on a given input, i.e
Exn £l

* The loss recovered of a SAE is calculated from the average cross-entropy loss of the lan-
guage model on an evaluation dataset, when the SAE’s reconstructions are spliced into it.
If we denote by CE(¢) the average loss of the language model when we splice in a function
¢ : R™ — R™ at the SAE’s site during the model’s forward pass, then loss recovered is

CE(% o f) — CE(Id)
~ CE(¢) — CE(ld) ~’

®)

where X o f is the autoencoder function, ( : x + 0 the zero-ablation function and Id :
x — X the identity function. According to this definition, a SAE that always outputs the
zero vector as its reconstruction would get a loss recovered of 0%, whereas a SAE that
reconstructs its inputs perfectly would get a loss recovered of 100%.

B.1 Issues with the loss recovered metric

In this paper, we have used loss recovered as defined in Bricken et al. [8] to measure reconstruction
fidelity. However, there are deficiencies with this metric:

* Firstly, zero-ablation is arguably too poor a baseline for defining the zero-point of this
metric and mean-ablation is better justified. Using the mean-ablation function p : x +—>
E. ~px’, instead of  in the definition of loss recovered above would also have the benefit
that SAEs’ loss recovered would tend towards zero in the limit L0 — 0, instead of tending
to a positive value as it does when computing loss recovered using zero-ablation.

» Furthermore, the very fact we normalise the increase in the spliced LM’s loss when com-
puting loss recovered makes it difficult to compare the impact of splicing SAEs at different
sub-layers of the model. For example, mean or zero-ablating the output of a MLP layer
typically has a much milder impact on LM loss than mean or zero-ablating the residual
stream, making the denominator in Eq. (8) smaller for MLP SAEs than for residual stream
SAEs. So we unsurprisingly find that residual stream SAEs’ loss recovered tend to be much
higher than MLP or attention SAEs. This suggests that it may be more informative to report
raw changes in cross-entropy loss (“delta LM loss”) instead of using a normalised metric
like loss recovered, since these are directly comparable across SAEs trained on different
sub-layers of the same LM.

In practice however, both mean-ablated loss recovered and delta LM loss are related to zero-ablated
loss recovered (the metric used in this paper) by an affine transformation. In other words, all the
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loss recovered versus LO figures in this paper would look identical if we had used one of these other
metrics instead, with the only difference being the tick labels on the y-axis. Consequently, none of
the conclusions we draw in this paper would be affected by using one of these other reconstruction
fidelity metrics instead. Nevertheless, we draw the reader’s attention to our subsequent work [41],
which compares Gated SAEs to other SAE varieties adopting the delta LM loss metric, instead of
loss recovered, for measuring reconstruction fidelity.!?

C Measuring shrinkage

As described in Section 3.1, the L1 sparsity penalty used to train baseline SAEs causes feature
activations to be systematically underestimated, a phenomenon called shrinkage. Since this in turn
shrinks the reconstructions produced by the SAE decoder, we can observe the extent to which a
trained SAE is affected by shrinkage by measuring the average norm of its reconstructions.

Concretely, the metric we use is the relative reconstruction bias,
. N 2
~v := argmin Ey.p |:||XSAE(X)/’}/ — X||2i| , 9
,Y/

i.e. 7! is the optimum multiplicative factor by which an SAE’s reconstructions should be rescaled
in order to minimise the L2 reconstruction loss; v = 1 for an unbiased SAE and v < 1 when there’s
shrinkage.!® Explicitly solving the optimization problem in Eq. (9), the relative reconstruction bias
can be expressed analytically in terms of the mean SAE reconstruction loss, the mean squared norm

of input activations and the mean squared norm of SAE reconstructions, making ~ easy to compute
and track during training:

Exwn [ Isas (0] 2B [ 5525 (%)13]
Y= = )
Ex~D [*SAE (x) - X} Ex~p [HQSAE (%) ||§} + Ex~p {||X||§] —Exvp [HXSAE (x) — |3
(10)
where the second equality makes use of the identity 2a-b = HaHg + Hb||§ —|la— b||§ Notice from
the second expression for «y that an unbiased reconstruction (y = 1) therefore satisfies

Exp [ Iksa8 (3] = Exvp [[x113] — Exw [I1%5a8 () = x[3]

In other words, an unbiased but imperfect SAE (i.e. one that has non-zero reconstruction loss) must
have mean squared reconstruction norm that is strictly less than the mean squared norm of its inputs
even without shrinkage. Shrinkage makes the mean squared reconstruction norm even smaller.

D Inference-time optimization

The task SAEs perform can be split into two sub-tasks: sparse coding, or learning a set of features
from a dataset, and sparse approximation, where a given datapoint is approximated as a sparse linear
combination of these features. The decoder weights are the set of learned features, and the mapping
represented by the encoder is a sparse approximation algorithm. Formally, sparse approximation is
the problem of finding a vector o that minimises;

a:argmion—DaHg st flally < (11)

i.e. that best reconstructs the signal x as a linear combination of vectors in a dictionary D, subject
to a constraint on the LO pseudo-norm on . Sparse approximation is a well studied problem, and
SAEs are a weak sparse approximation algorithm. SAEs, at least in the formulation conventional
in dictionary learning for language models, in fact solve a slightly more restricted version of this
problem where the weights o on each feature are constrained to be non-negative, leading to the
related problem

a = argmin ||x — Da||§ st |ally <v,a>0 (12)

12We also provide in Table 1 cross entropy losses for the LMs used in our experiments, both with and without
zero-ablation, which could in principle be used to translate the loss recovered results in this paper to delta LM
loss.

13We have defined + this way round so that v < 1 intuitively corresponds to shrinkage.
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In this paper, we do not explore using more powerful algorithms for sparse coding. This is partly
because we are using SAESs not just to recover a sparse reconstruction of activations of a LM; ideally
we hope that the learned features will coincide with the linear representations actually used by the
LM, under the superposition hypothesis. Prior work [8] has argued that SAEs are more likely to
recover these due to the correspondence between the SAE encoder and the structure of the network
itself; the argument is that it is implausible that the network can make use of features which can
only be recovered from the vector via an iterative optimisation algorithm, whereas the structure of
the SAE means that it can only find features whose presence can be predicted well by a simple linear
mapping. Whether this is true remains, in our view, an important question for future work, but we
do not address it in this paper.

In this section we discuss some results obtained by using the dictionaries learned via SAE training,
but replacing the encoder with a different sparse approximation algorithm at inference time. This
allows us to compare the dictionaries learned by different SAE training regimes independently of
the quality of the encoder. It also allows us to examine the gap between the sparse reconstruction
performed by the encoder against the baseline of a more powerful sparse approximation algorithm.
As mentioned, for a fair comparison to the task the encoder is trained for, it is important to solve
the sparse approximation problem of Eq. (12), rather than the more conventional formulation of
Eq. (11), but most sparse approximation algorithms can be modified to solve this with relatively
minor changes.

Solving Eq. (12) exactly is equivalent to integer linear programming, and is NP hard. The integer
linear programs in question would be large, as our SAE decoders routinely have hundreds of thou-
sands of features, and solving them to guaranteed optimality would likely be intractable. Instead, as
is commonly done, we use iterative greedy algorithms to find an approximate solution. While the
solution found by these sparse approximation algorithms is not guaranteed to be the global optimum,
these are significantly more powerful than the SAE encoder, and we feel it is acceptable in practice
to treat them as an upper bound on possible encoder performance.

For all results in this section, we use gradient pursuit, as described in Blumensath and Davies [6], as
our inference time optimisation (ITO) algorithm. This algorithm is a variant of orthogonal matching
pursuit [40] which solves the orgothonalisation of the residual to the span of chosen dictionary
elements approximately at every step rather than exactly, but which only requires matrix multiplies
rather than matrix solves and is easier to implement on accelerators as a result. It is possibly not
crucial for performance that our optimisation algorithm be implementable on TPUs, but being able
to avoid a host-device transfer when splicing this into the forward pass allowed us to re-use our
existing evaluation pipeline with minimal changes.

When we use a sparse approximation algorithm at test time, we simply use the decoder of a trained
SAE as a dictionary, ignoring the encoder. This allows us to sweep the target sparsity at test time
without retraining the model, meaning that we can plot an entire Pareto frontier of loss recovered
against sparsity for a single decoder, as in done in Fig. 7.

Fig. 6 compares the loss recovered when using ITO for a suite of SAEs decoders trained with both
methods at three different test time LO thresholds. This graph shows a somewhat surprising result;
while Gated SAEs learn better decoders generally, and often achieve the best loss recovered us-
ing ITO close to their training sparsity, SAE decoders are often outperformed by decoders which
achieved a higher test time LO; it’s better to do ITO with a target LO of 10 with an decoder with an
achieved LO of around 100 during training than one which was actually trained with this level of
sparsity. For instance, the left hand panel in Fig. 6 shows that SAEs with a training LO of 100 are
better than those with an LO of around 10 at almost every sparsity level in terms of ITO reconstruc-
tion. However, gated SAE dictionaries have a small but real advantage over standard SAEs in terms
of loss recovered at most target sparsity levels, suggesting that part of the advantage of gated SAEs
is that they learn better dictionaries as well as addressing issues with shrinkage. However, there are
some subtleties here; for example, we find that baseline SAEs trained with a lower sparsity penalty
(higher training LO) often outperform more sparse baseline SAEs according to this measure, and
the best performing baseline SAE (LO ~ 99) is comparable to the best performing Gated SAE (L0
~ 20).

Fig. 7 compares the Pareto frontiers of a baseline model and a gated model to the Pareto frontier of
an ITO sweep of the best performing dictionary of each. Note that, while the Pareto curve of the
baseline dictionary is formed by several models as each encoder is specialised to a given sparsity
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Figure 6: This figure compares the ITO performance of different decoders across a sweep for de-
coders trained using a baseline SAE and the gated method, at three different test time target spar-
sities. Gated SAEs trained at lower target sparsities consistently achieve better dictionaries by this
measure. Interestingly, the best performing baseline dictionary by this measure often has a much
higher test time sparsity than the target; for instance, at a test time sparsity of 30, the best baseline
SAE was the one that had a test time sparsity of more like 100. This could be an artifact of the
fact that the LO measure is quite sensitive to noise, and standard SAE architectures tend to have a
reasonable number of features with very low activation.

—=— baseline
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0.98

~—e— rescale+shift

«- baseline (ITO, best decoder)

0.96
--e-- gated (ITO, best decoder)

Loss Recovered

0.9
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Figure 7: Pareto frontiers of a baseline SAE, a baseline SAE with learned rescale and shift (to
account for shrinkage) and a gated SAE across different sparsity lambdas, compared to the ITO
Pareto frontier of the best decoder of each type with ITO, varying the target sparsity. The best gated
encoder is better than the best standard encoder by this measure, but the difference is marginal.
As shown in the plot above, the best baseline encoder by the ITO measure had a much larger test
time sparsity (around 100) than the best gated model (around 30). This figure suggests that the
gap between SAE performance and ’optimal’ performance, if we assume that ITO is close to the
maximum possible reconstruction using the given encoder, is much smaller for the gated model.

level, as mentioned, ITO lets us plot a Pareto frontier by sweeping the target sparsity with a single
dictionary; here we plot only the best performing dictionary from each model type to avoid cluttering
the figure. This figure suggests that the performance gap between the encoder and using ITO is
smaller for the gated model. Interestingly, this cannot solely be explained by addressing shrinkage,
as we demonstrate by experimenting with a baseline model which learns a rescale and shift with a
frozen encoder and decoder directions.
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Table 1: Cross-entropy losses for the original language model and after zero-ablating specified sub-
layers of Pythia-2.8B and Gemma-7B.

Model Layer Original CE Loss Zero Ablation CE Loss
MLP  Attention Residual
6 25426 27764 27295  16.1549
Gemma-7B 13 2.5426 25878 25566 303588
(1024 length context) 20 2.5426 26881 25726 195891
27 2.5426 261114 30819 124534
4 1.9699 20460 20361 13.0434
. 12 1.9699 20167 20131 10.6558
0 433:1”1'}12'0801;6 y 16 1.9699 20098 20046  11.6820
g X0 9 1.9699 21022 20269 104578
28 1.9699 20145 19760  27.8663

E More loss recovered / L0 Pareto frontiers

In Fig. 8 we show that Gated SAEs outperform baseline SAEs. In Fig. 9 we show that Gated SAEs
ourperform baseline SAEs at all but one MLP output or residual stream site that we tested on.

In Fig. 9 at the attention output pre-linear site at layer 27, loss recovered is bigger than 1.0. On inves-
tigation, we found that the dataset used to train the SAE was not identical to Gemma’s pretraining
dataset, and at this site it was possible to mean ablate this quantity and decrease loss — explaining
why SAE reconstructions had lower loss than the original model.

Table 1 provides cross-entropy losses for the Gemma-7B and Pythia-2.8B, both before and after
zero-ablating specific sub-layers of these models, to help provide further context for interpreting the
loss recovered results presented in this paper; 100% loss recovered corresponds to the SAE-spliced
language model attaining a loss matching the original language model, whereas 0% loss recovered
corresponds to the SAE-spliced language model attaining a loss matching the language model with
the corresponding sub-layer zero-ablated.

F Further shrinkage plots

In Fig. 10, we show that Gated SAEs resolve shrinkage, as measured by relative reconstruction bias
(Appendix C), in Pythia-2.8B.

G Training and evaluation: hyperparameters and other details

G.1 Training
G.1.1 General training details

Other details of SAE training are:

o SAE Widths. Our SAEs have width 217 for most baseline SAEs, 3 x 216 for Gated SAEs,
except for the (Pythia-2.8B, Residual Stream) sites we used 2% for baseline and 3 x 24
for Gated since early runs at these sites had lots of learned feature death.

* Training data. We use activations from hundreds of millions to billions of activations
from LM forward passes as input data to the SAE. Following Nanda [29], we use a shuffled
buffer of these activations, so that optimization steps don’t use data from highly correlated
activations. '

* Resampling. We used resampling, a technique which at a high-level reinitializes features
that activate extremely rarely on SAE inputs periodically throughout training. We mostly

'“In contrast to earlier findings [9], we found that when using Pythia-2.8B’s activations from sequences of
length 2043, rather than GELU-1L’s activations from sequences of length 128, it was important to shuffle the
10° length activation buffer used to train our SAEs.
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793 https://doi.org/10.52202/079017-0024



1.2

!
© o5
5 o
> 08 /
(7]
-
0.6
0.4
1.2
b=}
: !
0~ o —© *
250
Q g “>{ 0.8 .,././_.'—_
-]
7)) —
8
S 0.6
0.4
1.2

Layer 20
®
®

0.8

0.6

0.4

1.2 f
1 r/. f

0.8

Layer 27

—@- Gated
—@- Baseline

0.4

0.6 / SAE Type
50

0 100 150 200 0 50 100 150 200

Residual stream post-MLP

o

50 100 150 200
MLP output Attention output pre-linear

LO (Lower is sparser)
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follow the approach described in the ‘Neuron Resampling’ appendix of Bricken et al. [8],
except we reapply learning rate warm-up after each resampling event, reducing learning
rate to 0.1x the ordinary value, and, increasing it with a cosine schedule back to the ordinary
value over the next 1000 training steps.

* Optimizer hyperparameters. We use the Adam optimizer with 2 = 0.999 and 5; =
0.0, following Templeton et al. [47], as we also find this to be a slight improvement to
training. We use a learning rate warm-up. See Appendix G.1.2 for learning rates of different
experiment.

* Decoder weight norm constraints. Templeton et al. [47] suggest constraining columns to
have at most unit norm (instead of exactly unit norm), which can help distinguish between
productive and unproductive feature directions (although it should have no systematic im-
pact on performance). However, we follow the original approach of constraining columns
to have exact unit norms in this work for the sake of simplicity.

* Compute resources. Individual SAEs were each trained on TPU-v3 slices with a 2x2
topology [20]. The same chips were used to generate LM activations on-the-fly, train SAE
parameters and evaluate SAEs during training, using up to 8-way model parallelism. With
this setup, the time to train a SAE varies by SAE width, LM residual stream dimension,
sequence length, layer and site."> We also used a negligible amount of compute on re-
sampling (Appendix G), evaluation (e.g. Figure 1) and interpretability experiments (Sec-
tion 4.2). Training wall clock time ranges from around 7 hours to train on GELU-1L MLP
activations to around 47 hours to train on Gemma-7B sites at layer 27. We estimate that we
used twice as much compute as used in the paper on preliminary experiments.

G.1.2 Experiment-specific training details

* We use learning rate 0.0003 for all Gated SAE experiments, and the GELU-1L baseline
experiment. We swept for optimal baseline learning rates for the GELU-1L baseline to
generate this value. For the Pythia-2.8B and Gemma-7B baseline SAE experiments, we
divided the L2 loss by E||z||2, motivated by better hyperparameter transfer, and so changed
learning rate to 0.001 and 0.00075. We didn’t see noticeable difference in the Pareto frontier
and so did not sweep this hyperparameter further.

* We generate activations from sequences of length 128 for GELU-1L, 2048 for Pythia-2.8B
and 1024 for Gemma-7B.

* We use a batch size of 4096 for all runs. We use 300,000 training steps for GELU-1L and
Gemma-7B runs, and 400,000 steps for Pythia-2.8B runs.

G.1.3 Lessons learned scaling SAEs

* Learned feature death is unpredictable. In Fig. 11 there are few patterns that can be
gleaned from staring at which runs have high numbers of dead learned features (called
dead neurons in Bricken et al. [8]).

* Resampling makes hyperparameter sweeps difficult. We found that resampling caused
LO and loss recovered to increase, similar to Conmy [9].

* Training appears to converge earlier than expected. We found that we did not need 20B
tokens as in Bricken et al. [8], as generally resampling had stopped causing gains and loss
curves plateaued after just over one billion tokens.

G.2 Evaluation

We evaluated the models on over a million held-out tokens.
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H Equivalence between gated encoder with tied weights and linear encoder
with non-standard activation function

In this section we show under the weight sharing scheme defined in Eq. (7), a gated encoder as
defined in Eq. (5) is equivalent to a linear layer with a non-standard (and parameterized) activation
function.

Without loss of generality, consider the case of a single latent feature (M = 1) and set the pre-
encoder bias to zero. In this case, the gated encoder is defined as

F(%) = T s b0 RELU (Winag + X + binag) (13)
and the weight sharing scheme becomes
Wmag ‘= Pmag W gate (14)
with a non-negative parameter pmae = €XP(Tmag)-

Substituting Eq. (14) into Eq. (13) and re-arranging, we can re-express f (x) as a single linear layer

f(X) = O-bmngfpmngbgalc (Wmag CX bm‘lg) (15)
with the parameterized activation function
og(z) := 1,59 ReLU (2). (16)

called JumpReLU in a different context [17]. Fig. 12 illustrates the shape of this activation function.

I Further analysis of the human interpretability study

We perform some further analysis on the data from Section 4.2, to understand the impact of different
sites, layers, and raters.

I.1 Sites

We first pose the question of whether there’s evidence that the sites had different interpretability
outcomes. A Friedman test across sites shows significant differences (at p = 0.047) between the
Gated-vs-Baseline differences, though not (p = 0.92) between the raw labels.

Breaking down by site and repeating the Wilcoxon-Pratt one-sided tests and computing confidence
intervals, we find the result on MLP outputs is strongest, with mean 0.40, significance p = 0.003,
and CI [0.18, 0.63]; this is as compared with the attention outputs (p = 0.47, mean .05, CI [-0.16,
0.26]) and final residual (p = 0.59, mean -0.07, CI [-0.28, 0.12]) SAEs.

LI.2 Layers

Next we test whether different layers had different outcomes. We do this separately for the 2 models,
since the layers aren’t directly comparable. We run 2 tests in each setting: Page’s trend test (which
tests for a monotone trend across layers) and the Friedman test (which tests for any difference,
without any expectation of a monotone trend).

Results are presented in Table 2; they suggest there are some significant nonmonotone differences
between layers. To elucidate this, we present 90% BCa bootstrap confidence intervals of the mean
raw label (where ‘No’=0, ‘Maybe’=1, ‘Yes’=2) and the Gated-vs-Baseline difference, per layer, in
Fig. 15 and Fig. 16, respectively.

1.3 Raters

In Table 3 we present test results weakly suggesting that the raters differed in their judgments.
This underscores that there’s still a significant subjective component to this interpretability labeling.
(Notably, different raters saw different proportions of Pythia vs Gemma features, so aggregating
across the models is partially confounded by that.)

'5The FLOPs required to compute LM activations increase with layer; SAEs trained on MLP activations
have a higher parameter count than those trained on MLP outputs, attention outputs or the residual stream.

797 https://doi.org/10.52202/079017-0024



1 .W“
. ) MV'
g 1 oo —o E/‘
s
t 0
3
e 1 WR o—o—— co—
E 0.5
0
1
0; 0.5 //‘
- oo—° / SAE Type
—@— Gated
—@- Baseline
o w— oo 8% o o—
0 50 100 0 50 100 0 50 100
Residual stream post-MLP MLP output Attention output pre-linear
LO (Lower is sparser)
Figure 11: Feature death in Gemma-7B.
p-values Raw label Delta from Baseline to Gated
Pythia-2.8B (Page’s trend test)  0.50 0.13
Pythia-2.8B (Friedman test) 0.57 0.05
Gemma-7B (Page’s trend test)  0.037 0.31
Gemma-7B (Friedman test) 0.003 0.64
Table 2: Layer significance tests
p-values Raw label Delta from Baseline to Gated
Across models (Kruskal-Wallis H-test) 0.01 0.71
Pythia-2.8B (Friedman test) 0.13 0.05
Gemma-7B (Friedman test) 0.03 0.76

Table 3: Rater significance tests
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Figure 12: After applying the weight sharing scheme of Eq. (7), a gated encoder becomes equivalent

to a single layer linear encoder with a JumpReLU (Erichson et al. [17], previously named TRec by
Konda et al. [23]) activation function oy, illustrated above.

model = pythia-2.8b

model = gemma-7b-pt

YES

MAYBE

gated

NO

NO MAYBE YES NO MAYBE YES
baseline baseline

Figure 13: Contingency table showing Gated vs Baseline interpretability labels from our paired
study results, for Pythia-2.8B and Gemma-7B.
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Figure 14: An extract of a feature visualization dashboard used to rate features in the interpretability study
described in Section 4.2. The left-hand pane provides aggregate information, including a feature histogram
and the tokens most promoted and demoted by the feature being rated. The rest of the dashboard displays
samples of text on which the feature activates to various degrees. Holding the mouse over a text token reveals
a hover showing the exact activation level at that token. Although not shown here, the full dashboard provides
examples across the full range of activations, down to examples on which the feature fails to activate. This
particular feature, taken from a layer 20 Gemma-7B residual stream Gated SAE seems to promote completions
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like “above”, “aforementioned”, “mentioned above” etc. in contexts where such a completion would be likely.
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Figure 17: Contingency tables for the paired (gated vs baseline) interpretability labels, for Pythia-
2.8B
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Figure 18: Contingency tables for the paired (gated vs baseline) interpretability labels, for Gemma-
7B
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J Pseudo-code for Gated SAEs and the Gated SAE loss function

def gated_sae(x, W_gate, b_gate, W_mag, b_mag, W_dec, b_dec):
# Apply pre-encoder bias
X_center = X - b_dec

# Gating encoder (estimates which features are active)
active_features = ((x_center @ W_gate + b_gate) > 0)

# Magnitudes encoder (estimates active features’ magnitudes)
feature_magnitudes = relu(x_center @ W_mag + b_mag)

# Multiply both before decoding
return (active_features * feature_magnitudes) @ W_dec + b_dec

Figure 19: Pseudo-code for the Gated SAE forward pass.

def loss(x, W_gate, b_gate, W_mag, b_mag, W_dec, b_dec):
gated_sae_loss = 0.0

# We’ll use the reconstruction from the baseline forward pass to train

# the magnitudes encoder and decoder. Note we don’t apply any sparsity

# penalty here. Also, no gradient will propagate back to W_gate or b_gate
# due to binarising the gated activations to zero or one.

reconstruction = gated_sae(x, W_gate, b_gate, W_mag, b_mag, W_dec, b_dec)
gated_sae_loss += sum((reconstruction - x)**2, axis=-1)

# We apply a L1 penalty on the gated encoder activations (pre-binarising,
# post-RelLU) to incentivise them to be sparse

x_center = x - b_dec

via_gate_feature_magnitudes = relu(x_center @ W_gate + b_gate)
gated_sae_loss += 11_coef * sum(via_gate_feature_magnitudes, axis=-1)

# Currently the gated encoder only has gradient signal to be sparse, and
# not to reconstruct well, so we also do a "via gate" reconstruction, to
# give it an appropriate gradient signal. We stop the gradients to the
# decoder parameters in this forward pass, as we don’t want these to be
# influenced by this auxiliary task.
via_gate_reconstruction = (

via_gate_feature_magnitudes @ stop_gradient(W_dec)

+ stop_gradient (b_dec)

gated_sae_loss += sum((via_gate_reconstruction - x)**2, axis=-1)

return gated_sae_loss

Figure 20: Pseudo-code for the Gated SAE loss function. Note that this pseudo-code is written for
expositional clarity. In practice, taking into account parameter tying, it would be more efficient to
rearrange the computation to avoid unnecessarily duplicated operations.

K Tables of Results

We evaluated the models on over a million held-out tokens. Tables 4-11 show summary stats from
training runs on the Pareto frontier.

803 https://doi.org/10.52202/079017-0024



. Sparsity % CE Clean SAE 0 AbL . % Alive | Shrinkage
Site | Layer A LR Lo Recovered | CE Loss | CE Loss | CE Loss Width Features 0%

Resid 6 3e-05 0.001 | 18.1 95.28% 2.5426 | 3.1847 | 16.1549 | 196608 | 16.8% 0.982
Resid 6 2e-05 0.001 | 10.5 85.3% 2.5426 | 4.5433 | 16.1549 | 196608 | 5.72% 1.136
Resid 6 le-05 0.001 | 19.0 | 91.24% 2.5426 | 3.7349 | 16.1549 | 196608 | 5.11% 1.606
Resid 6 2e-05 | 0.00075 | 29.8 | 96.65% 2.5426 | 2.9989 | 16.1549 | 196608 | 13.67% 1.261
Resid 6 3e-05 | 0.00075 | 25.4 97.9% 2.5426 | 2.8279 | 16.1549 | 196608 | 38.86% 0.976
Resid 6 8e-06 | 0.00075 | 29.8 91.28% 2.5426 | 3.7301 | 16.1549 | 196608 | 9.88% 1.105
Resid 6 le-05 | 0.00075 | 57.3 97.36% 2.5426 | 2.9023 | 16.1549 | 196608 | 11.78% 1.03

Resid 6 4e-06 | 0.00075| 69.2 | 95.98% 2.5426 | 3.0892 | 16.1549 | 196608 | 13.54% 1.239
Resid 6 6e-06 | 0.00075 | 40.0 | 95.49% 2.5426 | 3.1562 | 16.1549 | 196608 | 24.34% 1.159
Resid | 13 9e-05 | 0.00075 | 14.3 | 96.77% 2.5426 | 3.4423 | 30.3588 | 196608 | 98.38% 0.806
Resid | 13 8e-05 | 0.00075| 17.5 | 97.66% 2.5426 | 3.1947 | 30.3588 | 196608 | 98.7% 0.824
Resid | 13 8e-05 0.001 | 18.0 | 97.63% 2.5426 | 3.2021 | 30.3588 | 196608 | 95.35% 0.838
Resid | 13 S5e-05 | 0.00075 | 22.2 97.69% 2.5426 | 3.1849 | 30.3588 | 196608 | 25.78% 0.889
Resid | 13 3e-05 |0.00075| 29.0 | 97.64% 2.5426 | 3.1986 | 30.3588 | 196608 | 8.55% 0.903
Resid | 13 Se-05 0.001 | 29.5 | 98.71% 2.5426 | 2.9005 | 30.3588 | 196608 | 65.17% 0.867
Resid | 13 3e-05 0.001 | 39.2 | 98.26% 2.5426 3.026 | 30.3588 | 196608 | 26.33% 0.936
Resid | 13 2e-05 | 0.00075| 56.6 | 98.49% 2.5426 | 2.9615 | 30.3588 | 196608 | 16.19% 0.976
Resid | 13 le-05 | 0.00075 | 101.3 | 97.83% 2.5426 | 3.1459 | 30.3588 | 196608 | 4.55% 1.018
Resid | 20 | 0.00012 | 0.00075 | 10.4 91.87% 2.5426 | 3.9277 | 19.5891 | 196608 | 92.51% 0.773
Resid | 20 0.0001 |0.00075| 13.8 | 93.68% 2.5426 | 3.6204 | 19.5891 | 196608 | 97.46% 0.797
Resid | 20 9e-05 | 0.00075 | 16.0 | 94.48% 2.5426 | 3.4835 | 19.5891 | 196608 | 99.2% 0.81

Resid | 20 3e-05 0.001 | 25.2 | 90.71% 2.5426 | 4.1258 | 19.5891 | 196608 | 3.11% 0.951
Resid | 20 7e-05 0.001 | 21.3 | 9573% 2.5426 3.27 19.5891 | 196608 | 99.62% 0.824
Resid | 20 Se-05 0.001 | 27.8 | 97.15% 2.5426 | 3.0281 | 19.5891 | 196608 | 88.4% 0.879
Resid | 20 3e-05 | 0.00075 | 39.1 96.43% 2.5426 | 3.1518 | 19.5891 | 196608 | 35.64% 1.019
Resid | 20 4e-05 | 0.00075 | 46.4 | 97.95% 2.5426 | 2.8922 | 19.5891 | 196608 | 99.9% 0.874
Resid | 20 2e-05 |0.00075 | 49.4 | 95.26% 2.5426 | 3.3505 | 19.5891 | 196608 | 8.61% 0.983
Resid | 20 1.5e-05 | 0.00075 | 50.3 95.99% 2.5426 | 3.2268 | 19.5891 | 196608 | 9.46% 2.179
Resid | 20 le-05 | 0.00075 | 124.8 | 97.69% 2.5426 | 2.9367 | 19.5891 | 196608 | 12.3% 0.997
Resid | 27 le-05 0.001 | 27.6 | 47.08% 2.5426 | 7.7878 | 12.4534 | 196608 | 1.68% 1.022
Resid | 27 8e-06 0.001 | 30.5 | 49.63% 2.5426 | 7.5345 | 12.4534 | 196608 | 1.12% 0.965
Resid | 27 1.2e-05 | 0.00075 | 36.2 | 39.49% 2.5426 | 8.5398 | 12.4534 | 196608 | 2.02% 1.564
Resid | 27 6e-06 0.001 | 39.1 52.72% 2.5426 7.228 | 12.4534 | 196608 | 1.39% 1.035
Resid | 27 4e-06 | 0.00075| 63.4 | 61.84% 2.5426 | 6.3246 | 12.4534 | 196608 | 3.03% 1.017
Resid | 27 2e-06 | 0.00075| 88.2 | 58.45% 2.5426 | 6.6609 | 12.4534 | 196608 | 2.22% 1.163
MLP 6 0.0004 | 0.001 0.2 42.33% 2.5426 | 2.6774 | 2.7764 | 196608 | 19.17% 0.857
MLP 6 0.0001 | 0.001 6.3 67.78% 2.5426 | 2.6179 | 2.7764 | 196608 | 82.35% 0.794
MLP 6 0.0001 | 0.00075| 7.6 59.55% 2.5426 | 2.6371 | 2.7764 | 196608 | 69.88% 1.189
MLP 6 7e-05 0.001 | 10.6 70.77% 2.5426 | 2.6109 | 2.7764 | 196608 | 75.8% 0.835
MLP 6 3e-05 | 0.00075 | 15.3 64.49% 2.5426 | 2.6256 | 2.7764 | 196608 | 15.36% 1.001
MLP 6 7e-05 | 0.00075| 12.0 74.63% 2.5426 | 2.6019 | 2.7764 | 196608 | 94.97% 0.82

MLP 6 1.5e-05 | 0.00075 | 149 | 47.57% 2.5426 | 2.6651 2.7764 | 196608 | 3.03% 1.0

MLP 6 Se-05 | 0.00075 | 17.1 75.36% 2.5426 | 2.6002 | 2.7764 | 196608 | 68.12% 0.864
MLP | I3 8e-05 | 0.00075| 1.4 32.78% 2.5426 2.573 2.5878 | 196608 | 10.16% 0.92

MLP | I3 8e-05 0.001 | 11.3 | 50.99% 2.5426 | 2.5647 | 2.5878 | 196608 | 73.07% 0.848
MLP 13 5e-05 0.001 | 22.6 | 47.32% 2.5426 | 2.5664 | 2.5878 | 196608 | 66.09% 0.882
MLP | I3 S5e-05 | 0.00075| 294 | 61.19% 2.5426 | 2.5601 | 2.5878 | 196608 | 84.51% 0.863
MLP | I3 3e-05 0.001 | 44.8 | 64.14% 2.5426 | 2.5588 | 2.5878 | 196608 | 56.91% 0.864
MLP | I3 3e-05 | 0.00075 | 80.8 71.28% 2.5426 | 2.5556 | 2.5878 | 196608 | 73.31% 0.901
MLP | I3 2e-05 | 0.00075 | 160.7 | 72.08% 2.5426 | 2.5552 | 2.5878 | 196608 | 56.12% 0.894
MLP | 13 le-05 | 0.00075 | 610.0 | 77.67% 2.5426 | 2.5527 | 2.5878 | 196608 | 44.39% 0.858
MLP | 20 7e-05 0.001 | 15.8 79.11% 2.5426 2.573 2.6881 | 196608 | 96.84% 0.852
MLP | 20 Se-05 0.001 | 24.5 | 82.67% 2.5426 | 2.5678 | 2.6881 | 196608 | 96.93% 0.869

Table 4: Gemma-7B Baseline SAEs (1024 sequence length). Italic are Pareto optimal SAEs.
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LR L0 Width

Site | Laver Sparsity % CE Clean SAE 0 Abl. % Alive | Shrinkage
Y A Recovered | CE Loss | CE Loss | CE Loss Features

~y
MLP | 20 5e-05 |0.00075 | 26.0 82.36% 2.5426 | 2.5682 | 2.6881 | 196608 | 97.96% 0.865
MLP| 20 4.5e-05 | 0.00075 | 31.4 83.94% 2.5426 | 2.5659 | 2.6881 | 196608 | 99.24% 0.877
MLP | 20 3e-05 0.001 | 395 83.12% 2.5426 | 2.5671 | 2.6881 | 196608 | 46.33% 0.924
MLP | 20 4e-05 | 0.00075 | 38.3 85.18% 2.5426 | 2.5641 | 2.6881 | 196608 | 95.73% 0.889
MLP | 20 3.5e-05 | 0.00075 | 43.2 84.11% 2.5426 | 2.5657 | 2.6881 | 196608 | 94.62% 0.874
MLP | 20 3e-05 | 0.00075 | 56.8 87.23% 2.5426 | 2.5612 | 2.6881 | 196608 | 96.88% 0.894
MLP | 20 2e-05 |0.00075 | 68.1 84.18% 2.5426 | 2.5656 | 2.6881 | 196608 | 53.42% 0.898
MLP | 20 2e-05 | 0.00075 | 75.6 85.63% 2.5426 | 2.5635 | 2.6881 | 196608 | 66.29% 0.899
MLP | 20 1.5e-05 | 0.00075 | 104.6 | 85.71% 2.5426 | 2.5634 | 2.6881 | 196608 | 41.7% 0.965
MLP | 20 le-05 |0.00075 | 321.1 90.3% 2.5426 | 2.5567 | 2.6881 | 196608 | 56.83% 0911
MLP | 27 1.2¢-05 | 0.001 | 10.2 86.28% 2.5426 | 5.7751 | 26.1114 | 196608 | 0.6% 1.019
MLP | 27 le-05 0.001 | 20.5 95.05% 2.5426 | 3.7081 | 26.1114 | 196608 | 1.73% 1.002
MLP | 27 8e-06 0.001 | 21.3 93.55% 2.5426 | 4.0623 | 26.1114 | 196608 | 0.66% 0.988
MLP | 27 6e-06 | 0.00075 | 26.4 91.19% 2.5426 | 4.6185 | 26.1114 | 196608 | 0.57% 0.973
MLP | 27 5.5e-06 | 0.00075 | 18.1 85.53% 2.5426 | 5.9522 | 26.1114 | 196608 | 0.58% 0.994
MLP | 27 3e-06 | 0.00075 | 26.9 90.82% 2.5426 4706 | 26.1114 | 196608 | 0.98% 1.024
Attn 6 7e-05 | 0.00075 | 15.4 69.89% 2.5426 | 2.5989 | 2.7295 | 196608 | 96.78% 0.72

At 6 5e-05 | 0.00075 | 26.4 78.08% 2.5426 | 2.5836 | 2.7295 | 196608 | 98.97% 0.777
Attn 6 3e-05 | 0.00075 | 54.6 85.42% 2.5426 | 2.5698 | 2.7295 | 196608 | 99.7% 0.846
Attn 13 7e-05 | 0.00075| 22.6 | 60.79% 2.5426 | 2.5481 | 2.5566 | 196608 | 93.47% 0.721
Attn 13 5e-05 | 0.00075 | 36.5 65.45% 2.5426 | 2.5474 | 2.5566 | 196608 | 97.59% 0.786
Attn 13 3e-05 | 0.00075 | 68.8 81.03% 2.5426 | 2.5452 | 2.5566 | 196608 | 99.19% 0.804
Attn 20 9e-05 | 0.00075| 10.8 | 68.98% 2.5426 | 2.5519 | 2.5726 | 196608 | 79.34% 0.715
Attn 20 8e-05 | 0.00075 | 12.3 72.48% 2.5426 | 2.5508 | 2.5726 | 196608 | 83.58% 0.723
Attn 20 7e-05 | 0.00075 | 15.9 75.83% 2.5426 | 2.5498 | 2.5726 | 196608 | 87.54% 0.755
Attn 20 6e-05 | 0.00075 | 18.7 78.38% 2.5426 | 2.5491 | 2.5726 | 196608 | 89.49% 0.759
At 20 5e-05 | 0.00075 | 25.1 82.96% 2.5426 | 2.5477 | 2.5726 | 196608 | 92.36% 0.786
Attn 20 4e-05 | 0.00075 | 32.6 85.95% 2.5426 | 2.5468 | 2.5726 | 196608 | 95.14% 0.802
At 20 3e-05 | 0.00075 | 50.3 89.52% 2.5426 | 2.5457 | 2.5726 | 196608 | 96.52% 0.841
Attn 20 2e-05 | 0.00075 | 97.3 92.52% 2.5426 | 2.5448 | 2.5726 | 196608 | 95.74% 0.878
Attn 20 1.5e-05 | 0.00075 | 148.6 | 95.01% 2.5426 | 2.5441 | 2.5726 | 196608 | 92.55% 0.867
Attn 20 le-05 |0.00075|329.7 | 96.57% 2.5426 | 2.5436 | 2.5726 | 196608 | 78.75% 0.895
Attn | 27 0.0008 | 0.00075| 0.0 121.03% | 2.5426 | 2.4291 | 3.0819 | 196608 | 5.34% 1.009
Attm | 27 0.0006 | 0.00075| 0.0 121.63% | 2.5426 | 2.4259 | 3.0819 | 196608 | 4.7% 1.007
Attn | 27 0.0001 |0.00075| 9.7 126.97% | 2.5426 | 2.3971 | 3.0819 | 196608 | 35.94% 0.829

Table 5: Gemma-7B Baseline SAEs (1024 sequence length) continued from Table 4.
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. Sparsity % CE Clean SAE 0 Abl. . % Alive | Shrinkage
Site | Layer A LR Lo Recovered | CE Loss | CE Loss | CE Loss Width Features vy

Resid 6 0.0012 10.0003| 2.2 95.55% 2.5426 | 3.1483 | 16.1549 | 131072 | 93.94% 1.006
Resid 6 0.001 |0.0003| 3.0 96.67% 2.5426 | 2.9954 | 16.1549 | 131072 | 96.24% 1.006
Resid 6 0.0008 |0.0003 | 4.3 97.83% 2.5426 | 2.8382 | 16.1549 | 131072 | 97.52% 1.003
Resid 6 0.0006 | 0.0003 | 7.0 98.76% 2.5426 | 2.7108 | 16.1549 | 131072 | 98.3% 0.996
Resid 6 0.0004 | 0.0003 | 14.3 99.35% 2.5426 | 2.6312 | 16.1549 | 131072 | 98.68% 0.996
Resid 6 0.0002 | 0.0003 | 45.9 99.77% 2.5426 | 2.5735 | 16.1549 | 131072 | 99.51% 0.999
Resid 6 2e-05 |0.0003 | 95.2 98.62% 2.5426 | 2.7302 | 16.1549 | 131072 | 45.13% 1.148
Resid 6 4e-05 |0.0003 | 144.0 | 99.35% 2.5426 | 2.6313 | 16.1549 | 131072 | 36.05% 1.038
Resid 6 8e-06 |0.0003 | 177.5 | 99.29% 2.5426 | 2.6386 | 16.1549 | 131072 | 53.36% 1.086
Resid 6 0.0001 |0.0003 | 131.8 | 99.94% 2.5426 | 2.5511 | 16.1549 | 131072 | 99.47% 1.005
Resid 6 8e-05 |0.0003 | 1532 | 99.93% 2.5426 | 2.5524 | 16.1549 | 131072 | 98.14% 0.984
Resid 6 6e-05 |0.0003 | 215.7 | 99.93% 2.5426 | 2.5521 | 16.1549 | 131072 | 93.91% 0.982
Resid 6 4e-05 |0.0003 | 284.5 | 99.62% 2.5426 | 2.5948 | 16.1549 | 131072 | 84.71% 2.56
Resid 6 2e-05 |0.0003 | 801.3 | 99.82% 2.5426 | 2.5673 | 16.1549 | 131072 | 91.71% 1.272
Resid 6 8e-06 | 0.0003 | -288.2 | 99.7% 2.5426 | 2.5835 | 16.1549 | 131072 | 85.02% 1.006
Resid | 13 0.0008 | 0.0003 | 5.4 98.3% 2.5426 | 3.0149 | 30.3588 | 131072 | 98.15% 1.008
Resid | 13 0.0005 | 0.0003 | 13.1 99.25% 2.5426 | 2.7514 | 30.3588 | 131072 | 98.71% 0.998
Resid | 13 0.0003 | 0.0003 | 31.8 99.62% 2.5426 | 2.6483 | 30.3588 | 131072 | 99.31% 0.992
Resid | 13 0.0002 | 0.0003 | 62.6 99.76% 2.5426 | 2.6083 | 30.3588 | 131072 | 99.69% 0.993
Resid | 13 0.0002 | 0.0003 | 63.7 99.77% 2.5426 | 2.6067 | 30.3588 | 131072 | 99.68% 0.997
Resid | 13 0.0001 |0.0003 | 146.1 | 99.87% 2.5426 | 2.5788 | 30.3588 | 131072 | 67.47% 1.056
Resid | 13 0.0001 | 0.0003 | 96.8 99.64% 2.5426 | 2.6421 | 30.3588 | 131072 | 64.18% 0.934
Resid | 20 0.001 |0.0003| 8.2 96.15% 2.5426 | 3.1995 | 19.5891 | 131072 | 96.49% 1.004
Resid | 20 0.0009 | 0.0003 | 10.0 96.7% 2.5426 | 3.1059 | 19.5891 | 131072 | 96.89% 1.003
Resid | 20 0.0008 |0.0003 | 12.3 97.14% 2.5426 | 3.0293 | 19.5891 | 131072 | 97.46% 0.997
Resid | 20 0.0007 | 0.0003 | 15.6 97.7% 2.5426 | 2.9353 | 19.5891 | 131072 | 98.02% 0.997
Resid | 20 0.0005 |0.0003 | 29.3 98.62% 2.5426 | 2.7775 | 19.5891 | 131072 | 98.66% 1.016
Resid | 20 0.0005 | 0.0003 | 28.0 98.53% 2.5426 | 2.7931 | 19.5891 | 131072 | 98.73% 0.997
Resid | 20 0.0005 | 0.0003 | 28.5 98.58% 2.5426 | 2.7844 | 19.5891 | 131072 | 98.67% 1.004
Resid | 20 0.0003 | 0.0003 | 67.3 99.3% 2.5426 | 2.6611 | 19.5891 | 131072 | 99.33% 1.013
Resid | 20 0.0002 |0.0003 | 123.4 | 99.58% 2.5426 | 2.6139 | 19.5891 | 131072 | 99.69% 1.01
Resid | 20 0.0001 |0.0003 | 212.1 | 99.65% 2.5426 | 2.6024 | 19.5891 | 131072 | 55.01% 1.04
Resid | 27 0.003 | 0.0003 | 17.3 81.66% 2.5426 | 4.3602 | 12.4534 | 131072 | 28.57% 1.001
Resid | 27 0.002 | 0.0003 | 25.9 85.26% 2.5426 | 4.0033 | 12.4534 | 131072 | 31.98% 0.999
Resid | 27 0.001 | 0.0003 | 54.4 90.26% 2.5426 | 3.5081 | 12.4534 | 131072 | 33.58% 1.008
MLP 6 0.0004 | 0.0003 | 4.0 73.71% 2.5426 2.604 2.7764 | 131072 | 98.69% 1.009
MLP 6 0.0001 | 0.0003 | 45.2 89.13% 2.5426 2.568 2.7764 | 131072 | 96.23% 0.998
MLP 6 7e-05 | 0.0003 | 106.0 | 90.67% 2.5426 | 2.5644 | 2.7764 | 131072 | 87.51% 1.0
MLP | I3 9e-05 | 0.0003 | 36.0 76.36% 2.5426 | 2.5533 | 2.5878 | 131072 | 99.87% 1.002
MLP | 13 9e-05 |0.0003 | 36.1 76.25% 2.5426 | 2.5533 | 2.5878 | 131072 | 99.91% 1.004
MLP | I3 8e-05 | 0.0003 | 48.9 78.71% 2.5426 | 2.5522 | 2.5878 | 131072 | 99.72% 1.007
MLP | I3 7e-05 | 0.0003 | 69.7 82.15% 2.5426 | 2.5506 | 2.5878 | 131072 | 99.77% 1.01
MLP | 13 7e-05 | 0.0003 | 67.0 81.24% 2.5426 | 2.5511 | 2.5878 | 131072 | 99.61% 0.997

Table 6: Gemma-7B Gated SAEs (1024 sequence length). Continued in Table 7.
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. Sparsity % CE Clean SAE 0 AblL . % Alive | Shrinkage
Site | Layer A LR Lo Recovered | CE Loss | CE Loss | CE Loss Width Features

v
MLP| 13 5e-05 | 0.0003 | 196.4 | 85.54% 2.5426 | 2.5491 | 2.5878 | 131072 | 76.56% 1.003
MLP| 13 3e-05 | 0.0003| 766.5 | 93.04% 2.5426 | 2.5457 | 2.5878 | 131072 | 86.81% 1.033
MLP| 20 0.00019 | 0.0003 | 24.4 87.81% 2.5426 | 2.5603 | 2.6881 | 131072 | 99.91% 1.004
MLP | 20 0.00016 | 0.0003 | 32.7 89.16% 2.5426 | 2.5583 | 2.6881 | 131072 | 99.94% 1.004
MLP| 20 0.00015 | 0.0003 | 36.4 89.63% 2.5426 | 2.5577 | 2.6881 | 131072 | 99.95% 1.002
MLP | 20 0.00014 | 0.0003 | 40.8 89.73% 2.5426 | 2.5575 | 2.6881 | 131072 | 99.96% 1.0

MLP| 20 0.00013 | 0.0003 | 46.6 90.3% 2.5426 | 2.5567 | 2.6881 | 131072 | 99.95% 1.002
MLP | 20 0.00012 | 0.0003 | 53.5 90.99% 2.5426 | 2.5557 | 2.6881 | 131072 | 99.99% 1.001
MLP | 20 0.0001 |0.0003| 74.9 91.42% 2.5426 | 2.5551 | 2.6881 | 131072 | 99.99% 0.999
MLP | 20 9e-05 | 0.0003| 91.2 92.01% 2.5426 | 2.5542 | 2.6881 | 131072 | 99.9% 0.998

MLP | 20 8e-05 |0.0003| 111.3 93.3% 2.5426 | 2.5523 | 2.6881 | 131072 | 100.0% 1.0
MLP | 20 1.1e-05 | 0.0003 | -91.1 | 103.85% | 2.5426 2.537 2.6881 | 131072 | 46.33% 1.005
MLP | 27 0.0012 | 0.0003 | 20.3 94.14% 2.5426 | 3.9232 | 26.1114 | 131072 | 5.8% 1.003

MLP | 27 0.001 |0.0003| 23.1 96.01% 2.5426 | 3.4834 | 26.1114 | 131072 | 6.13% 0.995
MLP | 27 0.0008 |0.0003 | 27.3 96.47% 2.5426 | 3.3747 | 26.1114 | 131072 | 5.18% 1.005
MLP | 27 0.0003 | 0.0003 | 59.3 99.07% 2.5426 | 2.7627 | 26.1114 | 131072 | 3.89% 1.002
MLP | 27 0.0002 | 0.0003 | 80.9 98.19% 2.5426 2969 | 26.1114 | 131072 | 3.64% 1.006
MLP | 27 |0.000175 |0.0003 | 89.7 97.35% 2.5426 | 3.1678 | 26.1114 | 131072 | 3.89% 1.008
MLP | 27 0.00015 | 0.0003 | 108.5 98.87% 2.5426 | 2.8093 | 26.1114 | 131072 | 3.54% 1.002
MLP | 27 |0.000135]0.0003 | 103.6 | 98.33% 2.5426 | 2.9365 | 26.1114 | 131072 | 3.75% 0.997
At 6 0.0007 |0.0003| 8.9 82.28% 2.5426 | 2.5757 | 2.7295 | 131072 | 93.49% 1.015
Attn 6 0.0005 |0.0003| 16.4 85.54% 2.5426 | 2.5696 | 2.7295 | 131072 | 95.16% 1.014
At 6 0.0003 | 0.0003 | 38.7 88.69% 2.5426 | 2.5637 | 2.7295 | 131072 | 97.63% 1.015
Attn 13 0.0012 | 0.0003| 2.9 46.05% 2.5426 | 2.5502 | 2.5566 | 131072 | 63.06% 1.042
Attn 13 0.0006 |0.0003| 13.2 76.64% 2.5426 | 2.5459 | 2.5566 | 131072 | 83.81% 1.0

Attn 13 0.0004 | 0.0003 | 28.1 63.78% 2.5426 | 2.5477 | 2.5566 | 131072 | 89.64% 0.992
Attn 13 0.0002 |0.0003 | 95.1 82.86% 2.5426 2.545 2.5566 | 131072 | 97.05% 0.993
Attn 13 4e-05 | 0.0003 | 1079.5| 93.95% 2.5426 | 2.5434 | 2.5566 | 131072 | 64.6% 1.002
Attn 13 2e-05 |0.0003 | -635.1 | 87.73% 2.5426 | 2.5443 | 2.5566 | 131072 | 92.21% 1.003
Attn 20 0.0012 |0.0003| 2.1 64.17% 2.5426 | 2.5533 | 2.5726 | 131072 | 72.67% 1.038
Attn 20 0.0006 |0.0003| 9.0 80.22% 2.5426 | 2.5485 | 2.5726 | 131072 | 89.06% 1.014
At 20 0.00055 | 0.0003 | 10.1 84.01% 2.5426 | 2.5474 | 2.5726 | 131072 | 90.35% 0.997
Attn 20 0.00045 | 0.0003 | 14.8 85.85% 2.5426 | 2.5468 | 2.5726 | 131072 | 92.05% 1.003
At 20 0.0004 | 0.0003| 18.7 86.55% 2.5426 | 2.5466 | 2.5726 | 131072 | 92.77% 1.016
Attn 20 0.00035 | 0.0003 | 22.8 88.2% 2.5426 | 2.5461 | 2.5726 | 131072 | 94.07% 1.009
Attn 20 0.00025 | 0.0003 | 39.7 90.97% 2.5426 | 2.5453 | 2.5726 | 131072 | 96.42% 1.009
Attn 20 0.0002 | 0.0003 | 55.2 92.72% 2.5426 | 2.5448 | 2.5726 | 131072 | 97.73% 0.994
Attn 20 0.00015 | 0.0003 | 89.1 94.39% 2.5426 | 2.5443 | 2.5726 | 131072 | 98.93% 0.999
Attn 20 0.0001 |0.0003 | 178.0 | 94.71% 2.5426 | 2.5442 | 2.5726 | 131072 | 99.69% 1.003
Attn 20 6e-05 | 0.0003 | 483.8 | 99.72% 2.5426 | 2.5427 | 2.5726 | 131072 | 98.66% 0.994
Attn | 20 4e-05 | 0.0003 | 894.6 | 97.03% 2.5426 | 2.5435 | 2.5726 | 131072 | 66.5% 0.991
Attn 20 2e-05 | 0.0003 | -851.3 | 106.91% | 2.5426 | 2.5405 | 2.5726 | 131072 | 86.24% 1.0

Amn | 27 0.002 | 0.0003| 6.6 100.37% | 2.5426 | 2.5406 | 3.0819 | 131072 | 56.82% 1.008
Attn | 27 0.001 |0.0003| 16.5 105.72% | 2.5426 | 2.5117 | 3.0819 | 131072 | 70.25% 1.002
Attn | 27 0.0007 | 0.0003 | 26.2 104.26% | 2.5426 | 2.5196 | 3.0819 | 131072 | 77.02% 0.999

Table 7: Gemma-7B Gated SAEs (1024 sequence length). Continued from Table 6
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. Sparsity % CE Clean SAE 0 Abl . % Alive | Shrinkage
Site | Layer A LR | L0 Recovered | CE Loss | CE Loss | CE Loss Width Features v
Attn 4 8e-05 |0.001 |17.6 | 81.04% 1.9699 | 1.9824 | 2.0361 | 196608 | 94.29% 0.827
Attn 4 6e-05 | 0.001 |24.2| 84.12% 1.9699 | 1.9804 | 2.0361 | 196608 | 95.76% 0.848
At 4 3e-05 | 0.001 |62.1| 90.96% 1.9699 | 1.9759 | 2.0361 | 196608 | 96.72% 0.93
Attn 12 8e-05 |0.001|16.1| 51.88% 1.9699 | 1.9907 | 2.0131 | 196608 | 65.73% 0.78
Atm 12 6e-05 | 0.001 |24.0| 58.46% 1.9699 | 1.9878 | 2.0131 | 196608 | 69.85% 0.802
Attn 12 3e-05 |0.001|750| 72.84% 1.9699 | 1.9816 | 2.0131 | 196608 | 73.04% 0.848
Amn | 16 | 0.00045 | 0.001 | 0.3 -3.54% 1.9699 | 2.0058 | 2.0046 | 49152 | 20.1% 0.554
Attn 16 8e-05 | 0.001 | 14.6 | 67.69% 1.9699 | 1.9811 | 2.0046 | 196608 | 64.35% 0.798
Amn | 16 3e-05 | 0.001 |63.0| 81.78% 1.9699 | 1.9762 | 2.0046 | 196608 | 70.75% 0.868
Attn 16 6e-05 | 0.001 |20.8| 72.07% 1.9699 | 1.9796 | 2.0046 | 196608 | 69.92% 0.813
Amn | 16 0.0001 |0.001]| 9.5 | 60.16% 1.9699 | 1.9837 | 2.0046 | 49152 | 88.32% 0.754
Attn 16 9e-05 |0.001 |11.3| 62.62% 1.9699 | 1.9829 | 2.0046 | 49152 | 89.87% 0.769
Attn | 20 6e-05 | 0.001 |18.3| 87.49% 1.9698 | 1.9769 | 2.0269 | 196608 | 63.81% 0.87
Amn | 20 8e-05 |0.001 |13.6| 8563% 1.9698 1.978 2.0269 | 196608 | 60.17% 0.871
Attn | 20 3e-05 | 0.001 |52.0| 91.92% 1.9698 | 1.9744 | 2.0269 | 196608 | 65.83% 0.899
Amn | 28 3e-05 |0.001|91.9| 73.29% 1.9698 | 1.9715 1.976 | 196608 | 71.36% 0.817
Attn | 28 6e-05 | 0.001 |20.6| 57.17% 1.9698 | 1.9725 1.976 | 196608 | 64.79% 0.771
Amn | 28 8e-05 |0.001|12.5| 49.8% 1.9698 | 1.9729 1.976 | 196608 | 55.92% 0.747
MLP 4 3.5¢-05 | 0.001 | 20.0| 86.36% 1.9698 | 1.9802 2.046 | 196608 | 95.6% 0.954
MLP| 4 le-05 |0.001 |64.5| 83.61% 1.9698 | 1.9823 2.046 | 196608 | 42.92% 0.977
MLP 4 2e-05 0.001 |43.3| 87.2% 1.9698 | 1.9796 2.046 | 196608 | 74.78% 0.986
MLP| 12 3e-05 |0.001|77.8| 81.95% 1.9698 | 1.9783 | 2.0167 | 196608 | 99.58% 0.932

Table 8: Pythia-2.8B baseline SAEs (2048 sequence length). Continued in Table 9.
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Spa;\‘sny LR Lo % CE Clean SAE 0 Abl. Width % Alive | Shrinkage

Site | Layer Recovered | CE Loss | CE Loss | CE Loss Features

v
MLP | 12 S5e-05 |0.001]| 28.2 76.01% 1.9698 | 1.9811 | 2.0167 | 196608 | 99.45% 0.909
MLP 12 7e-05 | 0.001 | 16.2 71.94% 1.9698 1.983 2.0167 | 196608 | 99.14% 0.883
MLP | 16 2.5e-05 | 0.001 | 79.8 78.44% 1.9698 | 1.9785 | 2.0098 | 196608 | 99.83% 0.919
MLP | 16 4e-05 | 0.001 | 29.0 72.83% 1.9698 | 1.9807 | 2.0098 | 196608 | 99.82% 0.923
MLP | 16 3.5e-05 | 0.001 | 35.9 73.95% 1.9698 | 1.9803 | 2.0098 | 196608 | 99.83% 0914
MLP | I6 7.5e-05 | 0.001 | 11.2 65.88% 1.9698 | 1.9835 | 2.0098 | 196608 | 99.45% 0.884
MLP | 16 4.5e-05 | 0.001 | 22.0 70.73% 1.9698 | 1.9815 | 2.0098 | 196608 | 99.79% 0.901
MLP | 16 3e-05 | 0.001 | 54.9 76.5% 1.9698 | 1.9792 | 2.0098 | 196608 | 99.86% 0.947
MLP | 20 3.5¢-05 | 0.001 | 20.6 | 91.28% 1.9698 | 1.9814 | 2.1022 | 196608 | 95.85% 0.971
MLP | 20 2.5e-05 | 0.001 | 254 | 91.64% 1.9698 | 1.9809 | 2.1022 | 196608 | 90.15% 0.964
MLP | 20 7e-06 | 0.001 | 269.2 | 93.37% 1.9698 | 1.9786 | 2.1022 | 196608 | 17.28% 0.962
MLP | 28 |2.25e-05|0.001| 95.2 79.05% 1.9698 | 1.9792 | 2.0145 | 196608 | 99.81% 0.941
MLP | 28 4.5e-05 | 0.001 | 18.5 67.4% 1.9698 | 1.9844 | 2.0145 | 196608 | 94.33% 0.92
MLP | 28 3e-05 |0.001 | 37.0 71.12% 1.9698 | 1.9827 | 2.0145 | 196608 | 92.72% 0.932
Resid 4 3e-05 |0.001| 159 | 98.11% 1.9699 | 2.1793 | 13.0434 | 49152 | 96.34% 0.966
Resid 4 2e-05 |0.001| 28.1 98.67% 1.9699 | 2.1174 | 13.0434 | 49152 | 97.0% 0.974
Resid 4 le-05 |0.001]| 79.1 99.27% 1.9699 | 2.0506 | 13.0434 | 49152 | 98.93% 0.983
Resid | 12 le-05 |0.001|128.7 | 97.68% 1.9698 | 2.1712 | 10.6558 | 49152 | 52.7% 0.951
Resid | 12 3e-05 |0.001| 25.1 93.87% 1.9698 | 2.5021 | 10.6558 | 49152 | 64.28% 0.96
Resid | 12 2e-05 |0.001| 52.1 96.34% 1.9698 | 2.2874 | 10.6558 | 49152 | 67.39% 0.979
Resid | 16 2e-05 |0.001| 42.7 | 95.55% 1.9698 | 2.4025 | 11.682 | 49152 | 68.44% 0.975
Resid | 16 le-05 |0.001| 94.8 | 96.48% 1.9698 | 2.3119 | 11.682 | 49152 | 36.81% 0.94
Resid | 16 1.5e-05 | 0.001 | 55.5 | 95.97% 1.9698 | 2.3609 | 11.682 | 49152 | 59.52% 0.95
Resid | 16 3e-05 |0.001| 17.1 90.16% 1.9698 | 2.9252 | 11.682 | 196608 | 9.91% 0.932
Resid | 16 5e-05 |0.001| 10.9 86.0% 1.9698 | 3.3293 | 11.682 | 196608 | 8.82% 0.929
Resid | 16 8e-06 | 0.001 | 49.1 84.1% 1.9698 | 3.5145 11.682 | 196608 | 1.06% 0.946
Resid | 20 7e-06 |0.001 |103.4| 91.94% 1.9698 | 2.6543 | 10.4578 | 49152 | 15.4% 1.016
Resid | 20 2e-05 |0.001| 33.4 90.97% 1.9698 | 2.7363 | 10.4578 | 49152 | 46.57% 0.986
Resid | 20 4e-05 | 0.001 | 13.6 | 86.19% 1.9698 | 3.1421 | 10.4578 | 49152 | 59.96% 0.954
Resid | 28 2e-05 |0.001| 21.0 | 95.09% 1.9698 3.242 | 27.8663 | 49152 | 20.22% 0916
Resid | 28 7e-06 | 0.001 | 109.2 | 97.45% 1.9698 | 2.6298 | 27.8663 | 49152 | 20.65% 1.021
Resid | 28 le-05 |0.001| 42.9 | 96.27% 1.9698 | 2.9349 | 27.8663 | 49152 | 22.59% 0.932

Table 9: Pythia-2.8B baseline SAEs (2048 sequence length). Continued from Table 8.
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. Sparsit % CE Clean SAE 0 AbL . % Alive | Shrinkage
Site | Layer P A Yl IR Lo Recovered | CE Loss | CE Loss | CE Loss Width Features 0% ®
Attn 4 0.0006 |0.0003|38.2| 92.85% 1.9699 | 1.9746 | 2.0361 | 131072 93.76% 1.006
Attn 4 0.0004 | 0.0003 | 69.8 | 94.82% 1.9699 | 1.9733 | 2.0361 |131072| 96.29% 1.0
Attn 4 0.0008 | 0.0003 | 24.7 | 90.94% 1.9699 | 1.9759 | 2.0361 | 131072 | 91.45% 1.007
Atn | 12 0.0006 |0.0003 | 64.5| 82.04% 1.9699 | 1.9776 | 2.0131 | 131072 | 74.48% 0.99
Attn | 12 0.001 |0.0003|27.1| 73.09% 1.9699 | 1.9815 | 2.0131 | 131072 | 63.68% 0.987
Amm | 12 0.0008 |0.0003|40.5| 77.52% 1.9699 | 1.9796 | 2.0131 | 131072 | 67.74% 0.998
Attn | 16 0.001 |0.0003|17.2| 79.67% 1.9699 | 1.9769 | 2.0046 | 32768 | 89.76% 0.988
Amn | 16 0.0006 |0.0003|39.1| 87.21% 1.9699 | 1.9743 | 2.0046 | 131072 | 80.93% 0.985
Attn 16 0.0009 |0.0003|20.8| 81.8% 1.9699 | 1.9762 | 2.0046 | 32768 | 91.0% 0.993
Amn | 16 0.0004 |0.0003|77.2| 90.56% 1.9699 | 1.9732 | 2.0046 | 131072 | 85.48% 0.987
Attn 16 0.0008 | 0.0003 | 25.0| 83.57% 1.9699 | 1.9756 | 2.0046 | 131072 | 79.41% 0.993
Attn | 16 0.0005 |0.0003|57.8| 88.63% 1.9699 | 1.9738 | 2.0046 | 32768 | 96.08% 0.992
Attn | 20 0.0004 |0.0003|71.2| 96.25% 1.9698 1.972 2.0269 | 131072 | 88.74% 0.992
Atn | 20 0.0006 |0.0003|36.5| 94.34% 1.9698 1.973 2.0269 | 131072 | 85.88% 0.986
Attn | 20 0.0008 |0.0003 |24.0| 93.05% 1.9698 | 1.9738 | 2.0269 | 131072 | 83.05% 0.994
Attn | 28 0.0008 |0.0003|27.8| 73.39% 1.9698 | 1.9715 1.976 | 131072 | 68.41% 0.988
Attn | 28 0.001 |0.0003|17.7| 68.35% 1.9698 | 1.9718 1.976 | 131072 | 68.14% 0.991
Attn | 28 0.0006 |0.0003|51.2| 7811% 1.9698 | 1.9712 1.976 | 131072 | 72.44% 0.986
MLP 4 0.0006 |0.0003|28.6 | 89.28% 1.9698 1.978 2.046 | 131072 | 99.16% 1.011
MLP| 4 0.0004 | 0.0003 | 66.5 | 92.74% 1.9698 | 1.9754 2.046 | 131072 | 99.52% 1.002
MLP 4 0.0008 |0.0003 | 158 | 87.13% 1.9698 | 1.9796 2.046 | 131072 | 98.46% 1.007
MLP| 12 0.001 |0.0003|350| 81.33% 1.9698 | 1.9786 | 2.0167 | 131072 | 97.55% 1.011
MLP| 12 0.002 |0.0003| 8.2 72.1% 1.9698 | 1.9829 | 2.0167 | 131072 | 94.68% 1.002
MLP| 12 0.0008 | 0.0003 | 55.7 | 84.15% 1.9698 | 1.9773 | 2.0167 | 131072 | 98.23% 1.004
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Table 10: Pythia-2.8B Gated SAEs (2048 sequence length). Continued in Table 11.
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Sparsity % CE Clean SAE 0 Abl. Width % Alive | Shrinkage

Site | Layer A LR | L0 | gecovered | CE Loss | CE Loss | CE Loss Features

v
MLP | 16 0.0008 | 0.0003 | 51.0 | 80.32% 1.9698 | 1.9777 | 2.0098 | 131072 | 99.05% 1.002
MLP | 16 0.0016 |0.0003 | 12.4| 70.76% 1.9698 | 1.9815 | 2.0098 | 131072 | 97.38% 1.005
MLP | 16 0.0007 |0.0003|70.1| 82.09% 1.9698 1.977 2.0098 | 131072 | 99.32% 1.001
MLP | 16 0.0014 |0.0003 | 16.1 | 72.62% 1.9698 | 1.9808 | 2.0098 | 131072 | 97.48% 1.007
MLP | 16 0.0012 | 0.0003 |21.9| 75.12% 1.9698 | 1.9798 | 2.0098 | 131072 | 98.18% 1.012
MLP | 16 0.0009 |0.0003 |38.3 | 7841% 1.9698 | 1.9785 | 2.0098 | 131072 | 98.72% 0.993
MLP | 20 0.0008 | 0.0003 | 51.0| 94.28% 1.9698 | 1.9774 | 2.1022 | 131072 | 99.06% 1.007
MLP | 20 0.0012 |0.0003 | 22.1 | 92.53% 1.9698 | 1.9797 | 2.1022 | 131072 | 97.97% 1.0

MLP | 20 0.001 |0.0003|30.9| 93.27% 1.9698 | 1.9788 | 2.1022 | 131072 | 98.39% 1.003
MLP | 28 0.001 |0.0003|47.7 | 79.96% 1.9698 | 1.9788 | 2.0145 | 131072 | 98.76% 1.004
MLP | 28 0.0008 |0.0003 | 82.1| 83.68% 1.9698 | 1.9771 | 2.0145 | 131072 | 98.48% 1.002
MLP | 28 0.0015 |0.0003 | 21.3 73.3% 1.9698 | 1.9818 | 2.0145 | 131072 | 97.58% 1.004
Resid 4 0.0008 | 0.0003|70.7 | 99.5% 1.9699 | 2.0257 | 13.0434 | 32768 | 99.68% 0.996
Resid 4 0.001 |0.0003|49.0| 99.37% 1.9699 | 2.0399 | 13.0434 | 32768 | 99.52% 0.998
Resid 4 0.002 |0.0003|16.2| 98.83% 1.9699 | 2.0998 | 13.0434 | 32768 | 98.72% 1.001
Resid | 12 0.004 |0.0003|16.2| 9592% 1.9698 | 2.3239 | 10.6558 | 32768 | 72.56% 1.003
Resid | 12 0.0016 |0.0003|77.1| 98.61% 1.9698 | 2.0908 | 10.6558 | 32768 | 85.53% 0.998
Resid | 12 0.002 |0.0003|52.8| 98.2% 1.9698 | 2.1261 | 10.6558 | 32768 | 83.41% 1.0

Resid | 16 0.003 |0.0003|37.5| 97.46% 1.9698 | 2.2162 | 11.682 | 32768 | 78.14% 1.0

Resid | 16 0.006 |0.0003|12.5| 94.29% 1.9698 | 2.5249 | 11.682 | 32768 | 62.59% 0.998
Resid | 16 0.002 |0.0003|715| 98.33% 1.9698 | 2.1324 | 11.682 | 32768 | 82.89% 0.998
Resid | 16 0.0025 | 0.0003 | 46.2 | 98.04% 1.9698 | 2.1597 | 11.682 | 131072 | 38.15% 0.993
Resid | 16 0.0045 | 0.0003 | 18.9 | 96.55% 1.9698 | 2.3045 | 11.682 | 131072 | 38.92% 0.996
Resid | 16 0.0015 |0.0003 | 95.6 | 98.62% 1.9698 2.104 11.682 | 131072 | 29.77% 0.991
Resid | 20 0.0075 |0.0003 | 15.4 | 91.68% 1.9698 | 2.6763 | 10.4578 | 32768 | 59.39% 0.994
Resid | 20 0.004 |0.0003|38.7| 95.09% 1.9698 | 2.3866 | 10.4578 | 32768 | 65.15% 0.995
Resid | 20 0.003 |0.0003|58.4| 96.05% 1.9698 | 2.3053 | 10.4578 | 32768 | 68.08% 0.994
Resid | 28 0.0075 | 0.0003 | 25.0 | 96.54% 1.9698 | 2.8646 | 27.8663 | 32768 | 29.97% 0.993
Resid | 28 0.005 |0.0003|46.6 | 97.58% 1.9698 | 2.5973 | 27.8663 | 32768 | 40.94% 1.008
Resid | 28 0.004 | 0.0003|61.2 97.9% 1.9698 | 2.5136 | 27.8663 | 32768 | 35.93% 1.005

Table 11: Pythia-2.8B Gated SAEs (2048 sequence length). Continued from Table 10.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have clearly stated our main contributions in the abstract and introduction,
and have taken care to ensure they accurately reflect the contents of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We include a limitations section under the conclusion, discussing the limita-
tions of our experimental design and of open questions around SAEs that our work does
not address.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate “Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The main contributions of this paper are not theoretical. There are two minor
points in the main paper — deriving an expression for the shrinkage metric v and showing
that a tied-weights Gated SAE is equivalent to a single-layer encoder SAE with a Jump-
ReLU activation — where fuller explanations are provided in Appendix C and Appendix H
respectively (and referenced from the main text). These are not numbered theorems as this
would be excessive for these low-importance (and easily derived) points.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The main body of the paper provides a detailed explanation of the Gated SAE
architecture and loss function (Section 3) that are the main contributions of the paper; ad-
ditionally, pseudo-code to help reproduction is provided in Appendix J. We provide a high
level summary of the training approach in Section 2 and Section 3, with details on hyperpa-
rameters and compute requirements in Appendix G. We also explain the methodologies for
our benchmarking and manual interpretability experiments in Section 4 in sufficient detail
to be able to reproduce the results there.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We are unable to provide open access to the activation datasets or code used
to train the SAEs in our experiments. However, the experiments we have reported involved
training SAEs on solely open-source language models, and we have provided pseudo-code
for our main contributions (Appendix J). These — alongside open-source codebases that are
available for training SAEs (e.g. [5]) — should be enough to reproduce our main experimen-
tal results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: The main body of the paper — in particular the training and evaluation subsec-
tions of Section 2, the Gated SAE definition of Section 3.2 and the experimental method-
ology subsections of Section 4 — explain training and evaluation details to a sufficient level
of detail to be able to understand and appreciate the results. Details of hyperparameters,
optimizer type, etc are provided in Appendix G.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer:

Justification: We do measure statistical significance in our interpretability study. Sec-
tion 4.2 includes a detailed explanation of the statistical analysis undertaken to compare
Gated and baseline SAEs (continued in Appendix I). The error bar methodology for Fig. 4
is explained in Footnote 9. However, error bars are not shown on the Pareto curve plots
because it would have been computationally prohibitive. Nevertheless, the smoothness (or
otherwise) of these curves across multiple values of \ does informally convey the noisiness
of these curves.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ~’Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The final bullet in Appendix G covers the requirements below.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the Code and believe our research conforms to its require-
ments.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed potential positive and negative societal impacts of our
work in our impact statement (Appendix A).

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We are not releasing models or data with this paper.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.
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 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The creators / owners of the three open-source model families used in our

experiments [28, 3, 18] are credited in the main text, with license details (which have been
respected) provided as part of their entries in the Bibliography.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: No new assets are being introduced in the paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The interpretability experiment (Section 4.2) did not use any external human
subjects. All raters were permanent members of the research group conducting the study,
hence no compensations details are provided. The instructions given to raters are provided
in Section 4.2. The feature dashboards used by the raters were generated using a popular
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SAE visualisation library [27] that we have referenced when describing the experimental
methodology; representative screenshots are available at the library’s GitHub page (pro-
vided in its Bibliography entry).

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: IRB approvals were not required, as no external human subjects were used in
the interpretability study.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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