
Improving Sparse Decomposition of Language Model
Activations with Gated Sparse Autoencoders

Senthooran Rajamanoharan∗

Google DeepMind
Arthur Conmy∗

Google DeepMind
Lewis Smith

Google DeepMind
Tom Lieberum†

Google DeepMind

Vikrant Varma†
Google DeepMind

János Kramár
Google DeepMind

Rohin Shah
Google DeepMind

Neel Nanda
Google DeepMind

Abstract

Recent work has found that sparse autoencoders (SAEs) are an effective technique
for unsupervised discovery of interpretable features in language models’ (LMs)
activations, by finding sparse, linear reconstructions of those activations. We in-
troduce the Gated Sparse Autoencoder (Gated SAE), which achieves a Pareto im-
provement over training with prevailing methods. In SAEs, the L1 penalty used to
encourage sparsity introduces many undesirable biases, such as shrinkage – sys-
tematic underestimation of feature activations. The key insight of Gated SAEs is
to separate the functionality of (a) determining which directions to use and (b) esti-
mating the magnitudes of those directions: this enables us to apply the L1 penalty
only to the former, limiting the scope of undesirable side effects. Through train-
ing SAEs on LMs of up to 7B parameters we find that, in typical hyper-parameter
ranges, Gated SAEs solve shrinkage, are similarly interpretable, and require half
as many firing features to achieve comparable reconstruction fidelity.

1 Introduction

Mechanistic interpretability aims to explain how neural networks produce outputs in terms of the
learned algorithms executed during a forward pass [33, 34]. Much work makes use of the fact
that many concept representations appear to be linear [14, 19, 34, 39], i.e. that they correspond to
interpretable directions in activation space. However, finding the set of all interpretable directions
is a highly non-trivial problem. Classic approaches, like interpreting neurons (i.e. directions in
the standard basis) are insufficient, as many are polysemantic and tend to activate for a range of
different seemingly unrelated concepts [7, 15, 16]. Within the field, there has recently been much
interest [8, 11, 21, 22, 4] in using sparse autoencoders (SAEs; [32]) as an unsupervised method for
finding causally relevant, and ideally interpretable, directions in a language model’s activations.

Although SAEs show promise in this regard [26, 31], the L1 penalty used in the prevailing training
method to encourage sparsity also introduces biases that harm the accuracy of SAE reconstructions,
as the loss can be decreased by trading-off some reconstruction accuracy for lower L1. In this pa-
per, we introduce a modification to the baseline SAE architecture – a Gated SAE – along with an
accompanying loss function, which partially overcomes these limitations. Our key insight is to use
separate affine transformations for (a) determining which dictionary elements to use in a reconstruc-
tion and (b) estimating the coefficients of active elements, and to apply the sparsity penalty only to
the former task. We share a subset of weights between these transformations to avoid significantly

∗: Joint contribution. †: Core infrastructure contributor. Correspondence: srajamanoharan@google.com
and neelnanda@google.com.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

775 https://doi.org/10.52202/079017-0024

1002 5 10 2 5 2

0.8

0.7

0.9

1

2 5 10 2 5 100 2 2 5 10 2 5 100 2

SAE Type

Gated

Baseline

L0 (Lower is sparser)

L
o

s
s
 R

e
c
o

v
e
r
e
d

(
F
id

e
li
t
y
)

Residual stream post-MLP MLP Output Attention output pre-linear

Figure 1: Gated SAEs consistently offer improved reconstruction fidelity for a given level of sparsity
compared to prevailing (baseline) approaches. These plots compare Gated SAEs to baseline SAEs
at Layer 20 in Gemma-7B. Gated SAEs’ dictionaries are of size 217 ≈ 131k whereas baseline
dictionaries are 50% larger, so that both types are trained with equal compute. This performance
improvement holds in layers throughout GELU-1L, Pythia-2.8B and Gemma-7B (see Appendix E).

increasing the parameter count and inference-time compute requirements of a Gated SAE compared
to a baseline SAE of equivalent width.2

We evaluate Gated SAEs on multiple models: a one layer GELU activation language model [28],
Pythia-2.8B [3] and Gemma-7B [18], and on multiple sites within models: MLP layer outputs,
attention layer outputs, and residual stream activations. Across these models and sites, we find Gated
SAEs to be a Pareto improvement over baseline SAEs holding training compute fixed (Fig. 1): they
yield sparser decompositions at any desired level of reconstruction fidelity. We also conduct further
follow up ablations and investigations on a subset of these models and sites to better understand the
differences between Gated SAEs and baseline SAEs.

Overall, the key contributions of this work are that we:

1. Introduce the Gated SAE, a modification to the standard SAE architecture that decouples
detection of which features are present from estimating their magnitudes (Section 3.2);

2. Show that Gated SAEs Pareto improve the sparsity and reconstruction fidelity trade-off
compared to baseline SAEs (Section 4.1);

3. Confirm that Gated SAEs overcome shrinkage while outperforming other methods that also
address this problem (Section 5.2);

4. Provide evidence from a small double-blind study that Gated SAE features are comparably
interpretable to baseline SAE features (Section 4.2).

2 Preliminaries

In this section we summarise the concepts and notation necessary to understand existing SAE ar-
chitectures and training methods following Bricken et al. [8], which we call the baseline SAE. We
define Gated SAEs in Section 3.2.

As motivated in Section 1, we wish to decompose a model’s activation x ∈ Rn into a sparse, linear
combination of feature directions:

x ≈ x0 +

M∑
i=1

fi(x)di, (1)

where di are dictionary of M ≫ n latent unit-norm feature directions, and the sparse coefficients
fi(x) ≥ 0 are the corresponding feature activations for x.3 The right-hand side of Eq. (1) natu-
rally has the structure of an autoencoder: an input activation x is encoded into a (sparse) feature
activations vector f(x) ∈ RM , which in turn is linearly decoded to reconstruct x.

2Although due to an auxiliary loss term, computing the Gated SAE loss for training purposes does re-
quire 50% more compute than computing the loss for a matched-width baseline SAE.

3In this work, we use the term feature to refer only to the learned features of SAEs, i.e. the overcomplete
basis directions that are linearly combined to produce reconstructions. In particular, learned features are always
linear and not necessarily interpretable.

2

776https://doi.org/10.52202/079017-0024

Baseline architecture Using this correspondence, Bricken et al. [8] and subsequent works attempt
to learn a suitable sparse decomposition by parameterizing a single-layer autoencoder (f , x̂) defined
by:

f(x) := ReLU (Wenc (x− bdec) + benc) (2)
x̂(f) := Wdecf + bdec (3)

and training it using gradient descent to reconstruct samples x ∼ D from a large dataset D of acti-
vations collected from a single site and layer of a trained language model, constraining the hidden
representation f to be sparse. Once the sparse autoencoder has been trained, we obtain a decompo-
sition of the form of Eq. (1) by identifying the (suitably normalised) columns of the decoder weight
matrix Wdec ∈ RM×n with the dictionary of feature directions di, the decoder bias bdec ∈ Rn with
the centering term x0, and the (suitably normalised) entries of the latent representation f(x) ∈ RM

with the feature activations fi(x).

Baseline training methodology To train sparse autoencoders, Bricken et al. [8] use a loss function
with two terms that respectively encourage faithful reconstruction and sparsity:4

L(x) := ∥x− x̂(f(x))∥22 + λ ∥f(x)∥1 . (4)

Since it is possible to arbitrarily reduce the L1 sparsity loss term without affecting reconstructions
or sparsity by simply scaling down encoder outputs and scaling up the norm of the decoder weights,
it is important to constrain the norms of the columns of Wdec during training. Following Bricken
et al. [8], we constrain norms to one. See Appendix G for further details on SAE training.

Evaluating SAEs Two metrics are primarily used to get a sense of SAE quality [8]: L0, a measure
of SAE sparsity, and loss recovered, a measure of SAE reconstruction fidelity. L0 measures the
average number of features used by a SAE to reconstruct input activations. Loss recovered is a
normalised measure of the increase induced in a LM’s cross entropy loss when we replace its original
activations with the corresponding SAE reconstructions during the model’s forward pass. Both these
metrics are formally defined in Appendix B, where we also discuss shortcomings of and alternatives
to the loss recovered metric as it is defined in Bricken et al. [8]. Since it is possible for SAEs
to score well on these metrics and still fail to be useful for interpretability-related tasks [47], we
perform manual analysis of SAE interpretability in Section 4.2.

3 Gated SAEs

3.1 Motivation

The intention behind how SAEs are trained is to maximise reconstruction fidelity at a given level of
sparsity, as measured by L0, although in practice we optimize a mixture of reconstruction fidelity
and L1 regularization. This difference is a source of unwanted bias in the training of a sparse
autoencoder: for any fixed level of sparsity, a trained SAE can achieve lower loss (as defined in
Eq. (4)) by trading off a little reconstruction fidelity to perform better on the L1 sparsity penalty.

The clearest consequence of this bias is shrinkage [51]. Holding the decoder x̂(•) fixed, the L1
penalty pushes feature activations f(x) towards zero, while the reconstruction loss pushes f(x) high
enough to produce an accurate reconstruction. Thus, the optimal value falls somewhere in between,
and as a result the SAE systematically underestimates the magnitude of feature activations, without
necessarily providing any compensatory benefit for sparsity.5

How can we reduce the bias introduced by the L1 penalty? The output of the encoder f(x) of a
baseline SAE (Section 2) has two roles:

1. It detects which features are active (according to whether the outputs are zero or strictly
positive). For this role, the L1 penalty is necessary to ensure the decomposition is sparse.

4Note that we cannot directly optimize the L0 norm (i.e. the number of active features) since this is not a
differentiable function. We do however use the L0 norm to evaluate SAE sparsity.

5Conversely, rescaling the shrunk feature activations [51] is not necessarily enough to overcome the bias
induced by by L1 penalty: a SAE trained with the L1 penalty could have learnt sub-optimal encoder and
decoder directions that are not improved by such a fix. In Section 5.2 and Fig. 7 we provide empirical evidence
that this is true in practice.

3

777 https://doi.org/10.52202/079017-0024

Magnitude Path

Gating Path

scale & shift

shift binarize

Encoder DecoderReLU

Figure 2: The Gated SAE architecture with weight sharing between the gating and magnitude paths,
shown with an example input. See Appendix J for a pseudo-code implementation.

2. It estimates the magnitudes of active features. For this role, the L1 penalty is a source of
unwanted bias.

If we could separate out these two functions of the SAE encoder, we could design a training loss
that narrows down the scope of SAE parameters that are affected (and therefore to some extent
biased) by the L1 sparsity penalty to precisely those parameters that are involved in feature detection,
minimising its impact on parameters used in feature magnitude estimation.

3.2 Gated SAEs

Architecture How should we modify the baseline SAE encoder to achieve this separation of con-
cerns? Our solution is to replace the single-layer ReLU encoder of a baseline SAE with a gated
ReLU encoder. Taking inspiration from Gated Linear Units [43, 12], we define the gated encoder as

f̃(x) := 1[

πgate(x)︷ ︸︸ ︷
(Wgate(x− bdec) + bgate) > 0]︸ ︷︷ ︸

fgate(x)

⊙ReLU(Wmag(x− bdec) + bmag)︸ ︷︷ ︸
fmag(x)

, (5)

where 1[• > 0] is the (pointwise) Heaviside step function and ⊙ denotes elementwise multiplica-
tion. Here, fgate determines which features are deemed to be active, while fmag estimates feature
activation magnitudes (which only matter for features that have been deemed to be active); πgate(x)
are the fgate sub-layer’s pre-activations, which are used in the gated SAE loss, defined below.

Training A naive guess at a loss function for training Gated SAEs would be to replace the sparsity
penalty in Eq. (4) with the L1 norm of fgate(x). Unfortunately, due to the Heaviside step activation
function in fgate, no gradients would propagate to Wgate and bgate. To mitigate this, we instead apply
the L1 norm to the positive parts of the preactivation, ReLU (πgate(x)). To ensure fgate aids recon-
struction by detecting active features, we add an auxiliary task requiring that these same rectified
preactivations can be used by the decoder to produce a good reconstruction:

Lgated(x) :=
∥∥∥x− x̂

(
f̃(x)

)∥∥∥2
2︸ ︷︷ ︸

Lreconstruct

+λ ∥ReLU(πgate(x))∥1︸ ︷︷ ︸
Lsparsity

+ ∥x− x̂frozen (ReLU (πgate(x)))∥22︸ ︷︷ ︸
Laux

(6)

where x̂frozen is a frozen copy of the decoder, x̂frozen(f) := Wcopy
dec f + bcopy

dec , to ensure that gradients
from Laux do not propagate back to Wdec or bdec . This can be implemented by stop gradient
operations rather than creating copies. See Appendix J for pseudo-code for the forward pass and
loss function.

To calculate this loss (or its gradient), we have to run the decoder twice: once to perform the main
reconstruction for Lreconstruct and once to perform the auxiliary reconstruction for Laux. This leads
to a 50% increase in the compute required to perform a training update step. However, the increase
in overall training time is typically much less, as in our experience much of the training wall clock
time goes to generating language model activations (if these are being generated on the fly) or disk
I/O (if training on saved activations).

4

778https://doi.org/10.52202/079017-0024

Parameter reduction through weight-tying Naively, we appear to have doubled the number of
parameters in the encoder, increasing the total number of parameters by 50% with respect to baseline
SAEs. We mitigate this through weight sharing: we parameterize these layers so that the two layers
share the same projection directions, but allow the norms of these directions as well as the layer
biases to differ. Concretely, we define Wmag in terms of Wgate and an additional vector-valued
rescaling parameter rmag ∈ RM as follows:

(Wmag)ij := (exp(rmag))i · (Wgate)ij . (7)

See Fig. 2 for an illustration of the tied-weight Gated SAEs architecture. With this weight tying
scheme, the Gated SAE has only 2 ×M more parameters than a baseline SAE. In Section 5.1, we
show that this weight tying scheme does not harm performance.

With tied weights, the gated encoder can be reinterpreted as a single-layer linear encoder with a non-
standard and discontinuous “JumpReLU” activation function [17], σθ(z), illustrated in Fig. 12. To
be precise, using the weight tying scheme of Eq. (7), f̃(x) can be re-expressed as f̃(x) = σθ(Wmag ·
x + bmag), with the JumpReLU gap given by θ = bmag − ermag ⊙ bgate; see Appendix H for an
explanation. We think this is a useful intuition for reasoning about how Gated SAEs reconstruct
activations in practice.

4 Evaluating Gated SAEs

In this section we benchmark Gated SAEs against baseline SAEs across a large variety of models
and at different sites. We show that they produce more faithful reconstructions at equal sparsity
and that they resolve shrinkage. Through a double-blind manual interpretability study, we find that
Gated SAEs produce features that are similarly interpretable to baseline SAE features.

4.1 Benchmarking Gated SAEs

Methodology We trained a suite of Gated and baseline SAEs, a family of each type to reconstruct
each of the following activations:

1. The MLP neuron activations in GELU-1L, which is the closest direct comparison to
Bricken et al. [8];

2. The MLP outputs, attention layer outputs (taken pre-WO [21]) and residual stream activa-
tions in 5 different layers throughout Pythia-2.8B and four different layers in the Gemma-
7B base model.

For each model and reconstruction site, we trained multiple SAEs using different values of λ (and
therefore L0), allowing us to compare the Pareto frontiers of L0 and loss recovered between Gated
and baseline SAEs. We also use the relative reconstruction bias metric, γ, defined in Appendix C
to measure shrinkage in our trained SAEs. This metric measures the relative bias in the norm of an
SAE’s reconstructions; unbiased SAEs obtain γ = 1, whereas SAEs affected by shrinkage (which
causes reconstruction norms to be systematically too small) have γ < 1.

Since Gated SAEs require at most 1.5× more compute to train than regular SAEs (Section 3.2) of
the same width, we compare Gated SAEs to baseline SAEs that have a 50% larger dictionary (hidden
dimension M) to ensure fair comparison in our evaluations.6

Results We plot sparsity against reconstruction fidelity for SAEs with different values of λ. Higher
λ corresponds to increased sparsity and worse reconstruction, so as in Bricken et al. [8] we observe
a Pareto frontier of possible trade-offs. We plot Pareto curves for GELU-1L in Fig. 3a and Pythia-
2.8B and Gemma-7B in Appendix E. At all sites tested, Gated SAEs are a Pareto improvement over
regular SAEs: they provide better reconstruction fidelity at any fixed level of sparsity.7 For some
sites in Pythia-2.8B and Gemma-7B, loss recovered does not monotonically increase with L0; we
attribute this to difficulties training SAEs (Appendix G.1.3). Finally, full tables of results for Pythia
and Gemma can be found in Appendix K.

6Since wider SAEs provide better reconstructions (all else being equal), the gap between Gated SAEs’ and
baseline SAEs’ performance is even wider when we use baseline SAEs with equal width in the comparison.
This can be seen in the difference between the “1.5× width” and “equal width” baseline curves in Fig. 5.

7Although both Gated and baseline SAEs have loss recovered tending to one for high enough L0.

5

779 https://doi.org/10.52202/079017-0024

0 50 100

0.88

0.9

0.92

0.94

0.96

0.98

1

SAE Type

Baseline (1.5× width)

Gated

L0 (Lower is sparser)

L
o

s
s
 R

e
c
o

v
e
r
e
d
 (

F
id

e
li
t
y
)

(a)

0 50 100

0.8

0.85

0.9

0.95

1

1.05

1.1

SAE Type

Baseline (1.5× width)

Gated

L0 (Lower is sparser)

R
e
la

t
iv

e
 r

e
c
o

n
s
t
r
u

c
t
io

n
 b

ia
s
 𝛾

(
𝛾<

1
 i
n
d
ic

a
t
e
s
 s

h
r
in

k
a
g
e
)

(b)

Figure 3: (a) Gated SAEs offer better reconstruction fidelity (as measured by loss recovered) at any
given level of feature sparsity (as measured by L0); (b) Gated SAEs address shrinkage. These plots
compare Gated and baseline SAEs trained on GELU-1L neuron activations; see Appendix E for
comparisons on Pythia-2.8B and Gemma-7B.

As shown in Fig. 3b, Gated SAEs’ reconstructions are unbiased, with γ ≈ 1, whereas baseline
SAEs exhibit shrinkage (γ < 1), with the impact of shrinkage getting worse as the L1 coefficient λ
increases (and L0 consequently decreases). Fig. 10 shows that this result generalizes to Pythia-2.8B.

4.2 Interpretability

Although Gated SAEs provide more faithful reconstructions than baselines at equal sparsity, it does
not necessarily follow that these reconstructions are better suited to downstream interpretability-
related tasks. Currently, there is no consensus on how to systematically assess the degree to which a
SAE’s features are useful for downstream tasks, but a plausible proxy is to assess the extent to which
these features are human interpretable [8]. Therefore, to gain a more qualitative understanding of
the differences between their learned features, we conduct a blinded human study in which we rate
and compare the interpretability of randomly sampled Gated and baseline SAE features.

Methodology We study a variety of SAEs from different layers and sites. For Pythia-2.8B we
had 5 raters, who each rated one feature from baseline and Gated SAEs trained on each (site, layer)
pair from Fig. 8, for a total of 150 features. For Gemma-7B we had 7 raters; one rated 2 features
each, and the rest 1 feature each, from baseline or Gated SAEs trained on each (site, layer) pair from
Fig. 9, for a total of 192 features.

For each model, raters are shown the features in random order, without revealing which SAE, site,
or layer they came from.8 To assess a feature, the rater decides whether there is an explanation of
the feature’s behavior, in particular for its highest activating examples. The rater then enters that
explanation (if applicable) and selects whether the feature is interpretable (‘Yes’), uninterpretable
(‘No’) or maybe interpretable (‘Maybe’). All raters are either authors of this paper or colleagues,
who have prior experience interpreting SAE features. As an interface we use an open source SAE
visualizer library [27]; representative screenshots of the dashboards produced by this library are
shown in Fig. 14.

Results & analysis Fig. 4 shows interpretability rating distributions by SAE type and LM,
marginalising over layers, sites and raters.9 To compare the interpretability of baseline and Gated
SAEs, we first pair our datapoints according to all covariates (model, layer, site, rater); this lets us

8Although due to a debugging issue, Gemma-7B attention SAEs were rated separately, so raters were not
blind to that.

995% error bars were obtained by modelling each frequency shown as binomial, with p set to the sample
frequency, and calculating the 2.5% and 97.5% quantiles.

6

780https://doi.org/10.52202/079017-0024

No Maybe Yes

0

0.2

0.4

0.6

0.8

1

No Maybe Yes

SAE Type

Baseline

Gated

Feature is interpretable Feature is interpretable

F
r
e
q
u
e
n
c
y

Model=Pythia-2.8B Model=Gemma-7B

Figure 4: Proportions of SAE features rated as interpretable / uninterpretable / maybe interpretable
by SAE type (Gated or baseline) and language model. Gated and baseline SAEs are similarly inter-
pretable, with a mean difference (in favor of Gated SAEs) of 0.13 (95% CI [0, 0.26]) after aggregat-
ing ratings for both models.

control for all of them without making any parametric assumptions, and thus reduces variance in
the comparison. We then measure the mean difference between baseline and Gated labels, where
we count ‘No’ as 0, ‘Maybe’ as 1, and ‘Yes’ as 2, and compute a 90% BCa bootstrap confidence
interval. Thus we find that the mean difference in label scores is 0.13 (90% CI [0, 0.26]) in favour of
Gated SAEs, breaking down to mean difference CIs of [−0.07, 0.33] and [−0.04, 0.29] on just the
Pythia-2.8B data and Gemma-7B data respectively. Since our central estimate for the mean differ-
ence in scores is positive, we also test the hypothesis that Gated SAEs may be more interpretable
than baseline SAEs. However, a one-sided Wilcoxon-Pratt signed-rank test on the paired scores does
not reject the null hypothesis that they are equally interpretable (p = 0.06). The contingency tables
used for these results are shown in Fig. 13. The overall conclusion is that Gated SAE features are
similarly interpretable to baseline SAE features, while also providing better reconstruction fidelity
(at fixed sparsity), as shown in the previous section. We provide more analysis of how these break
down by site and layer in Appendix I.

5 Why do Gated SAEs improve SAE training?

5.1 Ablation study

In this section, we vary several parts of the Gated SAE training methodology to gain insight into
which aspects of the training drive the observed improvement in performance. Gated SAEs differ
from baseline SAEs in many respects, making it easy to incorrectly attribute the performance gains to
spurious details without a careful ablation study. Fig. 5a shows Pareto frontiers for these variations;
below we describe each variation in turn and discuss our interpretation of the results.

Unfreeze decoder: Here we unfreeze the decoder weights in Laux – i.e. allow this auxiliary task
to update the decoder weights in addition to training fgate’s parameters. Although this (slightly)
simplifies the loss, there is a reduction in performance, suggesting that it is beneficial to limit the
impact of the L1 sparsity penalty to just those parameters in the SAE that need it – i.e. those used to
detect which features are active.

No rmag: Here we remove the rmag scaling parameter in Eq. (7), effectively setting it to zero, further
tying fgate’s and fmag’s parameters together. With this change, the two encoder sublayers’ preactiva-
tions can at most differ by an elementwise shift.10 There is a slight drop in performance, suggesting
rmag contributes somewhat to the improved performance of the Gated SAE.

Untied encoders: Here we check whether our choice to share the majority of parameters between
the two encoders has meaningfully hurt performance, by training Gated SAEs with gating and ReLU
encoder parameters completely untied. Despite the greater expressive power of an untied encoder,
we see no improvement in performance – in fact a slight deterioration. This suggests our tying
scheme (Eq. (7)) – where encoder directions are shared, but magnitudes and biases aren’t – is effec-

10Because the two biases bgate and bmag can still differ.

7

781 https://doi.org/10.52202/079017-0024

0 50 100

0.88

0.9

0.92

0.94

0.96

0.98

1

SAE Type

Baseline (1.5× width)

Gated

Ablation: unfreeze decoder

Ablation: untie encoder layers

Ablation: no r_mag

L0 (Lower is sparser)

L
o

s
s
 R

e
c
o

v
e
r
e
d
 (

F
id

e
li
t
y
)

(a)

0 50 100

0.88

0.9

0.92

0.94

0.96

0.98

1

SAE Type

Baseline (equal width)

Gated

Baseline + rescale & shift

L0 (Lower is sparser)

L
o

s
s
 R

e
c
o

v
e
r
e
d
 (

F
id

e
li
t
y
)

(b)

Figure 5: (a) Our ablation study on GELU-1L MLP neuron activations indicates: (i) the impor-
tance of freezing the decoder in the auxiliary task Laux used to train fgate’s parameters; (ii) tying
encoder weights according to Eq. (7) is slightly beneficial for performance (in addition to yield-
ing a significant reduction in parameter count and inference compute); (iii) further simplifying the
encoder weight tying scheme in Eq. (7) by removing rmag is mildly harmful to performance. (b)
Evidence from GELU-1L that the performance improvement of gated SAEs does not solely arise
from addressing shrinkage (systematic underestimation of latent feature activations): taking a frozen
baseline SAE’s parameters and learning rmag and bmag parameters on top of them (green line) does
successfully resolve shrinkage, by decoupling feature magnitude estimation from active feature de-
tection; however, it explains only a small part of the performance increase of gated SAEs (red line)
over baseline SAEs (blue line).

tive at capturing the advantages of using a gated SAE while avoiding the 50% increase in parameter
count and inference-time compute of using an untied SAE.

5.2 Is it sufficient to just address shrinkage?

As explained in Section 3.1, SAEs trained with the baseline architecture and L1 loss systematically
underestimate the magnitudes of latent features’ activations (i.e. shrinkage). Gated SAEs, through
modifications to their architecture and loss function, overcome these limitations.

It is natural to ask to what extent the performance improvement of Gated SAEs is solely attributable
to addressing shrinkage. Although addressing shrinkage would – all else staying equal – improve
reconstruction fidelity, it is not the only way to improve SAEs’ performance: for example, Gated
SAEs could also improve upon baseline SAEs by learning better encoder directions (for estimating
when features are active and their magnitudes) or by learning better decoder directions (i.e. better
dictionaries for reconstructing activations).

Here we try to answer this question by comparing Gated SAEs trained as described in Section 3.2
with an alternative (architecturally equivalent) approach that also addresses shrinkage, but in a way
that uses frozen encoder and decoder directions from a baseline SAE of equal dictionary size.11 Any
performance improvement over baseline SAEs obtained by this alternative approach (which we dub
“baseline + rescale & shift”) can only be due to better estimations of active feature magnitudes, since
by construction an SAE parameterized by “baseline + rescale & shift” shares the same encoder and
decoder directions as a baseline SAE.

As shown in Fig. 5b, although resolving shrinkage only (“baseline + rescale & shift”) does improve-
ment baseline SAEs’ performance a little, a significant gap remains with respect to the performance
of Gated SAEs. This suggests that the benefit of the gated architecture and loss comes from learning
better encoder and decoder directions, not just from overcoming shrinkage. In Appendix D we ex-

11Concretely, we do this by training baseline SAEs, freezing their weights, and then learning additional
rescale and shift parameters (similar to Wright and Sharkey [51]) to be applied to the (frozen) encoder pre-
activations before estimating feature magnitudes.

8

782https://doi.org/10.52202/079017-0024

plore further how Gated and baseline SAEs’ decoders differ by replacing their respective encoders
with an optimization algorithm at inference time.

6 Related work

Mechanistic interpretability Recent work in mechanistic interpretability has found recurring
components in small and large LMs [38], identified computational subgraphs that carry out spe-
cific tasks in small LMs (circuits; [50]) and reverse-engineered how toy tasks are carried out in
small transformers [30]. A central difficulty in this kind of work is choosing the right units of analy-
sis. Sparse linear features have been identified as a promising candidate in prior work [52, 46]. The
superposition hypothesis outlined by Elhage et al. [16] also provided a theoretical basis for this the-
ory, sparking a new interest in using SAEs specifically to learn a feature basis [42, 8, 11, 21, 22, 4],
as well as using SAEs directly for circuit analysis [26]. Other work has drawn awareness to issues
or drawbacks with SAE training for this purpose, some of which our paper mitigates. Wright and
Sharkey [51] raised awareness of shrinkage and proposed addressing this via fine-tuning. Gated
SAEs, as discussed, resolve shrinkage during training. [35, 47, 2, 36] have also proposed general
SAE training methodology improvements, which are mostly orthogonal to the architectural changes
discussed in this work. In parallel work, Taggart [45] finds early improvements using a Jump ReLU
[17], but with a different loss function, and without addressing the problems of the L1 penalty.

Classical dictionary learning Research into the general problem of sparse dictionary learning
precedes transformers, and even deep learning. For example, sparse coding [13] studies how dis-
crete and continuous representations can involve more representations than basis vectors, and sparse
representations are also studied in neuroscience [48, 37]. One dictionary learning algorithm, k-SVD
[1] also uses two stages to learn a dictionary like Gated SAEs. Although classical dictionary learn-
ing algorithms can be more powerful than SAEs (Appendix D), they are less suited for downstream
uses like weights-based circuit analysis or attribution patching [44, 24], because they typically use
an iterative algorithm to decompose activations, whereas SAEs make feature extraction explicit via
the encoder. Bricken et al. [8] have also argued that classical algorithms may be ‘too strong’, in
the sense they may learn features the LM itself could not access, whereas SAEs uses components
similar to a LM’s MLP layer to decompose activations.

7 Conclusion

In this work we introduced Gated SAEs which are a Pareto improvement in terms of reconstruc-
tion quality and sparsity compared to baseline SAEs (Section 4.1), and are comparably interpretable
(Section 4.2). We showed via an ablation study that every key part of the Gated SAE methodology
was necessary for strong performance (Section 5.1). This represents significant progress on improv-
ing Dictionary Learning on LMs – at many sites, Gated SAEs require half the L0 to achieve the same
loss recovered (Fig. 8). This is likely to improve work that uses SAEs to steer language models [31],
interpret circuits [26], or understand LM components across the full distribution [8].

Limitations & future work. Our benchmarking study focused on GELU-1L and models in the
Pythia and Gemma families. It is therefore not certain that these results will generalise to other
model families. On the other hand, the theoretical underpinnings of the Gated SAE architecture
(Section 3) make no assumptions about LM architecture, suggesting Gated SAEs should be a Pareto
improvement more generally. While we have confirmed that Gated SAE features are comparably in-
terpretable to baseline SAE features, it does not necessarily follow that Gated SAE decompositions
are equally useful for mechanistic interpretability. It is certainly possible that human interpretability
of SAE features is only weakly correlated with either: (i) identification of the causally meaningful
directions in a LM’s activations; or (ii) usefulness on downstream tasks like circuit analysis or steer-
ing. A framework for scalably and objectively evaluating the usefulness of SAE decompositions
(gated or otherwise) is still in its early stages [25] and further progress in this area would be highly
valuable. It is plausible that some of the performance gap between Gated and baseline SAEs could
be closed by inexpensive inference-time interventions that prune the many low activating features
that tend to appear in baseline SAEs, mimicking Gated SAEs’ thresholding mechanism. Finally,
we would be most excited to see progress on using dictionary learning techniques to further inter-

9

783 https://doi.org/10.52202/079017-0024

pretability in general, such as to improve circuit finding [10, 26] or steering [49] in language models,
and hope that Gated SAEs can serve to accelerate such work.

Acknowledgements

We would like to thank Romeo Valentin for conversations that got us thinking about k-SVD in
the context of SAEs, which inspired part of our work. Additionally, we are grateful for Vladimir
Mikulik’s detailed feedback on a draft of this work which greatly improved our presentation, and
Nicholas Sonnerat’s work on our codebase and help with feature labelling. We would also like to
thank Glen Taggart who found in parallel work [45] that a similar method gave improvements to
SAE training, helping give us more confidence in our results. We are grateful to Sam Marks for
pointing out an error in the derivation of relative reconstruction bias in an earlier version of this
paper and Leo Gao and Gonçalo Paulo for discussions. Finally, we thank our anonymous reviewers
for their valuable feedback, which helped improve the quality of this paper.

Author contributions

Senthooran Rajamanoharan developed the Gated SAE architecture and training methodology, in-
spired by discussions with Lewis Smith on the topic of shrinkage. Arthur Conmy and Senthooran
Rajamanoharan performed the mainline experiments in Section 4 and Section 5 and led the writing
of all sections of the paper. Tom Lieberum implemented the manual interpretability study of Sec-
tion 4.2, which was designed and analysed by János Kramár. Tom Lieberum also created Fig. 2
and Lewis Smith contributed Appendix D. Our SAE codebase was designed by Vikrant Varma who
implemented it with Tom Lieberum, and was scaled to Gemma by Arthur Conmy, with contribu-
tions from Senthooran Rajamanoharan and Lewis Smith. János Kramár built most of our underlying
interpretability infrastructure. Rohin Shah and Neel Nanda edited the manuscript and provided lead-
ership and advice throughout the project.

References

[1] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311–
4322, 2006. doi: 10.1109/TSP.2006.881199.

[2] J. Batson, B. Chen, A. Jones, A. Templeton, T. Conerly, J. Marcus, T. Henighan, N. L. Turner,
and A. Pearce. Circuits Updates - March 2024. Transformer Circuits Thread, 2024. URL
https://transformer-circuits.pub/2024/mar-update/index.html.

[3] S. Biderman, H. Schoelkopf, Q. G. Anthony, H. Bradley, K. O’Brien, E. Hallahan, M. A.
Khan, S. Purohit, U. S. Prashanth, E. Raff, et al. Pythia: A suite for analyzing large language
models across training and scaling. In International Conference on Machine Learning, pages
2397–2430. PMLR, 2023. Apache License 2.0.

[4] J. Bloom. Open Source Sparse Autoencoders for all Residual Stream Layers of GPT-
2 Small, 2024. https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-
sparse-autoencoders-for-all-residual-stream.

[5] J. Bloom. SAELens, 2024. https://github.com/jbloomAus/SAELens.

[6] T. Blumensath and M. E. Davies. Gradient pursuits. IEEE Transactions on Signal Processing,
56(6):2370–2382, 2008.

[7] T. Bolukbasi, A. Pearce, A. Yuan, A. Coenen, E. Reif, F. Viégas, and M. Wattenberg. An
interpretability illusion for bert. arXiv preprint arXiv:2104.07143, 2021.

[8] T. Bricken, A. Templeton, J. Batson, B. Chen, A. Jermyn, T. Conerly, N. Turner, C. Anil,
C. Denison, A. Askell, R. Lasenby, Y. Wu, S. Kravec, N. Schiefer, T. Maxwell, N. Joseph,
Z. Hatfield-Dodds, A. Tamkin, K. Nguyen, B. McLean, J. E. Burke, T. Hume, S. Carter,

10

784https://doi.org/10.52202/079017-0024

T. Henighan, and C. Olah. Towards monosemanticity: Decomposing language mod-
els with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

[9] A. Conmy. My best guess at the important tricks for training 1L SAEs,
Dec 2023. https://www.lesswrong.com/posts/yJsLNWtmzcgPJgvro/my-best-guess-at-the-
important-tricks-for-training-1l-saes.

[10] A. Conmy, A. N. Mavor-Parker, A. Lynch, S. Heimersheim, and A. Garriga-Alonso. Towards
automated circuit discovery for mechanistic interpretability, 2023.

[11] H. Cunningham, A. Ewart, L. Riggs, R. Huben, and L. Sharkey. Sparse autoencoders find
highly interpretable features in language models, 2023.

[12] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier. Language modeling with gated convolutional
networks. In Proceedings of the 34th International Conference on Machine Learning - Volume
70, ICML’17, page 933–941. JMLR.org, 2017.

[13] M. Elad. Sparse and Redundant Representations: From Theory to Applications in Signal and
Image Processing. Springer, New York, 2010. ISBN 978-1-4419-7010-7. doi: 10.1007/
978-1-4419-7011-4.

[14] N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann, A. Askell, Y. Bai, A. Chen,
T. Conerly, N. DasSarma, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, A. Jones,
J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish,
and C. Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. URL https://transformer-circuits.pub/2021/framework/index.html.

[15] N. Elhage, T. Hume, C. Olsson, N. Nanda, T. Henighan, S. Johnston, S. ElShowk, N. Joseph,
N. DasSarma, B. Mann, D. Hernandez, A. Askell, K. Ndousse, A. Jones, D. Drain, A. Chen,
Y. Bai, D. Ganguli, L. Lovitt, Z. Hatfield-Dodds, J. Kernion, T. Conerly, S. Kravec, S. Fort,
S. Kadavath, J. Jacobson, E. Tran-Johnson, J. Kaplan, J. Clark, T. Brown, S. McCan-
dlish, D. Amodei, and C. Olah. Softmax linear units. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/solu/index.html.

[16] N. Elhage, T. Hume, C. Olsson, N. Schiefer, T. Henighan, S. Kravec, Z. Hatfield-Dodds,
R. Lasenby, D. Drain, C. Chen, et al. Toy Models of Superposition. arXiv preprint
arXiv:2209.10652, 2022.

[17] N. B. Erichson, Z. Yao, and M. W. Mahoney. Jumprelu: A retrofit defense strategy for adver-
sarial attacks, 2019.

[18] Gemma Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, L. Sifre, M. Rivière, M. S.
Kale, J. Love, P. Tafti, L. Hussenot, and et al. Gemma, 2024. URL https://www.kaggle.
com/m/3301. Apache License 2.0.

[19] W. Gurnee, N. Nanda, M. Pauly, K. Harvey, D. Troitskii, and D. Bertsimas. Finding neurons
in a haystack: Case studies with sparse probing, 2023.

[20] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon, C. Young, and D. Patterson.
A domain-specific supercomputer for training deep neural networks. Communications of the
ACM, 63(7):67–78, 2020.

[21] C. Kissane, R. Krzyzanowski, A. Conmy, and N. Nanda. Sparse au-
toencoders work on attention layer outputs. Alignment Forum, 2024.
https://www.alignmentforum.org/posts/DtdzGwFh9dCfsekZZ.

[22] C. Kissane, R. Krzyzanowski, A. Conmy, and N. Nanda. Attention SAEs scale to GPT-2
Small. Alignment Forum, 2024. https://www.alignmentforum.org/posts/FSTRedtjuHa4Gfdbr.

[23] K. Konda, R. Memisevic, and D. Krueger. Zero-bias autoencoders and the benefits of co-
adapting features, 2015. URL https://arxiv.org/abs/1402.3337.

11

785 https://doi.org/10.52202/079017-0024

[24] J. Kramár, T. Lieberum, R. Shah, and N. Nanda. Atp*: An efficient and scalable method for
localizing llm behaviour to components. arXiv preprint arXiv:2403.00745, 2024.

[25] A. Makelov, G. Lange, and N. Nanda. Towards principled evaluations of sparse autoencoders
for interpretability and control. In ICLR 2024 Workshop on Secure and Trustworthy Large
Language Models, 2024. URL https://openreview.net/forum?id=MHIX9H8aYF.

[26] S. Marks, C. Rager, E. J. Michaud, Y. Belinkov, D. Bau, and A. Mueller. Sparse feature
circuits: Discovering and editing interpretable causal graphs in language models, 2024.

[27] C. McDougall. SAE Visualizer, 2024. https://github.com/callummcdougall/sae vis.

[28] N. Nanda. GELU-1L, 2022. URL https://huggingface.co/NeelNanda/GELU_1L512W_
C4_Code. MIT License.

[29] N. Nanda. Open Source Replication & Commentary on Anthropic’s Dictionary Learning Pa-
per, Oct 2023. https://www.alignmentforum.org/posts/aPTgTKC45dWvL9XBF/open-source-
replication-and-commentary-on-anthropic-s.

[30] N. Nanda, L. Chan, T. Lieberum, J. Smith, and J. Steinhardt. Progress measures for grokking
via mechanistic interpretability. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=9XFSbDPmdW.

[31] N. Nanda, A. Conmy, L. Smith, S. Rajamanoharan, T. Lieberum, J. Kramár, and
V. Varma. [Summary] Progress Update #1 from the GDM Mech Interp Team. Align-
ment Forum, 2024. https://www.alignmentforum.org/posts/HpAr8k74mW4ivCvCu/summary-
progress-update-1-from-the-gdm-mech-interp-team.

[32] A. Ng. Sparse autoencoder, 2011. CS294A Lecture notes,
http://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf.

[33] C. Olah. Mechanistic interpretability, variables, and the importance of interpretable bases,
2022. https://www.transformer-circuits.pub/2022/mech-interp-essay.

[34] C. Olah, N. Cammarata, L. Schubert, G. Goh, M. Petrov, and S. Carter. Zoom in: An introduc-
tion to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.

[35] C. Olah, S. Carter, A. Jermyn, J. Batson, T. Henighan, T. Conerly, J. Marcus, A. Templeton,
B. Chen, and N. L. Turner. Circuits Updates - January 2024. Transformer Circuits Thread,
2024. URL https://transformer-circuits.pub/2024/jan-update/index.html.

[36] C. Olah, S. Carter, A. Jermyn, J. Batson, T. Henighan, J. Lindsey, T. Conerly, A. Templeton,
J. Marcus, and T. Bricken. Circuits Updates - April 2024. Transformer Circuits Thread, 2024.
URL https://transformer-circuits.pub/2024/april-update/index.html.

[37] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision Research, 37(23):3311–3325, 1997. doi: 10.1016/S0042-6989(97)
00169-7.

[38] C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan, B. Mann, A. Askell,
Y. Bai, A. Chen, T. Conerly, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, S. John-
ston, A. Jones, J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan,
S. McCandlish, and C. Olah. In-context learning and induction heads. Transformer Cir-
cuits Thread, 2022. https://transformer-circuits.pub/2022/in-context-learning-and-induction-
heads/index.html.

[39] K. Park, Y. J. Choe, and V. Veitch. The linear representation hypothesis and the geometry of
large language models, 2023.

[40] Y. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal matching pursuit: recursive function
approximation with applications to wavelet decomposition. In Proceedings of 27th Asilomar
Conference on Signals, Systems and Computers, pages 40–44 vol.1, 1993. doi: 10.1109/
ACSSC.1993.342465.

12

786https://doi.org/10.52202/079017-0024

[41] S. Rajamanoharan, T. Lieberum, N. Sonnerat, A. Conmy, V. Varma, J. Kramár, and N. Nanda.
Jumping ahead: Improving reconstruction fidelity with jumprelu sparse autoencoders, 2024.
URL https://arxiv.org/abs/2407.14435.

[42] L. Sharkey, D. Braun, and B. Millidge. [interim research report]
taking features out of superposition with sparse autoencoders, 2022.
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-
features-out-of-superposition.

[43] N. Shazeer. GLU variants improve transformer. CoRR, abs/2002.05202, 2020. URL https:
//arxiv.org/abs/2002.05202.

[44] A. Syed, C. Rager, and A. Conmy. Attribution patching outperforms automated circuit discov-
ery. arXiv preprint arXiv:2310.10348, 2023.

[45] G. M. Taggart. Prolu: A nonlinearity for sparse autoencoders, 2024.
https://www.lesswrong.com/posts/HEpufTdakGTTKgoYF/prolu-a-pareto-improvement-
for-sparse-autoencoders.

[46] A. Tamkin, M. Taufeeque, and N. D. Goodman. Codebook features: Sparse and discrete
interpretability for neural networks, 2023.

[47] A. Templeton, J. Batson, T. Henighan, T. Conerly, J. Marcus, A. Golubeva, T. Bricken,
and A. Jermyn. Circuits Updates - February 2024. Transformer Circuits Thread, 2024.
https://transformer-circuits.pub/2024/feb-update/index.html.

[48] S. J. Thorpe. Local vs. distributed coding. Intellectica, 8:3–40, 1989.

[49] A. M. Turner, L. Thiergart, D. Udell, G. Leech, U. Mini, and M. MacDiarmid. Activation
addition: Steering language models without optimization, 2023.

[50] K. R. Wang, A. Variengien, A. Conmy, B. Shlegeris, and J. Steinhardt. Interpretability in the
wild: a circuit for indirect object identification in GPT-2 small. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=NpsVSN6o4ul.

[51] B. Wright and L. Sharkey. Addressing feature suppression in SAEs, Feb 2024.
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-
suppression-in-saes.

[52] Z. Yun, Y. Chen, B. A. Olshausen, and Y. LeCun. Transformer visualization via dictionary
learning: contextualized embedding as a linear superposition of transformer factors, 2023.

13

787 https://doi.org/10.52202/079017-0024

Appendix

A Impact statement

This work introduces a method to obtain higher fidelity sparse decompositions of LM activations,
under the hypothesis that progress in this area will ultimately help us understand the representations
used by LMs. If successful, this could lead to greater understanding of how LMs complete tasks
and novel mechanisms for controlling their behavior. Greater understanding and control could be
put to beneficial uses such as mitigating the harms caused by current and future models, although
bad actors could also misuse these tools, for example to circumvent safety training and steer models
towards harmful behaviors. Currently, the SAE research program is in its early stages. For any po-
tential misuse of SAEs, there is typically a more practical and effective way to achieve the same end
using existing tooling, e.g. fine tuning or activation editing. Therefore, we see negligible negative
societal impact in the short term. Longer term, advances in LM interpretability and control pose
similar benefits and risks to advances in AI capabilities in general.

B Metrics for evaluating SAEs

SAEs are expected to decompose input activations sparsely, and yet in a manner that allows for
faithful reconstruction. L0 and loss recovered are two metrics typically used [8] to measure sparsity
and reconstruction fidelity respectively. These are defined as follows:

• The L0 of a SAE is defined by the average number of active features on a given input, i.e
Ex∼D ∥f(x)∥0.

• The loss recovered of a SAE is calculated from the average cross-entropy loss of the lan-
guage model on an evaluation dataset, when the SAE’s reconstructions are spliced into it.
If we denote by CE(ϕ) the average loss of the language model when we splice in a function
ϕ : Rn → Rn at the SAE’s site during the model’s forward pass, then loss recovered is

1− CE(x̂ ◦ f)− CE(Id)
CE(ζ)− CE(Id)

, (8)

where x̂ ◦ f is the autoencoder function, ζ : x 7→ 0 the zero-ablation function and Id :
x 7→ x the identity function. According to this definition, a SAE that always outputs the
zero vector as its reconstruction would get a loss recovered of 0%, whereas a SAE that
reconstructs its inputs perfectly would get a loss recovered of 100%.

B.1 Issues with the loss recovered metric

In this paper, we have used loss recovered as defined in Bricken et al. [8] to measure reconstruction
fidelity. However, there are deficiencies with this metric:

• Firstly, zero-ablation is arguably too poor a baseline for defining the zero-point of this
metric and mean-ablation is better justified. Using the mean-ablation function µ : x 7→
Ex′∼Dx

′, instead of ζ in the definition of loss recovered above would also have the benefit
that SAEs’ loss recovered would tend towards zero in the limit L0 → 0, instead of tending
to a positive value as it does when computing loss recovered using zero-ablation.

• Furthermore, the very fact we normalise the increase in the spliced LM’s loss when com-
puting loss recovered makes it difficult to compare the impact of splicing SAEs at different
sub-layers of the model. For example, mean or zero-ablating the output of a MLP layer
typically has a much milder impact on LM loss than mean or zero-ablating the residual
stream, making the denominator in Eq. (8) smaller for MLP SAEs than for residual stream
SAEs. So we unsurprisingly find that residual stream SAEs’ loss recovered tend to be much
higher than MLP or attention SAEs. This suggests that it may be more informative to report
raw changes in cross-entropy loss (“delta LM loss”) instead of using a normalised metric
like loss recovered, since these are directly comparable across SAEs trained on different
sub-layers of the same LM.

In practice however, both mean-ablated loss recovered and delta LM loss are related to zero-ablated
loss recovered (the metric used in this paper) by an affine transformation. In other words, all the

14

788https://doi.org/10.52202/079017-0024

loss recovered versus L0 figures in this paper would look identical if we had used one of these other
metrics instead, with the only difference being the tick labels on the y-axis. Consequently, none of
the conclusions we draw in this paper would be affected by using one of these other reconstruction
fidelity metrics instead. Nevertheless, we draw the reader’s attention to our subsequent work [41],
which compares Gated SAEs to other SAE varieties adopting the delta LM loss metric, instead of
loss recovered, for measuring reconstruction fidelity.12

C Measuring shrinkage

As described in Section 3.1, the L1 sparsity penalty used to train baseline SAEs causes feature
activations to be systematically underestimated, a phenomenon called shrinkage. Since this in turn
shrinks the reconstructions produced by the SAE decoder, we can observe the extent to which a
trained SAE is affected by shrinkage by measuring the average norm of its reconstructions.

Concretely, the metric we use is the relative reconstruction bias,

γ := argmin
γ′

Ex∼D

[
∥x̂SAE(x)/γ

′ − x∥22
]
, (9)

i.e. γ−1 is the optimum multiplicative factor by which an SAE’s reconstructions should be rescaled
in order to minimise the L2 reconstruction loss; γ = 1 for an unbiased SAE and γ < 1 when there’s
shrinkage.13 Explicitly solving the optimization problem in Eq. (9), the relative reconstruction bias
can be expressed analytically in terms of the mean SAE reconstruction loss, the mean squared norm
of input activations and the mean squared norm of SAE reconstructions, making γ easy to compute
and track during training:

γ =
Ex∼D

[
∥x̂SAE (x)∥22

]
Ex∼D

[
x̂SAE (x) · x

] =
2Ex∼D

[
∥x̂SAE (x)∥22

]
Ex∼D

[
∥x̂SAE (x)∥22

]
+ Ex∼D

[
∥x∥22

]
− Ex∼D

[
∥x̂SAE (x)− x∥22

] ,
(10)

where the second equality makes use of the identity 2a ·b ≡ ∥a∥22+∥b∥22−∥a− b∥22. Notice from
the second expression for γ that an unbiased reconstruction (γ = 1) therefore satisfies

Ex∼D

[
∥x̂SAE (x)∥22

]
= Ex∼D

[
∥x∥22

]
− Ex∼D

[
∥x̂SAE (x)− x∥22

]
.

In other words, an unbiased but imperfect SAE (i.e. one that has non-zero reconstruction loss) must
have mean squared reconstruction norm that is strictly less than the mean squared norm of its inputs
even without shrinkage. Shrinkage makes the mean squared reconstruction norm even smaller.

D Inference-time optimization

The task SAEs perform can be split into two sub-tasks: sparse coding, or learning a set of features
from a dataset, and sparse approximation, where a given datapoint is approximated as a sparse linear
combination of these features. The decoder weights are the set of learned features, and the mapping
represented by the encoder is a sparse approximation algorithm. Formally, sparse approximation is
the problem of finding a vector α that minimises;

α = argmin ∥x−Dα∥22 s.t. ∥α∥0 < γ (11)

i.e. that best reconstructs the signal x as a linear combination of vectors in a dictionary D, subject
to a constraint on the L0 pseudo-norm on α. Sparse approximation is a well studied problem, and
SAEs are a weak sparse approximation algorithm. SAEs, at least in the formulation conventional
in dictionary learning for language models, in fact solve a slightly more restricted version of this
problem where the weights α on each feature are constrained to be non-negative, leading to the
related problem

α = argmin ∥x−Dα∥22 s.t. ∥α∥0 < γ,α > 0 (12)

12We also provide in Table 1 cross entropy losses for the LMs used in our experiments, both with and without
zero-ablation, which could in principle be used to translate the loss recovered results in this paper to delta LM
loss.

13We have defined γ this way round so that γ < 1 intuitively corresponds to shrinkage.

15

789 https://doi.org/10.52202/079017-0024

In this paper, we do not explore using more powerful algorithms for sparse coding. This is partly
because we are using SAEs not just to recover a sparse reconstruction of activations of a LM; ideally
we hope that the learned features will coincide with the linear representations actually used by the
LM, under the superposition hypothesis. Prior work [8] has argued that SAEs are more likely to
recover these due to the correspondence between the SAE encoder and the structure of the network
itself; the argument is that it is implausible that the network can make use of features which can
only be recovered from the vector via an iterative optimisation algorithm, whereas the structure of
the SAE means that it can only find features whose presence can be predicted well by a simple linear
mapping. Whether this is true remains, in our view, an important question for future work, but we
do not address it in this paper.

In this section we discuss some results obtained by using the dictionaries learned via SAE training,
but replacing the encoder with a different sparse approximation algorithm at inference time. This
allows us to compare the dictionaries learned by different SAE training regimes independently of
the quality of the encoder. It also allows us to examine the gap between the sparse reconstruction
performed by the encoder against the baseline of a more powerful sparse approximation algorithm.
As mentioned, for a fair comparison to the task the encoder is trained for, it is important to solve
the sparse approximation problem of Eq. (12), rather than the more conventional formulation of
Eq. (11), but most sparse approximation algorithms can be modified to solve this with relatively
minor changes.

Solving Eq. (12) exactly is equivalent to integer linear programming, and is NP hard. The integer
linear programs in question would be large, as our SAE decoders routinely have hundreds of thou-
sands of features, and solving them to guaranteed optimality would likely be intractable. Instead, as
is commonly done, we use iterative greedy algorithms to find an approximate solution. While the
solution found by these sparse approximation algorithms is not guaranteed to be the global optimum,
these are significantly more powerful than the SAE encoder, and we feel it is acceptable in practice
to treat them as an upper bound on possible encoder performance.

For all results in this section, we use gradient pursuit, as described in Blumensath and Davies [6], as
our inference time optimisation (ITO) algorithm. This algorithm is a variant of orthogonal matching
pursuit [40] which solves the orgothonalisation of the residual to the span of chosen dictionary
elements approximately at every step rather than exactly, but which only requires matrix multiplies
rather than matrix solves and is easier to implement on accelerators as a result. It is possibly not
crucial for performance that our optimisation algorithm be implementable on TPUs, but being able
to avoid a host-device transfer when splicing this into the forward pass allowed us to re-use our
existing evaluation pipeline with minimal changes.

When we use a sparse approximation algorithm at test time, we simply use the decoder of a trained
SAE as a dictionary, ignoring the encoder. This allows us to sweep the target sparsity at test time
without retraining the model, meaning that we can plot an entire Pareto frontier of loss recovered
against sparsity for a single decoder, as in done in Fig. 7.

Fig. 6 compares the loss recovered when using ITO for a suite of SAEs decoders trained with both
methods at three different test time L0 thresholds. This graph shows a somewhat surprising result;
while Gated SAEs learn better decoders generally, and often achieve the best loss recovered us-
ing ITO close to their training sparsity, SAE decoders are often outperformed by decoders which
achieved a higher test time L0; it’s better to do ITO with a target L0 of 10 with an decoder with an
achieved L0 of around 100 during training than one which was actually trained with this level of
sparsity. For instance, the left hand panel in Fig. 6 shows that SAEs with a training L0 of 100 are
better than those with an L0 of around 10 at almost every sparsity level in terms of ITO reconstruc-
tion. However, gated SAE dictionaries have a small but real advantage over standard SAEs in terms
of loss recovered at most target sparsity levels, suggesting that part of the advantage of gated SAEs
is that they learn better dictionaries as well as addressing issues with shrinkage. However, there are
some subtleties here; for example, we find that baseline SAEs trained with a lower sparsity penalty
(higher training L0) often outperform more sparse baseline SAEs according to this measure, and
the best performing baseline SAE (L0 ≈ 99) is comparable to the best performing Gated SAE (L0
≈ 20).

Fig. 7 compares the Pareto frontiers of a baseline model and a gated model to the Pareto frontier of
an ITO sweep of the best performing dictionary of each. Note that, while the Pareto curve of the
baseline dictionary is formed by several models as each encoder is specialised to a given sparsity

16

790https://doi.org/10.52202/079017-0024

Figure 6: This figure compares the ITO performance of different decoders across a sweep for de-
coders trained using a baseline SAE and the gated method, at three different test time target spar-
sities. Gated SAEs trained at lower target sparsities consistently achieve better dictionaries by this
measure. Interestingly, the best performing baseline dictionary by this measure often has a much
higher test time sparsity than the target; for instance, at a test time sparsity of 30, the best baseline
SAE was the one that had a test time sparsity of more like 100. This could be an artifact of the
fact that the L0 measure is quite sensitive to noise, and standard SAE architectures tend to have a
reasonable number of features with very low activation.

Figure 7: Pareto frontiers of a baseline SAE, a baseline SAE with learned rescale and shift (to
account for shrinkage) and a gated SAE across different sparsity lambdas, compared to the ITO
Pareto frontier of the best decoder of each type with ITO, varying the target sparsity. The best gated
encoder is better than the best standard encoder by this measure, but the difference is marginal.
As shown in the plot above, the best baseline encoder by the ITO measure had a much larger test
time sparsity (around 100) than the best gated model (around 30). This figure suggests that the
gap between SAE performance and ’optimal’ performance, if we assume that ITO is close to the
maximum possible reconstruction using the given encoder, is much smaller for the gated model.

level, as mentioned, ITO lets us plot a Pareto frontier by sweeping the target sparsity with a single
dictionary; here we plot only the best performing dictionary from each model type to avoid cluttering
the figure. This figure suggests that the performance gap between the encoder and using ITO is
smaller for the gated model. Interestingly, this cannot solely be explained by addressing shrinkage,
as we demonstrate by experimenting with a baseline model which learns a rescale and shift with a
frozen encoder and decoder directions.

17

791 https://doi.org/10.52202/079017-0024

Table 1: Cross-entropy losses for the original language model and after zero-ablating specified sub-
layers of Pythia-2.8B and Gemma-7B.

Model Layer Original CE Loss Zero Ablation CE Loss

MLP Attention Residual

Gemma-7B
(1024 length context)

6 2.5426 2.7764 2.7295 16.1549
13 2.5426 2.5878 2.5566 30.3588
20 2.5426 2.6881 2.5726 19.5891
27 2.5426 26.1114 3.0819 12.4534

Pythia-2.8B
(2048 length context)

4 1.9699 2.0460 2.0361 13.0434
12 1.9699 2.0167 2.0131 10.6558
16 1.9699 2.0098 2.0046 11.6820
20 1.9699 2.1022 2.0269 10.4578
28 1.9699 2.0145 1.9760 27.8663

E More loss recovered / L0 Pareto frontiers

In Fig. 8 we show that Gated SAEs outperform baseline SAEs. In Fig. 9 we show that Gated SAEs
ourperform baseline SAEs at all but one MLP output or residual stream site that we tested on.

In Fig. 9 at the attention output pre-linear site at layer 27, loss recovered is bigger than 1.0. On inves-
tigation, we found that the dataset used to train the SAE was not identical to Gemma’s pretraining
dataset, and at this site it was possible to mean ablate this quantity and decrease loss – explaining
why SAE reconstructions had lower loss than the original model.

Table 1 provides cross-entropy losses for the Gemma-7B and Pythia-2.8B, both before and after
zero-ablating specific sub-layers of these models, to help provide further context for interpreting the
loss recovered results presented in this paper; 100% loss recovered corresponds to the SAE-spliced
language model attaining a loss matching the original language model, whereas 0% loss recovered
corresponds to the SAE-spliced language model attaining a loss matching the language model with
the corresponding sub-layer zero-ablated.

F Further shrinkage plots

In Fig. 10, we show that Gated SAEs resolve shrinkage, as measured by relative reconstruction bias
(Appendix C), in Pythia-2.8B.

G Training and evaluation: hyperparameters and other details

G.1 Training

G.1.1 General training details

Other details of SAE training are:

• SAE Widths. Our SAEs have width 217 for most baseline SAEs, 3× 216 for Gated SAEs,
except for the (Pythia-2.8B, Residual Stream) sites we used 215 for baseline and 3 × 214

for Gated since early runs at these sites had lots of learned feature death.
• Training data. We use activations from hundreds of millions to billions of activations

from LM forward passes as input data to the SAE. Following Nanda [29], we use a shuffled
buffer of these activations, so that optimization steps don’t use data from highly correlated
activations.14

• Resampling. We used resampling, a technique which at a high-level reinitializes features
that activate extremely rarely on SAE inputs periodically throughout training. We mostly

14In contrast to earlier findings [9], we found that when using Pythia-2.8B’s activations from sequences of
length 2048, rather than GELU-1L’s activations from sequences of length 128, it was important to shuffle the
106 length activation buffer used to train our SAEs.

18

792https://doi.org/10.52202/079017-0024

0 50 100 150

0.6

0.8

1

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

0.6

0.8

1

0.6

0.8

1

0.6

0.8

1

0.6

0.8

1

SAE Type

Gated

Baseline

Residual stream post-MLP
MLP output

L0 (Lower is sparser)

Attention output pre-linear

L
a
y
e
r
 2

8
L
a
y
e
r
 2

0

L
o

s
s
 R

e
c
o

v
e
r
e
d

(
F
id

e
li
t
y
)

L
a
y
e
r
 1

6
L
a
y
e
r
 1

2
L
a
y
e
r
 4

Figure 8: Gated SAEs throughout Pythia-2.8B. At all sites we tested, Gated SAEs are a Pareto
improvement. In every plot, the SAE with maximal loss recovered was a Gated SAE.

19

793 https://doi.org/10.52202/079017-0024

0 50 100 150 200

0.4

0.6

0.8

1

1.2

0 50 100 150 200 0 50 100 150 200

0.4

0.6

0.8

1

1.2

0.4

0.6

0.8

1

1.2

0.4

0.6

0.8

1

1.2

SAE Type

Gated

Baseline

Residual stream post-MLP
MLP output

L0 (Lower is sparser)

Attention output pre-linear

L
a
y
e
r
 2

7

L
a
y
e
r
 2

0
L
o

s
s
 R

e
c
o

v
e
r
e
d

(
F
id

e
li
t
y
)

L
a
y
e
r
 1

3
L
a
y
e
r
 6

Figure 9: Gated and Normal Pareto-Optimal SAEs for Gemma-7B – see Appendix E for a discussion
of the anomalies (such as the Layer 27 attention output SAEs).

20

794https://doi.org/10.52202/079017-0024

0 10050 150

1

0.8

1.2

0 10050 150 0 10050 150

1

0.8

1.2

1

0.8

1.2

1

0.8

1.2

SAE Type

Gated

Baseline

Residual stream post-MLP
MLP output

L0 (Lower is sparser)

Attention output pre-linear

L
a
y
e
r
 2

7

L
a
y
e
r
 2

0
R

e
la

t
iv

e
 r

e
c
o

n
s
t
r
u

c
t
io

n
 b

ia
s
 γ

L
a
y
e
r
 1

3
L
a
y
e
r
 6

Figure 10: Gated SAEs address the problem of shrinkage in Pythia-2.8B.

21

795 https://doi.org/10.52202/079017-0024

follow the approach described in the ‘Neuron Resampling’ appendix of Bricken et al. [8],
except we reapply learning rate warm-up after each resampling event, reducing learning
rate to 0.1x the ordinary value, and, increasing it with a cosine schedule back to the ordinary
value over the next 1000 training steps.

• Optimizer hyperparameters. We use the Adam optimizer with β2 = 0.999 and β1 =
0.0, following Templeton et al. [47], as we also find this to be a slight improvement to
training. We use a learning rate warm-up. See Appendix G.1.2 for learning rates of different
experiment.

• Decoder weight norm constraints. Templeton et al. [47] suggest constraining columns to
have at most unit norm (instead of exactly unit norm), which can help distinguish between
productive and unproductive feature directions (although it should have no systematic im-
pact on performance). However, we follow the original approach of constraining columns
to have exact unit norms in this work for the sake of simplicity.

• Compute resources. Individual SAEs were each trained on TPU-v3 slices with a 2x2
topology [20]. The same chips were used to generate LM activations on-the-fly, train SAE
parameters and evaluate SAEs during training, using up to 8-way model parallelism. With
this setup, the time to train a SAE varies by SAE width, LM residual stream dimension,
sequence length, layer and site.15 We also used a negligible amount of compute on re-
sampling (Appendix G), evaluation (e.g. Figure 1) and interpretability experiments (Sec-
tion 4.2). Training wall clock time ranges from around 7 hours to train on GELU-1L MLP
activations to around 47 hours to train on Gemma-7B sites at layer 27. We estimate that we
used twice as much compute as used in the paper on preliminary experiments.

G.1.2 Experiment-specific training details

• We use learning rate 0.0003 for all Gated SAE experiments, and the GELU-1L baseline
experiment. We swept for optimal baseline learning rates for the GELU-1L baseline to
generate this value. For the Pythia-2.8B and Gemma-7B baseline SAE experiments, we
divided the L2 loss by E||x||2, motivated by better hyperparameter transfer, and so changed
learning rate to 0.001 and 0.00075. We didn’t see noticeable difference in the Pareto frontier
and so did not sweep this hyperparameter further.

• We generate activations from sequences of length 128 for GELU-1L, 2048 for Pythia-2.8B
and 1024 for Gemma-7B.

• We use a batch size of 4096 for all runs. We use 300,000 training steps for GELU-1L and
Gemma-7B runs, and 400,000 steps for Pythia-2.8B runs.

G.1.3 Lessons learned scaling SAEs

• Learned feature death is unpredictable. In Fig. 11 there are few patterns that can be
gleaned from staring at which runs have high numbers of dead learned features (called
dead neurons in Bricken et al. [8]).

• Resampling makes hyperparameter sweeps difficult. We found that resampling caused
L0 and loss recovered to increase, similar to Conmy [9].

• Training appears to converge earlier than expected. We found that we did not need 20B
tokens as in Bricken et al. [8], as generally resampling had stopped causing gains and loss
curves plateaued after just over one billion tokens.

G.2 Evaluation

We evaluated the models on over a million held-out tokens.

22

796https://doi.org/10.52202/079017-0024

H Equivalence between gated encoder with tied weights and linear encoder
with non-standard activation function

In this section we show under the weight sharing scheme defined in Eq. (7), a gated encoder as
defined in Eq. (5) is equivalent to a linear layer with a non-standard (and parameterized) activation
function.

Without loss of generality, consider the case of a single latent feature (M = 1) and set the pre-
encoder bias to zero. In this case, the gated encoder is defined as

f̃(x) := 1wgate·x+bgate>0 ReLU (wmag · x+ bmag) (13)

and the weight sharing scheme becomes

wmag := ρmagwgate (14)

with a non-negative parameter ρmag ≡ exp(rmag).

Substituting Eq. (14) into Eq. (13) and re-arranging, we can re-express f̃(x) as a single linear layer

f̃(x) := σbmag−ρmagbgate (wmag · x+ bmag) (15)

with the parameterized activation function

σθ(z) := 1z>θ ReLU (z) . (16)

called JumpReLU in a different context [17]. Fig. 12 illustrates the shape of this activation function.

I Further analysis of the human interpretability study

We perform some further analysis on the data from Section 4.2, to understand the impact of different
sites, layers, and raters.

I.1 Sites

We first pose the question of whether there’s evidence that the sites had different interpretability
outcomes. A Friedman test across sites shows significant differences (at p = 0.047) between the
Gated-vs-Baseline differences, though not (p = 0.92) between the raw labels.

Breaking down by site and repeating the Wilcoxon-Pratt one-sided tests and computing confidence
intervals, we find the result on MLP outputs is strongest, with mean 0.40, significance p = 0.003,
and CI [0.18, 0.63]; this is as compared with the attention outputs (p = 0.47, mean .05, CI [-0.16,
0.26]) and final residual (p = 0.59, mean -0.07, CI [-0.28, 0.12]) SAEs.

I.2 Layers

Next we test whether different layers had different outcomes. We do this separately for the 2 models,
since the layers aren’t directly comparable. We run 2 tests in each setting: Page’s trend test (which
tests for a monotone trend across layers) and the Friedman test (which tests for any difference,
without any expectation of a monotone trend).

Results are presented in Table 2; they suggest there are some significant nonmonotone differences
between layers. To elucidate this, we present 90% BCa bootstrap confidence intervals of the mean
raw label (where ‘No’=0, ‘Maybe’=1, ‘Yes’=2) and the Gated-vs-Baseline difference, per layer, in
Fig. 15 and Fig. 16, respectively.

I.3 Raters

In Table 3 we present test results weakly suggesting that the raters differed in their judgments.
This underscores that there’s still a significant subjective component to this interpretability labeling.
(Notably, different raters saw different proportions of Pythia vs Gemma features, so aggregating
across the models is partially confounded by that.)

15The FLOPs required to compute LM activations increase with layer; SAEs trained on MLP activations
have a higher parameter count than those trained on MLP outputs, attention outputs or the residual stream.

23

797 https://doi.org/10.52202/079017-0024

50 1000

0

0.5

1

50 1000 50 1000

0

0.5

1

0

0.5

1

0

0.5

1

SAE Type

Gated

Baseline

Residual stream post-MLP
MLP output

L0 (Lower is sparser)

Attention output pre-linear

L
a
y
e
r
 2

7

L
a
y
e
r
 2

0
P

r
o

p
o

r
t
io

n
 o

f
 f

e
a
t
u

r
e
s
 t

h
a
t
 a

r
e
 a

li
v
e

(
L
a
s
t
 1

e
6
 t

o
k
e
n
s
)

L
a
y
e
r
 1

3
L
a
y
e
r
 6

Figure 11: Feature death in Gemma-7B.

p-values Raw label Delta from Baseline to Gated

Pythia-2.8B (Page’s trend test) 0.50 0.13
Pythia-2.8B (Friedman test) 0.57 0.05
Gemma-7B (Page’s trend test) 0.037 0.31
Gemma-7B (Friedman test) 0.003 0.64

Table 2: Layer significance tests

p-values Raw label Delta from Baseline to Gated

Across models (Kruskal-Wallis H-test) 0.01 0.71
Pythia-2.8B (Friedman test) 0.13 0.05
Gemma-7B (Friedman test) 0.03 0.76

Table 3: Rater significance tests

24

798https://doi.org/10.52202/079017-0024

𝜎

Figure 12: After applying the weight sharing scheme of Eq. (7), a gated encoder becomes equivalent
to a single layer linear encoder with a JumpReLU (Erichson et al. [17], previously named TRec by
Konda et al. [23]) activation function σθ, illustrated above.

Figure 13: Contingency table showing Gated vs Baseline interpretability labels from our paired
study results, for Pythia-2.8B and Gemma-7B.

25

799 https://doi.org/10.52202/079017-0024

Figure 14: An extract of a feature visualization dashboard used to rate features in the interpretability study
described in Section 4.2. The left-hand pane provides aggregate information, including a feature histogram
and the tokens most promoted and demoted by the feature being rated. The rest of the dashboard displays
samples of text on which the feature activates to various degrees. Holding the mouse over a text token reveals
a hover showing the exact activation level at that token. Although not shown here, the full dashboard provides
examples across the full range of activations, down to examples on which the feature fails to activate. This
particular feature, taken from a layer 20 Gemma-7B residual stream Gated SAE seems to promote completions
like “above”, “aforementioned”, “mentioned above” etc. in contexts where such a completion would be likely.

26

800https://doi.org/10.52202/079017-0024

Figure 15: Per-layer 90% confidence intervals for the mean interpretability label

Figure 16: Per-layer 90% confidence intervals for the Gated-vs-Baseline label difference

27

801 https://doi.org/10.52202/079017-0024

Figure 17: Contingency tables for the paired (gated vs baseline) interpretability labels, for Pythia-
2.8B

Figure 18: Contingency tables for the paired (gated vs baseline) interpretability labels, for Gemma-
7B

28

802https://doi.org/10.52202/079017-0024

J Pseudo-code for Gated SAEs and the Gated SAE loss function

def gated_sae(x, W_gate, b_gate, W_mag, b_mag, W_dec, b_dec):
Apply pre-encoder bias
x_center = x - b_dec

Gating encoder (estimates which features are active)
active_features = ((x_center @ W_gate + b_gate) > 0)

Magnitudes encoder (estimates active features’ magnitudes)
feature_magnitudes = relu(x_center @ W_mag + b_mag)

Multiply both before decoding
return (active_features * feature_magnitudes) @ W_dec + b_dec

Figure 19: Pseudo-code for the Gated SAE forward pass.

def loss(x, W_gate, b_gate, W_mag, b_mag, W_dec, b_dec):
gated_sae_loss = 0.0

We’ll use the reconstruction from the baseline forward pass to train
the magnitudes encoder and decoder. Note we don’t apply any sparsity
penalty here. Also, no gradient will propagate back to W_gate or b_gate
due to binarising the gated activations to zero or one.
reconstruction = gated_sae(x, W_gate, b_gate, W_mag, b_mag, W_dec, b_dec)
gated_sae_loss += sum((reconstruction - x)**2, axis=-1)

We apply a L1 penalty on the gated encoder activations (pre-binarising,
post-ReLU) to incentivise them to be sparse
x_center = x - b_dec
via_gate_feature_magnitudes = relu(x_center @ W_gate + b_gate)
gated_sae_loss += l1_coef * sum(via_gate_feature_magnitudes, axis=-1)

Currently the gated encoder only has gradient signal to be sparse, and
not to reconstruct well, so we also do a "via gate" reconstruction, to
give it an appropriate gradient signal. We stop the gradients to the
decoder parameters in this forward pass, as we don’t want these to be
influenced by this auxiliary task.
via_gate_reconstruction = (
via_gate_feature_magnitudes @ stop_gradient(W_dec)
+ stop_gradient(b_dec)

)
gated_sae_loss += sum((via_gate_reconstruction - x)**2, axis=-1)

return gated_sae_loss

Figure 20: Pseudo-code for the Gated SAE loss function. Note that this pseudo-code is written for
expositional clarity. In practice, taking into account parameter tying, it would be more efficient to
rearrange the computation to avoid unnecessarily duplicated operations.

K Tables of Results

We evaluated the models on over a million held-out tokens. Tables 4-11 show summary stats from
training runs on the Pareto frontier.

29

803 https://doi.org/10.52202/079017-0024

Site Layer Sparsity LR L0 % CE Clean SAE 0 Abl. Width % Alive Shrinkage
λ Recovered CE Loss CE Loss CE Loss Features γ

Resid 6 3e-05 0.001 18.1 95.28% 2.5426 3.1847 16.1549 196608 16.8% 0.982
Resid 6 2e-05 0.001 10.5 85.3% 2.5426 4.5433 16.1549 196608 5.72% 1.136
Resid 6 1e-05 0.001 19.0 91.24% 2.5426 3.7349 16.1549 196608 5.11% 1.606
Resid 6 2e-05 0.00075 29.8 96.65% 2.5426 2.9989 16.1549 196608 13.67% 1.261
Resid 6 3e-05 0.00075 25.4 97.9% 2.5426 2.8279 16.1549 196608 38.86% 0.976
Resid 6 8e-06 0.00075 29.8 91.28% 2.5426 3.7301 16.1549 196608 9.88% 1.105
Resid 6 1e-05 0.00075 57.3 97.36% 2.5426 2.9023 16.1549 196608 11.78% 1.03
Resid 6 4e-06 0.00075 69.2 95.98% 2.5426 3.0892 16.1549 196608 13.54% 1.239
Resid 6 6e-06 0.00075 40.0 95.49% 2.5426 3.1562 16.1549 196608 24.34% 1.159
Resid 13 9e-05 0.00075 14.3 96.77% 2.5426 3.4423 30.3588 196608 98.38% 0.806
Resid 13 8e-05 0.00075 17.5 97.66% 2.5426 3.1947 30.3588 196608 98.7% 0.824
Resid 13 8e-05 0.001 18.0 97.63% 2.5426 3.2021 30.3588 196608 95.35% 0.838
Resid 13 5e-05 0.00075 22.2 97.69% 2.5426 3.1849 30.3588 196608 25.78% 0.889
Resid 13 3e-05 0.00075 29.0 97.64% 2.5426 3.1986 30.3588 196608 8.55% 0.903
Resid 13 5e-05 0.001 29.5 98.71% 2.5426 2.9005 30.3588 196608 65.17% 0.867
Resid 13 3e-05 0.001 39.2 98.26% 2.5426 3.026 30.3588 196608 26.33% 0.936
Resid 13 2e-05 0.00075 56.6 98.49% 2.5426 2.9615 30.3588 196608 16.19% 0.976
Resid 13 1e-05 0.00075 101.3 97.83% 2.5426 3.1459 30.3588 196608 4.55% 1.018
Resid 20 0.00012 0.00075 10.4 91.87% 2.5426 3.9277 19.5891 196608 92.51% 0.773
Resid 20 0.0001 0.00075 13.8 93.68% 2.5426 3.6204 19.5891 196608 97.46% 0.797
Resid 20 9e-05 0.00075 16.0 94.48% 2.5426 3.4835 19.5891 196608 99.2% 0.81
Resid 20 3e-05 0.001 25.2 90.71% 2.5426 4.1258 19.5891 196608 3.11% 0.951
Resid 20 7e-05 0.001 21.3 95.73% 2.5426 3.27 19.5891 196608 99.62% 0.824
Resid 20 5e-05 0.001 27.8 97.15% 2.5426 3.0281 19.5891 196608 88.4% 0.879
Resid 20 3e-05 0.00075 39.1 96.43% 2.5426 3.1518 19.5891 196608 35.64% 1.019
Resid 20 4e-05 0.00075 46.4 97.95% 2.5426 2.8922 19.5891 196608 99.9% 0.874
Resid 20 2e-05 0.00075 49.4 95.26% 2.5426 3.3505 19.5891 196608 8.61% 0.983
Resid 20 1.5e-05 0.00075 50.3 95.99% 2.5426 3.2268 19.5891 196608 9.46% 2.179
Resid 20 1e-05 0.00075 124.8 97.69% 2.5426 2.9367 19.5891 196608 12.3% 0.997
Resid 27 1e-05 0.001 27.6 47.08% 2.5426 7.7878 12.4534 196608 1.68% 1.022
Resid 27 8e-06 0.001 30.5 49.63% 2.5426 7.5345 12.4534 196608 1.12% 0.965
Resid 27 1.2e-05 0.00075 36.2 39.49% 2.5426 8.5398 12.4534 196608 2.02% 1.564
Resid 27 6e-06 0.001 39.1 52.72% 2.5426 7.228 12.4534 196608 1.39% 1.035
Resid 27 4e-06 0.00075 63.4 61.84% 2.5426 6.3246 12.4534 196608 3.03% 1.017
Resid 27 2e-06 0.00075 88.2 58.45% 2.5426 6.6609 12.4534 196608 2.22% 1.163
MLP 6 0.0004 0.001 0.2 42.33% 2.5426 2.6774 2.7764 196608 19.17% 0.857
MLP 6 0.0001 0.001 6.3 67.78% 2.5426 2.6179 2.7764 196608 82.35% 0.794
MLP 6 0.0001 0.00075 7.6 59.55% 2.5426 2.6371 2.7764 196608 69.88% 1.189
MLP 6 7e-05 0.001 10.6 70.77% 2.5426 2.6109 2.7764 196608 75.8% 0.835
MLP 6 3e-05 0.00075 15.3 64.49% 2.5426 2.6256 2.7764 196608 15.36% 1.001
MLP 6 7e-05 0.00075 12.0 74.63% 2.5426 2.6019 2.7764 196608 94.97% 0.82
MLP 6 1.5e-05 0.00075 14.9 47.57% 2.5426 2.6651 2.7764 196608 3.03% 1.0
MLP 6 5e-05 0.00075 17.1 75.36% 2.5426 2.6002 2.7764 196608 68.12% 0.864
MLP 13 8e-05 0.00075 1.4 32.78% 2.5426 2.573 2.5878 196608 10.16% 0.92
MLP 13 8e-05 0.001 11.3 50.99% 2.5426 2.5647 2.5878 196608 73.07% 0.848
MLP 13 5e-05 0.001 22.6 47.32% 2.5426 2.5664 2.5878 196608 66.09% 0.882
MLP 13 5e-05 0.00075 29.4 61.19% 2.5426 2.5601 2.5878 196608 84.51% 0.863
MLP 13 3e-05 0.001 44.8 64.14% 2.5426 2.5588 2.5878 196608 56.91% 0.864
MLP 13 3e-05 0.00075 80.8 71.28% 2.5426 2.5556 2.5878 196608 73.31% 0.901
MLP 13 2e-05 0.00075 160.7 72.08% 2.5426 2.5552 2.5878 196608 56.12% 0.894
MLP 13 1e-05 0.00075 610.0 77.67% 2.5426 2.5527 2.5878 196608 44.39% 0.858
MLP 20 7e-05 0.001 15.8 79.11% 2.5426 2.573 2.6881 196608 96.84% 0.852
MLP 20 5e-05 0.001 24.5 82.67% 2.5426 2.5678 2.6881 196608 96.93% 0.869

Table 4: Gemma-7B Baseline SAEs (1024 sequence length). Italic are Pareto optimal SAEs.

30

804https://doi.org/10.52202/079017-0024

Site Layer Sparsity LR L0 % CE Clean SAE 0 Abl. Width % Alive Shrinkage
λ Recovered CE Loss CE Loss CE Loss Features γ

MLP 20 5e-05 0.00075 26.0 82.36% 2.5426 2.5682 2.6881 196608 97.96% 0.865
MLP 20 4.5e-05 0.00075 31.4 83.94% 2.5426 2.5659 2.6881 196608 99.24% 0.877
MLP 20 3e-05 0.001 39.5 83.12% 2.5426 2.5671 2.6881 196608 46.33% 0.924
MLP 20 4e-05 0.00075 38.3 85.18% 2.5426 2.5641 2.6881 196608 95.73% 0.889
MLP 20 3.5e-05 0.00075 43.2 84.11% 2.5426 2.5657 2.6881 196608 94.62% 0.874
MLP 20 3e-05 0.00075 56.8 87.23% 2.5426 2.5612 2.6881 196608 96.88% 0.894
MLP 20 2e-05 0.00075 68.1 84.18% 2.5426 2.5656 2.6881 196608 53.42% 0.898
MLP 20 2e-05 0.00075 75.6 85.63% 2.5426 2.5635 2.6881 196608 66.29% 0.899
MLP 20 1.5e-05 0.00075 104.6 85.71% 2.5426 2.5634 2.6881 196608 41.7% 0.965
MLP 20 1e-05 0.00075 321.1 90.3% 2.5426 2.5567 2.6881 196608 56.83% 0.911
MLP 27 1.2e-05 0.001 10.2 86.28% 2.5426 5.7751 26.1114 196608 0.6% 1.019
MLP 27 1e-05 0.001 20.5 95.05% 2.5426 3.7081 26.1114 196608 1.73% 1.002
MLP 27 8e-06 0.001 21.3 93.55% 2.5426 4.0623 26.1114 196608 0.66% 0.988
MLP 27 6e-06 0.00075 26.4 91.19% 2.5426 4.6185 26.1114 196608 0.57% 0.973
MLP 27 5.5e-06 0.00075 18.1 85.53% 2.5426 5.9522 26.1114 196608 0.58% 0.994
MLP 27 3e-06 0.00075 26.9 90.82% 2.5426 4.706 26.1114 196608 0.98% 1.024
Attn 6 7e-05 0.00075 15.4 69.89% 2.5426 2.5989 2.7295 196608 96.78% 0.72
Attn 6 5e-05 0.00075 26.4 78.08% 2.5426 2.5836 2.7295 196608 98.97% 0.777
Attn 6 3e-05 0.00075 54.6 85.42% 2.5426 2.5698 2.7295 196608 99.7% 0.846
Attn 13 7e-05 0.00075 22.6 60.79% 2.5426 2.5481 2.5566 196608 93.47% 0.721
Attn 13 5e-05 0.00075 36.5 65.45% 2.5426 2.5474 2.5566 196608 97.59% 0.786
Attn 13 3e-05 0.00075 68.8 81.03% 2.5426 2.5452 2.5566 196608 99.19% 0.804
Attn 20 9e-05 0.00075 10.8 68.98% 2.5426 2.5519 2.5726 196608 79.34% 0.715
Attn 20 8e-05 0.00075 12.3 72.48% 2.5426 2.5508 2.5726 196608 83.58% 0.723
Attn 20 7e-05 0.00075 15.9 75.83% 2.5426 2.5498 2.5726 196608 87.54% 0.755
Attn 20 6e-05 0.00075 18.7 78.38% 2.5426 2.5491 2.5726 196608 89.49% 0.759
Attn 20 5e-05 0.00075 25.1 82.96% 2.5426 2.5477 2.5726 196608 92.36% 0.786
Attn 20 4e-05 0.00075 32.6 85.95% 2.5426 2.5468 2.5726 196608 95.14% 0.802
Attn 20 3e-05 0.00075 50.3 89.52% 2.5426 2.5457 2.5726 196608 96.52% 0.841
Attn 20 2e-05 0.00075 97.3 92.52% 2.5426 2.5448 2.5726 196608 95.74% 0.878
Attn 20 1.5e-05 0.00075 148.6 95.01% 2.5426 2.5441 2.5726 196608 92.55% 0.867
Attn 20 1e-05 0.00075 329.7 96.57% 2.5426 2.5436 2.5726 196608 78.75% 0.895
Attn 27 0.0008 0.00075 0.0 121.03% 2.5426 2.4291 3.0819 196608 5.34% 1.009
Attn 27 0.0006 0.00075 0.0 121.63% 2.5426 2.4259 3.0819 196608 4.7% 1.007
Attn 27 0.0001 0.00075 9.7 126.97% 2.5426 2.3971 3.0819 196608 35.94% 0.829

Table 5: Gemma-7B Baseline SAEs (1024 sequence length) continued from Table 4.

31

805 https://doi.org/10.52202/079017-0024

Site Layer Sparsity LR L0 % CE Clean SAE 0 Abl. Width % Alive Shrinkage
λ Recovered CE Loss CE Loss CE Loss Features γ

Resid 6 0.0012 0.0003 2.2 95.55% 2.5426 3.1483 16.1549 131072 93.94% 1.006
Resid 6 0.001 0.0003 3.0 96.67% 2.5426 2.9954 16.1549 131072 96.24% 1.006
Resid 6 0.0008 0.0003 4.3 97.83% 2.5426 2.8382 16.1549 131072 97.52% 1.003
Resid 6 0.0006 0.0003 7.0 98.76% 2.5426 2.7108 16.1549 131072 98.3% 0.996
Resid 6 0.0004 0.0003 14.3 99.35% 2.5426 2.6312 16.1549 131072 98.68% 0.996
Resid 6 0.0002 0.0003 45.9 99.77% 2.5426 2.5735 16.1549 131072 99.51% 0.999
Resid 6 2e-05 0.0003 95.2 98.62% 2.5426 2.7302 16.1549 131072 45.13% 1.148
Resid 6 4e-05 0.0003 144.0 99.35% 2.5426 2.6313 16.1549 131072 36.05% 1.038
Resid 6 8e-06 0.0003 177.5 99.29% 2.5426 2.6386 16.1549 131072 53.36% 1.086
Resid 6 0.0001 0.0003 131.8 99.94% 2.5426 2.5511 16.1549 131072 99.47% 1.005
Resid 6 8e-05 0.0003 153.2 99.93% 2.5426 2.5524 16.1549 131072 98.14% 0.984
Resid 6 6e-05 0.0003 215.7 99.93% 2.5426 2.5521 16.1549 131072 93.91% 0.982
Resid 6 4e-05 0.0003 284.5 99.62% 2.5426 2.5948 16.1549 131072 84.71% 2.56
Resid 6 2e-05 0.0003 801.3 99.82% 2.5426 2.5673 16.1549 131072 91.71% 1.272
Resid 6 8e-06 0.0003 -288.2 99.7% 2.5426 2.5835 16.1549 131072 85.02% 1.006
Resid 13 0.0008 0.0003 5.4 98.3% 2.5426 3.0149 30.3588 131072 98.15% 1.008
Resid 13 0.0005 0.0003 13.1 99.25% 2.5426 2.7514 30.3588 131072 98.71% 0.998
Resid 13 0.0003 0.0003 31.8 99.62% 2.5426 2.6483 30.3588 131072 99.31% 0.992
Resid 13 0.0002 0.0003 62.6 99.76% 2.5426 2.6083 30.3588 131072 99.69% 0.993
Resid 13 0.0002 0.0003 63.7 99.77% 2.5426 2.6067 30.3588 131072 99.68% 0.997
Resid 13 0.0001 0.0003 146.1 99.87% 2.5426 2.5788 30.3588 131072 67.47% 1.056
Resid 13 0.0001 0.0003 96.8 99.64% 2.5426 2.6421 30.3588 131072 64.18% 0.934
Resid 20 0.001 0.0003 8.2 96.15% 2.5426 3.1995 19.5891 131072 96.49% 1.004
Resid 20 0.0009 0.0003 10.0 96.7% 2.5426 3.1059 19.5891 131072 96.89% 1.003
Resid 20 0.0008 0.0003 12.3 97.14% 2.5426 3.0293 19.5891 131072 97.46% 0.997
Resid 20 0.0007 0.0003 15.6 97.7% 2.5426 2.9353 19.5891 131072 98.02% 0.997
Resid 20 0.0005 0.0003 29.3 98.62% 2.5426 2.7775 19.5891 131072 98.66% 1.016
Resid 20 0.0005 0.0003 28.0 98.53% 2.5426 2.7931 19.5891 131072 98.73% 0.997
Resid 20 0.0005 0.0003 28.5 98.58% 2.5426 2.7844 19.5891 131072 98.67% 1.004
Resid 20 0.0003 0.0003 67.3 99.3% 2.5426 2.6611 19.5891 131072 99.33% 1.013
Resid 20 0.0002 0.0003 123.4 99.58% 2.5426 2.6139 19.5891 131072 99.69% 1.01
Resid 20 0.0001 0.0003 212.1 99.65% 2.5426 2.6024 19.5891 131072 55.01% 1.04
Resid 27 0.003 0.0003 17.3 81.66% 2.5426 4.3602 12.4534 131072 28.57% 1.001
Resid 27 0.002 0.0003 25.9 85.26% 2.5426 4.0033 12.4534 131072 31.98% 0.999
Resid 27 0.001 0.0003 54.4 90.26% 2.5426 3.5081 12.4534 131072 33.58% 1.008
MLP 6 0.0004 0.0003 4.0 73.71% 2.5426 2.604 2.7764 131072 98.69% 1.009
MLP 6 0.0001 0.0003 45.2 89.13% 2.5426 2.568 2.7764 131072 96.23% 0.998
MLP 6 7e-05 0.0003 106.0 90.67% 2.5426 2.5644 2.7764 131072 87.51% 1.0
MLP 13 9e-05 0.0003 36.0 76.36% 2.5426 2.5533 2.5878 131072 99.87% 1.002
MLP 13 9e-05 0.0003 36.1 76.25% 2.5426 2.5533 2.5878 131072 99.91% 1.004
MLP 13 8e-05 0.0003 48.9 78.71% 2.5426 2.5522 2.5878 131072 99.72% 1.007
MLP 13 7e-05 0.0003 69.7 82.15% 2.5426 2.5506 2.5878 131072 99.77% 1.01
MLP 13 7e-05 0.0003 67.0 81.24% 2.5426 2.5511 2.5878 131072 99.61% 0.997

Table 6: Gemma-7B Gated SAEs (1024 sequence length). Continued in Table 7.

32

806https://doi.org/10.52202/079017-0024

Site Layer Sparsity LR L0 % CE Clean SAE 0 Abl. Width % Alive Shrinkage
λ Recovered CE Loss CE Loss CE Loss Features γ

MLP 13 5e-05 0.0003 196.4 85.54% 2.5426 2.5491 2.5878 131072 76.56% 1.003
MLP 13 3e-05 0.0003 766.5 93.04% 2.5426 2.5457 2.5878 131072 86.81% 1.033
MLP 20 0.00019 0.0003 24.4 87.81% 2.5426 2.5603 2.6881 131072 99.91% 1.004
MLP 20 0.00016 0.0003 32.7 89.16% 2.5426 2.5583 2.6881 131072 99.94% 1.004
MLP 20 0.00015 0.0003 36.4 89.63% 2.5426 2.5577 2.6881 131072 99.95% 1.002
MLP 20 0.00014 0.0003 40.8 89.73% 2.5426 2.5575 2.6881 131072 99.96% 1.0
MLP 20 0.00013 0.0003 46.6 90.3% 2.5426 2.5567 2.6881 131072 99.95% 1.002
MLP 20 0.00012 0.0003 53.5 90.99% 2.5426 2.5557 2.6881 131072 99.99% 1.001
MLP 20 0.0001 0.0003 74.9 91.42% 2.5426 2.5551 2.6881 131072 99.99% 0.999
MLP 20 9e-05 0.0003 91.2 92.01% 2.5426 2.5542 2.6881 131072 99.9% 0.998
MLP 20 8e-05 0.0003 111.3 93.3% 2.5426 2.5523 2.6881 131072 100.0% 1.0
MLP 20 1.1e-05 0.0003 -91.1 103.85% 2.5426 2.537 2.6881 131072 46.33% 1.005
MLP 27 0.0012 0.0003 20.3 94.14% 2.5426 3.9232 26.1114 131072 5.8% 1.003
MLP 27 0.001 0.0003 23.1 96.01% 2.5426 3.4834 26.1114 131072 6.13% 0.995
MLP 27 0.0008 0.0003 27.3 96.47% 2.5426 3.3747 26.1114 131072 5.18% 1.005
MLP 27 0.0003 0.0003 59.3 99.07% 2.5426 2.7627 26.1114 131072 3.89% 1.002
MLP 27 0.0002 0.0003 80.9 98.19% 2.5426 2.969 26.1114 131072 3.64% 1.006
MLP 27 0.000175 0.0003 89.7 97.35% 2.5426 3.1678 26.1114 131072 3.89% 1.008
MLP 27 0.00015 0.0003 108.5 98.87% 2.5426 2.8093 26.1114 131072 3.54% 1.002
MLP 27 0.000135 0.0003 103.6 98.33% 2.5426 2.9365 26.1114 131072 3.75% 0.997
Attn 6 0.0007 0.0003 8.9 82.28% 2.5426 2.5757 2.7295 131072 93.49% 1.015
Attn 6 0.0005 0.0003 16.4 85.54% 2.5426 2.5696 2.7295 131072 95.16% 1.014
Attn 6 0.0003 0.0003 38.7 88.69% 2.5426 2.5637 2.7295 131072 97.63% 1.015
Attn 13 0.0012 0.0003 2.9 46.05% 2.5426 2.5502 2.5566 131072 63.06% 1.042
Attn 13 0.0006 0.0003 13.2 76.64% 2.5426 2.5459 2.5566 131072 83.81% 1.0
Attn 13 0.0004 0.0003 28.1 63.78% 2.5426 2.5477 2.5566 131072 89.64% 0.992
Attn 13 0.0002 0.0003 95.1 82.86% 2.5426 2.545 2.5566 131072 97.05% 0.993
Attn 13 4e-05 0.0003 1079.5 93.95% 2.5426 2.5434 2.5566 131072 64.6% 1.002
Attn 13 2e-05 0.0003 -635.1 87.73% 2.5426 2.5443 2.5566 131072 92.21% 1.003
Attn 20 0.0012 0.0003 2.1 64.17% 2.5426 2.5533 2.5726 131072 72.67% 1.038
Attn 20 0.0006 0.0003 9.0 80.22% 2.5426 2.5485 2.5726 131072 89.06% 1.014
Attn 20 0.00055 0.0003 10.1 84.01% 2.5426 2.5474 2.5726 131072 90.35% 0.997
Attn 20 0.00045 0.0003 14.8 85.85% 2.5426 2.5468 2.5726 131072 92.05% 1.003
Attn 20 0.0004 0.0003 18.7 86.55% 2.5426 2.5466 2.5726 131072 92.77% 1.016
Attn 20 0.00035 0.0003 22.8 88.2% 2.5426 2.5461 2.5726 131072 94.07% 1.009
Attn 20 0.00025 0.0003 39.7 90.97% 2.5426 2.5453 2.5726 131072 96.42% 1.009
Attn 20 0.0002 0.0003 55.2 92.72% 2.5426 2.5448 2.5726 131072 97.73% 0.994
Attn 20 0.00015 0.0003 89.1 94.39% 2.5426 2.5443 2.5726 131072 98.93% 0.999
Attn 20 0.0001 0.0003 178.0 94.71% 2.5426 2.5442 2.5726 131072 99.69% 1.003
Attn 20 6e-05 0.0003 483.8 99.72% 2.5426 2.5427 2.5726 131072 98.66% 0.994
Attn 20 4e-05 0.0003 894.6 97.03% 2.5426 2.5435 2.5726 131072 66.5% 0.991
Attn 20 2e-05 0.0003 -851.3 106.91% 2.5426 2.5405 2.5726 131072 86.24% 1.0
Attn 27 0.002 0.0003 6.6 100.37% 2.5426 2.5406 3.0819 131072 56.82% 1.008
Attn 27 0.001 0.0003 16.5 105.72% 2.5426 2.5117 3.0819 131072 70.25% 1.002
Attn 27 0.0007 0.0003 26.2 104.26% 2.5426 2.5196 3.0819 131072 77.02% 0.999

Table 7: Gemma-7B Gated SAEs (1024 sequence length). Continued from Table 6

33

807 https://doi.org/10.52202/079017-0024

Site Layer Sparsity LR L0 % CE Clean SAE 0 Abl. Width % Alive Shrinkage
λ Recovered CE Loss CE Loss CE Loss Features γ

Attn 4 8e-05 0.001 17.6 81.04% 1.9699 1.9824 2.0361 196608 94.29% 0.827
Attn 4 6e-05 0.001 24.2 84.12% 1.9699 1.9804 2.0361 196608 95.76% 0.848
Attn 4 3e-05 0.001 62.1 90.96% 1.9699 1.9759 2.0361 196608 96.72% 0.93
Attn 12 8e-05 0.001 16.1 51.88% 1.9699 1.9907 2.0131 196608 65.73% 0.78
Attn 12 6e-05 0.001 24.0 58.46% 1.9699 1.9878 2.0131 196608 69.85% 0.802
Attn 12 3e-05 0.001 75.0 72.84% 1.9699 1.9816 2.0131 196608 73.04% 0.848
Attn 16 0.00045 0.001 0.3 -3.54% 1.9699 2.0058 2.0046 49152 20.1% 0.554
Attn 16 8e-05 0.001 14.6 67.69% 1.9699 1.9811 2.0046 196608 64.35% 0.798
Attn 16 3e-05 0.001 63.0 81.78% 1.9699 1.9762 2.0046 196608 70.75% 0.868
Attn 16 6e-05 0.001 20.8 72.07% 1.9699 1.9796 2.0046 196608 69.92% 0.813
Attn 16 0.0001 0.001 9.5 60.16% 1.9699 1.9837 2.0046 49152 88.32% 0.754
Attn 16 9e-05 0.001 11.3 62.62% 1.9699 1.9829 2.0046 49152 89.87% 0.769
Attn 20 6e-05 0.001 18.3 87.49% 1.9698 1.9769 2.0269 196608 63.81% 0.87
Attn 20 8e-05 0.001 13.6 85.63% 1.9698 1.978 2.0269 196608 60.17% 0.871
Attn 20 3e-05 0.001 52.0 91.92% 1.9698 1.9744 2.0269 196608 65.83% 0.899
Attn 28 3e-05 0.001 91.9 73.29% 1.9698 1.9715 1.976 196608 71.36% 0.817
Attn 28 6e-05 0.001 20.6 57.17% 1.9698 1.9725 1.976 196608 64.79% 0.771
Attn 28 8e-05 0.001 12.5 49.8% 1.9698 1.9729 1.976 196608 55.92% 0.747
MLP 4 3.5e-05 0.001 20.0 86.36% 1.9698 1.9802 2.046 196608 95.6% 0.954
MLP 4 1e-05 0.001 64.5 83.61% 1.9698 1.9823 2.046 196608 42.92% 0.977
MLP 4 2e-05 0.001 43.3 87.2% 1.9698 1.9796 2.046 196608 74.78% 0.986
MLP 12 3e-05 0.001 77.8 81.95% 1.9698 1.9783 2.0167 196608 99.58% 0.932

Table 8: Pythia-2.8B baseline SAEs (2048 sequence length). Continued in Table 9.

34

808https://doi.org/10.52202/079017-0024

Site Layer Sparsity LR L0 % CE Clean SAE 0 Abl. Width % Alive Shrinkage
λ Recovered CE Loss CE Loss CE Loss Features γ

MLP 12 5e-05 0.001 28.2 76.01% 1.9698 1.9811 2.0167 196608 99.45% 0.909
MLP 12 7e-05 0.001 16.2 71.94% 1.9698 1.983 2.0167 196608 99.14% 0.883
MLP 16 2.5e-05 0.001 79.8 78.44% 1.9698 1.9785 2.0098 196608 99.83% 0.919
MLP 16 4e-05 0.001 29.0 72.83% 1.9698 1.9807 2.0098 196608 99.82% 0.923
MLP 16 3.5e-05 0.001 35.9 73.95% 1.9698 1.9803 2.0098 196608 99.83% 0.914
MLP 16 7.5e-05 0.001 11.2 65.88% 1.9698 1.9835 2.0098 196608 99.45% 0.884
MLP 16 4.5e-05 0.001 22.0 70.73% 1.9698 1.9815 2.0098 196608 99.79% 0.901
MLP 16 3e-05 0.001 54.9 76.5% 1.9698 1.9792 2.0098 196608 99.86% 0.947
MLP 20 3.5e-05 0.001 20.6 91.28% 1.9698 1.9814 2.1022 196608 95.85% 0.971
MLP 20 2.5e-05 0.001 25.4 91.64% 1.9698 1.9809 2.1022 196608 90.15% 0.964
MLP 20 7e-06 0.001 269.2 93.37% 1.9698 1.9786 2.1022 196608 17.28% 0.962
MLP 28 2.25e-05 0.001 95.2 79.05% 1.9698 1.9792 2.0145 196608 99.81% 0.941
MLP 28 4.5e-05 0.001 18.5 67.4% 1.9698 1.9844 2.0145 196608 94.33% 0.92
MLP 28 3e-05 0.001 37.0 71.12% 1.9698 1.9827 2.0145 196608 92.72% 0.932
Resid 4 3e-05 0.001 15.9 98.11% 1.9699 2.1793 13.0434 49152 96.34% 0.966
Resid 4 2e-05 0.001 28.1 98.67% 1.9699 2.1174 13.0434 49152 97.0% 0.974
Resid 4 1e-05 0.001 79.1 99.27% 1.9699 2.0506 13.0434 49152 98.93% 0.983
Resid 12 1e-05 0.001 128.7 97.68% 1.9698 2.1712 10.6558 49152 52.7% 0.951
Resid 12 3e-05 0.001 25.1 93.87% 1.9698 2.5021 10.6558 49152 64.28% 0.96
Resid 12 2e-05 0.001 52.1 96.34% 1.9698 2.2874 10.6558 49152 67.39% 0.979
Resid 16 2e-05 0.001 42.7 95.55% 1.9698 2.4025 11.682 49152 68.44% 0.975
Resid 16 1e-05 0.001 94.8 96.48% 1.9698 2.3119 11.682 49152 36.81% 0.94
Resid 16 1.5e-05 0.001 55.5 95.97% 1.9698 2.3609 11.682 49152 59.52% 0.95
Resid 16 3e-05 0.001 17.1 90.16% 1.9698 2.9252 11.682 196608 9.91% 0.932
Resid 16 5e-05 0.001 10.9 86.0% 1.9698 3.3293 11.682 196608 8.82% 0.929
Resid 16 8e-06 0.001 49.1 84.1% 1.9698 3.5145 11.682 196608 1.06% 0.946
Resid 20 7e-06 0.001 103.4 91.94% 1.9698 2.6543 10.4578 49152 15.4% 1.016
Resid 20 2e-05 0.001 33.4 90.97% 1.9698 2.7363 10.4578 49152 46.57% 0.986
Resid 20 4e-05 0.001 13.6 86.19% 1.9698 3.1421 10.4578 49152 59.96% 0.954
Resid 28 2e-05 0.001 21.0 95.09% 1.9698 3.242 27.8663 49152 20.22% 0.916
Resid 28 7e-06 0.001 109.2 97.45% 1.9698 2.6298 27.8663 49152 20.65% 1.021
Resid 28 1e-05 0.001 42.9 96.27% 1.9698 2.9349 27.8663 49152 22.59% 0.932

Table 9: Pythia-2.8B baseline SAEs (2048 sequence length). Continued from Table 8.

35

809 https://doi.org/10.52202/079017-0024

Site Layer Sparsity LR L0 % CE Clean SAE 0 Abl. Width % Alive Shrinkage
λ Recovered CE Loss CE Loss CE Loss Features γ

Attn 4 0.0006 0.0003 38.2 92.85% 1.9699 1.9746 2.0361 131072 93.76% 1.006
Attn 4 0.0004 0.0003 69.8 94.82% 1.9699 1.9733 2.0361 131072 96.29% 1.0
Attn 4 0.0008 0.0003 24.7 90.94% 1.9699 1.9759 2.0361 131072 91.45% 1.007
Attn 12 0.0006 0.0003 64.5 82.04% 1.9699 1.9776 2.0131 131072 74.48% 0.99
Attn 12 0.001 0.0003 27.1 73.09% 1.9699 1.9815 2.0131 131072 63.68% 0.987
Attn 12 0.0008 0.0003 40.5 77.52% 1.9699 1.9796 2.0131 131072 67.74% 0.998
Attn 16 0.001 0.0003 17.2 79.67% 1.9699 1.9769 2.0046 32768 89.76% 0.988
Attn 16 0.0006 0.0003 39.1 87.21% 1.9699 1.9743 2.0046 131072 80.93% 0.985
Attn 16 0.0009 0.0003 20.8 81.8% 1.9699 1.9762 2.0046 32768 91.0% 0.993
Attn 16 0.0004 0.0003 77.2 90.56% 1.9699 1.9732 2.0046 131072 85.48% 0.987
Attn 16 0.0008 0.0003 25.0 83.57% 1.9699 1.9756 2.0046 131072 79.41% 0.993
Attn 16 0.0005 0.0003 57.8 88.63% 1.9699 1.9738 2.0046 32768 96.08% 0.992
Attn 20 0.0004 0.0003 71.2 96.25% 1.9698 1.972 2.0269 131072 88.74% 0.992
Attn 20 0.0006 0.0003 36.5 94.34% 1.9698 1.973 2.0269 131072 85.88% 0.986
Attn 20 0.0008 0.0003 24.0 93.05% 1.9698 1.9738 2.0269 131072 83.05% 0.994
Attn 28 0.0008 0.0003 27.8 73.39% 1.9698 1.9715 1.976 131072 68.41% 0.988
Attn 28 0.001 0.0003 17.7 68.35% 1.9698 1.9718 1.976 131072 68.14% 0.991
Attn 28 0.0006 0.0003 51.2 78.11% 1.9698 1.9712 1.976 131072 72.44% 0.986
MLP 4 0.0006 0.0003 28.6 89.28% 1.9698 1.978 2.046 131072 99.16% 1.011
MLP 4 0.0004 0.0003 66.5 92.74% 1.9698 1.9754 2.046 131072 99.52% 1.002
MLP 4 0.0008 0.0003 15.8 87.13% 1.9698 1.9796 2.046 131072 98.46% 1.007
MLP 12 0.001 0.0003 35.0 81.33% 1.9698 1.9786 2.0167 131072 97.55% 1.011
MLP 12 0.002 0.0003 8.2 72.1% 1.9698 1.9829 2.0167 131072 94.68% 1.002
MLP 12 0.0008 0.0003 55.7 84.15% 1.9698 1.9773 2.0167 131072 98.23% 1.004

Table 10: Pythia-2.8B Gated SAEs (2048 sequence length). Continued in Table 11.

36

810https://doi.org/10.52202/079017-0024

Site Layer Sparsity LR L0 % CE Clean SAE 0 Abl. Width % Alive Shrinkage
λ Recovered CE Loss CE Loss CE Loss Features γ

MLP 16 0.0008 0.0003 51.0 80.32% 1.9698 1.9777 2.0098 131072 99.05% 1.002
MLP 16 0.0016 0.0003 12.4 70.76% 1.9698 1.9815 2.0098 131072 97.38% 1.005
MLP 16 0.0007 0.0003 70.1 82.09% 1.9698 1.977 2.0098 131072 99.32% 1.001
MLP 16 0.0014 0.0003 16.1 72.62% 1.9698 1.9808 2.0098 131072 97.48% 1.007
MLP 16 0.0012 0.0003 21.9 75.12% 1.9698 1.9798 2.0098 131072 98.18% 1.012
MLP 16 0.0009 0.0003 38.3 78.41% 1.9698 1.9785 2.0098 131072 98.72% 0.993
MLP 20 0.0008 0.0003 51.0 94.28% 1.9698 1.9774 2.1022 131072 99.06% 1.007
MLP 20 0.0012 0.0003 22.1 92.53% 1.9698 1.9797 2.1022 131072 97.97% 1.0
MLP 20 0.001 0.0003 30.9 93.27% 1.9698 1.9788 2.1022 131072 98.39% 1.003
MLP 28 0.001 0.0003 47.7 79.96% 1.9698 1.9788 2.0145 131072 98.76% 1.004
MLP 28 0.0008 0.0003 82.1 83.68% 1.9698 1.9771 2.0145 131072 98.48% 1.002
MLP 28 0.0015 0.0003 21.3 73.3% 1.9698 1.9818 2.0145 131072 97.58% 1.004
Resid 4 0.0008 0.0003 70.7 99.5% 1.9699 2.0257 13.0434 32768 99.68% 0.996
Resid 4 0.001 0.0003 49.0 99.37% 1.9699 2.0399 13.0434 32768 99.52% 0.998
Resid 4 0.002 0.0003 16.2 98.83% 1.9699 2.0998 13.0434 32768 98.72% 1.001
Resid 12 0.004 0.0003 16.2 95.92% 1.9698 2.3239 10.6558 32768 72.56% 1.003
Resid 12 0.0016 0.0003 77.1 98.61% 1.9698 2.0908 10.6558 32768 85.53% 0.998
Resid 12 0.002 0.0003 52.8 98.2% 1.9698 2.1261 10.6558 32768 83.41% 1.0
Resid 16 0.003 0.0003 37.5 97.46% 1.9698 2.2162 11.682 32768 78.14% 1.0
Resid 16 0.006 0.0003 12.5 94.29% 1.9698 2.5249 11.682 32768 62.59% 0.998
Resid 16 0.002 0.0003 71.5 98.33% 1.9698 2.1324 11.682 32768 82.89% 0.998
Resid 16 0.0025 0.0003 46.2 98.04% 1.9698 2.1597 11.682 131072 38.15% 0.993
Resid 16 0.0045 0.0003 18.9 96.55% 1.9698 2.3045 11.682 131072 38.92% 0.996
Resid 16 0.0015 0.0003 95.6 98.62% 1.9698 2.104 11.682 131072 29.77% 0.991
Resid 20 0.0075 0.0003 15.4 91.68% 1.9698 2.6763 10.4578 32768 59.39% 0.994
Resid 20 0.004 0.0003 38.7 95.09% 1.9698 2.3866 10.4578 32768 65.15% 0.995
Resid 20 0.003 0.0003 58.4 96.05% 1.9698 2.3053 10.4578 32768 68.08% 0.994
Resid 28 0.0075 0.0003 25.0 96.54% 1.9698 2.8646 27.8663 32768 29.97% 0.993
Resid 28 0.005 0.0003 46.6 97.58% 1.9698 2.5973 27.8663 32768 40.94% 1.008
Resid 28 0.004 0.0003 61.2 97.9% 1.9698 2.5136 27.8663 32768 35.93% 1.005

Table 11: Pythia-2.8B Gated SAEs (2048 sequence length). Continued from Table 10.

37

811 https://doi.org/10.52202/079017-0024

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have clearly stated our main contributions in the abstract and introduction,
and have taken care to ensure they accurately reflect the contents of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a limitations section under the conclusion, discussing the limita-
tions of our experimental design and of open questions around SAEs that our work does
not address.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

38

812https://doi.org/10.52202/079017-0024

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The main contributions of this paper are not theoretical. There are two minor
points in the main paper – deriving an expression for the shrinkage metric γ and showing
that a tied-weights Gated SAE is equivalent to a single-layer encoder SAE with a Jump-
ReLU activation – where fuller explanations are provided in Appendix C and Appendix H
respectively (and referenced from the main text). These are not numbered theorems as this
would be excessive for these low-importance (and easily derived) points.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The main body of the paper provides a detailed explanation of the Gated SAE
architecture and loss function (Section 3) that are the main contributions of the paper; ad-
ditionally, pseudo-code to help reproduction is provided in Appendix J. We provide a high
level summary of the training approach in Section 2 and Section 3, with details on hyperpa-
rameters and compute requirements in Appendix G. We also explain the methodologies for
our benchmarking and manual interpretability experiments in Section 4 in sufficient detail
to be able to reproduce the results there.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.

39

813 https://doi.org/10.52202/079017-0024

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We are unable to provide open access to the activation datasets or code used
to train the SAEs in our experiments. However, the experiments we have reported involved
training SAEs on solely open-source language models, and we have provided pseudo-code
for our main contributions (Appendix J). These – alongside open-source codebases that are
available for training SAEs (e.g. [5]) – should be enough to reproduce our main experimen-
tal results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] .
Justification: The main body of the paper – in particular the training and evaluation subsec-
tions of Section 2, the Gated SAE definition of Section 3.2 and the experimental method-
ology subsections of Section 4 – explain training and evaluation details to a sufficient level
of detail to be able to understand and appreciate the results. Details of hyperparameters,
optimizer type, etc are provided in Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.

40

814https://doi.org/10.52202/079017-0024

• The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: We do measure statistical significance in our interpretability study. Sec-
tion 4.2 includes a detailed explanation of the statistical analysis undertaken to compare
Gated and baseline SAEs (continued in Appendix I). The error bar methodology for Fig. 4
is explained in Footnote 9. However, error bars are not shown on the Pareto curve plots
because it would have been computationally prohibitive. Nevertheless, the smoothness (or
otherwise) of these curves across multiple values of λ does informally convey the noisiness
of these curves.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The final bullet in Appendix G covers the requirements below.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics

41

815 https://doi.org/10.52202/079017-0024

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the Code and believe our research conforms to its require-
ments.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed potential positive and negative societal impacts of our
work in our impact statement (Appendix A).
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We are not releasing models or data with this paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

42

816https://doi.org/10.52202/079017-0024

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators / owners of the three open-source model families used in our
experiments [28, 3, 18] are credited in the main text, with license details (which have been
respected) provided as part of their entries in the Bibliography.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: No new assets are being introduced in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The interpretability experiment (Section 4.2) did not use any external human
subjects. All raters were permanent members of the research group conducting the study,
hence no compensations details are provided. The instructions given to raters are provided
in Section 4.2. The feature dashboards used by the raters were generated using a popular

43

817 https://doi.org/10.52202/079017-0024

SAE visualisation library [27] that we have referenced when describing the experimental
methodology; representative screenshots are available at the library’s GitHub page (pro-
vided in its Bibliography entry).
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: IRB approvals were not required, as no external human subjects were used in
the interpretability study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

44

818https://doi.org/10.52202/079017-0024

