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Abstract

While in-context learning is commonly associated with causal language models,
such as GPT, we demonstrate that this capability also ‘emerges’ in masked language
models. Through an embarrassingly simple inference technique, we enable an
existing masked model, DeBERTa, to perform generative tasks without additional
training or architectural changes. Our evaluation reveals that the masked and
causal language models behave very differently, as they clearly outperform each
other on different categories of tasks. These complementary strengths suggest that
the field’s focus on causal models for in-context learning may be limiting – both
architectures can develop these capabilities, but with distinct advantages; pointing
toward promising hybrid approaches that combine the strengths of both objectives.

1 Introduction

Masked language models used to dominate the field of natural language processing due to their
adaptability across diverse tasks and their superior performance compared to causal language models
(Radford et al., 2018; Devlin et al., 2019). Between 2018 and 2020, the field witnessed a surge in
the development of these models (Devlin et al., 2019; Liu et al., 2019; Lan et al., 2020, inter alia).
However, the field dramatically shifted with GPT-3 and its introduction of in-context learning – the
ability to infer and perform tasks from prompts and examples without any finetuning (Brown et al.,
2020). This capability eliminated the need for task-specific training data and deep-learning expertise,
making such models far more practical for real-world applications. This perceived advantage led many
researchers and practitioners to abandon masked language models in favor of GPT-style architectures.
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Figure 1: The average 1-shot performance across four groups of NLP tasks We compare the
scaling abilities of DeBERTa (four sizes in red) with GPT-3 (eight sizes in blue). Even though these
models rely on different training objectives, they scale in a similar log-linear manner overall. Yet, on
a task-by-task basis, the pretraining methods lead to substantial differences between them.
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Previous studies of ‘emergent’ in-context learning abilities have focused almost exclusively on causal
language models, creating a widespread assumption that this capability is unique to them (Saunshi
et al., 2021; Olsson et al., 2022; Wei et al., 2022; Wang et al., 2023, inter alia). In this paper, we
challenge this assumption by demonstrating that in-context learning can emerge in masked language
models as well. In-context learning is a more general phenomenon and should not be studied with a
singular pretraining objective in mind. Moreover, the assumed inability of masked language models
to perform (generative) in-context learning has rendered them outdated – as explicitly noted by Tay
et al. (2023): “BERT-style models are very restricted in their generative capabilities. Because of the
cumbersomeness of task-specific classification heads, we strongly do not recommend using this class
of autoencoding models moving forward and consider them somewhat deprecated.”

In this paper, we challenge these prevailing assumptions about masked language models (MLMs).
We present empirical evidence showing that DeBERTa, an MLM released just one month after GPT-3,
is equally adept at in-context learning. Our findings suggest that the capacity for in-context learning
is not tied to the training objective, but can be achieved across different types of language models.
To our surprise, we found that DeBERTa does not simply mimic the performance of GPT-3 – the
two model behave very differently – DeBERTa is clearly much better on tasks such as language
understanding, and, on the other hand, much worse on tasks such as closed-book question answering.
This suggests that masked and causal language modeling are two complementary training objectives
and that there is a great potential for a training method that combines the strengths of both objectives.
Finally, scaling (performance improvement with increased size of pretrained language models) is
a crucial feature of modern language models; we demonstrate that MLMs do scale on in-context
learning (Figure 1).

We introduce a simple inference technique that transforms an MLM into a generative model without
any further training. Using publicly available DeBERTa checkpoints, we show that the MLM training
objective not only provides a versatile way of encoding text, but is also competitive in text generation
and text completion ranking. This claim is tested by following the same evaluation suite as GPT-3,
speculating on an ‘alternative reality’ in which a masked language model is the first model reported to
achieve the so-called ‘emergent’ in-context learning abilities. While other masked language models
could potentially demonstrate similar capabilities, we deliberately target DeBERTa because of its
large size and its length-generalization abilities. Ultimately, our goal is to demonstrate that MLMs
can perform in-context learning and that they can be surprisingly good at doing so.

Outline First, Section 2 (Method) describes the inference methods used to evaluate the in-context
learning abilities of an off-the-shelf masked language model. Then Section 3 (DeBERTa) describes
the details of the particular model used in this study. Section 4 (Evaluation) details the evaluation
setup and compares DeBERTa with GPT-3. Finally, Section 5 (Related work) talks about other
relevant work within this topic, and the paper concludes with Section 6 (Conclusion).
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Figure 2: Illustration of the proposed methods for using a masked language model for text
generation and text ranking We show how to adapt a masked language model for in-context-
learning tasks through simple input reformatting, requiring no additional training. LEFT: Text
generation is achieved by 1) appending [MASK] tokens to the input prompt, 2) predicting the next
token for the first mask, and 3) iteratively appending new masks and predicting tokens. RIGHT: A
similar approach is used to retrieve a pseudo-log-likelihood score of a text sequence that can be
used to rank multiple sequences by their individual likelihoods. Both methods maintain the model’s
original architecture while enabling new capabilities through careful input formatting.

2

2559https://doi.org/10.52202/079017-0084



2 Method: text generation and ranking with masked language models

The goal of this article is to reuse an existing pretrained masked language model for (generative)
in-context learning. We achieve this without any additional training or finetuning, our method only
slightly changes the sequence of input tokens, as illustrated in Figure 2. There are two methods used
to solve tasks with in-context learning: text generation where the model completes a given prompt
(e.g. for translation) and ranking where the model chooses an answer from several options (e.g. for
multiple choice questions).

2.1 Text generation

Masked language models are trained on semi-supervised fill-in-the-blanks tasks and so they cannot
be used to generate straight out of the box. One possibility is to interpret these models as Markov
random fields and produce text by Gibbs sampling (Wang and Cho, 2019). However, a simpler and
more consistent way to produce text is to do the familiar left-to-right autoregressive generation – we
could place a [MASK] token next to a text prompt and let the model generate next token by unmasking
the appended token – then, when we repeat this process in a loop, we can generate text in the same
way as causal language models (and apply the same advanced generation techniques).

This straightforward inference scheme would be enough if the pretraining process were designed
with this use case in mind. However, since our goal is to repurpose an existing masked language
model, we have to complicate the method with two modifications that are also illustrated in Figure 2:

1. Masked language models are typically trained with a special end-of-sequence [SEP] token.
This token is always present during pretraining and so we also have to include it as the last
token during inference.

2. However, the addition of this end-of-sequence token creates a problem – it raises the
probability that the masked token should end the sequence (for example with a full stop).
Thus, in order to obtain a less restricted continuation, we include additional [MASK] tokens
to pad the space in front of the end-of-sequence token. Specifically, we use two additional
masks for the DeBERTa models.1 This decision is later ablated in Appendix B.

In the end, this approach gives a probability distribution over the next token prediction, thus we can
use any existing method for searching or sampling an output sequence. We follow GPT-3 and use
beam search with four candidate beams for all generative tasks.

Limitations While this method works with the same quadratic time complexity (in sequence
length), it is slower in practice because it is not possible to cache the intermediate self-attention key
and value vectors. Instead, these have to be recomputed every step due to the bidirectional nature
of the model. While our current implementation prioritizes demonstrating the core capability over
optimization, several promising approaches could address these computational limitations in future
work. For example, using prefix language modeling or selectively updating hidden vectors could
significantly improve efficiency. We leave these optimizations for future work to maintain focus on
establishing the fundamental ability of MLMs to generate text.

2.2 Ranking

Many of the existing tasks for evaluating LLMs can be formulated as classification tasks where
models have to select the correct answer from a number of different options. Brown et al. (2020)
rank the candidate completions based on their estimated conditional log-likelihood, which can be
computed exactly by the chain rule (where w0 ⊕ w1 . . . wk is a completion of a prompt c):

logP(w0 ⊕ w1 . . . wk | c) =
k∑

i=0

logP(wi | c⊕ w0 . . . wi−1) (1)

While this equation matches the training objective of causal language models, it is not suitable for
masked language models because they are not trained to estimate P(wi | c⊕ w0 . . . wi−1). Instead,

1Note that this is not an arbitrary number but it is model-specific – DeBERTa models were pretrained to
unmask spans of masked tokens where the longest allowed spans are three tokens long (He et al., 2021).
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Wang and Cho (2019) proposed to modify Equation (1) to make it more appropriate for BERT-like
models. Salazar et al. (2020) then empirically showed that the resulting pseudo-log-likelihood (PLL)
score can be used to accurately rank text sequences by their likelihood. Specifically, the PLL score is
approximately proportional to the conditional probability of a text sequence and is computed as:

logP(w0 ⊕ w1 . . . wk | c) ∝∼
k∑

i=0

logP(wi | c⊕ w0 . . . wi−1 ⊕ [MASK]⊕ wi+1 . . . wk) (2)

However, this approximation gets very inaccurate when there are strong local dependencies between
tokens. As a counterexample, the estimated likelihood of the multi-token word ‘supercalifragilistic-
expialidocious’ is seven orders of magnitude higher than that of the single-token word ‘super’, which
is clearly an incorrect estimation of the relative frequencies of these words.2

We improve on this behavior by interpolating between the mathematically correct unidirectional
derivation in Equation (1) and the bidirectional approximation in Equation (2). Our approach is to
simply mask two additional tokens in the right context to reduce the effect of local dependencies
while still taking into account the global bidirectional context. This process is illustrated in Figure 2.
We conduct an ablation study of this approach in Appendix C.

Limitations Even though Equations (1) and (2) look similar, the later sum is substantially more
compute intensive when calculated with a transformer architecture – for a token sequence of length k,
the first equation can be computed with passing a single sequence through a language model, while
the second equation needs k sequences to be processed. However, Salazar et al. (2020) showed that
the PLL score can be accurately estimated in a single pass after a short self-supervised finetuning.

2.3 Length generalization

A potentially limiting factor of using BERT-like models is that they are typically pretrained on shorter
sequences than causal language models – arguably because the training of modern causal models
is already optimized for in-context learning, which requires processing of long few-shot prompts.
DeBERTa is not an exception to such pretraining; it was only trained with a relatively short maximum
sequence length of 512 tokens (He et al., 2021). Fortunately, the architecture of DeBERTa can
easily process much longer sequences than seen during training due to its use of relative positional
embeddings with logarithmic buckets (Raffel et al., 2020).
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Figure 3: Length generalization measured with a ‘needle in a haystack’ benchmark The x-axis
indicates the total size of the ‘haystack’ and the y-axis indicates the position of the ‘needle’; the
values show the average exact-match accuracy for a particular configuration. Unfortunately, GPT-3 is
a closed-source model and the original version is not accessible, so we use an open-source replication
of GPT-3, OPT by Zhang et al. (2022), which should perform similarly on this task because of the the
same transformer architecture as GPT-3. In particular, it uses absolute positional encoding, which
strictly limits any model from generalizing to longer inputs than trained on.

2This is because the tokenizer splits the long word into 9 subwords and each of them is assigned an almost
certain likelihood given the bidirectional context. The largest 1.5B DeBERTa estimates the pseudo log-likelihood
of the first word to −2.1 while the second (very common) word has pseudo log-likelihood of −9.6.
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We measure the extent to which DeBERTa generalizes to longer sequences with the ‘needle in a
haystack’ test from RULER (Hsieh et al., 2024). Specifically, in our formulation of this task, a
random 6-digit number (needle) is hidden in a long collection of essays (haystack). We then measure
the exact-match accuracy of retrieving the hidden number given two variables: the total sequence
length and the position of the needle in the haystack (more details about the evaluation setup are
given in Appendix E.1).

The results in Figure 3 demonstrate that DeBERTa generalizes to sequences well beyond its training
length, which is enabled by its relative positional encoding. For comparison, we also show results
from OPT (Zhang et al., 2022), which uses absolute positional encoding like GPT-3. As expected from
models using absolute positional encoding, performance drops sharply beyond the training length.
This comparison highlights the importance of positional encoding choice for length generalization,
independent of whether the model is masked or causal. In practice, this observation means that
DeBERTa should be able to handle as many task demonstrations as models trained with longer
sequences.

3 DeBERTa family of language models

This study uses the largest openly available English masked language model, DeBERTa with 1.5
billion parametrs, and its smaller configurations – 0.1B, 0.4B and 0.9B (He et al., 2021). DeBERTa is
an improved version of a BERT language model (Devlin et al., 2019) that uses an advanced attention
mechanism with relative positional embeddings – apart from being trained on a larger corpus and
with a larger number of training steps.

Training corpus Compared to GPT-3 and modern large language models, DeBERTa was pretrained
on a relatively small and clean text corpus – totalling 78GB of data after deduplication, the corpus is
comprised of the English Wikipedia (12GB), BookCorpus (6GB; Zhu et al., 2015), OpenWebText
(38GB; Gokaslan and Cohen, 2019), and STORIES (31GB; Trinh and Le, 2019). This is almost an
order of magnitude less data than what was used to pretrain GPT-3. Notably, our strong results –
despite this data disparity – could suggest that masked language models are more data-efficient than
causal models for developing in-context learning capabilities. This claim would however need to be
evaluated with a comprehensive study. In comparison, GPT-3 uses 570GB of filtered CommonCrawl,
WebText2 (roughly 26GB), two web-scraped book corpora (roughly 17GB and 76GB), and the
English Wikipedia (roughly 4GB, estimated from Brown et al. (2020)).

Total training compute Interestingly, even though DeBERTa uses a substantially smaller training
corpus, it is trained on more than three times more tokens than GPT-3 (1 trillion compared to 300
billion).3 However, the loss is computed only on 15% of tokens (150 billion) and it is not clear what
would be the effective number of tokens used for pretraining. Nevertheless, the total compute used
for training depends on the number of input tokens and it is roughly 8.0 · 1021 FLOPs for the 1.5B
DeBERTa, and 2.4 · 1021 FLOPs for the 1.3B GPT-3.

Causal conversion for HuggingFace We have converted the officially available DeBERTa check-
point into a HuggingFace (Wolf et al., 2020) implementation of AutoModelForCausalLM (following
the method in Section 2.1), and released it openly at https://hf.co/ltg/deberta-xxlarge-fixed.
The weights of this model are exactly the same as the official release from microsoft/deberta-
v2-xxlarge, but we have fixed some bugs found in the original modeling script in addition to
implementing the text generation abilities.4 Similarly, we have also converted the smaller De-
BERTa models and released them as ltg/deberta-base-fixed, ltg/deberta-large-fixed, and
ltg/deberta-xlarge-fixed.

3This means that DeBERTa was trained on dozens of repetitions of its training corpus, not unlike other
popular masked language models (Devlin et al., 2019; Liu et al., 2019) – suggesting that this type of models
operates under different ‘training laws’ than causal language models (Muennighoff et al., 2023).

4Specifically: 1) incorrect name of the output embedding weights in the checkpoint file, 2) non-functioning
implementation of the enhanced mask decoder (EMD), and 3) missing truncation of the relative positional
indices.
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4 Evaluation

As our goal is to compare two language models released around the same time in 2020 – GPT-3 and
DeBERTa – we replicate the evaluation setup used for GPT-3 (Brown et al., 2020) and apply it to
the latter model. This also means that we follow GPT-3 and divide the tasks into generative ones
(such as machine translation) and into classification tasks (such as BoolQ) – the first group uses the
method described in Section 2.1 and the second type of task uses the ranking described in Section 2.2.
Generation is performed with beam search (4 candidate beams), and ranking uses the modified
PLL scores (and the normalized unconditional probability of completions P(completion | context)

P(completion | answer context)
for ARC and OpenBookQA), again replicating the choices for GPT-3). We also use the exact same
prompt templates, with the exception of the machine translation task – its template did not produce
any meaningful output, and so we decided to use the simple prompt template from Garcia et al. (2023)
instead. More details on the evaluation setup can be found in Appendix E. Note that using prompts
optimized for GPT-3 is slightly unfair to all other models, as prompting has a strong influence on
performance (Gonen et al., 2023), but we believe that it makes the results more convincing than if we
were to do extensive prompt engineering.

To show the strengths and weaknesses of DeBERTa in (generative) in-context learning, we evaluate it
on four groups of tasks and compare it to the results from Brown et al. (2020). The four groups are
language understanding (SuperGLUE), language modeling (text completion and Winograd-like tasks),
machine translation, and question answering (closed-book question answering and commonsense
reasoning). We detail each of these groups of tasks below.

Before looking into the details of each group, we show the overall aggregated scores for each group
in Figure 1 and Figure 4. The first figure shows how the performance of both models scales with their
size, while the latter figure compares the in-context learning abilities of the two language models. We
also provide a qualitative evaluation of text generation in Appendix A and full results in Appendix F.
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Figure 4: The performance improvement with increased number of in-context examples We
compare the in-context learning ability of 1.5B DeBERTa (in red) with 1.3B GPT-3 (in blue) using
prompts without any completed examples (0-shot), prompts with a single randomly sampled gold
sample (1-shot), and prompts with few examples (4 – 64 examples, depending on the task). This
figure demonstrates that a masked language model behaves similarly to a causal language model in
the in-context learning regime. More detailed few-shot evaluation is in Figure 5.

4.1 Language understanding (SuperGLUE)

We use SuperGLUE (Wang et al., 2019) as a popular collection of standard NLP tasks, allowing us to
evaluate the performance on different aspects of natural language understanding.

In total, this benchmark consists of eight datasets, selected to be difficult for the contemporary
(finetuned) language models. The Boolean Questions dataset is a yes/no reading comprehension
dataset evaluated with accuracy (BoolQ; Clark et al., 2019); CommitmentBank is a three-class textual
entailment dataset evaluated with accuracy and F1 score, where the multi-class F1 is computed as
the unweighted average of the F1 per class (CB; de Marneffe et al., 2019); the Choice of Plausible
Alternatives dataset is a causal reasoning task evaluated with accuracy (COPA; Roemmele et al.,
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2011); Multi-Sentence Reading Comprehension is a multiple choice dataset, evaluated with exact-
match (of all answers per question) accuracy and F1α score computed over all flattened answers
(MultiRC; Khashabi et al., 2018); Reading Comprehension with Commonsense Reasoning Dataset is
another reading comprehension dataset, it is evaluated with the exact-match accuracy and token-level
F1 score (ReCoRD; Zhang et al., 2018); the collection of Recognizing Textual Entailment datasets
is a textual entailment task evaluated with accuracy (RTE; Dagan et al., 2006; Bar-Haim et al.,
2006; Giampiccolo et al., 2007); the Word-in-Context dataset is a word sense disambiguation dataset
evaluated with accuracy (WiC; Pilehvar and Camacho-Collados, 2019); and finally, the Winograd
Schema Challenge evaluates coreference resolution capabilities (WSC; Levesque et al., 2012).

Results We show the resulting scores of evaluation with the same prompts as GPT-3 in Table 1 and
Appendix D. DeBERTa clearly outperforms its contemporary and scales much more favorably than
the family of GPT models (Figure 1). Interestingly, the average performance of the 1.5B DeBERTa
gets close to the reported performance of the largest 175B GPT-3 (68.4 vs. 68.9, 1-shot). However,
this average score is still far from the performance of a finetuned DeBERTa, which is more than 20
percentage points higher (He et al., 2021); the average few-shot performance of DeBERTa is slightly
better than a finetuned BERT-large (Devlin et al., 2019; Wang et al., 2019).

Table 1: Natural language understanding results All results in this table are evaluated with
accuracy (higher is better). The table shows the performance of the largest available DeBERTa (1.4
billion parameters) and of a similarly-sized GPT-3 model, the best results are boldfaced. The average
score is calculated over averaged task scores (in case a task uses more than one metric).

BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC Average

0-shot
GPT-3 62.4 19.6 77.0 13.6 84.1 56.0 50.0 61.5 55.9
DeBERTa 80.8 66.1 78.9 6.6 87.1 64.3 50.5 71.2 65.4

1-shot
GPT-3 63.7 48.2 74.0 13.6 83.0 49.5 49.2 62.5 57.8
DeBERTa 82.1 76.1 84.2 15.6 87.4 64.1 50.3 69.6 68.4

few-shot
GPT-3 64.1 69.6 77.0 20.8 83.1 50.9 53.0 49.0 60.0
DeBERTa 82.1 75.0 90.4 16.9 87.4 62.2 50.8 75.0 69.6

4.2 Language modeling, Winograd-style and text completion tasks

The tasks in this category are defined in a familiar language-modeling form and focus on partic-
ularly difficult cases of language modeling, cases that involve commonsense reasoning, language
understanding, and intricate coreference resolution.

In this group, we consider four NLP tasks: HellaSwag is a text completion task where a language
model has to choose the most appropriate multi-word ending, the examples are adversarially filtered
to be difficult for language models but easy for humans (Zellers et al., 2019). StoryCloze consists
of five-sentence-long stories, the goal is to select the best final sentence based on commonsense
knowledge (Mostafazadeh et al., 2016). Winograd is a language-modeling formulation of the WSC
task from SuperGLUE (Levesque et al., 2012). WinoGrande is similar to Winograd in its form, but is
adversarially mined to contain more difficult examples of coreference resolution (Sakaguchi et al.,
2020). We do not include the LAMBADA benchmark (Paperno et al., 2016) here because Brown
et al. (2020) used an unknown preprocessing step that disallows direct comparison with GPT-3.

Results We show the in-context-learning results from this group in Table 2, where we evaluate
the 1.5B DeBERTa with a comparable GPT-3 model. The scores showcase consistently stronger
performance of the masked language model, similarly to the language understanding tasks. One
difference to those tasks is the rate of scaling, which appears to be similar between the two types of
language models (Figure 1).
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Table 2: Results of text completion, language modeling and Winograd-style tasks All tasks are
measured with accuracy, we show the performance of the largest available DeBERTa (1.4 billion
parameters) and of a similarly-sized GPT-3 model, the best results are boldfaced.

HellaSwag StoryCloze Winograd Winogrande Average

0-shot
GPT-3 54.7 73.4 76.9 58.7 65.5
DeBERTa 62.0 83.6 74.0 61.0 70.2

1-shot
GPT-3 53.5 74.2 76.9 59.1 65.9
DeBERTa 62.4 84.6 80.7 63.6 72.8

few-shot
GPT-3 54.9 76.1 76.9 59.1 64.8
DeBERTa 62.5 84.8 85.6 68.8 75.4

4.3 Translation

Translation is a useful benchmark for language models as it evaluates their ability to understand
text in one language and produce fluent text in another language. Even though the performance
on the translation tasks is arguably very dependent on the composition of training data (especially
when we are concerned with monolingual English models), we include translation to demonstrate the
generative performance of masked language models.

To directly compare DeBERTa with GPT-3, we use the same SacreBLEU metric (Post, 2018) and the
same bitexts. Thus, even though there are more recent (and arguably more thought-out) datasets, we
use the French–English pair from the outdated 2014 shared task at the Workshop on Statistical Ma-
chine Translation (WMT14; Bojar et al., 2014), and also the Romanian–English and German–English
pairs from the WMT16 workshop (Bojar et al., 2016). Our approach differs only in using a different
prompt template, as we had to opt for the prompt from Garcia et al. (2023) to get consistent transla-
tions: "{$source_language}: {$source_text}\\n {$target_language}: {$target_text}".

Results The SacreBLEU scores on each language pair are given in Table 3. Unlike in the previous
two task groups, the tables have turned, and the causal language model clearly outperforms the
masked model in all comparisons. We believe that the subpar performance of DeBERTa can be (at
least) in part explained by its relatively small and clean monolingual training corpus (Section 3),
because the performance on this task is highly dependent on the presence of multilingual data in the
corpus (Lin et al., 2022). The rate of improved translation performance with larger scale appears to
be similar between the two models (Figure 1).

Table 3: Machine translation results We report SacreBLEU scores (Post, 2018) with signature
BLEU+case.mixed+numrefs.1+smooth.exp+tok.intl+version.1.2.20 (higher is better). The table
shows the performance of the largest available DeBERTa (1.4 billion parameters) and of a similarly-
sized GPT-3 model, the best results are boldfaced.

DE→EN EN→DE FR→EN EN→FR RO→EN EN→RO Average

0-shot
GPT-3 3.6 2.4 3.6 2.8 3.6 3.1 3.2
DeBERTa 2.4 1.6 1.7 0.3 1.7 0.1 1.3

1-shot
GPT-3 25.8 13.4 27.0 19.3 26.8 10.3 18.8
DeBERTa 23.7 5.4 23.5 9.7 17.7 2.5 13.8

few-shot
GPT-3 30.5 17.7 32.2 26.1 30.1 12.9 24.9
DeBERTa 25.1 6.6 24.5 10.8 18.9 4.1 15.0
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4.4 Closed-book question answering and commonsense reasoning

An important quality of modern-day large language models is their ability to learn and retrieve world
knowledge, and to have a degree of common sense. The final group of tasks attempts to evaluate
these two qualities.

This category of tasks consists of seven datasets in total: Natural Questions (NQs; Kwiatkowski et al.,
2019) and Web Questions (WebQs; Berant et al., 2013) are closed-book question-answering datasets
sourced from natural web queries; while the original datasets are accompanied by relevant articles
that contain the answer, we only ask models a question and then evaluate the exact-match accuracy of
their answers. TriviaQA is a very similar dataset, but based on online quizzes (Joshi et al., 2017).
The next four tasks fall more into a subcategory of commonsense reasoning datasets. The Physical
Interaction: Question Answering dataset evaluates how well a language model is grounded in the real
physical world (PIQA; Bisk et al., 2020). The AI2 Reasoning Challenge is a dataset sourced from
grade-school science questions that evaluates knowledge and reasoning abilities; this task is divided
into ARC-Easy and ARC-Challenge splits, based on their difficulty (Clark et al., 2018). Finally,
OpenBookQA evaluates the understanding of common knowledge (Mihaylov et al., 2018).

Results The question-answering performance is given in Table 4. Apparently, the results of
DeBERTa are substantially worse on closed-book question answering compared to GPT-3. We
believe that this highlights a more general disadvantage of the MLM training objective – the model
can often retrieve world knowledge from the rich bidirectional context during training, not needing to
store it in its learned weights; similar effect has been shown in retrieval-augmented language models
(Samuel et al., 2024). However, the commonsense reasoning abilities are comparable between the two
models. The scaling behavior is again similar between the two models (Figure 1). The same is also
true about the improvement when given more in-context examples, which are especially important
for the tasks evaluated with exact-match accuracy, where the goal is not only to answer correctly but
also to match the expected style and form of the gold answers (Figure 4).

Table 4: Closed-book question answering and commonsense reasoning The first three tasks
are measured with the exact-match accuracy and the rest is measured with classification accuracy.
The table shows the performance of the largest available DeBERTa (1.4 billion parameters) and of a
similarly-sized GPT-3 model, the best results are boldfaced. A detailed description of the evaluation
method is given in Appendix E, full results are in Appendix F.

NQs TriviaQA WebQs PIQA ARC-C ARC-E Open-
BookQA Average

0-shot
GPT-3 4.4 19.7 4.6 75.1 35.5 53.8 46.8 34.4
DeBERTa 0.8 6.9 1.5 72.9 36.5 55.1 45.8 31.4

1-shot
GPT-3 5.4 26.5 9.2 74.4 36.4 55.9 46.4 36.3
DeBERTa 2.6 14.3 5.1 73.0 37.1 55.1 45.7 33.3

few-shot
GPT-3 9.7 32.1 19.6 74.3 36.7 59.1 50.6 40.3
DeBERTa 4.4 17.9 9.9 74.5 39.6 57.7 50.4 36.3

5 Related work

Few-shot finetuning with masked language models While our work demonstrates the emergence
of in-context learning in masked language models, prior research has explored different approaches
to few-shot learning with these architectures. The dominant paradigm has been few-shot finetuning,
where the model’s weights are updated using a small number of examples. Studies by Schick and
Schütze (2021), Gao et al. (2021), and Xia et al. (2022) showed promising results with this approach.
However, these methods require additional training steps with a complicated training objective,
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making them more complex to implement compared to the simple prompting-based in-context
learning demonstrated in our work. Despite the generally lower performance of in-context learning
compared to few-shot finetuning (Liu et al., 2022), its simplicity and immediacy have made it the
preferred choice in many practical applications.

Other large masked language models Our choice of DeBERTa for this study was motivated
by its unique combination of size and capability to handle extended context lengths. While larger
masked language models exist, such as Megatron BERT with 3.9 billion parameters (unfortunately
not publicly available; Shoeybi et al., 2019) and XLM-RoBERTa with 10.7 billion parameters (Goyal
et al., 2021), they have limitations that make them less suitable for studying in-context learning.
Megatron BERT lacks mechanisms for length generalization, which is crucial for processing long
prompts with multiple examples, while XLM-RoBERTa’s multilingual nature and restricted sequence
length of 512 tokens would confound our analysis. DeBERTa’s architecture, particularly its relative
positional embeddings, makes it an ideal candidate for exploring how masked language models scale
with in-context learning.

Hybrid masked-causal models Our empirical findings, particularly the complementary strengths
of masked and causal models demonstrated in Section 4, suggest significant potential in combining
these approaches. Several architectures have already explored this direction, even if inadvertently: T5
(Raffel et al., 2020), BART (Lewis et al., 2020) and GLM (Du et al., 2022) introduced autoregressive
fill-in-the-blank objectives; CM3 developed a causal-mask approach (Aghajanyan et al., 2022); and
PrefixLM implemented a partially bidirectional causal model (Dong et al., 2019; Raffel et al., 2020).
These efforts align with our observations about the distinct advantages of masked and causal objectives.
The recent work by Ding et al. (2024) provides theoretical support for this direction, demonstrating
that prefix language models, which combine aspects of both architectures, are particularly well-suited
for in-context learning.

6 Conclusion

This paper demonstrates that masked language models can be capable in-context learners. We show
that these models – often considered deprecated and limited only to finetuning – can match and
sometimes even exceed the performance of their causal counterparts in this domain. Our evaluation
reveals that masked and causal models exhibit remarkably similar characteristics in terms of overall
performance, scaling behavior, and improvements with additional in-context demonstrations. Most
notably, we validate these capabilities using DeBERTa without any architectural modifications or
additional training. We achieve this through carefully designed inference methods that unlock the
model’s latent generative abilities.

Our findings point to several promising directions for future research. First, DeBERTa’s performance
could likely be enhanced through straightforward improvements such as training on larger and
more diverse corpora, increasing model scale, and extending the pretraining context length. More
fundamentally, the complementary strengths we observed between masked and causal models –
where each architecture excels in different tasks – suggest an exciting opportunity to develop hybrid
approaches that combine the best of both paradigms. Rather than viewing these as competing
architectures, future work might explore how to synthesize their distinct advantages into more capable
and versatile language models.

These results argue for a broader reconsideration of how we approach language model architecture
and training. The field’s recent focus on causal models, while productive, may have prematurely
discounted the potential of alternative approaches that are not limited to unidirectional text processing.
Our work demonstrates that the path forward likely involves embracing architectural diversity rather
than converging on a single dominant paradigm.
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A Examples of text generation

To also give a sense of the quality of the text produced by DeBERTa, we include some examples of
text generation in this section. We use the exact same example prompts that were used in the GPT-3
paper (Brown et al., 2020), to provide a fair estimate of the generative qualities. All text completions
were generated with nucleus sampling (Holtzman et al., 2020).5 We compare the largest DeBERTa
1.5B with OPT 1.3B, an openly available replication of the GPT-3 1.3B (Zhang et al., 2022).

A.1 Learning and using novel words

Based on studies in developmental linguistics (Carey and Bartlett, 1978), this task tests the ability to
understand and productively use new words; specifically using a word in a sentence after seeing it
defined only once. We qualitatively test this ability in a generative one-shot setting, using the prompts
provided below – there, the human-provided prompts are rendered as normal text while the generated
completions are rendered in boldface. The prompts are taken from Brown et al. (2020, Section 3.9.5).

Results Overall, DeBERTa provides more appropriate example sentences than OPT. While the
‘farduddle’ and ‘screeg’ sentences from DeBERTa are not very descriptive, the rest of sentences are
informative and fitting the word definitions. Note how the model tried to invent a plural inflection
of ‘yalubalu’, the suffix ‘-a’ is morphologically plausible, but the stem is fumbled, possibly because
of subword tokenization. The examples generated by OPT are of lesser quality; it either repeats
the definition (in ‘farduddle’), repeats the one-shot example (in ‘yalubalu’) or provides an unfitting
example (in ‘screeg’).

1 A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence
that uses the word whatpu is:↪→

2 We were traveling in Africa and we saw these very cute whatpus.
3

4 To do a "farduddle" means to jump up and down really fast. An example of a sentence
that uses the word farduddle is:↪→

5 I did a farduddle.DeBERTa:

5 I farduddle jumped up and down really fast.OPT:

4 A "yalubalu" is a type of vegetable that looks like a big pumpkin. An example of a
sentence that uses the word yalubalu is:↪→

5 We were in the market and we saw these very big yambolula.DeBERTa:

5 We were traveling in Africa and we saw these yalubalu.OPT:

4 A "Burringo" is a car with very fast acceleration. An example of a sentence that
uses the word Burringo is:↪→

5 We were driving a very fast Burringo.DeBERTa:

5 We saw Burringos all over Africa on this trip.OPT:

4 A "Gigamuru" is a type of Japanese musical instrument. An example of a sentence that
uses the word Gigamuru is:↪→

5 A Japanese musician, who plays the Gigamuru, is very famous.DeBERTa:

5 I was walking down the street and I saw this very cute gigamuru.OPT:

5Using these hyperparameters: top_k=64, top_p=0.9, temperature=0.2.
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4 To "screeg" something is to swing a sword at it. An example of a sentence that uses
the word screeg is:↪→

5 A sword-screeg.DeBERTa:

5 I was screeging at the computer.OPT:

A.2 Correcting English grammar

English grammar correction is another task used for qualitative evaluation of GPT-3. Provided three
demonstrations, the model is given an incorrect English sentence and is tasked to correct it. The
prompts are taken from Brown et al. (2020, Section 3.9.6) and are shown below.

Results While the corrections are not perfect, DeBERTa outputs more sensible completions com-
pared to OPT, similarly to the previous task. A notable correction is in the second example, where
DeBERTa tried to improve the understandability, not only grammar.

1 Poor English input: I eated the purple berries.
2 Good English output: I ate the purple berries.
3 Poor English input: Thank you for picking me as your designer. I’d appreciate it.
4 Good English output: Thank you for choosing me as your designer. I appreciate it.
5 Poor English input: The mentioned changes have done.
6 Good English output: The requested changes have been made.

7 Poor English input: I’d be more than happy to work with you in another project.
8 Good English output: I’d be more than happy to work with you in another project.DeBERTa:

8 Good English output: I’d be more than happy to work with you in another project.OPT:

7 Poor English input: Please provide me with a short brief of the design you’re
looking for and that’d be nice if you could share some examples or project you
did before.

↪→

↪→

8 Good English output: Please provide me with a brief of the design you are looking for
and some examples of your previous work.↪→

DeBERTa:

8 Good English output: I’ll provide you with a brief of the design you’re looking for
and that’d be nice if you could share some examples or project you did before.↪→

OPT:

7 Poor English input: The patient was died.
8 Good English output: The patient has died.DeBERTa:

8 Good English output: The patient was revived.OPT:

7 Poor English input: We think that Leslie likes ourselves.
8 Good English output: We think that we like ourselves.DeBERTa:

8 Good English output: We think that Leslie likes herself.OPT:

7 Poor English input: Janet broke Bill on the finger.
8 Good English output:Janet broke Bill’s finger.DeBERTa:

8 Good English output: Janet broke Bill on the finger.OPT:
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7 Poor English input: Mary arranged for, in St. Louis, John to rent a house cheap.
8 Good English output: Mary arranged for, in St. Louis, John to rent a house.DeBERTa:

8 Good English output: John rented a house cheap.OPT:

B Ablation study of text generation

We empirically evaluate different approaches for text generation with DeBERTa language models.
In particular, we study how many additional mask tokens should be used during autoregressive
generation, and we also compare our approach with previously proposed methods based on Markov-
chain Monte Carlo sampling (Wang and Cho, 2019). For this analysis, we use German-to-English
machine translation as a representative generative task. We evaluate different generation methods
using one-shot prompts (following Section 2.1) and the largest 1.5B DeBERTa model. The translation
quality is measured with SacreBLEU score, using the same signature as in the main experiments.

Results The results shown in Table 5 demonstrate that using additional mask tokens during gen-
eration substantially improves the performance of DeBERTa. This aligns with our hypothesis that
additional masks help to reduce the effect of the end-of-sequence token on the generated text. The
results also show that while adding a fourth mask token still marginally improves the performance,
the gain is negligible compared to using three mask tokens.

We also compare our autoregressive approach with the Gibbs sampling method proposed by Wang
and Cho (2019). There we relied on the same hyperparameters that are suggested in the official
implementation: 500 total iterations, 250 burn-in iterations with top-100 sampling and temperature
of 1.0.6 Their sampling-based approach performs substantially worse than autoregressive generation,
regardless of the initialization strategy. We noticed that it often produces infinite token repetitions or
locally-coherent but globally-disconnected pieces of text.

Table 5: Ablation study of different generation methods applied to DeBERTa Evaluated
using one-shot setting and the largest DeBERTa 1.5B model on German-to-English translation with
SacreBLEU score.

Generative method DE→EN

Autoregressive generation; 1 mask 10.0

Autoregressive generation; 2 masks 22.4

Autoregressive generation; 3 masks (our method) 23.7

Autoregressive generation; 4 masks 23.9

Markov-chain Monte-Carlo (random initialization; Wang and Cho, 2019) 1.6

Markov-chain Monte-Carlo (mask initialization; Wang and Cho, 2019) 2.6

C Ablation study of ranking implementation

We mentioned some drawbacks of calculating the pseudo-log-likelihood score (PLL) as per Salazar
et al. (2020), and how we mitigate these problems, in Section 2.2. This section supports our decision
with a quantitative analysis of different ranking approaches. We test them on the ReCoRD task from
SuperGLUE (Zhang et al., 2018; Wang et al., 2019), where the goal is to rank different named entities
based on their appropriatness. Since the problem of the original PLL is in estimating likelihoods
of long multi-loken expressions, we choose this task to highlight the differences. An example of a

6Available on GitHub: https://github.com/nyu-dl/bert-gen.
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prompt-formatted sample from ReCoRD is given below, the possible completions (all of which are
named entities) are boldfaced:

1 Suspended hundreds of feet in the air amid glistening pillars of ice illuminated
with ghostly lights from below, this could easily be a computer-generated scene
from the latest sci-fi blockbuster movie. But in fact these ethereal photographs
were taken in real life, and show extreme sportsman and climber Stephan
Siegrist, 43, ascending the Voringsfossen icefall which is part of a gigantic
glacier in Eidfjord, Norway. The stunning images were captured by fellow
mountaineer and photographer Thomas Sanf. While the 500ft frozen waterfall is
regularly scaled by climbers during daylight, he said he wanted to capture the
beauty of the falls by night.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

2 - Stunning images captured by photographer Thomas Sanf as climber Stephan Siegrist,
43, scaled frozen waterfall↪→

3 - The Voringsfossen fall is liquid for most of the year, but in winter freezes into
a 500ft cliff favoured by climbers↪→

4 - Hundreds of adventurers attempt the climb by day, but very few attempt the ascent
at night, as pictured here↪→

5 - With bright lights illuminating his efforts from below, Mr {$answer:-Stephan
Siegrist/Voringsfossen/Eidfjord/Norway/Thomas Sanf} appears to be on the set of
a sci-fi movie

↪→

↪→

Previous work After running the initial experiments, we were informed about the related work by
Kauf and Ivanova (2023). Their study addresses a similar problem of the naive pseudo-log-likelihood
scoring as this paper, but they do not target strongly correlated contiguous tokens in general, they
focus on words that are split into multiple tokens – as they observed that PLL overestimates the
likelihood of those sequences. We include their two proposed solutions in the comparison of different
ranking methods.

Results In Table 6, we compare the original implementation of PLL by Salazar et al. (2020)
that only masks the target subword; our approach that also masks next two subwords; other two
alternatives that mask two or four subwords in total; the PLL-word-l2r and PLL-whole-word scoring
functions by Kauf and Ivanova (2023); and the exact unidirectional computation of log-likelihood
(using the same input formatting as for generation). The additional masks clearly help to make
better estimates while the exact computation seems to not be appropriate for inherently bidirectional
models.

Table 6: Ablation study of different ranking methods applied to DeBERTa Evaluated using
zero-shot setting and the largest DeBERTa 1.5B model on ReCoRD.

Ranking method ReCoRD (EM) ReCoRD (F1)

Pseudo log-likelihood; 1 mask (Salazar et al., 2020) 80.9 81.6

Pseudo log-likelihood; 2 masks 86.0 86.8

Pseudo log-likelihood; 3 masks (our method) 87.1 87.9

Pseudo log-likelihood; 4 masks 86.9 87.8

Pseudo log-likelihood; word–l2r (Kauf and Ivanova, 2023) 78.2 78.8

Pseudo log-likelihood; whole–word (Kauf and Ivanova, 2023) 75.8 76.5

Exact log-likelihood (unidirectional) 77.2 77.8
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D Detailed SuperGLUE results

This appendix provides a detailed analysis of DeBERTa’s performance on the SuperGLUE benchmark,
focusing on two aspects: the relationship between the number of demonstration examples and model
performance (Figure 5), and the task-specific scaling behavior (Figure 6).

Effect of shot count Figure 5 demonstrates how DeBERTa’s performance changes as we increase
the number of in-context examples from 0 to 32. Unlike the main results where we optimize the
number of shots for each subtask independently, here we deliberately use the same number of shots
across all tasks to provide a controlled comparison with GPT-3’s results from Brown et al. (2020);
there, SuperGLUE tasks are the only ones with such detailed few-shot evaluation.

The plot reveals several interesting patterns:

1. The steepest improvement occurs between 0 and 4 shots, suggesting that even a small
number of examples provides substantial benefit.

2. The overall trend is very similar between DeBERTa and GPT-3, which again shows that
masked language models can be just as good in-context learners as causal language models.

3. The performance of DeBERTa decreases after 8 or more shots. We believe that this is mainly
caused by its imperfect processing of contexts longer than 512 tokens – as discussed in
Section 2.3.
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Figure 5: The average performance on the SuperGLUE benchmarks as a function of number of
shots As opposed to the other SuperGLUE few-shot results, where we select the number of shots
for each subtask according to the performance on its training split, here all subtasks are evaluated
with the same number of shots. In this way, we can compare DeBERTa 1.5B directly to Figure 3.8
from Brown et al. (2020), which gives the same evaluation for GPT 175B (unfortunately not for
smaller, more comparable, models).

Task-specific scaling analysis Figure 6 breaks down the scaling behavior for each SuperGLUE
task individually, revealing the varying impacts of model size across different language understanding
challenges. The plots demonstrate that while DeBERTa and GPT-3 both exhibit generally positive
scaling trends, their scaling patterns differ substantially across task types. Most notably, DeBERTa
shows steeper scaling curves than GPT-3 on the majority of tasks. This suggests that bidirectional
attention mechanisms may provide particular advantages for scaling some language understanding
capabilities.

20

2577https://doi.org/10.52202/079017-0084



0.1 0.8 2.6 13 175
Parameters

50

60

70

80

90

Ac
cu

ra
cy

BoolQ

0.1 0.8 2.6 13 175
Parameters

40

60

80
CB

0.1 0.8 2.6 13 175
Parameters

60

70

80

90
COPA

0.1 0.8 2.6 13 175
Parameters

0

10

20

30
MultiRC

0.1 0.8 2.6 13 175
Parameters

60

70

80

90

100

Ac
cu

ra
cy

ReCoRD

0.1 0.8 2.6 13 175
Parameters

40

50

60

70

80
RTE

0.1 0.8 2.6 13 175
Parameters

30

40

50

60

70
WiC

0.1 0.8 2.6 13 175
Parameters

50

60

70

80
WSC

0.1 0.4 0.8 1.3 2.6 6.7 13 175
Number of parameters (in billions)

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Av
er

ag
e 

Sc
or

e

Average 1-shot SuperGLUE performance vs. paremeter count

DeBERTa GPT-3

Figure 6: Detailed evaluation of natural language understanding As opposed to the overall
results presented in Figure 1, these plots show the scaling behavior on each subtask of the SuperGLUE
benchmark. We can see the DeBERTa out-scales GPT-3 consistently across all tasks, with the
exception of WiC where both models fail to show any learning ability.

E Evaluation details

This appendix provides more details about our evaluation setup to make it easier to reproduce our
results; the source code is available at https://github.com/ltgoslo/bert-in-context. In general, we
follow Brown et al. (2020) in all decisions about the implementation.

Newline separator Note we use newlines in the displayed prompts for better readability, but
we do not actually use them as the DeBERTa tokenizers cannot encode a newline character (they
convert it to the standard whitespace character instead). Instead, we convert all newline characters to
double-escaped ‘\\n ’ string with a whitespace character, which then acts as paragraph/information
separator.

Few-shot prompting For each evaluated sample, the example demonstrations are randomly selected
(without replacement) from the training set of each task; if the training set is not available, we sample
from the only available dataset split, making sure not to select the same sample as the evaluated
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one. We format these examples using the respective prompt templates and concatenate them together,
joined by two newline characters. The numbers of shots used for each task are given in Appendix F.

E.1 Needle in a haystack

The needle is a randomly generated 6-digit number (from 100 000 to 999 999). The prediction is
produced via constrained generation that only allows sequences of tokens that form 6-digit numbers.
We consider a prediction to be correct only if it exactly matches the needle, which means that a trivial
baseline has the accuracy of 1/900 000.

The evaluated models are prompted with the template shown below. Similarly to Hsieh et al. (2024),
we use Paul Graham’s essays to fill the context ($prefix_lines and $suffix_lines).7 The essays
are sentence-segmented and concatenated to fill the desired total sequence length.

1 > Some special magic number is hidden within the following articles. Make sure to
memorize it. I will quiz you about the magic number afterwards.↪→

2

3 {$prefix_lines}
4 The magic number is {$needle}.
5 {$suffix_lines}
6

7 > Question: What is the special magic number mentioned in the provided text?
8 > Answer: The special magic number mentioned in the provided text is

E.2 Language understanding

This section provides the prompts used for the eight SuperGLUE tasks, all prompt templates are
taken from the GPT-3 evaluation setup.

BoolQ This task is evaluated by ranking texts formatted as shown below with two possible $answers,
yes or no.

1 {$passage}
2 question: {$question}?
3 answer: {$answer:-yes/no}

CB Evaluated by ranking texts formatted as shown below with three possible $answers, true,
false or neither.

1 {$premise}
2 question: {$hypothesis}; true, false, or neither?
3 answer: {$answer:-true/false/neither}

COPA We rank two possible substitutions of $answer that follow the premise. $connector is
formatted based on the question type: ‘because’ if the type is ‘cause’, otherwise ‘therefore’ is
used.

1 {$premise} {$connector:-because/therefore} {$answer}

7Available online at https://www.paulgraham.com/articles.html
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MultiRC The potential answer is substituted for $option and then we rank two possible substitu-
tions for $answer: [True] or [False].

1 READING COMPREHENSION ANSWER KEY
2

3 {$paragraph}
4

5 {$question}
6 - {$answer:-[True]/[False]} {$option}

ReCoRD Here we rank the possible entity names as substitutions for $answer. Note that $para-
graph often includes summaries that, in a way, act as few-shot examples (see the formatted zero-shot
example in Appendix C).

1 {$passage}
2 - {$answer_prefix}{$answer}{$answer_suffix}

RTE Ranking of two possible completions in this binary classification task: True or False.

1 {$premise}
2 question: {$hypothesis} True or False?
3 answer: {$answer:-True/False}

WiC Another binary task with two possible substitutions: yes or no. Note that this prompt template
was not working for any GPT-3 models and it is also not working for the models evaluated in this
paper, all models are just randomly guessing the answers (Table 1).

1 {$sentence1}
2 {$sentence2}
3 question: Is the word '{$word}' used in the same way in the two sentences above?
4 answer: {$answer:-yes/no}

WSC We rank possible substitutions for $answer.

1 Final Exam with Answer Key
2 Instructions: Please carefully read the following passages. For each passage, you

must identify which noun the pronoun marked in *bold* refers to.↪→

3 =====
4

5 Passage: {$text}
6 Question: In the passage above, what does the pronoun "*{$span_text}*" refer to?
7 Answer: {$answer}
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E.3 Language modeling

This group of tasks uses very straightforward prompt templates as all of these tasks are different
variants of text completion.

HellaSwag Here, the task is to select the most likely completion ($answer) that follows after
$context.

1 {$activity_label}: {$context}{$answer}

StoryCloze The goal is to select the most suitable $answer that completes a story laid out by four
previous sentences.

1 {$sentence_1} {$sentence_2} {$sentence_3} {$sentence_4} {$answer}

Winograd $answer should be substituted by the correct entity (coreference resolution).

1 {$context_prefix} {$answer} {$context_suffix}

Winogrande Same as Winograd:

1 {$context_prefix} {$answer} {$context_suffix}

E.4 Translation

All language pairs and all evaluation setups (zero-shot, one-shot and few-shot) use the same prompt
template given below. This is the only time when we decided to differ from the GPT-3 setup as its
very simple (and non-informative) prompt was not working for one-shot evaluation of DeBERTa
models. The models are then asked to complete the prompt – using beam search decoding with 4
beams and the default HuggingFace hyperparameters8 – and the generation is stopped after producing
the special newline character \\n.

1 {$source_language}: {$source_text}
2 {$target_language}:

For reference, here are the two prompt templates used for GPT-3 (for zero-shot and for one/few-shot,
respectively):

1 Q: What is the {$target_language} translation of {$source_text}
2 A:

1 {$source_text} =
2

8https://huggingface.co/docs/transformers/v4.41.3/en/main_classes/text_generation#
transformers.GenerationMixin.generate
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E.5 Closed-book question answering

This group of tasks mixes two types of in-context evaluation: text generation (Natural Questions,
TriviaQA and Web Questions) and text ranking (PIQA, ARC and OpenBookQA). The prompt setup
exactly follows GPT-3.

Natural Questions Here, the goal is to generate an answer based on $question.

1 Q: {$question}
2 A:

TriviaQA Same as Natural Questions:

1 Q: {$question}
2 A:

Web Questions Same as Natural Questions:

1 Q: {$question}
2 A:

PIQA Here, the goal is to select the most suitable text completion by substituting for $answer.

1 {$goal} {$answer}

ARC (challenge) and ARC (easy) This a multiple choice test, the correct $answer has to be
selected.

1 Question: {$question}
2 Answer: {$answer}

OpenBookQA Similarly, the goal is to select the correct $answer.

1 {$question} {$answer}
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F All results

For reference, we list all results of the DeBERTa models evaluated throughout this paper in Table 7.
The GPT-3 results that were used for comparison are published in Brown et al. (2020, Table H.1).

Table 7: Results of all evaluations performed in this paper The second and third column
shots the dataset splits and evaluation metrics, both of them replicating the GPT-3 evaluation
setup. Note the BLEU scores used for evaluating translation are SacreBLEU scores with signa-
ture BLEU+case.mixed+numrefs.1+smooth.exp+tok.intl+version.1.2.20.

Task Split Metric n shots 0-shot (1.5B) 1-shot (0.1B) 1-shot (0.4B) 1-shot (0.9B) 1-shot (1.5B) n-shot (1.5B)

BoolQ dev acc. 4 80.8 55.7 60.5 78.4 82.1 82.1

CB dev acc. 4 66.1 39.6 57.5 68.6 76.1 75.0

CB dev F1 4 46.1 23.8 39.8 47.1 57.0 57.6

COPA dev acc. 64 78.9 67.0 78.0 80.6 84.2 90.4

MultiRC dev EM acc. 4 6.6 2.4 7.0 11.1 15.6 16.9

MultiRC dev F1α 4 61.6 57.2 57.4 57.0 67.9 69.2

ReCoRD dev EM acc. 4 87.1 62.3 73.6 86.8 87.4 87.4

ReCoRD dev F1 4 87.9 63.0 74.3 87.5 88.1 88.2

RTE dev acc. 8 64.3 50 53.1 64.5 65.0 62.2

WiC dev acc. 16 50.5 49.6 49.6 49.6 50.3 50.2

WSC dev acc. 16 71.2 62.3 65.0 67.3 69.6 75.0

Average — — — 65.4 51.1 57.6 64.9 68.4 69.6

HellaSwag dev acc. 16 62.0 36.9 51.3 58.7 62.4 62.5

StoryCloze test acc. 32 83.6 69.5 77.0 82.4 84.6 84.8

Winograd test acc. 32 74.0 59.3 68,1 76.2 80.7 85.6

Winogrande dev acc. 32 61.0 49.8 54.8 60.6 63.6 68.8

Average — — — 70.2 53.9 62.8 69.5 72.8 75.4

DE–EN test BLEU 16 2.4 0.2 4.6 20.0 23.7 25.1

EN–DE test BLEU 16 1.6 0.2 0.4 3.4 5.4 6.6

FR–EN test BLEU 16 1.7 0.2 8.7 21.9 23.5 24.5

EN–FR test BLEU 16 0.3 0.0 0.3 4.6 9.7 10.8

RO–EN test BLEU 16 1.7 0.2 4.3 16.0 17.7 18.9

EN–RO test BLEU 16 0.1 0.0 0.2 1.2 2.5 4.1

Average — — — 1.3 0.1 3.1 11.2 13.8 15.0

Natural Questions test EM acc. 16 0.8 0.1 0.6 2.1 2.6 4.4

TriviaQA (wiki) dev EM acc. 16 6.9 0.9 3.8 13.6 14.3 17.9

Web Questions test EM acc. 32 1.5 0.3 1.0 4.5 5.1 9.9

PIQA dev acc. 32 72.9 62.4 69.6 71.6 73.0 74.5

ARC (challenge) test acc. 32 36.5 25.3 33.2 35.9 37.1 39.6

ARC (easy) test acc. 32 55.1 39.6 46.3 53.3 55.1 57.7

OpenBookQA test acc. 96 45.8 35.0 41.8 42.8 46.4 50.4

Average — — — 31.4 23.2 28.0 32.0 33.3 36.3
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims are directly supported by the results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: There are explicit sections about limitations in 2. Method.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper is purely empirical.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper only proposes simple inference methods, and the evaluation setup is
fully described. We also intend to publish the adapted model code. We published the code
at https://github.com/ltgoslo/bert-in-context.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper should provide enough information to fully reproduce our results,
but we also intend to publish the source code. We published the code at https://github.
com/ltgoslo/bert-in-context.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: As described above.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: This paper replicates a previous work, including its evaluation setup.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: This paper does not involve any training, only inference with negligable cost.
However, we still give the compute cost of the pretrained language models (even though
they were not pretrained as part of this paper).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we only evaluate language models on published benchmarks.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: No apparent societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Section References
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Not applicable
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer:[NA]
Justification: Not applicable
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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