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Abstract

Choice models are essential for understanding decision-making processes in do-
mains like online advertising, product recommendations, and assortment optimiza-
tion. The Multinomial Logit (MNL) model is particularly versatile in selecting
products or advertisements for display. However, challenges arise with unknown
MNL parameters and delayed feedback, requiring sellers to learn customers’ choice
behavior and make dynamic decisions with biased knowledge due to delays. We
address these challenges by developing an algorithm that handles delayed feedback,
balancing exploration and exploitation using confidence bounds and optimism.
We first consider a censored setting where a threshold for considering feedback
is imposed by business requirements. Our algorithm demonstrates a Õ(

√
NT )

regret, with a matching lower bound up to a logarithmic term. Furthermore, we
extend our analysis to environments with non-thresholded delays, achieving a
Õ(

√
NT ) regret. To validate our approach, we conduct experiments that confirm

the effectiveness of our algorithm.

1 Introduction

The ability to model and understand consumer choices between discrete alternatives is critical for
various business applications, such as online advertising, product recommendations, and assortment
optimization. Businesses need to present the most appealing set of options to consumers to maximize
engagement and revenue. However, the task of optimizing what content or products are shown
to a customer during their browsing session is complex due to the interplay between alternatives
that customers face. Each alternative can act as a substitute or competitor to others, impacting the
customer’s final decision. Traditional multi-armed bandit (MAB) models, which are widely used for
decision-making problems, fall short in scenarios where a subset of alternatives must be presented,
and the customer’s choice among these influences future decisions.

Multinomial choice (MNL) models have emerged as powerful tools for capturing and predicting
consumer behavior among a finite set of alternatives. These models estimate the utilities of different
options and the probabilities of their selection. However, when the MNL parameters are unknown
and no historical data is available—as is often the case with newly introduced products or advertise-
ments—the learning process becomes even more challenging. This complexity is further exacerbated
when the feedback on decisions is delayed, requiring the learner to dynamically adjust decisions
based on limited and potentially biased information.

One of the fundamental challenges in this setting is the delay in receiving feedback from customers.
Unlike immediate responses in classical MAB problems, customers in e-commerce environments
often take hours or even days to make decisions, as highlighted by Vernade et al. [2020] and Chapelle
[2014]. This delay in feedback complicates the learning process, as it must adapt to new information
that arrives sporadically and potentially long after the initial interaction.
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In this paper, we address the dual challenges of unknown MNL parameters and delayed feedback
by developing algorithms that balances exploration and exploitation through the use of confidence
bounds and the principle of optimism in the face of uncertainty. We focus on two settings in receiving
delay: the thresholded and the non-thresholded settings.

In thresholded settings, feedback is only considered if it is received within a predetermined time frame
set by business requirements. This constraint ensures operational stability and efficiency by ignoring
excessively delayed responses that may no longer be relevant. For these settings, we introduce the
Delayed Multinomial Logit Bandit (DEMBA) algorithm, specifically designed to handle potentially
censored delayed feedback effectively.

In contrast, non-thresholded settings allow the learner to consider all feedback regardless of delay,
potentially leading to better accuracy in decision making in long-term but at the cost of increased bias
in the learning process. For such environments, we propose the Patient Delayed Multinomial Logit
Bandit (PA-DEMBA) algorithm, which adapts its learning strategy to accommodate all feedback,
irrespective of the delay.

Contributions. Our main contributions are two novel bandit algorithms: we develop DEMBA,
for thresholded feedback settings, and PA-DEMBA, an algorithm designed for non-thresholded
feedback environments. Both algorithms effectively learn from delayed and censored choices using
confidence intervals. We provide a comprehensive regret analysis for both DEMBA and PA-DEMBA,
demonstrating an Õ(

√
NT ) regret bound and a matching lower bound up to a logarithmic term.

Additionally, through detailed computational experiments, we validate the performance and robustness
of our algorithms in various scenarios.

Organization. The remainder of this paper is organized as follows. In Section 2, we review the related
work on choice modeling and delayed feedback in online learning. Section 3 details the problem
formulation and the specific challenges addressed by our approach. Our main algorithm DEMBA
is presented in Section 4. We analyze the regret bounds of this algorithm in Section 5, providing
theoretical guarantees for its performance. PA-DEMBA algorithm for non-thresholded delays is
presented in Section 6. In Section 7, we conduct experiments to demonstrate the effectiveness of
our proposed algorithms. Finally, Section 8 concludes the paper and outlines potential directions for
future research.

2 Related Work

Delayed feedback is a crucial aspect of online learning environments, especially in domains like
online advertising and e-commerce, where decision making involves a consideration period, or in
healthcare, where the effects of actions take time to manifest. Consequently, research interest in
bandits with delayed feedback has surged in recent years.

In their seminal work, Joulani et al. [2013] studied online learning scenarios with stochastic delayed
feedback. Their work laid the foundation for understanding how delays impact learning performance.
Similarly, Chapelle [2014] examined delayed conversions in display advertising, highlighting the
practical challenges faced in real-world applications. Further, Vernade et al. [2017] focused on delays
specifically in the context of delayed conversions, providing insights into handling delays with known
distributions.

Expanding on this, Pike-Burke et al. [2018] explored bandits with delayed, aggregated, and anony-
mous feedback, which adds another layer of complexity by considering multiple types of delays.
Zhou et al. [2019] extended this exploration to generalized linear contextual bandits with delayed
feedback. Vernade et al. [2020] investigated linear bandits with stochastic thresholded delays. Ad-
ditionally, Gael et al. [2020] tackled multi-armed bandits with arm-dependent stochastic delays,
focusing on the challenges of non-uniform delays across different choices. Moreover, Cesa-Bianchi
et al. [2022] considered composite and anonymous delayed feedback within non-stochastic bandits,
further enriching the literature on delayed feedback mechanisms. Tang et al. [2024] studied delayed
multi-armed bandits (MAB) with reward-dependent delays in clinical trials, while Lancewicki et al.
[2021] explored both reward-dependent and reward-independent delay settings. Flaspohler et al.
[2021] investigated delayed learning in weather forecasting, and Grover et al. [2018] addressed the
best arm identification problem with delayed feedback. Thune et al. [2019] examined non-stochastic
MABs with unrestricted delays, and Cesa-Bianchi et al. [2016] considered cooperation between
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different agents in delayed settings. Tang et al. [2021] explored scenarios where past actions impact
future arm rewards, and Yang et al. [2024] addressed general sequential decision-making problems
with delayed feedback. Despite this rich body of work, the solutions developed for MABs do not
directly apply to our setting, where assortment feedback in discrete choice models presents additional
complexities. In particular, delayed feedback affects both item value estimation and assortment
composition, making our problem significantly more challenging than those where only arm rewards
are updated.

When focusing specifically on generalized linear bandits with delays, we note key contributions such
as Howson et al. [2023] and Blanchet et al. [2024] who explored generalized linear bandits with
delayed feedback, demonstrating the efficacy of these models in more complex, non-linear settings.
Multinomial bandits, which address decision making where multiple items are offered simultaneously,
present a unique challenge due to the interactions between items. This complexity distinguishes our
problem from other online learning models. Specifically, for generalized linear bandits, we note that
when the assortment has more than one item, our problem cannot be addressed by solutions designed
for generalized linear models due to the complexity of interactions among multiple choices which
makes the action space more complicated.

In terms of online learning with choice models, significant progress has been made in understanding
and optimizing MNL parameters. Agrawal et al. [2017] developed a Thompson sampling algorithm
for learning MNL parameters for assortment optimization, while Agrawal et al. [2019] proposed
a UCB algorithm for the same purpose. Dong et al. [2020] adapted this problem by introducing
switch costs, addressing practical constraints in dynamic environments. Further, Agarwal et al. [2020]
studied the problem for best arm identification, extending the framework to multiple pulls, which is a
generalization of the dueling bandits problem. Other notable works include Wang et al. [2018] and
Chen et al. [2021], who worked on dynamic assortment allocation under uncapacitated MNL models,
and Perivier and Goyal [2022], who investigated joint pricing and assortment optimization with MNL
demand processes.

To the best of our knowledge, our work is the first to address online learning of delayed choices in
this context. Specifically, we propose the Delayed Multinomial Logit Bandit (DEMBA) algorithm
for thresholded feedback settings and the Patient Delayed Multinomial Logit Bandit (PA-DEMBA)
algorithm for non-thresholded settings. These algorithms effectively learn from delayed and censored
choices using confidence intervals, providing robust solutions for dynamic and uncertain environments
where feedback is not immediately available. Our approach not only advances the theoretical
understanding of delayed feedback in online learning but also offers practical insights for applications
in e-commerce and online advertising.

3 Problem Setup

We consider a capacitated selection problem faced by a seller over T rounds. The items to be selected,
referred to as products, can be new retail products or services such as advertisements. There are N
products available to potentially be shown to the customer. The set of products selected in a given
round is called an assortment, denoted as St for round t, where St ⊂ {1, . . . , N} and |St| ≤ K.
Here, K represents the capacity, indicating the maximum number of items the seller can show at any
given time.

Upon encountering the assortment, the customer makes a choice at among the options: (i) rejecting the
browsing options provided (at = 0), (ii) browsing and purchasing/selecting an option (at = i, i ∈ St),
and (iii) browsing but not purchasing/selecting an option (at = 0d). If option i is chosen, the seller
earns a reward ri, with ri ∈ [0, 1] for i ∈ [N ] and r0 = r0d = 0.

Customer choice probabilities are determined by the Multinomial Logit (MNL) model as follows:

P(at = i|St = S) =

{
vi

v0+v0d+
∑

j∈S vj
if i ∈ S ∪ {0, 0d}

0 otherwise,

where vi denotes the (unknown) attraction parameter of option i. Without loss of generality we assume
that attraction parameters are normalized such that v0 = 1. In parallel with the real applications, we
also assume that not browsing is the most common choice, i.e. vi ≤ v0.
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It is important to note that not purchasing/selecting is different from tracking conversions. Specifically,
if the customer browses the given assortment, we can track if the customer decides not to purchase,
similar to choosing an option to purchase (e.g., by closing the pop-up or following specific behavioral
click-through patterns).

If the customer’s choice is at = 0, the seller receives this choice immediately. Otherwise, the
customer’s choice is revealed to the seller after a delay dt ∈ N. dt is sampled from a unknown
distribution fd and independent from at. Moreover, delays longer than a certain threshold µ is
censored or ignored by the seller in the learning process. This threshold is set based on the seller’s
operational requirements. We later extend our solution to the patient learner setting without a
threshold, i.e. µ→ ∞.

We define ai,t as the demand for option i at time t. We have

ai,t =

{
1, if at = i,

0, otherwise.

We also define ci,s,t ∈ {0, 1} as the censoring variable of product i at period t that is sold at period s.
The censoring variable is determined as:

ci,s,t = I(ds ≤ t− s and ds ≤ µ).

We define the feedback observed by the seller as oi,s,t ∈ {0, 1} and oi,s,t = ci,s,tai,s. The expected
fraction of observed feedback is denoted as ψµ :=

∑µ
s=0 fd(s).

The sequence of events at round t can be summarized as follows:

1. The seller selects an assortment St.
2. The customer interacts with the medium(view the page or encounter with the pop-up) and

makes a decision at.
3. The environment returns a reward ri, i ∈ [N ], and samples a delay dt.
4. Rewards of certain previous actions and/or if the customer rejected to browse revealed to

the seller as oi,s,t.

The expected reward of the seller given assortment S and attraction parameter set v is given by

R(S; v) =
∑
i∈S

ri ·
vi

1 + v0d +
∑
j∈S vj

.

The goal of the seller is to sequentially learn customer preferences and find a policy to minimize
cumulative expected regret, defined as:

Reg(T, π) =
T∑
t=1

R(S∗;ψµv)−R(Sπt ;ψµv),

where S∗ = argmaxS⊂{1,...,N},|S|≤K R(S;ψµv) maximizes the expected reward of the clairvoyant
and v = {v0d, v1, . . . , vN} is the ground truth attraction parameter set.

4 Delayed MNL Bandit (DEMBA) Algorithm

In this section, we introduce the Delayed MNL Bandit (DEMBA) algorithm. DEMBA leverages
an epoch-based learning method, where epochs are explicitly defined by immediate no-purchase
decisions. Specifically, when a no-purchase decision is made by the customer, the current epoch
is closed, and a new one begins. Throughout each epoch, customer selections are observed, and
parameter updates occur upon encountering a no-purchase outcome.

Our approach adopts the principle of optimism in the face of uncertainty [Auer et al., 2002] for
parameter estimation, generating optimistic estimations using upper confidence bounds for product
attraction parameters and a lower confidence bound for the no-purchase option. This results in an
optimistic revenue function, guiding decision-making under uncertainty by balancing exploration and
exploitation.
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We build our optimistic estimates on biased observations. The total observed preference given to
product i until epoch τ is denoted as ṽi,τ and can be calculated as

ṽi,τ =

tend
τ∑
s=1

oi,s,tend
τ
,

where τ is the current epoch and tendτ is the last period of epoch τ .

We count how many times a particular product i is offered in the assortment until epoch τ using the
set Eτ (i) which is the set of epochs during which i is offered, i.e. Eτ (i) = {e ≤ τ : i ∈ Se}. Then,
we estimate attraction parameters by

v̂i,τ =
ṽi,τ

|Eτ (i)|
.

v̂i,τ is a biased estimator due to delay and thresholding, i.e. E[v̂i,τ ] ̸= vi. We consider this bias in
our estimation and build our concentration around ψµvi. We state our concentration result in the
following lemma.

Lemma 4.1 With probability at least 1 − O(N−2T−1), for every epoch τ ∈ {1, . . . } and option
i ∈ {0d, 1, . . . , N}, we have

|v̂i,τ − ψµvi| ≤ ∆i,τ ,

where ∆i,τ =
√

(48v̂i,τ+1) log(NT )
|Eτ (i)| + 48 log(NT )+µ

|Eτ (i)| .

Sketch of the proof. Note that v̂i,τ is a biased estimator and defined as

v̂i,τ =
ṽi,τ

|Eτ (i)|
=

∑tend
τ
s=1 oi,s,tend

τ

|Eτ (i)|
,

where |Eτ (i)| is the total number of epochs during which product i is shown to the customer and∑tend
τ
s=1 oi,s,tend

τ
is the total observed sales of product i ̸= 0d or is the total observed delayed no

selections.

We analyze the concentration around ψµvi:

|v̂i,τ − ψµvi| =

∣∣∣∣∣
∑tend

τ
s=1 oi,s,tend

τ

|Eτ (i)|
− ψµvi

∣∣∣∣∣
=

∣∣∣∣∣
∑tend

τ −µ
s=1 ai,sI(ds ≤ µ) +

∑tend
τ

s=tend
τ −µ+1

ai,sI(ds ≤ tendτ − s)

|Eτ (i)|
− ψµvi

∣∣∣∣∣
=

∣∣∣∣∣
∑tend

τ
s=1 ai,sI(ds ≤ µ) +

∑tend
τ

s=tend
τ −µ+1

ai,s
(
I(ds ≤ tendτ − s)− I(ds ≤ µ)

)
|Eτ (i)|

− ψµvi

∣∣∣∣∣
≤

∣∣∣∣∣
∑tend

τ
s=1 ai,sI(ds ≤ µ)

|Eτ (i)|
− ψµvi

∣∣∣∣∣+
∣∣∣∣∣
∑tend

τ

s=tend
τ −µ+1

ai,s
(
1− I(ds ≤ µ)

)
|Eτ (i)|

∣∣∣∣∣, (1)

where the second equality follows from decomposing the observations into those before and after the
threshold, the third equality rearranges the terms, and the last inequality uses the triangle inequality.

5

2296 https://doi.org/10.52202/079017-0075



For the first term in the decomposition (1), we have∣∣∣∣∣
∑tend

τ
s=1 ai,sI(ds ≤ µ)

|Eτ (i)|
− ψµvi

∣∣∣∣∣ =
∣∣∣∣∣
∑tend

τ
s=1 ai,sI(ds ≤ µ)

|Eτ (i)|
− ψµ

∑tend
τ
s=1 ai,s

|Eτ (i)|
+
ψµ
∑tend

τ
s=1 ai,s

|Eτ (i)|
− ψµvi

∣∣∣∣∣
≤

∣∣∣∣∣
∑tend

τ
s=1 ai,sI(ds ≤ µ)

|Eτ (i)|
− ψµ

∑tend
τ
s=1 ai,s

|Eτ (i)|

∣∣∣∣∣+
∣∣∣∣∣ψµ

∑tend
τ
s=1 ai,s

|Eτ (i)|
− ψµvi

∣∣∣∣∣
≤

(a)︷ ︸︸ ︷∣∣∣∣∣
∑tend

τ
s=1 I(ds ≤ µ)

|Eτ (i)|
− ψµ

∣∣∣∣∣+
(b)︷ ︸︸ ︷∣∣∣∣∣

∑tend
τ
s=1 ai,s
|Eτ (i)|

− vi

∣∣∣∣∣ . (2)

We bound the first term (a) using Hoeffding’s inequality:

(a) ≤

√
log(NT )

|Eτ (i)|
. (3)

For part (b), we make use of the Chernoff bound from Theorem A.1 and handle two cases based

on ζ = (vi + 1)
√

6 log(NT )
vi|Eτ (i)| . The detailed proof is provided in Appendix A. The result can be

summarized as follows:

P

(∣∣∣∣∣
∑tend

τ
s=1 ai,s
|Eτ (i)|

− vi

∣∣∣∣∣ ≤
√

48v̂i,τ log(NT )

|Eτ (i)|
+

48 log(NT )

|Eτ (i)|

)
≥ 1− 4

N2T
. (4)

Combining the bounds for both terms, we establish the concentration result stated in Lemma 4.1. □

Using the concentration result for the attraction parameters, we construct upper confidence bounds
for each product at each epoch:

v̄i,τ = v̂i,τ +∆i,τ ,

and for the delayed no-purchase option, we construct a lower confidence bound:

v0d,τ = v̂0d,τ −∆0d,τ ,

where

∆i,τ =

√
(48v̂i,τ + 1) log(NT )

|Eτ (i)|
+

48 log(NT ) + µ

|Eτ (i)|
.

We use the optimistic parameter estimations to construct an optimistic revenue function

R(S; v̄) =
∑
i∈S

ri
v̄i,τ

1 + vod,τ +
∑
j∈S v̄j,τ

.

Our algorithm DEMBA suggests the assortment according to the optimistic revenue function R(S; v̄)
and updates parameters according to feedback received with delay. The pseudocode of DEMBA is
given in Algorithm 1.

Computational complexity. The computational complexity of the DEMBA algorithm involves
several key components. The most intensive step is computing the assortment Sτ by maximizing
the revenue function R(S; v̄). For this step, polynomial-time solutions with O(N2) complexity are
available, as demonstrated by Rusmevichientong et al. [2010] and Davis et al. [2013]. Updating
observed preferences ṽi,τ involves summing over previous observations, with a complexity of
O(N(tstartτ − tendτ )). The process of updating sets Eτ (i) and estimations v̂i,τ and the confidence
bounds adds O(N) operations per epoch. Given that τ ≤ t and t ≤ T , the overall computational
complexity across all rounds T is O(TN2 +NT 2).
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Algorithm 1 Delayed MNL Bandit (DEMBA)
Initialize: t = 0, τ = 0;
while t < T do

Compute Sτ = argmaxS⊂{1,...,N},|S|≤K R(S; v̄);
Offer assortment Sτ ;
Receive feedback;
if at = 0 then {immediate reject}

ṽi,τ =
∑tend

τ
s=1 oi,s,tend

τ
∀i ∈ [N ] ∪ {0d};

Eτ (i) = {e ≤ τ : i ∈ Se} ∀i ∈ [N ] ∪ {0d};
v̂i,τ =

ṽi,τ
|Eτ (i)| ∀i ∈ [N ] ∪ {0d};

v̄i,τ = v̂i,τ +∆i,τ ∀i ∈ [N ];
v0d,τ = v̂0d,τ −∆0d,τ

τ = τ + 1
end if
t = t+ 1

end while

5 Regret Analysis

Our main result is given in the following theorem.

Theorem 5.1 Let πDEMBA be the policy produced by Algorithm 1 using ∆i,τ =√
(48v̂i,τ+1) log(NT )

|Eτ (i)| + 48 log(NT )+µ
|Eτ (i)| . Then, πDEMBA satisfies

Reg(T, πDEMBA) ≤(1 + µ) log(T ) +K
√
73T log(NT ) + 48K log(T )(log(NT ) + µ)

+ 73
√
NT log(NT ) + 48 log2(NT ).

The bound can be further simplified to Õ
(√

NT
)

by omitting logarithmic terms.

Sketch of the proof. The proof of Theorem 5.1 consists of several steps. First, we use the definition of
the optimistic revenue function R(S; v̄) and show that it provides an upper bound on the true revenue
function R(S;ψµv). This is achieved by leveraging Lemma B.1, which ensures that the estimated
attraction parameters are close to their true values with high probability.

We start by expressing the regret in terms of the epochs:

Reg(T, π) = E

[
τ̄∑
τ=1

|Hτ | (R(S∗;ψµv)−R(Sτ ;ψµv))

]
,

where Hτ is the duration of epoch τ . Given that the epoch duration follows a geometric distribution,
we simplify the expected regret using the law of total expectations.

Next, we decompose the regret into two parts: one that occurs with high probability (event ECτ ) and
one that occurs with low probability (event Eτ ):

E[∆Rτ ] = E
[
∆Rτ I(Eτ−1) + ∆Rτ I(ECτ−1)

]
.

We bound the contribution of the low-probability event by (N + 1)P(Eτ − 1), which is small due to
our concentration results.

For the high-probability event, we show that the difference between the optimistic and true revenues
is bounded by ∆i,τ . Applying Lemma B.1, we can then bound the regret for each epoch:

E[∆Rτ ] ≤ (N + 1)P(Eτ − 1) + E

1 + ψµv0d +
∑
j∈Sτ

ψµvj

 (R(Sτ ; v̄τ )−R(Sτ ;ψµv)) I(ECτ−1)

 .
Summing over all epochs and using the properties of the epoch duration, we show that the total regret
is bounded by Õ(

√
NT ). □
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The full detailed proof is provided in Appendix B.

Next, we provide a lower bound result for the regret in the following theorem:

Theorem 5.2 For any policy π, supposeK ≤ N/4, T ≥ 1, and ψµ ∈ (0, 1). There exists a universal
constant c > 0 such that

Reg(T, π) ≥ cmin

{
T,

√
TN

ψµ

}
.

The proof of Theorem 5.2 is deferred to Appendix C. This theorem establishes a lower bound on the
regret, showing that no policy can achieve a better regret rate than Ω(

√
NT ).

Remark 5.3 The effect of the threshold µ in the upper bound appears only in logarithmic terms,
suggesting that the regret increases with larger µ. In contrast, in the lower bound, ψµ appears in the
square root and the denominator, indicating that the regret decreases with larger µ. It is important to
note that µ is determined by business conditions and is typically fixed. We conjecture that the upper
bound is not tight concerning µ, indicating potential areas for future improvement in the analysis.

6 Non-Thresholded Setting: The Patient Learner

In this section, we modify our algorithm for environments that do not apply a threshold for delays.
We refer to the seller in this setting as the patient learner. The patient learner is assumed to have
knowledge of the expected delay. This assumption is consistent with existing literature (see e.g.
Joulani et al. [2013], Blanchet et al. [2024]).

We build our concentration result as follows:

Lemma 6.1 With probability at least 1−O(N−2T−1) we have

|v̂i,τ − vi| ≤

√
48v̂i,τ log(NT )

|Ei(τ)|
+

48 log(NT )

|Ei(τ)|
+

E [ds]

|Ei(τ)|
+

√
6E [ds] log(NT )

|Ei(τ)|
.

The proof is deferred to the Appendix. According to Lemma 6.1, we modify Algorithm 1 by changing
∆i,τ to

∆̃i,τ =

√
48v̂i,τ log(NT )

|Ei(τ)|
+

48 log(NT )

|Ei(τ)|
+

E [ds]

|Ei(τ)|
+

√
6E [ds] log(NT )

|Ei(τ)|
.

We then state the regret result of the modified algorithm:

Theorem 6.2 Let πPA−DEMBA be the policy produced by Algorithm 1 using ∆̃i,τ . πPA−DEMBA

satisfies

Reg(T, πPA−DEMBA) ≤ log(T ) +K
√

48T log(NT )

+ (K + 1)(48 + E [ds] +
√
6E [ds]) log

2(NT ) + 72
√
NT log(NT ).

Remark 6.3 In the non-thresholded setting, the term with ψµ disappears since limµ→∞ ψµ = 1.
This implies that the regret in this setting does not depend on ψµ, providing a potentially tighter
bound compared to the thresholded case. However, new terms involving E [ds] are introduced.
Asymptotically, both the thresholded and non-thresholded regret bounds simplify to Õ(

√
NT ), with

the differences primarily reflected in the constants, and both bounds approach the lower bound.

Remark 6.4 Incorporating the skewness or variance of the delay distribution can improve the regret
upper bound in practice, particularly in the non-thresholded setting. For instance, distributions with
faster decay rates, such as Gaussian distributions, may lead to better regret performance compared
to long-tail distributions. This would involve using techniques like Bernstein-type inequalities or
making assumptions about tail behavior (e.g., sub-exponential tails). However, in the current analysis,
we focus on the expectation of the delay, and further improvements based on skewness are left for
future work. The asymptotic regret bound remains O(

√
NT ), independent of skewness.
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Figure 1: Simulation results of DEMBA algorithm with benchmarks. Top row: geometric delays.
Bottom row: uniform delays. Left: E[ds] = 500, µ = 100; Middle E[ds] = 100, µ = 100; Right:
E[ds] = 100, µ = 500. Results are averaged over 100 independent runs.

7 Experiments

We conducted two sets of experiments to evaluate the performance of our algorithms. Our benchmark
is an explore-then-exploit (EXP) algorithm, which explores by offering random assortments until a
pre-specified time and then offers the optimized assortment based on the collected data. We tuned
the exploration duration of the EXP algorithm and used the three best-performing durations in our
comparisons.

We used N = 10, K = 4 and pi = 1 for all i ∈ {1, . . . , N}. The attraction parameters were set as:

vi =

{
0.25 + ϵ if i ∈ {1, 2, 9, 10}
0.25 otherwise,

where ϵ represents the contrast between products. With this setting the optimal assortment is
{1, 2, 9, 10}.

In the first set of experiments, we tested our algorithm in two different delay settings: geometrically
distributed and uniformly distributed delays. We set ϵ = 0.05 and used three cases in each distribution
with increasing ψµ values: E[ds] = 500, µ = 100; E[ds] = 100, µ = 100; and E[ds] = 100,
µ = 500. The results of this experiment are shown in Figure 1. We observed that the DEMBA
algorithm learns effectively and performs better than our benchmarks in all settings. Learning
becomes more difficult as ψµ decreases due to increased censorship and information loss from
thresholding. With uniform delays, the learning is more challenging due to the heavy tail of the
distribution. The gaps between DEMBA and the benchmarks increase with higher ψµ, suggesting
better utilization of information by DEMBA.

In our second set of experiments, we tested how the contrast parameter ϵ affects learning and how the
PA-DEMBA algorithm performs. We used geometric delays with E[ds] = 100 and µ = 100 for the
first experiment and E[ds] = 100 for the second experiment. The results are shown in Figure 2. On
the left-hand side, we observe that when the number of rounds is low (and thus the amount of learning
is limited), lower contrast values lead to better results. As the number of rounds (and therefore
the amount of learning) increases, as expected, higher contrast simplifies the learning problem, as
indicated by lower regret curves. Furthermore, on ther right hand side, the PA-DEMBA algorithm
demonstrated robust performance, effectively managing the challenges posed by the non-thresholded
setting.
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Figure 2: Left: Performance change of DEMBA algorithm with different contrast levels. Right: PA-
DEMBA and benchmarks with non-thresholded delays. Results are averaged over 100 independent
runs.
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Figure 3: Comparison with MNL-Bandit. Left: no delay; Middle E[ds] = 50; Right: E[ds] = 100.
Results are averaged over 100 independent runs.

In our third set of experiments, we compare DEMBA algorithm and EXP benchmarks with MNL-
Bandit algorihm from Agrawal et al. [2019]. While MNL-Bandit learns customer preferences
similarly to DEMBA, it does not account for potential delays in the feedback. In this experiment, we
considered µ = 500 and we applied a geometric delay distribution with no delay, E[ds] = 50 and
E[ds] = 100. We observed that when there is no delay, the performance of MNL-Bandit and DEMBA
is almost identical. However, as the delay increases, the performance of MNL-Bandit deteriorates,
clearly indicating that it fails to handle delayed feedback.

8 Conclusion

This work provides the first solution and analysis for delayed choice modeling and online assortment
optimization. We introduced two novel algorithms, DEMBA for thresholded feedback settings
and PA-DEMBA for non-thresholded settings, demonstrating their effectiveness through theoretical
guarantees and comprehensive experiments. Our algorithms address the dual challenges of unknown
Multinomial Logit (MNL) parameters and delayed feedback, achieving sub-linear regret bounds.

Lastly, we discuss future work. Our lower bound suggest an improvement on regret by considering
the delay distribution via ψµ. This would require learning the delay distribution itself, adding more
complexity. Moreover, it could be interesting to explore scenarios where no-purchase decisions
are indistinguishable from delayed purchases, such as settings where tracking no purchases is not
possible. Additionally, it would be worthwhile to consider multi-level choice settings where customer
preferences and rewards are revealed to the seller in multiple stages with delays between each stage.
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A Proof of Lemma 4.1

We begin by providing an instrumental theorem that will be useful to establish concentration results.

Theorem A.1 (Theorem 5 of Agrawal et al. [2019]) Consider n i.i.d. geometric random variables
X1, . . . , Xn with parameter p, i.e. for any i

P(Xi = m) = (1− p)mp ∀m = {0, 1, 2, . . . },

and let µ = E(Xi) =
1−p
p ≤ 1 and X̄ = 1

n

∑n
i=1Xi. For any ζ > 0, we have

P(X̄ > (1 + ζ)µ) ≤ exp

(
− nµζ2

2(1 + ζ)(1 + µ)2

)
.

We now provide the proof of Lemma 4.1 that is crucial for our subsequent analysis.

Proof of Lemma 4.1. Note that v̂i,τ is a biased estimator and defined as

v̂i,τ =
ṽi,τ

|Eτ (i)|
=

∑tend
τ
s=1 oi,s,tend

τ

|Eτ (i)|
,

where |Eτ (i)| is the total number of epochs that product i is shown to the customer and
∑tend

τ
s=1 oi,s,tend

τ

is the total observed sales of product i ̸= 0d or is the total observed delayed no selections.

Let t be the current period, i.e. t = tendτ + 1. We have

|v̂i,τ − ψµvi| =

∣∣∣∣∣
∑t−1
s=1 oi,s,t−1

|Eτ (i)|
− ψµvi

∣∣∣∣∣
=

∣∣∣∣∣
∑t−µ−1
s=1 ai,sI(ds ≤ µ) +

∑t−1
s=t−µ ai,sI(ds ≤ t− s)

|Eτ (i)|
− ψµvi

∣∣∣∣∣
=

∣∣∣∣∣
∑t−1
s=1 ai,sI(ds ≤ µ) +

∑t−1
s=t−µ ai,s

(
I(ds ≤ t− s)− I(ds ≤ µ)

)
|Eτ (i)|

− ψµvi

∣∣∣∣∣
≤

∣∣∣∣∣
∑t−1
s=1 ai,sI(ds ≤ µ)

|Eτ (i)|
− ψµvi

∣∣∣∣∣+
∣∣∣∣∣
∑t−1
s=t−µ ai,s

(
1− I(ds ≤ µ)

)
|Eτ (i)|

∣∣∣∣∣, (5)

where the second equality follows from the decomposition of old observations before the threshold
and recent observations, the third equality is rearrangement of the values and the last inequality
follows from triangle inequality.

For the first element of (5), we have∣∣∣∣∣
∑t−1
s=1 ai,sI(ds ≤ µ)

|Eτ (i)|
− ψµvi

∣∣∣∣∣ =
∣∣∣∣∣
∑t−1
s=1 ai,sI(ds ≤ µ)

|Eτ (i)|
−
ψµ
∑t−1
s=1 ai,s

|Eτ (i)|
+
ψµ
∑t−1
s=1 ai,s

|Eτ (i)|
− ψµvi

∣∣∣∣∣
≤

∣∣∣∣∣
∑t−1
s=1 ai,sI(ds ≤ µ)

|Eτ (i)|
−
ψµ
∑t−1
s=1 ai,s

|Eτ (i)|

∣∣∣∣∣+
∣∣∣∣∣ψµ

∑t−1
s=1 ai,s

|Eτ (i)|
− ψµvi

∣∣∣∣∣
≤

(a)︷ ︸︸ ︷∣∣∣∣∣
∑t−1
s=1 I(ds ≤ µ)

|Eτ (i)|
− ψµ

∣∣∣∣∣+
(b)︷ ︸︸ ︷∣∣∣∣∣

∑t−1
s=1 ai,s
|Eτ (i)|

− vi

∣∣∣∣∣ (6)

We have

(a) ≤

√
log(NT )

|Eτ (i)|
, (7)

by Hoeffding’s inequality.

13

2304 https://doi.org/10.52202/079017-0075



For part (b), we make use of the Chernoff bound from Theorem A.1 in two cases according to

ζ = (vi + 1)
√

6 log(NT )
vi|Eτ (i)| .

Case 1 ζ ≤ 1
2 : We have from Theorem A.1

P

(∑t−1
s=1 ai,s
|Eτ (i)|

− vi > ζvi

)
≤ 1

N2T 2
,

P

(∑t−1
s=1 ai,s
|Eτ (i)|

− vi < −ζvi

)
≤ 1

N2T 2
,

P

(∣∣∣∣∣
∑t−1
s=1 ai,s
|Eτ (i)|

− vi

∣∣∣∣∣ > (vi + 1)

√
6vi log(NT )

|Eτ (i)|

)
≤ 2

N2T 2
.

Therefore, we have

P

(∣∣∣∣∣
∑t−1
s=1 ai,s
|Eτ (i)|

− vi

∣∣∣∣∣ >
√

24vi log(NT )

|Eτ (i)|

)
≤ 2

N2T 2
. (8)

We shall generalize the result at 8 in two cases for substituting vi with v̂i,τ in the concentration radius
and upper bounding the new bound utilizing vi.

For v̂i,τ , we have

P(v̂i,τ − vi < −vi
1

2
) ≤ 1

N2T 2
,

hence,

P(2v̂i,τ ≤ vi) ≤
1

N2T 2
.

Combining this with 8, we get

P

(∣∣∣∣∣
∑t−1
s=1 ai,s
|Eτ (i)|

− vi

∣∣∣∣∣ >
√

48v̂i,τ log(NT )

|Eτ (i)|

)
≤ 3

N2T 2
. (9)

For upper bounding 9 using vi, we have

P(v̂i,τ − vi > vi
1

2
) ≤ 1

N2T 2
,

hence

P(
3vi
2

≤ v̂i,τ ) ≤
1

N2T 2
.

Therefore, we conclude

P

(∣∣∣∣∣
∑t−1
s=1 ai,s
|Eτ (i)|

− vi

∣∣∣∣∣ >
√

72vi log(NT )

|Eτ (i)|

)
≤ 3

N2T 2
. (10)

Case 2 ζ > 1
2 : We have 2ζ2 ≥ 1

2 . Let ζ ′ = 2ζ2. We have by Theorem A.1

P

(∣∣∣∣∣
∑t−1
s=1 ai,s
|Eτ (i)|

− vi

∣∣∣∣∣ > ζ ′vi

)
≤ exp

(
− |Eτ (i)|viζ ′2

2(1 + ζ ′)(1 + vi)2

)
≤ exp

(
−|Eτ (i)|viζ ′

6(1 + vi)2

)
,
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substituting the value of ζ ′, we get

P

(∣∣∣∣∣
∑t−1
s=1 ai,s
|Eτ (i)|

− vi

∣∣∣∣∣ > 48 log(NT )

|Eτ (i)|

)
≤ 1

N2T 2
. (11)

Combining 9 and 11, and applying union bound we have

P

(∣∣∣∣∣
∑t−1
s=1 ai,s
|Eτ (i)|

− vi

∣∣∣∣∣ ≤
√

48v̂i,τ log(NT )

|Eτ (i)|
+

48 log(NT )

|Eτ (i)|

)
≥ 1− 4

N2T
.

Additionally, combining 9, 10 and 11, and applying union bound we have

P

(∣∣∣∣∣
∑t−1
s=1 ai,s
|Eτ (i)|

− vi

∣∣∣∣∣ >
√

72vi log(NT )

|Eτ (i)|
+

48 log(NT )

|Eτ (i)|

)
(12)

≥ P

(∣∣∣∣∣
∑t−1
s=1 ai,s
|Eτ (i)|

− vi

∣∣∣∣∣ ≤
√

48v̂i,τ log(NT )

|Eτ (i)|
+

48 log(NT )

|Eτ (i)|

)
≥ 1− 4

N2T
. (13)

We can bound the second element of (1) as∣∣∣∣∣
∑t−1
s=t−µ ai,s

(
1− I(ds ≤ µ)

)
|Eτ (i)|

∣∣∣∣∣ ≤ µ

|Eτ (i)|
. (14)

Combining (7), (12) and (14) gives the result.

□

B Proof of Theorem 5.1

We begin with establishing a key result that will be instrumental in our main proof.

Lemma B.1 Let S∗ represent the optimal assortment when the MNL parameters are given by v.
Also, let Sτ denote the assortment applied by the policy at epoch τ . For any parameter set w distinct
from v the following hold.

i. If vi ≤ wi for all i ∈ 1, . . . , N , and v0d ≥ w0d, then R(S∗;w) ≥ R(S∗; v).

ii. If vi ≤ wi for all i ∈ 1, . . . , N , and v0d = w0d, then R(Sτ ;w) − R(Sτ ; v) ≤∑
i∈Se

(wi−vi)
1+v0d+

∑
j∈Se

vj
.

Proof of Lemma B.1. Note that the proof of Part i. mostly resembles Lemma A.3 in Agrawal et al.
[2019], and we write the whole proof here for being self-contained.

Proof of Part i. Let vj be identical to v except for the jth element, which is increased to wj . We aim
to show that for any j ∈ S∗, if vj is increased to wj , then R(S∗; vj) ≥ R(S∗; v). This suffices to
prove R(S∗;w) ≥ R(S∗; v).

Define T :=
∑
i∈S∗\j rivi and V := 1+

∑
i∈S∗\j vi. If there exists a j ∈ S∗ such that rj < R(S∗),

removing product j from the assortment yields higher expected revenue, contradicting the optimality
of S∗. Therefore, we have

rj ≥ R(S∗; v)

=

∑
i∈S∗ rivi

1 +
∑
i∈S∗ vi

=

∑
i∈S∗\j rivi + rjvj

1 +
∑
i∈S∗\j vi + vj

=
T + rjvj
V + vj

.
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for all j ∈ S∗. Rearranging terms, we get

rjV ≥ T. (15)

To have R(S∗; vj) ≥ R(S∗; v), we need to show that

T + rjwj
V + wj

≥ T + rjvj
V + vj

,

which is equivalent to

Tvj + rjV wj ≥ Twj + rjV vj .

Rearranging terms, we get

rjV (wj − vj) ≥ T (wj − vj),

which holds thanks to (15). Moreover, the case for i = 0d holds trivially which concludes our proof.

Proof of Part ii. We have

R(Sτ ;w)−R(Sτ ; v) =
∑
i∈Se

ri
wi

1 + v0d +
∑
j∈Se

wj
−
∑
i∈Se

ri
vi

1 + v0d +
∑
j∈Se

vj

≤
∑
i∈Se

ri
wi

1 + v0d +
∑
j∈Se

wj
−
∑
i∈Se

ri
vi

1 + v0d +
∑
j∈Se

wj

=

∑
i∈Se

ri(wi − vi)(
1 + v0d +

∑
j∈Se

wj

)
≤

∑
i∈Se

(wi − vi)

1 + v0d +
∑
j∈Se

vj
,

where the second inequality follows from ri ≤ 1, ∀i ∈ [N ].

□

Now, we provide the proof of Theorem 5.1.

Proof of Theorem 5.1. We have

R(Sτ ; v̄τ ) ≥ R(S∗; v̄τ ) ≥ R(S∗;ψµv), (16)

where the first inequality holds thanks to the definition of Sτ and the second inequality follows from
Lemma B.1 with probability at least 1−O(N−1T−1).

We have

Reg(T, π) = E

[
τ̄∑
τ=1

|Hτ | (R(S∗;ψµv)−R(Sτ ;ψµv))

]
,

where Hτ is the duration of epoch τ and |Hτ | ∼ Geom( 1
1+ψµv0d+

∑
j∈Sτ

ψµvj
), then E[|Hτ | |

Sτ ] = 1 + ψµv0d +
∑
j∈Sτ

ψµvj . Since Sτ is determined by the history of policy(Fτ−1), we have
E[|Hτ | | Fτ−1] = 1 + ψµv0d +

∑
j∈Sτ

ψµvj . Therefore the regret is equal to

Reg(T, π) = E

[
τ̄∑
τ=1

E [|Hτ | (R(S∗;ψµv)−R(Sτ ;ψµv)) | Fτ−1]

]
,

and by the law of total expectations

Reg(T, π) = E

 τ̄∑
τ=1

1 + ψµv0d +
∑
j∈Sτ

ψµvj

 (R(S∗;ψµv)−R(Sτ ;ψµv))

 .
16
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Let the epoch based regret be ∆Rτ , we can write it as

∆Rτ =

1 + ψµv0d +
∑
j∈Sτ

ψµvj

 (R(S∗;ψµv)−R(Sτ ;ψµv)) ,

then the regret can be written in the form of

Reg(T, π) = E

[
τ̄∑
τ=1

∆Rτ

]
.

We define event E , for all τ as

Eτ :=

N⋃
i=1

{|vi,τ − ψµvi| > ∆τ} ∪
{
|ψµv0d − v0d,τ | > ∆τ

}
.

The event Eτ is a low probability event. We will analyze the regret according to the event separately:

E[∆Rτ ] = E
[
∆Rτ I(Eτ−1) + ∆Rτ I(ECτ−1)

]
.

We have ∆Rτ ≤ N + 1 and hence

E[∆Rτ ] ≤ (N + 1)P(Eτ−1) + E
[
∆Rτ I(ECτ−1)

]
.

We have by (16) that

E[∆Rτ ] ≤ (N + 1)P(Eτ−1) + E

1 + ψµv0d +
∑
j∈Sτ

ψµvj

 (Rτ (Sτ ; v̄τ )−R(Sτ ;ψµv)) I(ECτ−1)

 .
Then, by Lemma B.1 we have1 + ψµv0d +

∑
j∈Sτ

ψµvj

(R(Sτ ; v̄τ )−R(Sτ ;ψµv)
)
I(ECτ−1)

≤

1 + ψµv0d +
∑
j∈Sτ

ψµvj

(R(Sτ ; v̄τ )−R(Sτ ;ψµv)
)

=

1 + ψµv0d +
∑
j∈Sτ

ψµvj

( ∑
i∈Sτ

riv̄i,τ

1 + v0d +
∑
j∈Sτ

vj
−

∑
i∈Sτ

riv̄i,τ

1 + ψµv0d +
∑
j∈Sτ

vj

+

∑
i∈Sτ

riv̄i,τ

1 + ψµv0d +
∑
j∈Sτ

vj
−

∑
i∈Sτ

riψµvi

1 + ψµv0d +
∑
j∈Sτ

ψµvj

)

≤

1 + ψµv0d +
∑
j∈Sτ

ψµvj

( ∑
i∈Sτ

riv̄i,τ (ψµv0d − v0d)(
1 + v0d +

∑
j∈Sτ

vj
)(
1 + ψµv0d +

∑
j∈Sτ

vj
) + ∑

i∈Sτ
ri(v̄i,τ − ψµvi)

1 + ψµv0d +
∑
j∈Sτ

vj

)

≤

1 + ψµv0d +
∑
j∈Sτ

ψµvj

( K(ψµv0d − v0d)(
1 + v0d +

∑
j∈Sτ

vj
)(
1 + ψµv0d +

∑
j∈Sτ

vj
) + ∑

i∈Sτ
(v̄i,τ − ψµvi)

1 + ψµv0d +
∑
j∈Sτ

vj

)

≤

1 + ψµv0d +
∑
j∈Sτ

ψµvj

( K(ψµv0d − v0d)

1 + ψµv0d +
∑
j∈Sτ

ψµvj
+

∑
i∈Sτ

(v̄i,τ − ψµvi)

1 + ψµv0d +
∑
j∈Sτ

ψµvj

)

= K(ψµv0d − v0d) +
∑
i∈Sτ

(v̄i,τ − ψµvi,τ ).
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Let Ei be the number of periods that the product i is offered. Then, the regret can be written as

Reg(T, π) ≤ E

[
τ̄∑
τ=1

(
(N + 1)P(Eτ−1) +K∆0d,τ +

∑
i∈Sτ

∆i,τ

)]

≤ E

[
τ̄∑
τ=1

(
N + 1

NT 2
+K

√
(72v0d + 1) log(NT )

τ
+

48K(log(NT ) + µ)

τ

+
∑
i∈Sτ

(√
(72vi + 1) log(NT )

|Eτ (i)|
+

48 log(NT ) + µ

|Eτ (i)|

))]

≤ log(T ) +K
√
73T log(NT ) + 48K log(T )(log(NT ) + µ) + 73E

[
N∑
i=1

√
viEi log(NT )

]
+ 48 log2(NT ) + µ log(T )

≤ log(T ) +K
√
73T log(NT ) + 48K log(T )(log(NT ) + µ) + 73

N∑
i=1

√
viE[Ei] log(NT )

+ 48 log2(NT ) + µ log(T ),

where the third inequality holds due to τ̄ ≤ T , Ei ≤ T and the fourth inequality holds due to Jensen’s
inequality.

Since,
∑N
i=1 viE[Ei] ≤ T , we conclude

Reg(T, π) ≤ log(T ) +K
√
73T log(NT ) + 48K log(T )(log(NT ) + µ)

+ 73
√
NT log(NT ) + 48 log2(NT ) + µ log(T ).

□

C Proof of Theorem 5.2

Before giving the proof of Theorem 5.2, we first give an instrumental Lemma in the main proof and
its proof.

Lemma C.1 Let P and Q be categorical distributions with PP (X = i) = pi and PQ(X = i) = qi
where pi = qi + ϵi for all i = 1, . . . , I . Also, let the selected option be observed with bias ψµ. The
Kullback-Leibler divergence between P and Q, denoted by DKL(P ∥ Q), is given by

DKL(P ∥ Q) =

I∑
i=0

ψµϵ
2
i

qi
.

Proof of Lemma C.1. We have

DKL(P ∥ Q) =

I∑
i=0

ψµ(qi + ϵi) log

(
ψµ(qi + ϵi)

ψµqi

)

≤
I∑
i=0

ψµ(qi + ϵi)
ϵi
qi

=

I∑
i=0

ψµϵ
2
i

qi
,

where the inequality follows since log(1 + x) ≤ x for any x > −1 and the last equality holds since∑I
i=0 ϵi = 0.

□
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Proof of Theorem 5.2. We set pi = 1 for all i ∈ [N ]. Let S be a subset of N with |S| = K. For
attraction parameters, we set v0 = 1, v0d arbitrary in [0, 1], vi = (1 + ϵ)/K for i ∈ S and vi = 1/K
otherwise.

We denote all subsets of product set [N ] of size K as SK . We have

max
S∈SK

R(S) = R(S∗) =
1 + ϵ

2 + v0d + ϵ
.

We employ the neighboring argument for assortment sets as described in Chen and Wang [2018]. For
any arbitrary assortment St, we have

R(St) =
1 + (1− δ)ϵ

2 + v0d + (1− δ)ϵ
,

where δ is a measure of discrepancy from the optimal set S, i.e. δ := 1− |St∩S|
K .

Then, we have

R(S∗)−R(St) =
1 + ϵ

2 + v0d + ϵ
− 1 + (1− δ)ϵ

2 + v0d + (1− δ)ϵ

=
δϵ+ δϵv0d

(2 + v0d + ϵ)(2 + v0d + (1− δ)ϵ)

≥ δϵ (1 + v0d)

16
.

For any arbitrary subset St of |St| ≤ K, we can find S̃t ∈ SK such that St ⊆ S̃t. We define
Ñi :=

∑T
t=1 1(i ∈ S̃t). We have

max
S∈SK

T∑
t=1

ES [R(S)−R(St)] (17)

≥ max
S∈SK

T∑
t=1

ES
[
R(S)−R(S̃t)

]
(18)

≥ 1

|SK |
∑
S∈SK

T∑
t=1

ES
[
R(S)−R(S̃t)

]
(19)

≥ 1

16|SK |
∑
S∈SK

∑
i/∈S

ES
[
Ñi

] ϵ

K
(20)

=
ϵ

16

T − 1

|SK |
∑
S∈SK

∑
i∈S

ES
[
Ñi

]
K

 . (21)

Let S(i)
K−1 be all subsets of [N ] of size K − 1 that do not include i. We have

1

K|SK |
∑
S∈SK

∑
i∈S

ES1∪S∗
2

[
Ñi

]
=

1

K|SK |

N∑
i=1

∑
S∈SK :i∈S

ES
[
Ñi

]

=
1

K|SK |

N∑
i=1

∑
S′∈S(i)

K−1

ES′∪{i}

[
Ñi

]
. (22)

We define probability measures P and Q through parameterizations S′ and S′ ∪ {i} respec-
tively. We denote Total Variation(TV) distance between two probability measures as TV (P,Q) :=

supA |P (A)−Q(A)| and Kullback-Leibler (KL) divergence as DKL(P ∥ Q). We have 0 ≤ Ñi ≤ T
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and

|EP [Ñi]− EQ[Ñi]| ≤
T∑
j=0

j
∣∣∣P (Ñi = j)−Q(Ñi = j)

∣∣∣
≤ T

T∑
j=0

∣∣∣P (Ñi = j)−Q(Ñi = j)
∣∣∣

≤ T · TV (P,Q)

≤ T ·
√

1

2
DKL(P ∥ Q), (23)

where the last inequality follows from Pinsker’s Inequality.

We use (23) in (22) and we get

1

K|SK |
∑
S∈SK

∑
i∈S

ES
[
Ñi

]

≤ 1

K|SK |

N∑
i=1

∑
S′∈S(i)

K−1

(
ES′

[
Ñi

]
+ T ·

√
1

2
DKL(PS′ ∥ PS′∪{i})

)
. (24)

For the first element of (24), we have

1

K|SK |

N∑
i=1

∑
S′∈S(i)

K−1

ES′

[
Ñi

]
=

1

K|SK |
∑

S′∈SK−1

∑
i/∈S′

ES′

[
Ñi

]
(25)

≤ 1

K|SK |
∑

S′∈SK−1

N∑
i=1

ES′

[
Ñi

]
(26)

=
|SK−1|
K|SK |

TK (27)

=
TK

N −K + 1
(28)

≤ T

3
, (29)

where the last inequality follows from K ≤ N/4.

For the second element of (24), we have that

T

K|SK |

N∑
i=1

∑
S′∈S(i)

K−1

√
1

2
DKL(PS′ ∥ PS′∪{i}) (30)

≤ T |SK−1|
K|SK |

N∑
i=1

max
S′∈S(i)

K−1

√
1

2
DKL(PS′ ∥ PS′∪{i}) (31)

=
T

N −K + 1

N∑
i=1

max
S′∈S(i)

K−1

√
1

2
DKL(PS′ ∥ PS′∪{i}) (32)

≤ max
S′∈SK−1

T

√
1

2(N −K + 1)

∑
i/∈S′

DKL(PS′ ∥ PS′∪{i}) (33)

where the first inequality is due to Hölder’s inequality and the second inequality follows from Jansen’s
inequality.
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We have DKL(PS′(·|St) ∥ PS′∪{i}(·|St)) = 0 for i /∈ St. For analyzing i ∈ St, we define
K ′ = |St| ≤ K, J := |St ∩ S′| ≤ K − 1 and a = 1 + v0d +

K′

K .

We have

|p0 − q0| =
∣∣∣∣ 1

a+ Jϵ/K
− 1

a+ (J + 1)ϵ/K

∣∣∣∣
=

ϵ

K(a2 + aJϵ/K + a(J + 1)ϵ/K + J(J + 1)ϵ2/K2)

≤ ϵ

K
;

|p0d − q0d| = v0d

∣∣∣∣ 1

a+ Jϵ/K
− 1

a+ (J + 1)ϵ/K

∣∣∣∣
=

v0dϵ

K(a2 + aJϵ/K + a(J + 1)ϵ/K + J(J + 1)ϵ2/K2)

≤ v0dϵ

K
;

|pj − qj | ≤
1 + ϵ

K

∣∣∣∣ 1

a+ Jϵ/K
− 1

a+ (J + 1)ϵ/K

∣∣∣∣
=

ϵ+ ϵ2

K2(a2 + aJϵ/K + a(J + 1)ϵ/K + J(J + 1)ϵ2/K2)

≤ 2ϵ

K2
for 1 ≤ j ≤ N and j ̸= i;

and

|pi − qi| ≤
1

K

∣∣∣∣ 1

a+ Jϵ/K
− 1

a+ (J + 1)ϵ/K

∣∣∣∣+ ϵ

K

1

a+ Jϵ/K

≤ ϵ

K2
+

ϵ

K

≤ 2ϵ

K
.

We also have

q0 =
1

a+ (J + 1)ϵ/K
≥ 1

3 + ϵ
≥ 1

3 + 1/2
≥ 1

4
,

and

qj =
1 + ϵ

K(a+ (J + 1)ϵ/K)
≥ 1 + ϵ

4K
≥ 1

4K
.

Using these with Lemma C.1, we get

DKL(PS′(·|St) ∥ PS′∪{i}(·|St)) ≤ ψµ

(
4ϵ2

K2
+

4v20dϵ
2

K2
+

4K · J · 4ϵ2

K4
+

4K · 4ϵ2

K2

)
≤ ψµ

(
8ϵ2

K2
+

16ϵ21
K2

+
16ϵ21
K

)
≤ 40ψµϵ

2
1

K
.
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Integrating this into (33), we obtain

max
S′∈SK−1

T

√
1

2(N −K + 1)

∑
i/∈S′

DKL(PS′ ∥ PS′∪{i}) (34)

≤ max
S′∈SK−1

T

√
1

2(N −K + 1)

∑
i/∈S′

ES′ [Ñi]
40ψµϵ2

K
(35)

≤ T

√√√√ 1

2(N −K + 1)

40ψµϵ2

K

N∑
i=1

ES′ [Ñi] (36)

≤ T

√
1

2(N −K + 1)

40ψµϵ2

K
TK. (37)

For the final bound, we have

max
S∈SK

T∑
t=1

ES [R(S)−R(St)]

≥ ϵ

16

T − 1

|SK |
∑
S∈SK

∑
i∈S

ES
[
Ñi

]
K

 (38)

≥ ϵ

16

(
T − T

3
− T

√
1

2(N −K + 1)

40ψµϵ2

K
TK

)
(39)

(40)

where (38) follows from (21), (39) follows from (29) and (37).

Setting ϵ1 = min{
√
N/ψµT , 0.5} gives the final bound.

□

D Proof of Theorem 6.2

We first provide an instrumental theorem that we will use to establish concentration results.

Theorem D.1 (Theorem 4.4 of Mitzenmacher and Upfal [2017]) LetX1, . . . , Xn be independent
Poisson trials such that P(Xi = 1) = pi. Let X =

∑n
i=1Xi. Then, for 0 < δ < 1:

P(X ≥ (1 + δ)E[X]) ≤ exp(−E[X]δ2/3).

Proof of Lemma 6.1.

We have

|v̂i,τ − vi| =

∣∣∣∣∣
∑t−1
s=1 oi,s,t−1

|Ei(τ)|
− vi

∣∣∣∣∣
=

∣∣∣∣∣
∑t−1
s=1 ai,sI(ds ≤ t− s)

|Ei(τ)|
− vi

∣∣∣∣∣
=

∣∣∣∣∣
∑t−1
s=1 ai,s −

∑t−1
s=1 ai,sI(ds > t− s)

|Ei(τ)|
− vi

∣∣∣∣∣
≤

∣∣∣∣∣
∑t−1
s=1 ai,s
|Ei(τ)|

− vi

∣∣∣∣∣+
∣∣∣∣∣
∑t−1
s=1 I(ds > t− s)

|Ei(τ)|

∣∣∣∣∣. (41)
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The derivation of the bound for the first element of (41) parallels that of Lemma 4.1, thus, we omit
the analysis, yielding∣∣∣∣∣

∑t−1
s=1 ai,s
|Ei(τ)|

− vi

∣∣∣∣∣ ≤
√

48v̂i,τ log(NT )

|Ei(τ)|
+

48 log(NT )

|Ei(τ)|
, (42)

with probability at least 1− 4
N2T .

For the second element of (41), we first bound the expected number of unobserved feedback until
time t. We have

E

[
t−1∑
s=1

I(ds > t− s)

]
=

t−1∑
s=1

P(ds > t− s) =

t−1∑
n=1

P(dt−n > n)

≤
∞∑
n=0

P(d1 > n) =

∞∑
n=0

∞∑
m=n+1

P(d1 = m)

=

∞∑
m=0

m−1∑
n=0

P(d1 = m) =

∞∑
m=0

m · P(d1 = m)

= E[ds]. (43)

Then, we have ∣∣∣∣∣
∑t−1
s=1 I(ds > t− s)

|Ei(τ)|

∣∣∣∣∣ =
∑t−1
s=1 I(ds > t− s)

|Ei(τ)|
(44)

≤
(1 + δ)E

[∑t−1
s=1 I(ds > t− s)

]
|Ei(τ)|

(45)

≤ (1 + δ)E [ds]

|Ei(τ)|
(46)

≤ E [ds]

|Ei(τ)|
+

√
6E [ds] log(NT )

|Ei(τ)|
(47)

where the first inequality follows by Theorem D.1 with probability at least 1 − 1
N2T 2 by setting

δ =
√

6 log(NT )
E[ds] and the second inequality follows from 43.

Combining 42 and 47 gives the result.

□

Proof of Theorem 6.2.

We will proceed similarly to the proof of Theorem 5.1, but we provide a complete proof here for
clarity and completeness.

We have

R(Sτ ; v̄τ ) ≥ R(S∗; v̄τ ) ≥ R(S∗; v), (48)

where the first inequality holds thanks to the definition of Sτ and the second inequality follows from
Lemma B.1 with probability at least 1−O(N−1T−1).

Similar to the proof of Theorem 5.1, we can write

Reg(T, π) = E

 τ̄∑
τ=1

1 + v0d +
∑
j∈Sτ

vj

 (R(S∗; v)−R(Sτ ; v))

 .
And defining the epoch based regret be ∆Rτ , we can write it as

∆Rτ =

1 + v0d +
∑
j∈Sτ

vj

 (R(S∗; v)−R(Sτ ; v)) ,
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which will lead to

Reg(T, π) = E

[
τ̄∑
τ=1

∆Rτ

]
.

We define event E , for all τ as

Eτ :=

N⋃
i=1

{|vi,τ − vi| > ∆τ} ∪
{
|v0d − v0d,τ | > ∆τ

}
.

Conditioning on the event and by (48), we can write

E[∆Rτ ] ≤ (N + 1)P(Eτ−1) + E

1 + v0d +
∑
j∈Sτ

vj

 (Rτ (Sτ ; v̄τ )−R(Sτ ; v)) I(ECτ−1)

 .

Then, by Lemma B.1 we have

1 + v0d +
∑
j∈Sτ

vj

(R(Sτ ; v̄τ )−R(Sτ ; v)
)
I(ECτ−1)

≤

1 + v0d +
∑
j∈Sτ

vj

(R(Sτ ; v̄τ )−R(Sτ ; v)
)

=

1 + v0d +
∑
j∈Sτ

vj

( ∑
i∈Sτ

riv̄i,τ

1 + v0d +
∑
j∈Sτ

vj
−

∑
i∈Sτ

riv̄i,τ

1 + v0d +
∑
j∈Sτ

vj

+

∑
i∈Sτ

riv̄i,τ

1 + v0d +
∑
j∈Sτ

vj
−

∑
i∈Sτ

rivi

1 + v0d +
∑
j∈Sτ

vj

)

≤

1 + v0d +
∑
j∈Sτ

vj

( ∑
i∈Sτ

riv̄i,τ (v0d − v0d)(
1 + v0d +

∑
j∈Sτ

vj
)(
1 + v0d +

∑
j∈Sτ

vj
) + ∑

i∈Sτ
ri(v̄i,τ − vi)

1 + v0d +
∑
j∈Sτ

vj

)

≤

1 + v0d +
∑
j∈Sτ

vj

( K(v0d − v0d)(
1 + v0d +

∑
j∈Sτ

vj
)(
1 + v0d +

∑
j∈Sτ

vj
) + ∑

i∈Sτ
(v̄i,τ − vi)

1 + v0d +
∑
j∈Sτ

vj

)

≤

1 + v0d +
∑
j∈Sτ

vj

( K(v0d − v0d)

1 + v0d +
∑
j∈Sτ

vj
+

∑
i∈Sτ

(v̄i,τ − vi)

1 + v0d +
∑
j∈Sτ

vj

)

= K(v0d − v0d) +
∑
i∈Sτ

(v̄i,τ − vi,τ ).
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Let Ei be the number of periods that the product i is offered. Then, the regret can be written as

Reg(T, π) ≤ E

[
τ̄∑
τ=1

(
(N + 1)P(Eτ−1) +K∆̃0d,τ +

∑
i∈Sτ

∆̃i,τ

)]

≤ E

[
τ̄∑
τ=1

(
N + 1

NT 2
+K

√
48v̂i,τ log(NT )

|Eτ (i)|
+

48K log(NT )

|Eτ (i)|
+
KE [ds]

|Ei(τ)|
+

√
6E [ds] log(NT )

|Ei(τ)|

+
∑
i∈Sτ

(√
48v̂i,τ log(NT )

|Eτ (i)|
+

48 log(NT )

|Eτ (i)|
+

E [ds]

|Ei(τ)|
+

√
6E [ds] log(NT )

|Ei(τ)|

))]
≤ log(T ) +K

√
48T log(NT ) +K(48 + E [ds] +

√
6E [ds]) log

2(NT )

+ 72E

[
N∑
i=1

√
viEi log(NT )

]
+ (48 + E[ds] +

√
6E [ds]) log

2(NT )

≤ log(T ) +K
√

48T log(NT ) + (K + 1)(48 + E [ds] +
√
6E [ds]) log

2(NT )

+ 72

N∑
i=1

√
viE[Ei] log(NT ),

where the third inequality holds due to τ̄ ≤ T , Ei ≤ T and the fourth inequality holds due to Jensen’s
inequality.

Since,
∑N
i=1 viE[Ei] ≤ T , we conclude

Reg(T, π) ≤ log(T ) +K
√
48T log(NT ) + (K + 1)(48 + E [ds] +

√
6E [ds]) log

2(NT )

+ 72
√
NT log(NT ).

□

E Experimental Details

We numerically evaluate our algorithms over 100 independently generated problem instances, with
error bars representing standard errors in both Figure 1 and Figure 2.

The simulations were conducted on a server equipped with 4 Intel Xeon 6248 2.5GHz CPUs and 377
GB of RAM, running CentOS 7. The simulation code was developed in Python version 3.9.6.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The scripts for all experiments is provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The necessary information is provided in the Experiments section and in the
appendix as well as the scripts for experiments are provided.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are reported and represent standard errors.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information provided in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed. The main application of
the presented work is theoretical for sequential decision making.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: the paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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