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Abstract

In this paper, we address the challenge of speech enhancement in real-world
recordings, which often contain various forms of distortion, such as background
noise, reverberation, and microphone artefacts. We revisit the use of Generative
Adversarial Networks (GANs) for speech enhancement and theoretically show
that GANs are naturally inclined to seek the point of maximum density within
the conditional clean speech distribution, which, as we argue, is essential for the
speech enhancement task. We study various feature extractors for perceptual loss
to facilitate the stability of adversarial training, developing a methodology for
probing the structure of the feature space. This leads us to integrate WavLM-based
perceptual loss into MS-STFT adversarial training pipeline, creating an effective
and stable training procedure for the speech enhancement model. The resulting
speech enhancement model, which we refer to as FINALLY, builds upon the HiFi++
architecture, augmented with a WavLM encoder and a novel training pipeline.
Empirical results on various datasets confirm our model’s ability to produce clear,
high-quality speech at 48 kHz, achieving state-of-the-art performance in the field of
speech enhancement. Demo page: https://samsunglabs.github.io/FINALLY-page/

1 Introduction

Speech recordings are often contaminated with background noise, reverberation, reduced frequency
bandwidth, and other distortions. Unlike classical speech enhancement (Ephraim & Malah, 1984;
Pascual et al., 2017), which considers each task separately, universal speech enhancement (Serrà
et al., 2022; Su et al., 2021; Liu et al., 2022) aims to restore speech from all types of distortions
simultaneously. Thus, universal speech enhancement seeks to generalize across a wide range of
distortions, making it more suitable for real-world applications where multiple distortions may
coexist.

Recent studies have categorized the problem of speech enhancement as a task of learning the clean
speech distribution conditioned on degraded signals (Lemercier et al., 2023; Serrà et al., 2022; Richter
et al., 2023). This problem is often addressed using diffusion models (Ho et al., 2020; Song et al.,
2020), which are renowned for their exceptional ability to learn distributions. Diffusion models
have recently achieved state-of-the-art results in universal speech enhancement (Serrà et al., 2022).
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However, the impressive performance of diffusion models comes with the high computational cost of
their iterative inference process.

It is important to note that the speech enhancement problem does not require the model to learn the
entire conditional distribution. In practice, when presented with a noisy speech sample, the goal is
often to obtain the most probable clean speech sample that retains the lexical content and voice of the
original. This contrasts with applications such as text-to-image synthesis (Ramesh et al., 2022; Lee
et al., 2024; Rombach et al., 2022), where the objective is to generate a variety of images for each text
prompt due to the higher level of uncertainty and the need for diverse options to select the best image.
For most speech enhancement applications, such as voice calls and compensation for poor recording
conditions, capturing the entire conditional distribution is not necessary. Instead, it is more important
to retrieve the most likely sample of this distribution (the main mode), which might be a simpler task.

Diffusion models’ main advantage over generative adversarial networks (GANs) (Goodfellow et al.,
2014) is their ability to capture different modes of the distribution. However, we argue that this prop-
erty is not typically required for the task of speech enhancement and may unnecessarily complicate
the operation of the neural network. Conversely, we show that GANs tend to retrieve the main mode
of the distribution—precisely what speech enhancement should typically do.

Therefore, in this work, we revisit the GAN framework for speech enhancement and demonstrate
that it provides rapid and high-quality universal speech enhancement. Our model outperforms both
diffusion models and previous GAN-based models, achieving an unprecedented level of quality on
both simulated and real-world data.

Our main contributions are as follows:

1. We theoretically analyse the adversarial training with the least squares GAN (LS-GAN) loss
and demonstrate that a generator predicting a single sample per input condition (producing
a conditional distribution that is a delta function) is incentivized to select the point of
maximum density. Therefore, we establish that LS-GAN training can implicitly regress for
the main mode of the distribution, aligning with the objectives of the speech enhancement
problem.

2. We investigate various feature extractors as backbones for perceptual loss and propose
criteria for selecting an extractor based on the structure of its feature space. These criteria are
validated by empirical results from a neural vocoding task, indicating that the convolutional
features of the WavLM neural network(Chen et al., 2022b) are well-suited for perceptual
loss in speech generation.

3. We develop a novel model for universal speech enhancement that integrates the proposed
perceptual loss with MS-STFT discriminator training (Défossez et al., 2023) and enhances
the architecture of the HiFi++ generator (Andreev et al., 2022) by combining it with a
self-supervised pre-trained WavLM encoder (Chen et al., 2022b). Our final model delivers
state-of-the-art performance on real-world data, producing high-quality, studio-like speech
at 48 kHz.

2 Mode Collapse and Speech Enhancement

The first question that we address is what is the practical purpose of a speech enhancement
model. The practical goal of a speech enhancement model is to restore the audio signal containing the
speech characteristics of the original recording, including the voice, linguistic content, and prosody.
Thus, loosely speaking, the purpose of the speech enhancement task for many applications is not
“generative” in its essence, in the sense that the speech enhancement model should not generate new
speech content but rather “refine” existing speech as if it was recorded in ideal conditions (studio-like
quality). From the mathematical point of view, this means that the speech enhancement model should
retrieve the most probable reconstruction of the clean speech y given the corrupted version x, i.e.,
y = argmaxy pclean(y|x).
This formulation re-considers the probabilistic speech enhancement formulation, which is widely
used in the literature. In such formulation, the speech enhancement model is aimed to capture
the entire conditional distribution pclean(y|x). This formulation might be especially appealing in
situations with high generation ambiguity, e.g., a low SNR scenario where clean speech content
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could not be restored unambiguously. In this case, the speech enhancement model could be used
to generate multiple reconstructions, the best of which is then selected by the end user. However,
we note that this formulation might be redundant and not particularly relevant for many practical
applications since the ambiguity in generation can be resolved by more straightforward means such
as conditioning on linguistic content (Koizumi et al., 2023c).

In practice, for many applications, a more natural way of formalizing speech enhancement is to treat
it as a regression problem which aims at predicting the point of highest probability of the conditional
distribution argmaxy pclean(y|x). This formulation has the advantage of simplifying the task, since
finding the highest mode of the distribution might be significantly easier than learning the entire
distribution. Therefore, the speech enhancement models built for this formulation are likely to be
more efficient after deployment since they solve a simpler task. We note that in the context of speech
enhancement, the speed of inference is always of major concern in practice.

Given this formulation, we argue that the framework of generative adversarial networks (GANs) is
more naturally suited for the speech enhancement problem than diffusion models. We show that
GAN training naturally leads to the mode-seeking behaviour of the generator, which aligns with the
formulation introduced above. Additionally, GANs enjoy one forward pass inference, which is in
contrast to the iterative nature of diffusion models.

Let pg(y|x) be a family of waveform distributions produced by the generator gθ(x). Mao et al. (2017)
showed that training with Least Squares GAN (LS-GAN) leads to the minimization of the Pearson χ2

divergence χ2
Pearson

(
pg

∥∥∥pclean+pg

2

)
. We propose that if pg(y|x) approaches δ(y − gθ(x)) under some

parametrization, the minimization of this divergence leads to gθ(x) = argmaxy pclean(y|x). This
means that if the generator deterministically predicts the clean waveform from the degraded signal,
the LS-GAN loss encourages the generator to predict the point of maximum pclean(y|x) density. We
note that although prior work by (Li & Farnia, 2023) demonstrated the mode-covering property for
the optimization of Pearson χ2 divergence, our result pertains to a deterministic generator setting,
which is outside the scope of analysis provided by Li & Farnia (2023).

To prove this result, we consider the delta function as a limit of indicator density functions pξg(y|x) =
ξn/2n · 1y−gθ(x)∈[−1/ξ,1/ξ]n , i.e., pξg(y|x) = ξn/2n if y − gθ(x) ∈ [−1/ξ, 1/ξ]n and 0 otherwise,
where n is the number of dimensions of y. Note that

∫
pξg(y|x) dy = 1 for any positive ξ and

limξ→+∞ pξg(y|x) = δ(y − gθ(x)). This approximation of the delta function by such a limit is
practical due to the finite precision arithmetic used within computers; in other words, the delta
function within computer arithmetic is actually an indicator function.
Proposition 1. Let pclean(y|x) > 0 be a finite and Lipschitz continuous density function with a unique
global maximum and pξg(y|x) = ξn/2n · 1y−gθ(x)∈[−1/ξ,1/ξ]n , then

lim
ξ→+∞

argmin
gθ(x)

χ2
Pearson(p

ξ
g||(pclean + pξg)/2) = argmax

y
pclean(y|x) (1)

Thus, LS-GAN training under ideal conditions should lead to the solution gθ(x) =
argmaxy pclean(y|x) for the generator. In practice, however, success is highly dependent on techni-
calities, such as additional losses to stabilize training and architectures of neural networks. Below, we
address these questions by revisiting the notion of perceptual loss for audio generation and assessing
the effectiveness of neural architectures.

3 Perceptual Loss for Speech Generation

Adversarial training is known for its instability issues (Brock et al., 2018). It often leads to suboptimal
solutions, mode collapse, and gradient explosions. For paired tasks, including speech enhancement,
adversarial losses are often accompanied by additional regressive losses to stabilize training and
guide the generator towards useful solutions (Kong et al., 2020; Su et al., 2020). In the context of
GAN mode-seeking behaviour discussed above, regressive losses could be seen as a merit to push the
generator towards the “right” (most-probable) mode. Therefore, finding an appropriate regression
loss to guide adversarial training is of significant importance.

Historically, initial attempts to apply deep learning methods to speech enhancement were based on
treating this problem as a predictive task (Defossez et al., 2020; Hao et al., 2021; Chen et al., 2022a;
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Isik et al., 2020). Following the principle of empirical risk minimization, the goal of predictive
modelling is to find a model with minimal average error over the training data. Given a noisy
waveform or spectrogram, these approaches attempt to predict the clean signal by minimizing point-
wise distance in waveform and spectrum domains or jointly in both domains, thus treating this
problem as a predictive task. However, given the severe degradations applied to the signal, there is
an inherent uncertainty in the restoration of the speech signal (i.e., given the degraded signal, the
clean signal is not restored unambiguously), which often leads to oversmoothing (averaging) of the
predicted speech. A similar phenomenon is widely known in computer vision (Ledig et al., 2017).

One promising idea to reduce the averaging effect is to choose an appropriate representation space
for regression, which is less “entangled” than waveform or spectrogram space. In simpler terms, the
regression space should be designed so that averaged representation of sounds that are indistinguish-
able to humans (such as the same phoneme spoken by the same speaker with the same prosody) is
still representation of this sound (see Appendix B.1).

We formulate two heuristic rules to compare different regression spaces based on their structure:

• Clustering rule: Representations of identical speech sounds should form one cluster that is
separable from clusters formed by different sounds.

• SNR rule: Representations of speech sounds contaminated by different levels of additive
noise should move away from the cluster of clean sounds monotonically with the increase in
the noise level.

The clustering rule ensures that minimizing the distance between samples in the feature space causes
the samples to correspond to the same sound. The SNR rule ensures that minimizing the distance
between features does not contaminate the signal with noise, meaning noisy samples are placed
distantly from clean samples.

same sound

same sound

same sound

SNR = 10

SNR = 12

SNR = 14

SNR = 16

SNR = 18

SNR = 20

Clustering rule SNR rule

Figure 1: Illustration of heuristic rules for feature space structure. The Clustering rule (left) states that
representations of the same speech sound should form clusters. The SNR rule (right) states that noise
samples should deviate from the centre of the cluster as the amount of noise increases. Illustrations
created using real samples are presented in Figure 8, Figure 7

In practice, we check these conditions by the following procedure:

1. We sample identical speech sounds with a multi-speaker VITS text-to-speech model (Kim
et al., 2021). We define the group of waveforms corresponding to the same sound as
0.5-second waveform segments generated by the same speaker with the same text and the
same phoneme duration (i.e., the stochastic duration predictor is used only once for each
group). Thus, the waveform variation is produced due to sampling of latents from the prior
distribution. We note that we do not explicitly fix the prosody; however, we observed that
prosody variation was low by default and the sounds generated by this procedure were
mostly perceptually indistinguishable from each other while corresponding to different
waveform realizations. Overall, we define 354 groups of sounds with 80 speakers saying
177 different phrases, 2 different speakers for each phrase; we sample 20 samples for each
group, totalling 7080 waveform segments corresponding to 354 groups.
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2. Each waveform segment is then mapped to the feature space, and the resulting tensors
are flattened to obtain a vector for each sample. The vectors are clustered using K-means
clustering (MacQueen et al., 1967), the number of clusters is set to the number of groups
(354). After clustering, we compute the Rand index (Rand, 1971) of the clustering produced
by K-means with the clustering induced by initial groups of sounds splits. We treat the
resulting number as a way to measure the adherence to the clustering rule.

3. Each waveform segment within a group is randomly mixed with noise at SNR levels ranging
from 10 to 20 dB. The segments are then mapped to the feature space to obtain a vector
for each sample. For each noisy sample, we compute the Euclidean distance between its
features and the centre of the clean feature cluster. After that, we compute the negative
Spearman’s rank correlation between the SNR level and the distance from the sample to the
centre of the cluster. The negative correlations are averaged over all groups of sounds, and
the resulting number is treated as a quantitative measure of adherence to the SNR rule.

Using these metrics, we assess the effectiveness of different feature spaces formed by several speech
feature extractors, as well as conventional representations of speech. Namely, we produce features by
Wav2Vec 2.0 (Baevski et al., 2020), WavLM (Chen et al., 2022b), the encoder of EnCodec (Défossez
et al., 2023), and CDPAM (Manocha et al., 2021). As a conventional representation, we use
waveform and spectrogram features. For Wav2Vec 2.0 and WavLM, we consider the output of the
last transformer layer and the output of the convolutional encoder as separate cases. We also train a
HiFi-GAN generator (Kong et al., 2020) with each feature type used as a representation for mean
squared error loss computation on a neural vocoding task. To assess experimentally the suitability of
the feature space to be used as a loss function for waveform generation, we report MOS scores for
samples generated by vocoders trained with each feature map. The results are presented in Table 1.

Table 1: Comparison of different features using Clustering rule, SNR rule, and MOS on neural
vocoding.

Feature
space

Rand score (↑)
(Clustering rule)

Negative correlation (↑)
(SNR rule)

MOS (↑)
(Vocoding)

Waveform 0.00± 0.00 0.31± 0.02 Failed
Spectrogram 0.00± 0.00 0.08± 0.03 1.78± 0.08
Wav2Vec 2.0 0.25± 0.03 0.19± 0.03 1.65± 0.08
Wav2Vec 2.0-conv 0.94± 0.01 0.78± 0.02 2.23± 0.09
WavLM 0.46± 0.05 0.46± 0.03 1.71± 0.07
WavLM-conv 0.96± 0.01 0.89± 0.02 3.27± 0.10
EnCodec 0.55± 0.03 0.67± 0.03 1.80± 0.08
CDPAM 0.00± 0.00 0.17± 0.03 Failed

As can be seen, the features extracted by the convolutional encoder of the WavLM model present
the best performance according to both our internal metrics and MOS score on the neural vocoding
task. We have also tested the other layers of WavLM but did not observe significant improvements
when using other layers (see Appendix B.4). Empirically, we have found that if WavLM-conv feature
loss is used together with spectrogram loss (L1-distance magnitudes of STFT), the performance on
the vocoding task increases significantly, likely due to the looseness of the WavLM representation
(Appendix B.1). Without any adversarial training, the WavLM-conv+L1-STFT loss (LMOS-loss,
Equation (2)) achieves an MOS score of 4.31± 0.08, approaching the original adversarially trained
HiFi GAN generator which achieves 4.69± 0.05 (Appendix B.3).

4 FINALLY

4.1 Architecture

Our method is based on HiFi++ (Andreev et al., 2022). The HiFi++ generator is a four-component
neural network consisting of SpectralUNet, Upsampler, WaveUNet, and SpectralMaskNet modules.
SpectralUNet is responsible for initial preprocessing of audio in the spectral domain using two-
dimensional convolutions. The Upsampler is a HiFi-GAN generator-based module that increases the
temporal resolution of the input tensor, mapping it to the waveform domain. WaveUNet performs
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post-processing in the waveform domain and improves the output of the Upsampler by incorporating
phase information gleaned directly from the raw input waveform. Finally, SpectralMaskNet is applied
to perform spectrum-based post-processing and, thus, remove any possible artefacts that remained
after WaveUNet. Thus, the model alternates between time and frequency domains, allowing for
effective audio restoration.

We introduce two modifications to the HiFi++ generator’s architecture. First, we modify the generator
by incorporating WavLM-large model output (last hidden state of the transformer) as an additional
input to the Upsampler. Prior works (Hung et al., 2022; Byun et al., 2023) have demonstrated the
usefulness of Self-Supervised Learning (SSL) features for speech enhancement tasks, and we validate
this by observing significant performance gains from using SSL features. Second, we introduce the
Upsample WaveUNet at the end of the generator. This module acts as a learnable upsampler of the
signal sampling rate. For its architecture, we use the WaveUNet with an additional convolutional
upsampling block in the decoder that upsamples the temporal resolution by 3 times. This allows the
model to output a 48 kHz signal while taking a 16 kHz signal as input.

Upsampler
(HiFi-GAN
generator)

WaveUNet Spectral
MaskNet

SpectralUNet

Output waveform
(48 kHz)

Discriminator
DiscriminatorMS-STFT
Discriminators

Final loss

SpectralUNet

UNet architecture with 2d convolutionsInput waveform
(16 kHz)

Upsample
WaveUNet

STFT and mel-scale

WaveUNet

UNet architecture with 1d
convolutions 

Up 3x

Channel-
wise STFT

Amplitudes

SpectralUnet

Phases

Softplus Multiply
Inverse

channel-wise
STFT

SpectralMaskNet

LMOS lossWavLM
(SSL network)

Concat Concat

PESQ and
UTMOS losses

Figure 2: FINALLY model architecture.

4.2 Data and training

We use LibriTTS-R (Koizumi et al., 2023b), DAPS-clean (Mysore, 2014) as the sources of clean
speech data. LibriTTS-R is used at 16 kHz, while DAPS at 48 kHz. Noise samples were taken from
the DNS dataset (Dubey et al., 2022). After mixing with noise, we apply several digital distortion
effects (see Appendix D.2 for details).

We train the model in three stages. The first two stages concentrate on restoring the original speech
content, and the final stage aims to enhance the aesthetic perception of the speech. The multi-stage
approach is necessary due to the characteristics of the employed datasets: the LibriTTS-R dataset has
a lot of samples but limited perceptual quality, whereas the DAPS dataset is high-quality but contains
a smaller number of samples. Consequently, we utilize the LibriTTS-R dataset for learning speech
content restoration and the DAPS dataset for aesthetic stylization.

The loss functions that we use can be written as follows:

LLMOS(θ) = E
x,y∼p(x,y)

[
100 · ∥ϕ(y)− ϕ(gθ(x))∥22 + ∥|STFT(y)| − |STFT(gθ(x))|∥1

]
, (2)

Lgen(θ) =

2nd stage (16 kHz)︷ ︸︸ ︷
λLMOS · LLMOS(θ)︸ ︷︷ ︸

1st stage (16 kHz)

+λGAN · LGAN-gen(θ) + λFM · LFM(θ)+λHF · LHF(θ)

︸ ︷︷ ︸
3rd stage (48 kHz)

, (3)

Ldisc(φi) = LGAN-disc(φi), i = 1, . . . , k. (4)

Here, ϕ denotes the WavLM-Conv feature mapping, gθ(x) denotes the generator neural network with
parameters θ, LGAN-gen(θ) denotes the LS-GAN generator loss (Mao et al., 2017), L(θ) denotes the
combined generator loss, LGAN-disc(φi) denotes the LS-GAN discriminator (Mao et al., 2017) loss for
the i-th discriminator with parameters φi, LFM denotes the feature matching loss (Kumar et al., 2019;
Défossez et al., 2023), LHF denotes the human feedback loss, and λ* denotes the corresponding loss
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weights. Following Défossez et al. (2023), we employ 5 discriminators with STFT window lengths
of [2048, 1024, 512, 256, 128] for the 2nd stage and 5 discriminators with STFT window lengths of
[4096, 2048, 1024, 512, 256] for the 3rd stage, which allows for the capture of spectral information at
different resolutions.

Stage 1: Firstly, we train the FINALLY architecture without Upsample WaveUNet (we refer to
this truncated architecture as FINALLY-16) at a 16 kHz sampling rate on the LibriTTS-R dataset.
We train the model with the proposed LMOS regression loss to provide the generator with a better
initialization before adversarial training.

Stage 2: Second, we start adversarial training of FINALLY-16 with MS-STFT discriminators (Défos-
sez et al., 2023) and the LMOS loss. The learning of the generator undergoes a linear warm-up to
give the discriminators time to learn meaningful representations. At this stage, we focus the generator
on producing a reliable reconstruction of linguistic content by assigning larger values for LMOS and
feature matching losses (λGAN-gen = 0.4, λFM = 20, λLMOS = 20).

Stage 3: Lastly, we attach Upsample WaveUNet to FINALLY-16 and start adversarial training of
the FINALLY model to produce 48 kHz output. We subsample 48 kHz waveforms of the DAPS
dataset and apply distortions to form the 16 kHz input. The discriminators are initialized randomly,
and the learning rate for the generator undergoes a warm-up similar to the second stage. This stage
is focused on producing the final output; therefore, we focus the generator on perceptual quality by
increasing the relative weight of GAN loss (λGAN-gen = 5, λFM = 15, λLMOS = 0.5) and introducing
additional human feedback loss LHF, which is based on UTMOS and PESQ metrics. The UTMOS
loss (Saeki et al., 2022) is based on a neural network model that simulates subjective MOS metric
results. On the other hand, the PESQ loss2 delivers a differentiable version of the PESQ metric (Rix
et al., 2001b), as presented by Kim et al. (2019); Martin-Donas et al. (2018). Both UTMOS and
PESQ help enhance speech aesthetic quality, as they incorporate insights from human preference
studies. These metrics are differentiable with respect to their inputs, making them suitable for use as
loss functions (multiplied by negative constants) LHF = −20 · LUTMOS − 2 · LPESQ, λHF = 1.

5 Related Work

Self-supervised features for speech enhancement Several works have employed self-supervised
(SSL) features (Baevski et al., 2020; Chen et al., 2022b; Hsu et al., 2021) for training of speech
enhancement models as intermediate representation (Wang et al., 2024; Koizumi et al., 2023c),
auxiliary space for loss computation (Sato et al., 2023; Hsieh et al., 2020; Close et al., 2023a,b) or
input features (Hung et al., 2022; Byun et al., 2023). Sato et al. (2023); Close et al. (2023a,b); Hsieh
et al. (2020) proposed to use features of self-supervised models as an auxiliary space for regression
loss computation. In our work, we similarly study the effect of SSL features on speech enhancement
models; however, our study systematically compares different feature backbones and develops criteria
for probing the structure of different feature spaces. In particular, we show that features of the
WavLM’s convolutional encoder are the most effective for the loss function, while recent work (Sato
et al., 2023) has used the outputs of transformer layers. Close et al. (2023a,b) proposed a similar loss
function for speech enhancement based on convolutional features of HuBERT (Hsu et al., 2021), our
work can be considered as extension of this work as we show that additional spectrogram loss greatly
benefits the quality and provide experimental evidence for the advantages of LMOS-loss usage for
adversarial training.

GAN-based approaches The HiFi GAN works (Su et al., 2020, 2021) consider a GAN-based
approach to speech enhancement, which is similar to ours. Importantly, these works base their
generator architectures on feed-forward WaveNet (Rethage et al., 2018), a fully-convolutional neural
network that operates at full input resolution, leading to slow training and inference times. We show
that our model is able to achieve superior quality compared to this model while being much more
efficient.

Koizumi et al. (2023c) proposes to use w2v-BERT features (Chung et al., 2021) as intermediate
representations for speech restoration. The features extracted from the noisy waveform are processed
by a feature cleanser which is conditioned on the text representation extracted from transcripts via
PnG-BERT, and speaker embedding extracted from the waveform. The feature cleanser is trained

2https://github.com/audiolabs/torch-pesq
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to minimize a regression loss between w2v-BERT features extracted from the clean signal and the
predicted ones. At the second stage, the WaveFit vocoder is trained to synthesize a waveform based
on the predicted features (Koizumi et al., 2023a). An important difference with our work is that the
method uses a text transcript, while our model does not. Despite this difference, we show that our
model delivers better perceptual quality as reported by human listeners (Appendix C).

Diffusion-based approaches The recent success of diffusion-based generative models has led to
their use in a wide array of applications, including speech enhancement. Numerous studies (Lemercier
et al., 2023; Welker et al., 2022; Richter et al., 2023; Lay et al., 2023) have applied diffusion models
in various configurations to generate high-fidelity, clear speech from noisy input. For instance,
Welker et al. (2022); Richter et al. (2023) introduced a novel stochastic diffusion process to design a
generative model for speech enhancement in the complex STFT domain for speech denoising and
dereverberation. In the UNIVERSE study (Serrà et al., 2022), the authors propose a diffusion model
for universal speech enhancement. They create a paired dataset using 55 different distortions and
train a conditional diffusion model on it. Although their model performs well in terms of quality, it
requires up to 50 diffusion steps to produce the final audio. The authors demonstrate that the number
of steps can be reduced; however, the effect of this reduction on perceptual quality remains somewhat
unclear. In our experiments, we show that our model can achieve similar results with just a single
forward pass.

6 Results

6.1 Evaluation

We evaluate our models using the following sources of data:

VoxCeleb Data: 50 audio clips selected from VoxCeleb1 (Nagrani et al., 2017) to cover the Speech
Transmission Index (STI) range of 0.75-0.99 uniformly and balanced across male and female speakers.

UNIVERSE Data: 100 audio clips randomly generated by the UNIVERSE (Serrà et al., 2022) authors
from clean utterances sampled from VCTK and Harvard sentences, together with noises/backgrounds
from DEMAND and FSDnoisy18k. The data contains various artificially simulated distortions
including band limiting, reverberation, codec, and transmission artefacts. Please refer to (Serrà et al.,
2022) for further details. The validation data of UNIVERSE is artificially simulated from clean
speech recordings using the same pipeline that the authors utilized for training. Therefore, we must
note that the comparison is conducted in a manner advantageous to UNIVERSE, since our data
simulation pipeline is different.

VCTK-DEMAND: we use validation samples from popular Valentini denoising bench-
mark (Valentini-Botinhao et al., 2017). This dataset is used for a broad comparison with a wide range
of speech enhancement models. The test set (824 utterances) includes artificially simulated noisy
samples from 2 speakers with 4 SNR (17.5, 12.5, 7.5, and 2.5 dB).

We utilize DNSMOS (Reddy et al., 2022), UTMOS (Saeki et al., 2022), and WV-MOS (Andreev
et al., 2022) as non-intrusive metrics to objectively assess the samples generated by our speech
enhancement model on the VoxCeleb dataset. The non-intrusive nature of these metrics is essential
since the dataset comprises recordings from real-life scenarios, lacking ground-truth samples.

In addition, we compute the Phoneme Error Rate (PhER) and Word Error Rate (WER) by comparing
ground truths with the generated samples (see Appendix E for details) for both the UNIVERSE and
VCTK-DEMAND datasets. For subjective quality assessment, we conduct 5-point Mean Opinion
Score (MOS) tests. All audio clips are normalized to ensure volume differences do not influence
the raters’ evaluations. The raters are required to be English speakers using appropriate listening
equipment (more details in Appendix F).

The Real-Time Factor (RTF) is determined by measuring the processing time (in seconds) for a
10-second audio segment on a V100 GPU and then dividing this time by 10. All confidence intervals
are calculated using bootstrapping method.

We also evaluate our model on the VCTK-DEMAND dataset (Valentini-Botinhao et al., 2017) with
additional metrics such as PESQ (Rix et al., 2001a), STOI (Taal et al., 2011), and SI-SDR (Roux
et al., 2018). These metrics are included to ensure consistent comparison with previous works.
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6.2 Comparison with existing approaches

We consider BBED (Lay et al., 2023), STORM (Lemercier et al., 2023), and UNIVERSE (Serrà et al.,
2022) diffusion models, along with Voicefixer and DEMUCS regression models, as our baselines. In
addition, we consider our closest competitor, HiFi-GAN-2, as a GAN-based baseline. The data for
comparison with HiFi-GAN-2 and UNIVERSE were taken from their demo pages, since the authors
did not release any code. We conduct comparisons with BBED, STORM, Voicefixer, DEMUCS,
and HiFi-GAN-2 on real-world VoxCeleb1 samples and the comparison with UNIVERSE on the
simulated data, provided by the authors of this work. The results are presented in Table 2. We also
compare these models on VCTK-DEMAND dataset, results can be found in Table 3. We complement
this table by two additional models: MetricGAN+ (Fu et al., 2021) and DB-AIAT (Yu et al., 2021).

Table 2: Comparison with prior work on Voxceleb and UNIVERSE validation data.

VoxCeleb (HiFi-GAN-2 validation set, real data)
Model MOS (↑) UTMOS (↑) WV-MOS (↑) DNSMOS (↑) - RTF (↓)

Input 3.46 ± 0.07 2.76 ± 0.13 2.90 ± 0.16 2.72 ± 0.11 - -
VoiceFixer 3.41 ± 0.07 2.60 ± 0.09 2.79 ± 0.09 3.08 ± 0.06 - 0.02
DEMUCS 3.79 ± 0.07 3.51 ± 0.08 3.72 ± 0.08 3.27 ± 0.04 - 0.08
STORM 3.75 ± 0.06 3.29 ± 0.08 3.54 ± 0.09 3.17 ± 0.04 - 1.05
BBED 3.97 ± 0.06 3.30 ± 0.10 3.47 ± 0.08 3.23 ± 0.04 - 0.43
HiFi-GAN-2 4.47 ± 0.05 3.67 ± 0.09 3.96 ±±± 0.06 3.32 ±±± 0.03 - 0.50
Ours 4.63 ±±± 0.04 4.05 ±±± 0.07 3.98 ±±± 0.06 3.31 ±±± 0.04 - 0.03

UNIVERSE validation set (simulated data)
Model MOS (↑) UTMOS (↑) WV-MOS (↑) DNSMOS (↑) PhER (↓) RTF (↓)

Input 2.87 ± 0.05 2.27 ± 0.28 1.72 ± 0.61 2.25 ± 0.19 0.31 ± 0.05 -
Ground Truth 4.39 ± 0.05 4.26 ± 0.06 4.28 ± 0.06 3.33 ± 0.04 0 -
UNIVERSE 4.10 ± 0.07 3.89 ± 0.15 3.85 ± 0.12 3.23 ±±± 0.07 0.20 ± 0.04 0.5
Ours (16 kHz) 3.99 ± 0.07 4.21 ±±± 0.10 4.43 ±±± 0.07 3.25 ±±± 0.05 0.14 ±±± 0.03 0.03
Ours 4.23 ±±± 0.07 4.21 ±±± 0.10 4.43 ±±± 0.08 3.25 ±±± 0.05 0.14 ±±± 0.03 0.03

Table 3: Comparison with the baselines on VCTK-DEMAND.

Model MOS (↑) UTMOS (↑) WV-MOS (↑) DNSMOS (↑) PESQ (↑) STOI (↑) SI-SDR (↑) WER (↓)
Input 3.18± 0.07 3.06± 0.14 2.99± 0.24 2.53± 0.10 1.98± 0.17 0.92± 0.01 8.4± 1.2 0.09± 0.03

MetricGAN+ 3.75± 0.06 3.62± 0.09 3.89± 0.10 2.95± 0.05 3.14± 0.10 0.93± 0.01 8.6± 0.7 0.10± 0.04
DEMUCS 3.95± 0.06 3.95± 0.05 4.37± 0.06 3.14± 0.04 3.04± 0.12 0.95 ±±± 0.01 18.5± 0.6 0.07 ±±± 0.03
HiFi++ 4.08± 0.05 3.89± 0.06 4.36± 0.06 3.10± 0.04 2.90± 0.12 0.95 ±±± 0.01 17.9± 0.6 0.08± 0.03
HiFi-GAN-2 4.13± 0.05 3.99± 0.05 4.26± 0.05 3.12± 0.05 3.14± 0.12 0.95 ±±± 0.01 18.6± 0.6 0.07 ±±± 0.03
DB-AIAT 4.22± 0.05 4.02± 0.05 4.38± 0.06 3.18± 0.04 3.26 ±±± 0.12 0.96 ±±± 0.01 19.3 ±±± 0.8 0.07 ±±± 0.03
Ours (16 kHz) 4.41 ±±± 0.04 4.32 ±±± 0.02 4.87 ±±± 0.05 3.22 ±±± 0.04 2.94± 0.10 0.92± 0.01 4.6± 0.3 0.07 ±±± 0.03
Ours (48 kHz) 4.66 ±±± 0.04 4.32 ±±± 0.02 4.87 ±±± 0.05 3.22 ±±± 0.04 2.94± 0.10 0.92± 0.01 4.6± 0.3 0.07 ±±± 0.03
GT (16 kHz) 4.26± 0.05 4.07± 0.04 4.52± 0.04 3.16± 0.04 – – – –
GT (48 kHz) 4.56± 0.03 4.07± 0.04 4.52± 0.04 3.16± 0.04 – – – –

Importantly, our study confirms the observation from Serrà et al. (2022) that speech enhancers based
on generative models significantly outperform regression-based approaches. Our model performs
comparably in terms of perceptual MOS quality to all the considered baselines, while being more
than five times as efficient as the closest competitors, HiFi-GAN-2 and UNIVERSE. We have also
found that our model is less prone to hallucinating linguistic content than UNIVERSE, delivering a
lower Phoneme Error Rate (PhER) value.

Lastly, we would like to comment on the results in Table 3. Our model outperforms baselines
in subjective evaluation and no-reference metrics, e.g. UTMOS, but underperforms in terms of
PESQ (Rix et al., 2001a), STOI (Taal et al., 2011) and SI-SDR (Roux et al., 2018). Notably, there
are numerous works consistently reporting low correlation of reference-based metrics with human
perceptual judgment (Manocha et al., 2022; Manjunath, 2009; Andreev et al., 2022). In particular, the
study (Manocha et al., 2022) reports that no-reference metrics (including DNSMOS, reported in our
work) correlate significantly better with human perception and therefore have higher relevance for
objective comparison between methods. Furthermore, in our study, we report the MOS score, which
directly reflects human judgments of restoration quality.
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6.3 Ablation study

To validate the improvements proposed in this work, we conduct an ablation study assessing the
effectiveness of the design choices made.

Firstly, we compare the LMOS loss against two other regression losses in the context of training a
small speech enhancement model (10 times smaller than the final model; please see the Appendix E.2
for details). The first regression loss is the Mel-Spectrogram loss, which was proposed by Kong
et al. (2020). As the second alternative, we employ the Reconstruction loss (RecLoss) proposed by
Défossez et al. (2023). It consists of a combination of L1 and L2 distances between mel-spectrograms
computed with different resolutions. For these experiments, we conducted a grid search for the
weights of each reconstruction loss (details are in Appendix E.2) and report results for the best option
in Table 4.

Table 4: Ablation study (VoxCeleb real data).
Loss MOS (↑) UTMOS (↑) WV-MOS (↑) DNSMOS (↑)

input 3.46± 0.07 2.77± 0.14 2.88± 0.16 2.72± 0.11

2n
d

st
ag

e

w/o reg. loss 3.71± 0.08 3.05± 0.09 2.70± 0.11 3.18± 0.06
w/ L1Spec 4.15± 0.06 3.45± 0.08 3.41± 0.07 3.28±±± 0.04
w/ RecLoss 4.07± 0.06 3.46± 0.07 3.43± 0.06 3.28±±± 0.04
w/ LMOS 4.20± 0.05 3.48± 0.08 3.58± 0.06 3.26± 0.04

+ WavLM enc. 4.21± 0.06 3.65± 0.08 3.75± 0.05 3.26± 0.04

+ Scaling 4.30± 0.05 3.83± 0.07 4.00±±± 0.06 3.21± 0.05

3r
d

st
. + 3rd stage 4.59± 0.05 3.78± 0.07 3.99±±± 0.06 3.29±±± 0.04

+ HF Loss 4.63±±± 0.04 4.05 ± 0.07 3.98±±± 0.06 3.31±±± 0.04

The other proposed improvements bring incremental gains in perceptual MOS quality. Firstly, we add
the features of the WavLM encoder as an additional input to HiFi++. Next, we scale the architecture
by increasing the number of channels within the model. After that, we concatenate the Upsample
WaveUNet with the FINALLY-16 architecture and implement the 3rd stage of training on the DAPS-
clean dataset (48 kHz). Finally, we use additional human feedback losses (HF Loss) during the 3rd
stage to further improve perceptual quality.

Since Table 4 does not clearly demonstrate the advantages of using the WavLM (Chen et al., 2022b) en-
coder in terms of MOS, we provide additional ablation study on more challenging UNIVERSE (Serrà
et al., 2022) validation dataset. The results of these additional experiments, presented in Table 5,
clearly demonstrate the importance of WavLM encoder.

Table 5: Ablation of WavLM encoder on UNIVERSE validation data.
MOS (↑) UTMOS (↑) WV-MOS (↑) DNSMOS (↑) PhER (↓)

w/o WavLM 3.49± 0.08 3.33± 0.18 3.80± 0.15 3.15±±± 0.09 0.27± 0.04
w/ WavLM 3.75±±± 0.07 3.56±±± 0.20 3.99±±± 0.08 3.07±±± 0.16 0.21±±± 0.04

7 Conclusion

In conclusion, we theoretically demonstrate that LS-GAN training encourages the selection of
the point of maximum density within the conditional clean speech distribution, aligning naturally
with the objectives of speech enhancement. Our empirical investigation identifies WavLM as an
effective backbone for perceptual loss, supporting adversarial training. By integrating WavLM-based
perceptual loss into the MS-STFT adversarial training pipeline and enhancing the HiFi++ architecture
with a WavLM encoder, we develop a novel speech enhancement model, FINALLY, which achieves
state-of-the-art performance, producing clear and high-quality speech at 48 kHz.
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A Proof

Proposition 1. Let pclean(y|x) > 0 be a finite and Lipschitz continuous density function with a unique
global maximum and pξg(y|x) = ξn/2n · 1y−gθ(x)∈[−1/ξ,1/ξ]n , then

lim
ξ→+∞

argmin
gθ(x)

χ2
Pearson(p

ξ
g||(pclean + pξg)/2) = argmax

y
pclean(y|x) (1)

Proof.

χ2
Pearson(p

ξ
g(pclean + pξg)/2) =

∫
(pξg(y|x)− (pclean(y|x) + pξg(y|x))/2)2

(pclean(y|x) + pξg(y|x))/2
dy

=

∫
y−gθ(x)∈[−1/ξ,1/ξ]n

1

2
pξg(y|x)

(1− pclean(y|x)/pξg(y|x))2

1 + pclean(y|x)/pξg(y|x)
dy

+

∫
Rn\{y−gθ(x)∈[−1/ξ,1/ξ]n}

1

2

(pclean(y|x))2

pclean(y|x)
dy

=

∫
y−gθ(x)∈[−1/ξ,1/ξ]n

ξn

2n+1

(1− 2npclean(y|x)/ξn)2

1 + 2npclean(y|x)/ξn
dy

+

∫
Rn\{y−gθ(x)∈[−1/ξ,1/ξ]n}

1

2
pclean(y|x)dy.

Since pclean(y|x) is Lipschitz continuous, there exist L > 0 and C > 0 such that for any ξ > C if
y − gθ(x) ∈ [−1/ξ, 1/ξ]n, then pclean(y|x) ∈ (pclean(gθ(x)|x)− L/ξ, pclean(gθ(x)|x) + L/ξ).

Therefore, the divergence could be lower-bounded by

1

2
·
(1− 2n

ξn · (pclean(gθ(x)|x) + L/ξ))2

1 + 2n

ξn · (pclean(gθ(x)|x) + L/ξ)
+

1

2
− 2n−1

ξn
(pclean(gθ(x)|x) + L/ξ),

and upper-bounded by

1

2
·
(1− 2n

ξn · (pclean(gθ(x)|x)− L/ξ))2

1 + 2n

ξn · (pclean(gθ(x)|x)− L/ξ)
+

1

2
− 2n−1

ξn
(pclean(gθ(x)|x)− L/ξ).

After taking Taylor expansion up to the linear term of 1/ξn, we get that

1− 2n+1

ξn
pclean(gθ(x)|x) + o(1/ξn) ≤ χ2

Pearson(p
ξ
g(pclean + pξg)/2),

and

χ2
Pearson(p

ξ
g(pclean + pξg)/2) ≤ 1− 2n+1

ξn
pclean(gθ(x)|x) + o(1/ξn).

Thus,

χ2
Pearson(p

ξ
g||(pclean + pξg)/2) = 1− 2n+1

ξn
pclean(gθ(x)|x) + o(1/ξn).

As ξ is approaching +∞, the main term depending on the gθ(x) is − 2n+1

ξn pclean(gθ(x)|x) which is
minimized then gθ(x) = arg max

y
pclean(y|x) as global maximum is unique.
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B Additional results for perceptual losses

B.1 More on motivation

From the probabilistic point of view, minimization of the point-wise distance leads to an averaging
effect. For example, optimization of the mean squared error between waveforms delivers the
expectation of the waveform over the conditional distribution of clean speech given its degraded
version gθ(x) = Ey∼pclean(y|x)[y]. The key thing is that the expectation over the distribution is not
guaranteed to lie in the regions of high density of this distribution (see Figure 3 and Figure 4).

Same sound

Figure 3: Ground truth waveform and waveform
resynthesized by HiFi GAN vocoder. While wave-
forms significantly differ, they correspond to the
same sound, creating ambiguity in generation.

𝜑(𝑦)

𝔼𝑦 ~ 𝑝𝑐𝑙𝑒𝑎𝑛 𝑦 𝑥) 𝑦 𝔼𝑦 ~ 𝑝𝑐𝑙𝑒𝑎𝑛 𝑦 𝑥) 𝜑(𝑦)

Entangled Disentangled

Figure 4: Regression in an entangled feature space
might cause the expectation to lie outside the re-
gions of high density, while regression in a dis-
entangled space facilitates the expectation to lie
within the regions of high probability density.

Mathematically speaking, let ϕ(x) be the mapping to this space, and assume there exists a reverse
mapping ϕ−1(z) such that ϕ−1(ϕ(x)) = x. We would like to note that in practice, for regression
purposes, there is no need to explicitly know the reverse mapping ϕ−1(z) as long as ϕ(x) is differen-
tiable. The regression in the space produced by the mapping leads to averaging in this space; thus,
after minimizing the MSE loss

Ex,y∼pclean(y)p(x|y)∥ϕ(y)− ϕ(gθ(x))∥2,

one would obtain the solution

gθ(x) = ϕ−1
(
Ey∼pclean(y|x)[ϕ(y)]

)
.

Therefore, a desirable property for the ϕ(x) mapping to be used as the regression space is that

ϕ−1
(
Ey∼pclean(y|x)[ϕ(y)]

)
= argmax

y
pclean(y|x),

i.e., we would like averaging in ϕ-space to provide a representation corresponding to the most likely
solution (the most probable reconstruction as discussed in the previous section). In practice, this
property is difficult to verify. Moreover, finding such a mapping is likely to be a task which is not
easier than the original problem. Therefore, based on this intuition, we propose some heuristic rules
for assessing the structure of regression spaces produced by different mappings.

B.2 Influence of losses on final audio

To illustrate the influence of LMOS loss, as well as the importance of adversarial training, we examine
the impact of different training setup using vocoding and discuss the results using spectrograms in
Figure 5. We start with training the vocoding model using only convolutional features from WavLM.
This training turns out to be suboptimal, as the model produces noticeable artefacts, visible in the
top spectrogram in Figure 5. Next, we complement the WavLM feature loss with the STFT L1
loss, which is a L1 distance between spectrograms of reference and predicted audios. This method
yields better quality, however some artefacts still remain. Notice, that such training particularly
struggles to reconstruct high frequencies and capture the harmonic content. Finally, we train the
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Figure 5: Comparison of training schemes on spectrograms. Going from the top to the bottom, the
first spectrogram is obtained from the model trained only on WavLM (Chen et al., 2022b) features,
the second one is produced by the model trained on both WavLM features and STFT L1 loss. The
third spectrogram is obtained by training with both mentioned losses and adversarial loss. The last
spectrogram is computed with ground truth audio.
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model using adversarial loss. For this experiment we use original HiFi GAN (Kong et al., 2020)
setup. Adversarial training helps to alleviate artefacts and produces better quality, as compared to the
regression training used in both former experiments. For these reasons, we rely both on our newly
developed reconstruction loss and adversarial training for creating our speech enhancement model.

B.3 Comparison with prior work

We additionally compare the LMOS against other speech perceptual losses from the literature: (Hsieh
et al., 2020; Close et al., 2023a; Defossez et al., 2020; Kong et al., 2020). The comparison is outlined
in Table 6. The experiments are conducted on neural vocoding task using LJSpeech dataset (Ito &
Johnson, 2017). The HiFi-GAN generator V1 was trained for 1M iterations with batch size 16 for
each loss function.

Table 6: MOS on neural vocoding for different loss functions.
Method MOS (↑)

PFPL (Hsieh et al., 2021) 2.40 ± 0.08
SSSR loss with HuBERT features (Close et al., 2023a) 2.58 ± 0.08
MS-STFT + L1 waveform (Defossez et al., 2020) 3.16 ± 0.08
LMOS (ours) 4.21 ± 0.07
adv. MPD-MSD (Kong et al., 2020) 4.65 ± 0.04
Ground Truth 4.66 ± 0.04

B.4 WavLM layers

To find suitable layer of WavLM (Chen et al., 2022b) model for our loss function, we take activations
of each layer and measure Rand index and correlation with SNR. We seek to find such layer, that
would produce high score for both metrics. Intuitively, this suggests that the layer’s activations create
a space where audio with varying acoustics is effectively separated, and their hidden representations
are responsive to noise.
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Figure 6: Comparison of WavLM features using Rand index and negative correlation of SNR

As we see in Figure 6, the most suitable features come from the convolutional encoder or first
transformer layer. For convenience, we compute loss using features from convolutional encoder (we
call the these outputs WavLM-Conv features).

B.5 WavLM features visualization

To provide visual evidence for the successful choice of WavLM features, as well as to illustrate
clustering rule and SNR rule, we show the first two principal components of WavLM-Conv features
and depict corresponding clusters (Figure 7) and noisy features (Figure 8). Figure 7 illustrates that
audio samples with the same lexical content form well-defined clusters, whereas those with different
content are properly disentangled. Figure 8 shows that increasing SNR in audio moves it away for
the centre of the cluster. These figures provide empirical evidence for the heuristics discussed in
Section 3
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The First Minister is schedule...

Nobody did in those days.

They made such decisions in Lo...

The eye was badly closed on Su...

They like being on the front p...

Painful, but only because it's...

It is set in Paris.

The Prime Minister was very sa...

Figure 7: Clustering rule visualized on Wavlm-Conv PCA features. The phrases corresponding to
each cluster are visualized.

Snr = 20.0

Snr = 18.0

Snr = 16.0
Snr = 14.0

Snr = 12.0

Figure 8: SNR rule visualized for Wavlm-Conv PCA features for a particular cluster.

C Comparison with MIIPHER

We compare the enhancement quality of LibriTTS test_other samples as released by the Miipher
authors (Koizumi et al., 2023b). The results are outlined in Table 7. For the information on WER
refer to Appendix E.1. computations.

Table 7: MOS Scores for comparison with Miipher (LibriTTS, test other).
Method MOS (↑) UTMOS (↑) DNSMOS (↑) WV-MOS (↑) WER (↓)

Input 3.59 ± 0.07 3.41 ± 0.13 2.88 ± 0.12 3.69 ± 0.11 0.23 ± 0.04
Miipher 4.18 ± 0.06 3.95 ± 0.13 2.99 ± 0.12 4.15 ± 0.14 0.22 ± 0.05
Ours (16 kHz) 4.24 ± 0.05 4.18 ± 0.08 3.15 ± 0.09 4.28 ± 0.10 0.18 ± 0.04
Ours (48 kHz) 4.54 ± 0.05 4.18 ± 0.08 3.15 ± 0.09 4.28 ± 0.10 0.18 ± 0.04
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D Implementation details

D.1 Reproducibility statement

Our model is based on HiFi++ architecture (Andreev et al., 2022), for which code is available in
https://github.com/SamsungLabs/hifi_plusplus. We used several open-source datasets for
training. More specifically, we used DAPS, LibriTTS-R and Deep Noise Suppression Challenge
(DNS) (only noises). We rely on official implementations of MS-STFT discriminators, which can
be found in https://github.com/facebookresearch/encodec. For LMOS loss and HiFi++
conditioning, we used WavLM large model from Hugging Face, which can be found in https:
//huggingface.co/microsoft/wavlm-large.

D.2 Augmentations

Before mixing with noise, we convolve the speech signal with a randomly chosen microphone impulse
response from the Microphone Impulse Response project3 and apply other digital distortions. With
a probability of 0.8, we also convolve the signal with a room impulse response randomly chosen
from those provided in the DNS dataset. We additionally apply audio effects from the torchaudio
library (Hwang et al., 2023), trying to simulate digital distortions. Parameter values are chosen
randomly; only one codec is applied.

Table 8: Applied augmentations.
Augmentation Prob. Param. name Interval of values

acrusher 0.25 bits [1,9]
crystalizer 0.4 intensity [1,4]
flanger 0.15 depth [1,8]
vibrato 0.15 frequency [5,8]

codec ogg
codec mp3 0.45 encoder vorbis, opus

bit rate [4000,16000]

D.3 Model architecture

In this section we detail parameters for our speech enhancement models. We use HiFi++ (Andreev
et al., 2022) as backbone. This architecture consists of four parts: Spectral UNet, HiFi Upsampler,
WaveUNet and SpectalMaskNet. In addition to that, we use WavLM-large feature encoder with
transformer features, which takes a waveform as an input and outputs the last hidden state of the
transformer, which is stacked with the SpectralUNet output and fed into the HiFi Upsampler. In the
next paragraphs, we thoroughly discuss the architecture of each component. Architecture summary is
presented in Table 9

Residual blocks To better understand Spectral UNet, WaveUNet and SpectralMaskNet we first
discuss the key building block. Each residual block is composed of convolution, followed by
LeakyReLU. We use weight norm (Salimans & Kingma, 2016) instead of BatchNorm, we found it
to be more efficient in our preliminary experiments. We use kernel size 3 for 2D UNets and kernel
size 5 for 1D UNet. Each residual block has additive skip connection. In our architecture, we use a
stacked composition of residual blocks. The number of residual blocks stacked together in one layer
is called depth.

SpectralUNet architecture SpectralUNet processes a mel-spectrogram input with dimensions
[B, 80, T] and outputs a hidden state with dimensions [B, 512, T]. The input mel-spectrogram is
combined with positional encoding. The architecture is based on a 2D UNet (Ronneberger et al.,
2015) with five layers, each having respective channels of [16, 32, 64, 128, 256] and a depth of 4.
Additional convolutions are applied after these layers to transform 2D data from shape [B, 16, W, T]
to [B, 1, W, T], and then to [B, 512, T]. This output is concatenated along the channel dimension with

3http://micirp.blogspot.com/
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the final transformer hidden state of WavLM (Chen et al., 2022b), which has been interpolated using
the nearest-neighbour method to match the output length of SpectralUNet in the time dimension. The
concatenated result then passes through a Residual block with kernel size 3 and with a width of 1536
(1024 from the final transformer hidden state and 512 from SpectralUNet output), then passes through
1d Convolution with kernel size 1 and LeakyReLU to obtain size 512 in the channel dimension, and
is subsequently fed into the HiFi Upsampler.

HiFi Upsampler architecture For HiFi Upsampler we use HiFi generator architecture from (Kong
et al., 2020). In our implementation we use 4 layer model with upsample rates [8, 8, 2, 2], kernel size
[16, 16, 4, 4], hidden sizes [512, 256, 128, 64]. For each layer we use residual blocks with kernels
[3, 7, 11] and dilations [(1, 3, 5), (1, 3, 5), (1, 3, 5)].

WaveUNet architecture We implement WaveUNet following (Stoller et al., 2018). We use 4-layer
WaveUNet with channels [128, 128, 256, 512], each layer has depth 4. Our WaveUNet takes the
concatenation of input waveform and HiFi Upsampler as input. In this way we provide a residual
connection for Spectral UNet and HiFi Upsampler.

SpectralMaskNet architecture The final Stage of our pipeline is SpectralMaskNet. It applies
channel-wise Short Time Fourier Transform (STFT) to the input, decomposes it into phase and
amplitude, and then processes amplitude with 2D UNet. Finally, it multiplies processed amplitude
and phase and applies inverse STFT to obtain the final audio. For processing amplitude 2D UNet with
channels [64, 128, 256, 512] as a backbone, each layer has depth 1. The output of SpectralMaskNet
is the final output of our 16kHz model.

WaveUNet Upsampler In order to enable the model to output samples in 48kHz we also add
WaveUNet Upsampler, that upsamples the final audio. For that task we use WaveUNet with 5
layers and channels [128, 128, 128, 128, 256], each layer has depth 3. The outputs of each layer are
downsampled with the scale 4. After the output of the final upsample layer, we have an additional
head that has 512 features and is used for directly upscaling the WaveUNet output into 48kHz.

Architecture summary More details about the architecture can be found in (Andreev et al., 2022).
We present the summary of parameters for Spectral UNet, WaveUNet and SpectralMaskNet in
Table 9.

Table 9: Summary of parameters.

Submodel Channel Sizes
Kernel Size
(constant for
each layer)

Layer Depth
(constant for
each layer)

Spectral UNet [16, 32, 64, 128, 256] 3 4
HiFi Upsampler [512, 256, 128, 64] [3, 7, 11] 3
WaveUNet [128, 128, 256, 512] 5 4
Spectral MaskNet [64, 128, 256, 512] 3 1
WaveUNet Upsampler [128, 128, 128, 128, 256] + 512 5 3

Discriminators We employ MS-STFT discriminators (Défossez et al., 2023) for adversarial
training. We use 5 MS-STFT discriminators with n_ffts [4096, 2048, 1024, 512, 256], hop_lengths
[1024, 512, 256, 128, 64], win_lengths [4096, 2048, 1024, 512, 256] in 48kHz setting, for 16kHz all
above-mentioned parameters are divided by 2. Our implementation closely follows (Défossez et al.,
2023).

Training details The main model is trained using 8 Nvidia P40 GPUs with effective batch size 32
and AdamW (Loshchilov & Hutter, 2017) as our main optimizer. For pretraining we use learning rate
0.0002, betas (0.8, 0.99) and learning rate exponential decay of 0.996 for each 200 iterations, the
pretraining lasts 100,000 iterations. For the second stage we use learning rate 0.0002 with betas (0.8,
0.99) and learning rate decay 0.995, whereas for discriminators we use learning rate 0.0002 with betas
(0.5, 0.999) and learning rate decay 0.995, the discriminators perform 2 optimization iterations for
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every 1 generator’s optimization iteration, the training lasts 30,000 generator’s iterations. We also use
a linear warm-up for 2000 iterations for the generator. We use the same training parameters for the
third stage during generator’s 40,000 iterations. The first and the second stage are trained in 16kHz
using LibriTTS-R dataset with noises from DNS and augmentations, discussed in Appendix D.2.
Whereas the third stage is trained in 48kHz using DAPS dataset with noises from DNS as well.
Datasets are discussed in Appendix D.1

Comparison of the datasets and resources used to train FINALLY and baseline models. To
better contextualize our results, we provide a detailed comparison of the model sizes and training
data of the baseline models.

Table 10: Comparison of resources and data used for training.
Model Training Data Scale (clean data) Model Size (parameters) RTF on V100 GPU

VoiceFixer 44 hours (VCTK) 112 M 0.02
DEMUCS 500 hours (DNS) 61 M 0.08
STORM 200 hours (WSJ0 and VCTK) 28 M 1.05
BBED 140 hours (WSJ0) 65 M 0.43
HIFI-GAN-2 5 hours (DAPS) 34 M 0.50
Universe 1500 hours (private data) 189 M 0.50
FINALLY (ours) 200 hours (LibriTTS-R and DAPS) 454 M (including 358 M of WavLM) 0.03

Although our model has more parameters compared to the baseline models, the majority of these
parameters are dedicated to handling low-resolution features. For instance, the Transformer in WavLM
processes representations of the waveform that are downsampled by a factor of 320, operating at 50
Hz. On the other hand, models such as HiFi-GAN-2 primarily work at the full waveform resolution,
similar to WaveNet. This design enables our model to be more efficient in terms of computational
resources, resulting in a significantly lower Real-Time Factor (RTF).

D.4 Limitations

The primary area for further developing in the proposed model lies in improving perceptual quality,
particularly in instances when the speech is severely degraded. Although our model is capable of
capturing the content of such signals, even in situations that may be impossible for humans, some
artefacts remain. These artefacts could possibly be attributed to the high uncertainty of the initial
signal, such as the speaker’s voice, for instance.

Another crucial aspect to consider is the streaming mode. While the proposed model is fast, it
doesn’t suit low latency scenarios, which are widely applicable in telecommunications. The big
obstacle to such improvement could be the WavLM (Chen et al., 2022b) model that utilizes context
for identifying the content of speech. This model has the boundaries of the required context and,
consequently, the minimum latency achievable.

E Evaluation details

E.1 Metric computation

To compare models in their ability to correctly reconstruct the speech, we use Phoneme Error Rate
(PhER) and Word Error Rate (WER). Given the reference audio and audio, produced by the speech
enhancement model, metrics are computed in the following way. First, Automatic Speech Recognition
(ASR) model is applied to both audios, yielding phoneme representations. Then, the editing distance
is computed over predicted phonemes (or words for WER) for the reference and the predicted audio.
The distance is normalized to the length of the reference phoneme representation (or the length of the
sentence for WER) and averaged over the validation set. We rely on https://huggingface.co/
for the ASR models and metric computations. For PhER we use mrrubino/wav2vec2-large-xlsr-53-
l2-arctic-phoneme model, for WER we use jonatasgrosman/wav2vec2-large-xlsr-53-english. These
are Wav2Vec2-based (Baevski et al., 2020) models for ASR.
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E.2 Ablation details

For the ablation study, we utilized a smaller version of our original model to expedite evaluations,
with the reduced model containing approximately 22 million parameters. The dataset used for this
ablation was provided by (Nagrani et al., 2017). The ablation process was carried out in several stages.
Initially, we compared the performance of our LMOS loss with L1Spec loss (Kong et al., 2020),
MS-STFT loss (Defossez et al., 2020), and RecLoss (Défossez et al., 2023) during the pretraining
phase. Each loss function was used independently to train the model in a regressive manner for
500,000 steps with a batch size of 12, utilizing two Nvidia P40 GPUs. Our findings indicated that
LMOS consistently outperformed the other losses. Detailed results are presented in Appendix E.2.
It’s important to note that MOS evaluations were not conducted during the first stage, as the enhanced
audio typically displayed artefacts following this stage of training.

Table 11: Ablation for regression losses.
Metric UTMOS (↑) WV-MOS (↑) DNSMOS (↑)

MS-STFT 2.54± 0.10 2.77± 0.10 3.04± 0.05
RecLoss 2.53± 0.10 2.77± 0.10 3.04± 0.05
L1Spec did not converge did not converge did not converge
LMOS 3.43± 0.09 3.57± 0.05 3.14± 0.04

Next, we ablated the use of mentioned losses in purely adversarial setup without pretraining. The
same small model was trained from scratch using one of the discussed reconstruction losses with
adversarial LS-GAN loss (Mao et al., 2017) and feature matching loss (Kong et al., 2020). We used
MS-STFT discriminators (Défossez et al., 2023) for adversarial training. We fixed coefficients for
the feature matching loss at 5 and for the LS-GAN loss at 15, and then grid searched the coefficient
for each reconstruction loss. We experimented with the possible coefficient to be 1, 3, 10, 20, 50
and found that is all cases the best coefficient is 3. We found that LMOS loss outperforms other
reconstruction losses in this setup as well.

In the first stage we experimented with the addition of SSL features to boost model quality. For these
experiments we took our best model trained with LMOS loss. As our ablation indicates, transformer
features of WavLM significantly increase the model quality.

Finally, we train our big model, using the ablated architecture. We report the results in ’Scaling’ row
in Table 4. We also show how the introduction of the WaveUNet Upsampler and Human Feedback
(HF) losses influence the final quality of our model.

In conclusion, we found that the best model is the one, trained with WavLM transformer features and
LMOS reconstruction loss. Moreover, we found, that using HF losses also significantly increases the
final quality.

Comparison with HiFi++. Since our model is based on HiFi++ architecture (Andreev et al., 2022),
use explicitly show how the improvements we introduced increase the quality of enhanced audio
compared to HiFi++ baseline using VoxCelex dataset (Nagrani et al., 2017). The results are presented
in Table 12

Table 12: Comparison with HiFi++ on VoxCeleb data.
Model UTMOS (↑) WV-MOS (↑) DNSMOS (↑)

Input 2.72± 0.11 2.90± 0.16 2.72± 0.11
HiFi++ 2.76± 0.13 2.68± 0.14 2.98± 0.07
FINALLY (ours) 4.05± 0.07 3.98± 0.06 3.31± 0.04

F Subjective evaluation

We measure mean opinion score (MOS) of the model using a crowdsourcing adaptation of the
standard absolute category rating procedure. Our MOS computing procedure is as follows.
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Figure 9: The assessor’s interface.

Figure 10: The rules for the assessor.

1. Select a subset of 40 random samples from the test set (once per problem, i.e. for bandwidth
extension or speech enhancement).

2. Select a set of models to be evaluated; inference their predictions on the selected subset.

3. Randomly mix the predictions and split them into the pages of size 20 almost uniformly.
Almost uniformly means that on each page there are at least ⌊ 20

num_models⌋ samples from
each model.

4. Insert additional 4 trapping samples into random locations on each page: 2 samples from
ground truth, and 2 samples of a noise without any speech.

5. Upload the pages to the crowdsourcing platform, set the number of assessors for each page
to at least 30.
Assessors are asked to work in headphones in a quiet environment; they must listen to the
audio until the end before assess it.

6. Filter out the results where the ground truth samples are assessed with anything except 4
(good) and 5 (excellent), or the samples without voice are assessed with anything except 1
(bad).

7. Compute 95% confidence intervals via bootstrapping.

Since the models are distributed uniformly among the pages, assessor’s biases affect all models in
the same way, so the relative order of the models remains. On the other hand, the assessor will have
access to all variety of the models on one page and thus can scale his ratings better. The other side
is that the models’ ratings depend on each other in this setting, because assessors tend to estimate
the sample quality relatively to the average sample of the page. This means that when some models
perform poorly in comparison, the higher scores are given to the better models. 4 trapping samples
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per page is also a reasonable choice, because one cannot just random guess the correct answers for
these questions.

The instructions for the assessors and the screenshots of the evaluation interface are provided on
Figure 9 and, Figure 10 respectively.

The total amount of money spent on the surveys while preparing the paper is somewhere between
$1000 and $1500 (it is hard to estimate exactly because there were a lot of exploration tests during
creating the model and writing the paper). According to the crowdsourcing system statistics, the
average hourly wage varies between tasks from $2.5 to $4, which exceeds by a large margin the
minimal wage in the countries where the test was conducted.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: -

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix D.4

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:[Yes]
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Justification: Please see the Appendix A
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please see the Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We do not open the code for training of the model due to our organization
policy, however, we use only publicly available data and most of the source codes are
available as stated in Appendix D. Therefore, we expect that the work could be reproduced
with moderate efforts.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see the Appendix D
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the confidence intervals computed by bootstrapping.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: please see the Appendix D

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: -

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: -

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: -

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please the Section 5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: -
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Please see the Appendix F
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: -
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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