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Abstract

Credit attribution is crucial across various fields. In academic research, proper
citation acknowledges prior work and establishes original contributions. Simi-
larly, in generative models, such as those trained on existing artworks or music,
it is important to ensure that any generated content influenced by these works
appropriately credits the original creators.
We study credit attribution by machine learning algorithms. We propose new
definitions–relaxations of Differential Privacy–that weaken the stability guarantees
for a designated subset of 𝑘 datapoints. These 𝑘 datapoints can be used non-stably
with permission from their owners, potentially in exchange for compensation.
Meanwhile, each of the remaining datapoints is guaranteed to have no significant
influence on the algorithm’s output.
Our framework extends well-studied notions of stability, including Differential
Privacy (𝑘 = 0), differentially private learning with public data (where the 𝑘
public datapoints are fixed in advance), and stable sample compression (where the
𝑘 datapoints are selected adaptively by the algorithm). We examine the expressive
power of these stability notions within the PAC learning framework, provide a
comprehensive characterization of learnability for algorithms adhering to these
principles, and propose directions and questions for future research.

1 Introduction

Many tasks that use machine learning algorithms require proper credit attribution. For example,
consider a model trained on scientific papers that needs to reason about facts and figures based on
existing literature. Most academic literature is protected under copyright licenses such as CC-BY 4.0
which allows adapting, remixing, transforming, and to copy and redistribute in any medium or
format, as long as attribution is given to the creator. In another setting, a learner generating content,
such as images or music, may benefit from creating derivative works from copyrighted materials
without violating the creator’s rights (either through proper attribution or monetary compensation,
depending on the context and licensing).
The increasing use of ML algorithms and the need for greater transparency is reflected by the recently
implemented EU AI Act, which mandates the disclosure of training data [14]. However, disclosure of
training data and proper attribution are not necessarily equivalent. In particular, mere transparency
of the dataset does not reveal whether certain elements of certain content have been derived, nor
does it provide proper attribution when particular content is heavily built upon. Therefore, there is a
need to develop more nuanced notions and definitions that enable learning under the constraint that
works are properly attributed. This paper focuses on this challenge, exploring theoretical models of
credit attribution to provide rigorous and meaningful definitions for the task.
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Credit attribution is part of a much larger problem of learning under copyright constraints. Copyright
issues in machine learning models are becoming increasingly prominent as these models are trained
on vast amounts of data, often some of which is copyrighted. Consequently, the resulting models
might contain content from copyrighted data in their training sets. Previous work suggests it may
be mathematically challenging to capture algorithms that protect copyright. Specifically, attempts
to regulate copyright often focus on protecting against substantial similarity between output content
and training data by, for example, employing stable algorithms that are not sensitive to individual
training points [9, 22, 24]. This is an important aspect of copyright; however, substantial similarity
is only one piece of the puzzle.
Another piece of the puzzle involves the use of original elements from copyrighted works in a legally
permissible manner, such as through de minimis quotations, transformative use, and other types of
fair uses, such as learning and research [13]. To fully utilize ML in many practical scenarios, it is
desirable for learning models to be allowed to use original elements in a similar manner.
To address this second piece, we focus on designing algorithms that, while allowed to use and be
influenced by copyrighted material, must provide proper attribution. Such models would enable
users to inspect these influences and verify that they conform to legal standards, or take necessary
measures (such as monetary compensation or requesting permission). Despite credit attribution
being narrower in scope than copyright protection in general, even this concept may be nuanced to be
captured mathematically. Therefore, we focus on formalizing a specific (but arguably basic) aspect
of it – counterfactual attribution:

This principle asserts that any previous work that influenced the result should
be credited. Counterfactually, if the creator of a work 𝑊 does not acknowledge
another work 𝑊 ′, they should be able to produce 𝑊 as if they had no knowledge
of 𝑊 ′.

For example, an argument based on this principle in the extreme case when 𝑊 = 𝑊 ′ is found in a
U.S. Supreme Court opinion:

“. . . a work may be original even though it closely resembles other works, so long
as the similarity is fortuitous, not the result of copying. To illustrate, assume that
two poets, each ignorant of the other, compose identical poems. Neither work is
novel, yet both are original. . . ”

— Feist Publications, Inc. v. Rural Telephone Service Company, Inc. 499 U.S. 340 (1991)

2 Definitions and Examples

In this section, we introduce the two main definitions we study.
We first recall some standard notation from learning theory and differential privacy. Let Z be an
input data domain and C denote an output space. We denote by Z★ the set of all finite sequences
with elements from Z. Two sequences 𝑆′, 𝑆′′ ∈ X★ are called neighbors if they have the same
length |𝑆′ | = |𝑆′′ | and there is a unique index 𝑖 such that 𝑆′

𝑖
≠ 𝑆′′

𝑖
. Let ε, δ > 0 and let 𝑝, 𝑞 be

probability distributions defined over the same space. We let 𝑝 ≈ε,δ 𝑞 denote the following relation:
𝑝(𝐸) ≤ exp(ε) · 𝑞(𝐸) + δ and 𝑞(𝐸) ≤ exp(ε) · 𝑝(𝐸) + δ for every event 𝐸 .

Algorithms with Credit Attribution. Consider a mechanism 𝑀 : Z★ → C × Z★ that, for every
possible input sequence 𝑆 = (𝑧1, . . . , 𝑧𝑛), outputs a pair (𝑐, 𝑅), where 𝑐 ∈ C and 𝑅 ∈ Z★. Intu-
itively, 𝑅 is the list of inputs being credited by the mechanism, and 𝑐 is the model/content produced
by the mechanism. Thus, we require that each data point 𝑧𝑖 ∈ 𝑅 is also an input data point 𝑧𝑖 ∈ 𝑆.
For such a mechanism 𝑀 and an input sequence 𝑆, we let 𝑀 (𝑆) denote the probability distribution
over outputs of 𝑀 given 𝑆 as input, where the probability is induced by the internal randomness of
the mechanism. For example, if 𝑀 is deterministic, then 𝑀 (𝑆) is a Dirac distribution (i.e., it assigns
probability 1 to the deterministic output of 𝑀 on 𝑆).
The definition below uses the following notation: for a sequence 𝑆 = (𝑧1, . . . , 𝑧𝑛) and an index
𝑖 ∈ [𝑛], we let 𝑆−𝑖 denote the subsequence of 𝑆 obtained by omitting 𝑧𝑖 . Let 𝑧𝑖 ∈ 𝑆 be a data point
such that Pr(𝑐,𝑅)∼𝑀 (𝑆) [𝑧𝑖 ∈ 𝑅] < 1. That is, there is a positive probability that 𝑧𝑖 is not credited
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Example: Support Vector Machine

Figure 1: Support Vector Machine (SVM) as an (ε = δ = 0)-counterfactual credit attributor: The SVM
algorithm identifies a maximum-margin separating hyperplane, which is defined by the subsample of the
support vectors. Any input point which is not a support vector does not influence the output: even if it is
removed from the input sample, the output hyperplane does not change.

by 𝑀 when executed on 𝑆. In this case, we let 𝑀 (𝑆−𝑖) denote the distribution of 𝑀 (𝑆) conditioned
on the event that 𝑧𝑖 ∉ 𝑅. We are now ready to present our first definition5 of counterfactual credit
attribution.

Definition 1 (Counterfactual Credit Attribution). Let ε, δ > 0. A mechanism 𝑀 : Z★ →
C × Z★ is called an (ε, δ)-counterfactual credit attributor (CCA) if for every input sequence
𝑆 = (𝑧1, . . . , 𝑧𝑛) and every index 𝑖 ∈ [𝑛] the following holds: either Pr(𝑐,𝑅)∼𝑀 (𝑆) [𝑧𝑖 ∈ 𝑅] = 1,
or

𝑀 (𝑆−𝑖) ≈ε,δ 𝑀 (𝑆−𝑖),
where 𝑀 (𝑆−𝑖) is the output distribution on the dataset 𝑆−𝑖 = 𝑆 \ {𝑧𝑖}, and 𝑀 (𝑆−𝑖) is the output
distribution on the dataset 𝑆, conditioned on 𝑧𝑖 ∉ 𝑅.

To emphasize, in Definition 1 the conditional output distribution 𝑀 (𝑆−𝑖) models the condition
“if data-point 𝑧𝑖 is not credited by 𝑀 ,” whereas the output distribution 𝑀 (𝑆−𝑖) represents the
counterfactual scenario “had the data-point 𝑧𝑖 not been seen by 𝑀 .”
Example 2.1 (Stable Sample Compression [8, 20]). A mechanism 𝐴 : Z★ → C is a stable sample
compression scheme of size 𝑘 if for every input sequence 𝑆 = (𝑧1, . . . , 𝑧𝑛) there is a subsequence
κ(𝑆) ⊆ 𝑆 of size |κ(𝑆) | ≤ 𝑘 such that 𝐴(𝑆) = 𝐴(𝑇) for every intermediate subsequence κ(𝑆) ⊆ 𝑇 ⊆
𝑆. See Figure 1 for an example.
Each stable compression scheme corresponds to an (ε = 0, δ = 0)-CCA which credits the datapoints
in κ(𝑆). That is, 𝑀 (𝑆) = (𝐴(𝑆), κ(𝑆)). Stable sample compression thus provides something
stronger: group-counterfactuality, meaning any subset of datapoints that is not selected does not
influence the output.

Definition 1 not only relaxes stable sample compression, but also extends the concept of differential
privacy with public data, known as semi-private learning. In semi-private learning, the learner’s
input includes public examples (which can be processed non-stably) and private examples (for
which the algorithm must satisfy differential privacy guarantees). Semi-private learning [1, 4] has
been extensively studied in recent years [19], for example, in the context of query release [3, 18],
distribution learning [5, 6], computational efficiency [7, 21], as well as in other contexts.
Definition 2 (Semi-Differentially Private Mechanism). Let ε, δ > 0; an (ε, δ)-semi differentially
private (semi-DP) mechanism is a mapping 𝑀 : Z★ × Z★ → C such that for every 𝑆pub ∈ Z★ and
every pair of neighboring sequences , 𝑆′

priv
, 𝑆′′
priv

:6

𝑀 (𝑆pub, 𝑆′priv) ≈ε,δ 𝑀 (𝑆pub, 𝑆′′priv).

5In analogy to the variant of differential privacy where the unit of protection is the addition or removal of a
data point, our definition uses omissions of data points. This aligns with our motivation for counterfactual credit
attribution: if a non-credited data point is omitted (rather than replaced), the output does not change. Omission
is crucial here, as replacing a non-credited data point with a credited one could drastically alter the output.

6Note that the special case of 𝑆pub = ∅ gives a DP mechanism.
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Remark 1. Any semi-DP mechanism 𝑀 that uses 𝑘 public points can be turned into a CCA
mechanism as follows: on an input sequence 𝑆, the CCA mechanism outputs (𝑐, 𝑅), where 𝑅 = 𝑆≤𝑘 ,
and 𝑐 = 𝑀 (𝑆≤𝑘 , 𝑆>𝑘). That is, 𝑀 uses the first 𝑘 points in 𝑆 as public data, and the rest are private.

Private learning with public data is sometimes likened to semi-supervised learning, where private
data corresponds to unlabeled data and public data to labeled data. In both scenarios, the learner
accesses many less informative examples (unlabeled or private) and fewer more informative examples
(labeled or public). Expanding on this analogy, Definition 1 is akin to active learning, where the
learner adaptively chooses which data points to credit, similar to selecting which data points to label
in active learning.
Semi-differential privacy (Definition 2) provides stronger stability guarantees than counterfactual
credit attribution (Definition 1), including for the selection process. In contrast, Definition 1 allows
for a highly non-stable selection process (e.g., SVM). This leads us to consider a more direct hybrid
of semi-DP and sample compression, suggesting the following definition:

Definition 3 (Sample DP-Compression Scheme). Let ε, δ ≥ 0 and 𝑘 ≤ 𝑛. An (ε, δ) sample
differentially private (𝑛 → 𝑘)-compression scheme is a mechanism 𝑀 : Z𝑛 → C which consists
of two functions:

1. Compression: an (ε, δ)-DP mechanism κ : Z𝑛 → [𝑛]𝑘 , called the compression
function, and

2. Reconstruction: an (ε, δ) semi-DP mechanism ρ : Z★ × Z★ → C called the recon-
struction function.

Then, for every input sequence 𝑆:

𝑀 (𝑆) = ρ(𝑆 |κ(𝑆) , 𝑆 |¬κ(𝑆) ),

where 𝑆 |κ(𝑆) = (𝑆𝑖)𝑖∈κ(𝑆) and 𝑆 |¬κ(𝑆) = (𝑆𝑖)𝑖∉κ(𝑆) .

Note that the compression function κ selects the indices of the compressed subsample (rather than
the subsample itself, as in classical sample compression). This technical difference allows us to pose
the requirement of differential privacy on the compression function κ. Going back to the analogy
with active learning, Definition 2 also imposes stability of the labeling function (i.e. the function that
decides which labels to query).
Example 2.2 (Randomized Response). We next describe a simple task which can be performed by
sample DP-compression schemes, but not by semi-DP mechanisms. Imagine that the data is drawn
from a distribution where each datapoint is useful with probability 0.1 and is otherwise garbage
with probability 0.9. The goal is to select 𝑘 datapoints while maximizing the number of useful
datapoints that are selected. If we select datapoints obliviously, for example by simply taking the
first 𝑘 examples, we would expect that only about 10% of them will be useful. However, by using a
mechanism compliant with Definition 3, we can increase the proportion of useful examples.
This mechanism is based on randomized response and operates as follows: each example is inde-
pendently assigned a random label in {0, 1}, where a useful example is assigned a label of 1 with
probability 𝑝 > 1/2, and each garbage example is assigned a label of 1 with probability 1− 𝑝 < 1/2.
The value of 𝑝 is set as a function of the privacy parameter ε.7 Then, the compression function κ
selects the first 𝑘 indices whose label is 1. This way, the fraction of useful points among the points
labeled 1 is ≈ 0.1𝑝

0.1𝑝+0.9(1−𝑝) = 1
9/𝑝−8 > 0.1 (the last inequality holds for 𝑝 > 1/2). See Appendix B

for a more detailed argument.

3 Main Theorems

In this section, we present our main theorems that characterize the expressivity of learning rules
satisfying our proposed definitions. We focus on the PAC (Probably Approximately Correct) learning
model [23] and employ its standard definitions (explicitly provided in Section 4).

7We get ε = ln
(

𝑝
1−𝑝

)
and δ = 0.
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Question (Guiding Question). Is learnability subject to counterfactual credit attribution (Defini-
tion 1) more restricted than unconstrained learnability? Is learnability subject to sample DP-
compression (Definition 3) more restricted than unconstrained learnability? How do these restrictions
compare to differentially private learning?

Note that with respect to both Definition 1 and Definition 3, it is clear that if 𝑘 , the number of credited
points, is sufficiently large, then it is possible to learn any PAC-learnable class C. Indeed, if 𝑘 equals
the PAC sample complexity of C, then an oblivious selection, such as the first 𝑘 points, will suffice.
Therefore, the above question is particularly interesting for values of 𝑘 that are significantly smaller
than the PAC sample complexity of C.
Our first theorem demonstrates that every PAC-learnable class can be learned using an (ε = 0, δ = 0)-
counterfactual credit attribution learning rule, which selects at most a logarithmic number of sample
points for attribution. Remarkably, this can be achieved using the AdaBoost algorithm.

Theorem 1 (PAC Learning with Credit Attribution = PAC Learning). Let C be a concept class
with VC dimension VC(C) = 𝑑 < ∞, and let α,β denote the error and confidence parameters.
Then, there exists an (ε = 0, δ = 0)-CCA learning rule 𝑀 that learns C with sample complexity
𝑛 = 𝑂

(
𝑑 log(𝑑/α)+𝑑 log(1/β)

α

)
, while selecting only 𝑘 = 𝑂 (𝑑 log 𝑛) examples for attribution.

We leave as an open question whether 𝑘 can be made independent of 𝑛, possibly by allowing ε and δ
to be positive. Note that an affirmative answer to this question might also shed light on the sample
compression conjecture [17, 25].
Our second theorem establishes a limitation for sample DP-compression schemes, showing that they
do not offer more expressivity than differentially private PAC learning [15].

Theorem 2 (Sublinear Sample DP-Compression=DP Learning). Every concept classC satisfies
exactly one of the following:

1. C is learnable by a DP-learner.

2. Any sample DP-compression scheme that learns C has size at least 𝑘 = Ω(1/α).

Theorem 2 implies a stark dichotomy: either a class C can be learned by a DP algorithm (equivalently,
a sample DP-compression of size 𝑘 = 0), or it is impossible to learn it unless 𝑘 = Ω(1/α). Notice that
with 𝑘 = 𝑂 (𝑑/α), public examples are sufficient to learn without any private examples. Theorem 2
generalizes a result by [1, Theorem 4.2] who proved it in the special case of semi-DP learning. In our
setting though, we need to crucially handle scenarios where the credited (or rather, public) datapoints
are chosen adaptively as a function of the full dataset. This is not the case in semi-DP learning, and
requires us to use novel technical tools (like Theorem 3 ahead).
Thus, in the PAC setting, sample DP-compression schemes do not offer any advantage over semi-DP
learners. However, Example 2.2 demonstrates that using sample DP-compression, it is possible to
select the 𝑘 points in the compression set so that the frequency of ‘useful’ examples among these 𝑘

points is boosted.
Our next theorem addresses the limits of handpicking 𝑘 points by sample DP-compression. We
formalize this task as follows: given a distribution 𝐷 over Z and an event 𝐸 of ‘good’ points, the
goal is to design a DP-compression function κ : Z𝑛 → [𝑛]𝑘 that maximizes the number of selected
data points that belong to 𝐸 . That is, the goal is to maximize∑︁

𝑖∈κ(𝑆)
1[𝑧𝑖 ∈ 𝐸] .

Example 2.2 illustrates a method that selects roughly exp(ε) · 𝑘 · 𝐷 (𝐸) points from 𝐸 by an (ε ≥
0, δ = 0)-compression function. This is a factor of exp(ε) better than obliviously selecting the 𝑘
points, which yields 𝑘 · 𝐷 (𝐸) points from 𝐸 . Is this factor of exp(ε) optimal? Can one do better,
possibly by increasing δ? The following result shows that exp(ε) is asymptotically optimal.

5

2667 https://doi.org/10.52202/079017-0087



Theorem 3. Let 𝑀 be an (ε, δ) sample DP-compression scheme, let D be a distribution over
Z, and let 𝐸 ⊆ Z be any event, with 𝑝 = D(𝐸). For an input sample 𝑆 = (𝑧1, . . . , 𝑧𝑛) ∼ D𝑛,
define 𝑍 = 𝑍 (𝑆) as the random variable denoting the fraction of selected indices in κ(𝑆) whose
corresponding data points belong to 𝐸 . That is, 𝑍 = 1

|κ(𝑆) |
∑

𝑖∈κ(𝑆) 1[𝑧𝑖 ∈ 𝐸]. Then,

𝑝𝑒−ε − δ𝑛 ≤ 𝔼[𝑍] ≤ 𝑝𝑒ε + δ𝑛. (1)

Indeed, since by convention δ = δ(𝑛) ≪ 1/𝑛, the above theorem implies that exp(ε) is asymptotically
optimal. We note that Theorem 3 is also key in the proof of Theorem 2. We elaborate on this in
Section 4.2.

Generalization. Definition 1 and Definition 3 can also be examined from a learning theoretic
perspective as notions of algorithmic stability. Algorithmic stability is particularly useful in the
context of generalization because, roughly speaking, stable algorithms typically generalize well. We
note in passing that this is indeed the case for Definition 1 and Definition 3: any learning rule
adhering to either definition satisfies that its empirical error and population error are typically close.
One natural way to prove this is by following the argument that shows sample compression schemes
generalize. In a nutshell, the argument proceeds as follows: first, if we fix the selected 𝑘-tuple, the
obtained hypothesis generalizes well. Then, we apply a union bound over all possible 𝑛𝑘 choices of
𝑘-tuples from the input sample.

4 Technical Background and Proofs

We study our main definitions in the context of PAC learning. Concretely, we assume that the input
data domain Z in Section 2 is X × Y, for an input space X and label space Y. For our purposes,
Y = {0, 1}. Learning rules are mechanisms A : Z∗ → C × Z∗, where C is the set of all functions
mapping X to Y, denoted as YX. We say that a distribution D over Z is realizable by a hypothesis
class H ⊆ YX if for every finite sequence (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) drawn i.i.d from D, there exists some
hypothesis ℎ ∈ H that satisfies ℎ(𝑥𝑖) = 𝑦𝑖 , ∀𝑖 ∈ [𝑛]. For any hypothesis ℎ ∈ YX, we denote its risk
with respect to a distribution D by 𝑅D (ℎ) = Pr(𝑥,𝑦)∼D [ℎ(𝑥) ≠ 𝑦].
Definition 4 (CCA PAC learning rule). A mechanism A is a CCA PAC learning rule for a hypothesis
class H, if A satisfies Definition 1, and for any distribution D realizable by H, for any α,β > 0,
there exists a finite 𝑛 = 𝑛A (α,β), such that with probability at least 1−β over a sample 𝑆 ∼ D𝑛 and
the randomness of A, the hypothesis ℎ in the output (ℎ, 𝑆′) of A on 𝑆 satisfies 𝑅D (ℎ) ≤ α.
Definition 5 (Sample DP-Compression learning rule). An (ε, δ) sample differentially private (𝑛 →
𝑘) compression scheme 𝑀 learns a hypothesis class H ⊆ YX, if for any distribution D realizable by
H, for any α,β > 0, with probability at least 1−β over a sample 𝑆 ∼ D𝑛 and the randomness of 𝑀 ,
the hypothesis 𝑀 (𝑆) output by the reconstruction function in 𝑀 satisfies 𝑅D (𝑀 (𝑆)) ≤ α.
Remark 2. Note that if 𝑘 = 0 above, we recover the standard definition of an (α,β, ε, δ)-DP PAC
learner (where α is the error, β is the failure probability, and ε, δ are the privacy parameters) [15].

4.1 Upper Bound: PAC learnability implies (ε = δ = 0)-counterfactual credit attribution
learning

Our CCA learning rule crucially uses the notion of a randomized stable sample compression scheme,
which is a generalization of stable sample compression schemes (Example 2.1) and was developed
in a recent work by [12]. We use the notation 𝑆′ ⊑ 𝑆 for sequences 𝑆, 𝑆′ ∈ (X × Y)∗ that satisfy:
(∀(𝑥, 𝑦)) : (𝑥, 𝑦) ∈ 𝑆′ =⇒ (𝑥, 𝑦) ∈ 𝑆.
Definition 6 (Stable Randomized Sample Compression Scheme). A randomized sample compression
scheme (Dκ, ρ) for a class H having failure probability ξ comprises of a distribution Dκ over
(deterministic) compression functions κ : (X × Y)∗ → (X × Y)∗ and a deterministic reconstruction
function8 ρ : (X × Y)∗ → YX. The compression functions κ in the support of Dκ must satisfy

8It seems interesting to possibly consider randomized reconstruction functions as well; for our purposes,
deterministic reconstruction functions suffice.

6

2668https://doi.org/10.52202/079017-0087



• For any 𝑆 ∈ (X × Y)∗ realizable by H, if κ(𝑆) = 𝑆′, then 𝑆′ ⊑ 𝑆.

The reconstruction function ρ must satisfy

• For any 𝑆 ∈ (X × Y)∗ realizable by H,

Prκ∼Dκ
[∃(𝑥, 𝑦) ∈ 𝑆 : ρ(κ(𝑆)) (𝑥) ≠ 𝑦] ≤ ξ. (2)

A randomized sample compression scheme (Dκ, ρ) for H is stable if for any 𝑆 ∈ (X×Y)∗ realizable
by H and 𝑆′ ⊑ 𝑆, the distribution of κ(𝑆′) is the same as the distribution of κ(𝑆) conditioned on
κ(𝑆) ⊑ 𝑆′. The size 𝑠(𝑛) of the compression scheme is the supremum over 𝑆 ∈ (X × Y)𝑛 (realizable
by H) and κ in the supportt of Dκ of the number of distinct elements in κ(𝑆).

[12] show that stable randomized compression schemes imply generalization.
Lemma 4.1 (Theorem 1.2 in [12]). Let (Dκ, ρ) be a stable randomized compression scheme for H
of size 𝑠(𝑛) and failure probability ξ. Let D be any distribution over X×Y realizable by H. For any
𝑛 and β > 2ξ, with probability at least 1 − β over 𝑆 ∼ D𝑛 and κ ∼ Dκ, it holds that

𝑅D (ρ(κ(𝑆))) ≤ 𝑂

(
𝑠(𝑛) + log(1/β)

𝑛

)
.

Furthermore, they also show that there exists a stable randomized compression scheme for any
hypothesis class H having finite VC dimension 𝑑. This compression scheme is based on a simple
variant of AdaBoost (Algorithm 1 in [12]). The following is contained in their work:9
Lemma 4.2 ([12]). For any hypothesis classHwith VC dimension 𝑑, there exists a stable randomized
sample compression scheme (based on AdaBoost) having failure probability ξ of size

𝑠(𝑛) = 𝑂 (𝑑 log(𝑛/ξ)) . (3)

We are now equipped with the necessary tools required to prove Theorem 1.

Proof of Theorem 1. Let D be any distribution realizable by H, and let 𝑆 be a sample of size 𝑛 drawn
from D𝑛. Given β, fix ξ = β/3. From Lemma 4.2, we know that there exists a stable randomized
compression scheme (Dκ, ρ) for H of size 𝑠(𝑛) = 𝑂 (𝑑 log(𝑛/β)), and failure probability ξ. Then,
since β > 2ξ, from Lemma 4.1, we know that with probability at least 1 − β over 𝑆 and κ ∼ Dκ,

𝑅D (ρ(κ(𝑆))) ≤ 𝑂

(
𝑑 log(𝑛/β)

𝑛

)
.

For the right-hand size above to be at most α, it suffices to have 𝑛 = 𝑂

(
𝑑 log(𝑑/α)+𝑑 log(1/β)

α

)
.

Let A be the learning rule, which when given a sample 𝑆 ∼ D𝑛 as input, runs the stable randomized
compression scheme from above on 𝑆 to obtain 𝑆′ of size 𝑘 = 𝑂 (𝑑 log(𝑛/β)). The learner then
outputs (ρ(𝑆′), 𝑆′). By the reasoning above, ρ(𝑆′) has error at most α with probability at least 1−β.
It remains to argue that A is a valid CCA mechanism. This follows by virtue of (Dκ, ρ) being a
stable randomized compression scheme. Namely, for any 𝑖, 𝑆−𝑖 ⊑ 𝑆, and hence by Definition 6, the
distribution of κ(𝑆−𝑖) is identical to the distribution of κ(𝑆) conditioned on 𝑆𝑖 ∉ κ(𝑆). Finally, since
ρ is a deterministic function of its argument, A satisfies Definition 1 with ε = δ = 0. ■

4.2 Lower Bound: A dichotomy for sample DP-compression

Towards proving Theorem 2, we first show that a sample DP-compression scheme for the class of
thresholds can be used to construct a DP learner for it. This lemma has a similar flavor to the public
data reduction lemma (Lemma 4.4) in [1]. For a set 𝑆 = {𝑥1, . . . , 𝑥𝑚}, the class of thresholds over 𝑆
comprises of 𝑚 functions ℎ1, . . . , ℎ𝑚 such that ℎ𝑖 (𝑥 𝑗 ) = 1[𝑖 ≤ 𝑗], ∀𝑖, 𝑗 ∈ [𝑚].

9In more detail, this follows by setting the weak learning parameter γ to a constant (e.g., 1/8) in Algorithm
1 in [12], and noting that such a weak learner can be found via empirical risk minimization.
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Lemma 4.3 (Reduction from DP learner to sample DP-compression scheme). Let H𝑚 be the class
of thresholds over {𝑥1, . . . , 𝑥𝑚}. Suppose there exists an (ε, δ) sample DP-compression scheme
Ã that learns H𝑚 with error α and failure probability β = 1

32 , and has sample complexity 𝑛 and
compression size 𝑘 ≤ 𝑛. Let δ ≤ 1

64𝑛2 . Then, there exists a
(
64𝑘𝑒εα, 1

16 , 2ε, 3δ
)
-DP learner A for

H𝑚−1, where H𝑚−1 is the class of thresholds over {𝑥1, . . . , 𝑥𝑚−1}, with sample complexity 𝑛.

Proof. Let D be any distribution over {𝑥1, . . . , 𝑥𝑚−1} × {0, 1} realizable by H𝑚−1. Given a sample
𝑆 ∼ D𝑛, the private learner A does the following. First, it constructs a sample 𝑆, also of size 𝑛, as
follows. Initialize 𝑗 = 1. For each 𝑖 = 1, 2, . . . , 𝑛, toss a coin (independently of the data, and other
coins) that lands heads with probability 𝑝, for 𝑝 to be appropriately chosen later. If the coin lands
heads, 𝑆(𝑖) = 𝑆( 𝑗), and 𝑗 is incremented by 1. If the coin lands tails, 𝑆(𝑖) is set to the designated
dummy example (𝑥𝑚, 1). In this way, 𝑆 is a sample of size 𝑛 drawn from the mixture distribution
𝐷̃ = 𝑝 · D + (1 − 𝑝) · 1(𝑥𝑚 ,1) , where 1(𝑥𝑚 ,1) is a point mass on (𝑥𝑚, 1). Note that since all the
thresholds in H𝑚 label 𝑥𝑚 as 1, D̃ is realizable by H𝑚.

The learner A now invokes the sample DP-compression scheme Ã on 𝑆. If any of the 𝑘 examples in
the compression set constructed by 𝐴̃ is a non-dummy element, A outputs a constant hypothesis that
labels all points in {𝑥1, . . . , 𝑥𝑚−1} as 1. On the other hand, if all of the 𝑘 examples in the compression
set are dummies, then A outputs the hypothesis that 𝐴̃ outputs (restricted to {𝑥1, . . . , 𝑥𝑚−1}).
We first claim that the output of A is (2ε, 3δ)-private with respect to its input 𝑆.

Claim 4.4 (A is private). A is (2ε, 3δ)-DP.

The proof of this claim is given in Appendix A. At a high level, the privacy parameter deteriorates to
2ε because of the two-step process of compressing 𝑆 to 𝑘 points in an ε-DP way, and then obtaining
an ε-DP learner thereafter.
Next, we claim that on average, there will be a lot of dummies in the compression set selected by
𝐴̃. This step crucially hinges on Theorem 3, where we substitute the event 𝐸 in the statement of the
theorem to be the event that a non-dummy element is selected (i.e., 𝐸 is the support of the distribution
D). In particular, we get that the expected number of non-dummy elements is at most 𝑘 𝑝𝑒ε + δ𝑘𝑛,
which is at most 1

32 , if we set 𝑝 = 1
64𝑘ε2 , and use that 𝑘 ≤ 𝑛, δ ≤ 1

64𝑛2 .

We can now reason about the error and failure probability parameters of A. Because 𝐴̃ is an (ε, δ)
sample DP-compression scheme that successfully learns H𝑚 with error α and failure probability 1

32 ,
with probability at least 1− 1

32 over the draw of 𝑆 and the randomness of Ã, the hypothesis it outputs
has error at most α. Furthermore, since the expected number of non-dummy elements chosen in the
compression set is at most 1

32 , Markov’s inequality gives that with probability at least 1 − 1
32 over

the draw of 𝑆 and the randomness of Ã, all the 𝑘 examples chosen by 𝐴̃ in the compression set are
dummies. By a union bound, with probability at least 1 − 1

16 over the draw of 𝑆 and the randomness
of Ã, all the examples chosen to be in the compression set by 𝐴̃ are dummies and the hypothesis it
outputs has error (with respect to D̃) less than α.

But recall that the distribution D̃ on 𝑆 is induced by the distribution D on 𝑆, and that whenever all the
examples chosen by 𝐴̃ in the compression set are dummies, A returns 𝐴̃’s output. This implies that
with probability at least 1 − 1

16 over the draw of 𝑆 from D𝑛 and the randomness of A, the hypothesis
output by A has error at most α with respect to D̃. But since D̃ is a mixture distribution,

𝑅D̃ (A(𝑆)) ≥ 𝑝 · 𝑅D (A(𝑆)),

and hence we have that with probability at least 1− 1
16 , the error of A(𝑆) with respect to D is at most

α
𝑝
≤ 64𝑘𝑒εα. Thus, A is a

(
64𝑘𝑒εα, 1

16 , 2ε, 3δ
)
-DP learner for H𝑚−1 as required. ■

We next state a lower bound on the sample complexity of DP learners for thresholds [2, 10].
Theorem 4 (Theorem 1 in [2]). Let H𝑚 be the class of thresholds on {𝑥1, . . . , 𝑥𝑚}. Let A be a(

1
16 ,

1
16 , 0.1,

1
1000𝑛2 log 𝑛

)
-DP learner for H𝑚 with sample complexity 𝑛. Then 𝑛 ≥ Ω(log∗ 𝑚).
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We are now ready prove Theorem 5, which shows that non-Littlestone [16] classes cannot be learnt
by sublinear sample DP-compression schemes. Theorem 2 follows from Theorem 5, since classes
that are DP-learnable are exactly the classes with finite Littlestone dimension [11].
Theorem 5. Let H be a hypothesis class over X that has infinite Littlestone dimension. For
ε = 0.05, δ = 1

3000𝑛2 log 𝑛 , let Ã be an (ε, δ) sample differentially private (𝑛 → 𝑘) compression
scheme that learns H with error α and failure probability 1

32 . Then 𝑘 ≥ 1
68α .

Proof. Because H has infinite Littlestone dimension, for any 𝑚 ≥ 1, there exist {𝑥1, . . . , 𝑥𝑚} and
H𝑚 ⊆ H such that H𝑚 is the class of thresholds over {𝑥1, . . . , 𝑥𝑚} [2, Theorem 3]. Now, Ã is an
(𝑛 → 𝑘) sample DP-compression scheme that learns H; in particular, this means that Ã has sample
complexity 𝑛 < ∞, and also that Ã learns H𝑚 with the same parameters and sample complexity.
By Lemma 4.3, we know that there then exists a

(
68𝑘α, 1

16 , 0.1,
1

1000𝑛2 log 𝑛

)
private learner for H𝑚

with sample complexity 𝑛. Assume for the sake of contradiction that 𝑘 < 1
68α . This means that there

exists a
(
α, 1

16 , 0.1,
1

1000𝑛2 log 𝑛

)
private learner for H𝑚 with sample complexity 𝑛. By Theorem 4, it

must be that 𝑛 ≥ Ω(log∗ 𝑚). Since we can find H𝑚 ⊆ H for any 𝑚 ≥ 1, this would mean that 𝑛 = ∞,
which is a contradiction. Thus, it must be the case that 𝑘 ≤ 1

68α . ■

4.3 Bounded boosting of empirical measure

We prove a simplified form of Theorem 3 (with slightly tighter bounds), where we consider the input
to be a bit string. Theorem 3 as stated in terms of a general event can be immediately obtained as a
corollory by interpreting the bits in the string as indicators for the event (details in Appendix A).
Lemma 4.5 (Bounded Boosting of Empirical Measure). Let A : {0, 1}𝑛 → [𝑛]𝑘 be an (ε, δ)-DP
selection mechanism. Let D be the product distribution on {0, 1}𝑛 where each bit is set to 1 with
probability 𝑝. For 𝑋 ∼ D, let 𝑍 denote the fraction of indices in A(𝑋) at which 𝑋 is 1, i.e.,
𝑍 = 1

𝑘

∑
𝑗∈A(𝑋) 1[𝑋 𝑗 = 1]. Then, we have that

𝑝 − 𝑛𝑝(1 − 𝑝)δ
𝑝 + (1 − 𝑝)𝑒ε ≤ E[𝑍] ≤ 𝑝𝑒ε + 𝑛𝑝(1 − 𝑝)δ

1 − 𝑝 + 𝑝𝑒ε
. (4)

Proof Sketch. Let A(𝑋) = 𝐼 = (𝐼1, 𝐼2, . . . , 𝐼𝑘) be the tuple of indices selected by the DP mechanism
on input 𝑋 . We first write 𝑍 = 1

𝑘

∑𝑘
𝑗=1

∑𝑛
𝑖=1 1[𝐼 𝑗 = 𝑖∧𝑋𝑖 = 1]. Thereafter, the main step of the proof

uses that the mechanism is private in order to relate the conditional probability Pr[𝐼 𝑗 = 𝑖 |𝑋𝑖 = 1] to
Pr[𝐼 𝑗 = 𝑖 |𝑋𝑖 = 0] for any 𝑗 ∈ [𝑘]. Concretely, observe that

Pr[𝐼 𝑗 = 𝑖 |𝑋𝑖 = 0] =
Pr[𝑋𝑖 = 0 ∧ 𝐼 𝑗 = 𝑖]

Pr[𝑋𝑖 = 0] =

∑
𝑥∈{0,1}𝑛 ,𝑥𝑖=0 Pr[𝑥] Pr[𝐼 𝑗 = 𝑖 |𝑥]

1 − 𝑝

=

∑
𝑥∈{0,1}𝑛 ,𝑥𝑖=1 Pr[𝑥⊗𝑖] Pr[𝐼 𝑗 = 𝑖 |𝑥⊗𝑖]

1 − 𝑝
≤

∑
𝑥∈{0,1}𝑛 ,𝑥𝑖=1 Pr[𝑥] · (𝑒ε Pr[𝐼 𝑗 = 𝑖 |𝑥] + δ)

𝑝

=
𝑒ε

∑
𝑥∈{0,1}𝑛 ,𝑥𝑖=1 Pr[𝑥] Pr[𝐼 𝑗 = 𝑖 |𝑥]

𝑝
+ δ = 𝑒ε · Pr[𝐼 𝑗 = 𝑖 |𝑋𝑖 = 1] + δ,

where in the fourth inequality, we used that for 𝑥 having 𝑥𝑖 = 1, PrD [𝑥⊗𝑖] =
1−𝑝

𝑝
· Pr[𝑥], and

that A is an (ε, δ)-DP mechanism. This relation lets us express the joint probability term Pr[𝐼 𝑗 =
𝑖 ∧ 𝑋𝑖 = 1] in the expression E[𝑍] = 1

𝑘

∑𝑘
𝑗=1

∑𝑛
𝑖=1 Pr[𝐼 𝑗 = 𝑖 ∧ 𝑋𝑖 = 1] simply in terms of Pr[𝐼 𝑗 = 𝑖].

Thereafter, noticing that
∑𝑛

𝑖=1 Pr[𝐼 𝑗 = 𝑖] = 1 yields the result. The complete details are provided in
Appendix A. ■

5 Conclusion

We study two natural definitions for algorithms satisfying credit attribution. In the context of PAC
learning, we provide a characterization of learnability for algorithms that respect these definitions.
Our work motivates the further study of these and other related definitions for credit attribution,
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and opens up interesting technical directions to pursue. However, as mentioned earlier, credit
attribution is only part of the much more nuanced problem of copyright protection, and hence, our
definitions only capture subtleties involved in the problem in part. With further exploration, and
other suitable definitions, we will hopefully be able to ensure that algorithms (especially generative
models) appropriately credit the work that they draw upon.
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A Supplementary Proofs

Proof of Claim 4.4. Consider any 2 neighboring datasets 𝑆 = (𝑧1, . . . , 𝑧𝑖 , . . . , 𝑧𝑛) and
𝑆′ = (𝑧1, . . . , 𝑧

′
𝑖
, . . . , 𝑧𝑛) that differ at index 𝑖. Here, we are using the shorthand 𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖). We

want to argue that the distribution of A(𝑆) =2ε,3δ A(𝑆′). Let 𝑂 be any subset of the output space of
A. Recall that A first constructs the sample 𝑆 from 𝑆 and then passes it to the semi-private learner
Ã. Then,

Pr[A(𝑆) ∈ 𝑂] = Pr[A(𝑆) ∈ 𝑂 |𝑧𝑖 ∈ 𝑆] Pr[𝑧𝑖 ∈ 𝑆] + Pr[A(𝑆) ∈ 𝑂 |𝑧𝑖 ∉ 𝑆] Pr[𝑧𝑖 ∉ 𝑆]
= Pr[A(𝑆) ∈ 𝑂 |𝑧𝑖 ∈ 𝑆] Pr[𝑧′𝑖 ∈ 𝑆′] + Pr[A(𝑆′) ∈ 𝑂 |𝑧′𝑖 ∉ 𝑆′] Pr[𝑧′𝑖 ∉ 𝑆′] (5)

where we used that the coins that deterine whether 𝑧𝑖 ∈ 𝑆 (or 𝑧′
𝑖
∈ 𝑆′) are tossed independently of

the data, and that the distribution of 𝑆′ conditioned on 𝑧′
𝑖
∉ 𝑆′, is identical to the distribution of 𝑆

conditioned on 𝑧𝑖 ∉ 𝑆. Hence, we focus on the term Pr[A(𝑆) ∈ 𝑂 |𝑧𝑖 ∈ 𝑆] in (5). We can decompose
this as

Pr[A(𝑆) ∈ 𝑂 |𝑧𝑖 ∈ 𝑆] =
∑︁
𝑠:𝑧𝑖∈𝑠

Pr[A(𝑆) ∈ 𝑂 |𝑧𝑖 ∈ 𝑆, 𝑆 = 𝑠] Pr[𝑆 = 𝑠 |𝑧𝑖 ∈ 𝑆]

=
∑︁

𝑠′:𝑧′
𝑖
∈𝑠′

Pr[A(𝑆) ∈ 𝑂 |𝑧𝑖 ∈ 𝑆, 𝑆 = 𝑠] Pr[𝑆′ = 𝑠′ |𝑧′𝑖 ∈ 𝑆′] . (6)

Here, for every term in the summation, 𝑠′ differs from 𝑠 at exactly one index 𝑖, and we again used
that the coins used to construct 𝑆 and 𝑆′ are independent of the data. Let 𝐸 (𝑠) be the event that all
the 𝑘 samples chosen by the semi-private learner Ã when it is given 𝑠 as input are dummies. Since
𝑠 and 𝑠′ differ in exactly one element, because of the special property of the selection mechanism of
Ã, we have that

Pr[𝐸 (𝑠) |𝑧𝑖 ∈ 𝑆, 𝑆 = 𝑠] ≤ 𝑒ε · Pr[𝐸 (𝑠′) |𝑧′𝑖 ∈ 𝑆′, 𝑆′ = 𝑠′] + δ (7)
Pr[¬𝐸 (𝑠) |𝑧𝑖 ∈ 𝑆, 𝑆 = 𝑠] ≤ 𝑒ε · Pr[¬𝐸 (𝑠′) |𝑧′𝑖 ∈ 𝑆′, 𝑆′ = 𝑠′] + δ. (8)

But note that the set of public examples is exactly the same, if 𝐸 (𝑠) and 𝐸 (𝑠′) respectively occur—
hence, the learner in Ã (which is a function of the set of public examples) that operates on the private
examples in either case is identical. Furthermore, the sets of private examples themselves differ in
exactly one element; we can thus use the privacy guarantees of the learner in Ã to claim that

Pr[A(𝑆) ∈ 𝑂 |𝑧𝑖 ∈ 𝑆, 𝑆 = 𝑠, 𝐸 (𝑠)] ≤ min
(
1, 𝑒ε · Pr[A(𝑆′) ∈ 𝑂 |𝑧′𝑖 ∈ 𝑆′, 𝑆′ = 𝑠′, 𝐸 (𝑠′)]

)
+ δ. (9)

Combining (7) and (9), we get

Pr[A(𝑆) ∈ 𝑂 |𝑧𝑖 ∈ 𝑆, 𝑆 = 𝑠, 𝐸 (𝑠)] · Pr[𝐸 (𝑠) |𝑧𝑖 ∈ 𝑆, 𝑆 = 𝑠]
≤

(
min

(
1, 𝑒ε · Pr[A(𝑆′) ∈ 𝑂 |𝑧′𝑖 ∈ 𝑆′, 𝑆′ = 𝑠′, 𝐸 (𝑠′)]

)
+ δ

)
Pr[𝐸 (𝑠) |𝑧𝑖 ∈ 𝑆, 𝑆 = 𝑠]

≤ min
(
1, 𝑒ε · Pr[A(𝑆′) ∈ 𝑂 |𝑧′𝑖 ∈ 𝑆′, 𝑆′ = 𝑠′, 𝐸 (𝑠′)]

)
Pr[𝐸 (𝑠) |𝑧𝑖 ∈ 𝑆, 𝑆 = 𝑠] + δ

≤ min
(
1, 𝑒ε · Pr[A(𝑆′) ∈ 𝑂 |𝑧′𝑖 ∈ 𝑆′, 𝑆′ = 𝑠′, 𝐸 (𝑠′)]

) (
𝑒ε · Pr[𝐸 (𝑠′) |𝑧′𝑖 ∈ 𝑆′, 𝑆′ = 𝑠′] + δ

)
+ δ

≤ 𝑒2ε · Pr[A(𝑆′) ∈ 𝑂 |𝑧′𝑖 ∈ 𝑆′, 𝑆′ = 𝑠′, 𝐸 (𝑠′)] · Pr[𝐸 (𝑠′) |𝑧′𝑖 ∈ 𝑆′, 𝑆′ = 𝑠′] + 2δ. (10)

Now, observe that if 𝐸 (𝑠) does not occur (and correspondingly if 𝐸 (𝑠′) does not occur), then we
deterministically out the constant hypothesis in either case, and hence

Pr[A(𝑆) ∈ 𝑂 |𝑧𝑖 ∈ 𝑆, 𝑆 = 𝑠,¬𝐸 (𝑠)] = Pr[A(𝑆′) ∈ 𝑂 |𝑧′𝑖 ∈ 𝑆′, 𝑆′ = 𝑠′,¬𝐸 (𝑠′)] . (11)

Combining (8) and (11), we get

Pr[A(𝑆) ∈ 𝑂 |𝑧𝑖 ∈ 𝑆, 𝑆 = 𝑠,¬𝐸 (𝑠)] · Pr[¬𝐸 (𝑠) |𝑧𝑖 ∈ 𝑆, 𝑆 = 𝑠]
≤ 𝑒ε · Pr[A(𝑆′) ∈ 𝑂 |𝑧′𝑖 ∈ 𝑆′, 𝑆′ = 𝑠′,¬𝐸 (𝑠′)] · Pr[¬𝐸 (𝑠′) |𝑧′𝑖 ∈ 𝑆′, 𝑆′ = 𝑠′] + δ (12)

Altogether, (10) and (12) give that

Pr[A(𝑆) ∈ 𝑂 |𝑧𝑖 ∈ 𝑆, 𝑆 = 𝑠] ≤ 𝑒2ε · Pr[A(𝑆′) ∈ 𝑂 |𝑧′𝑖 ∈ 𝑆′, 𝑆′ = 𝑠′] + 3δ.
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Substituting in (6), we get

Pr[A(𝑆) ∈ 𝑂 |𝑧𝑖 ∈ 𝑆] ≤
∑︁

𝑠′:𝑧′
𝑖
∈𝑠′

Pr[A(𝑆) ∈ 𝑂 |𝑧𝑖 ∈ 𝑆, 𝑆 = 𝑠] Pr[𝑆′ = 𝑠′ |𝑧′𝑖 ∈ 𝑆′]

≤
∑︁

𝑠′:𝑧′
𝑖
∈𝑠′

(
𝑒2ε · Pr[A(𝑆′) ∈ 𝑂 |𝑧′𝑖 ∈ 𝑆′, 𝑆′ = 𝑠′] + 3δ

)
Pr[𝑆′ = 𝑠′ |𝑧′𝑖 ∈ 𝑆′]

≤ 3δ + 𝑒2ε
∑︁

𝑠′:𝑧′
𝑖
∈𝑠′

Pr[A(𝑆′) ∈ 𝑂 |𝑧′𝑖 ∈ 𝑆′, 𝑆′ = 𝑠′] Pr[𝑆′ = 𝑠′ |𝑧′𝑖 ∈ 𝑆′]

= 𝑒2ε · Pr[A(𝑆′) ∈ 𝑂 |𝑧′𝑖 ∈ 𝑆′] + 3δ.
Finally, substituting back in (5), we get

Pr[A(𝑆) ∈ 𝑂]

≤
(
𝑒2ε · Pr[A(𝑆′) ∈ 𝑂 |𝑧′𝑖 ∈ 𝑆′] + 3δ

)
Pr[𝑧′𝑖 ∈ 𝑆′] + Pr[A(𝑆′) ∈ 𝑂 |𝑧′𝑖 ∉ 𝑆′] Pr[𝑧′𝑖 ∉ 𝑆′]

≤ 𝑒2ε ·
(
Pr[A(𝑆′) ∈ 𝑂 |𝑧′𝑖 ∈ 𝑆′] Pr[𝑧′𝑖 ∈ 𝑆′] + Pr[A(𝑆′) ∈ 𝑂 |𝑧′𝑖 ∉ 𝑆′] Pr[𝑧′𝑖 ∉ 𝑆′]

)
+ 3δ

= 𝑒2ε · Pr[A(𝑆′) ∈ 𝑂] + 3δ.

By the same calculations, we also get the bound Pr[A(𝑆′) ∈ 𝑂] ≤ 𝑒2ε · Pr[A(𝑆) ∈ 𝑂] + 3δ,
completing the proof. ■

Proof of Lemma 4.5. Let A(𝑋) = 𝐼 = (𝐼1, 𝐼2, . . . , 𝐼𝑘). Note that

𝑍 =
1
𝑘

𝑘∑︁
𝑗=1

𝑛∑︁
𝑖=1
1[𝐼 𝑗 = 𝑖 ∧ 𝑋𝑖 = 1],

and hence

E[𝑍] = 1
𝑘

𝑘∑︁
𝑗=1

𝑛∑︁
𝑖=1

Pr𝑋,A [𝐼 𝑗 = 𝑖 ∧ 𝑋𝑖 = 1] = 1
𝑘

𝑘∑︁
𝑗=1

𝑛∑︁
𝑖=1

Pr[𝑋𝑖 = 1]︸       ︷︷       ︸
=𝑝

· Pr[𝐼 𝑗 = 𝑖 |𝑋𝑖 = 1]

=
𝑝

𝑘
·

𝑘∑︁
𝑗=1

𝑛∑︁
𝑖=1

Pr[𝐼 𝑗 = 𝑖 |𝑋𝑖 = 1] . (13)

Now, for any 𝑥 ∈ {0, 1}𝑛, let 𝑥⊗𝑖 denote 𝑥 with its 𝑖th bit flipped. Then, observe that

Pr[𝐼 𝑗 = 𝑖 |𝑋𝑖 = 0] =
Pr[𝑋𝑖 = 0 ∧ 𝐼 𝑗 = 𝑖]

Pr[𝑋𝑖 = 0] =

∑
𝑥∈{0,1}𝑛 ,𝑥𝑖=0 Pr[𝑥] Pr[𝐼 𝑗 = 𝑖 |𝑥]

1 − 𝑝

=

∑
𝑥∈{0,1}𝑛 ,𝑥𝑖=1 Pr[𝑥⊗𝑖] Pr[𝐼 𝑗 = 𝑖 |𝑥⊗𝑖]

1 − 𝑝
≤

∑
𝑥∈{0,1}𝑛 ,𝑥𝑖=1 Pr[𝑥] · (𝑒ε Pr[𝐼 𝑗 = 𝑖 |𝑥] + δ)

𝑝

=
𝑒ε

∑
𝑥∈{0,1}𝑛 ,𝑥𝑖=1 Pr[𝑥] Pr[𝐼 𝑗 = 𝑖 |𝑥]

𝑝
+ δ = 𝑒ε · Pr[𝐼 𝑗 = 𝑖 |𝑋𝑖 = 1] + δ,

where in the fourth inequality, we used that for 𝑥 having 𝑥𝑖 = 1, PrD [𝑥⊗𝑖] = 1−𝑝

𝑝
· Pr[𝑥], and that A

is an (ε, δ)-DP mechanism. Hence, we have that
Pr𝑋,A [𝐼 𝑗 = 𝑖] = Pr[𝑋𝑖 = 0] · Pr[𝐼 𝑗 = 𝑖 |𝑋𝑖 = 0] + Pr[𝑋𝑖 = 1] · Pr[𝐼 𝑗 = 𝑖 |𝑋𝑖 = 1]

≤ Pr[𝑋𝑖 = 0] · (𝑒ε · Pr[𝐼 𝑗 = 𝑖 |𝑋𝑖 = 1] + δ) + Pr[𝑋𝑖 = 1] · Pr[𝐼 𝑗 = 𝑖 |𝑋𝑖 = 1]
= (𝑝 + 𝑒ε (1 − 𝑝)) Pr[𝐼 𝑗 = 𝑖 |𝑋𝑖 = 1] + (1 − 𝑝)δ (14)

=⇒ Pr[𝐼 𝑗 = 𝑖 |𝑋𝑖 = 1] ≥
Pr[𝐼 𝑗 = 𝑖] − (1 − 𝑝)δ

𝑝 + 𝑒ε (1 − 𝑝) . (15)

Substituting (15) in (13), we get

E[𝑍] ≥ 𝑝

𝑘 (𝑝 + 𝑒ε (1 − 𝑝)) ·
©­«

𝑘∑︁
𝑗=1

𝑛∑︁
𝑖=1

Pr[𝐼 𝑗 = 𝑖] − 𝑛𝑘 (1 − 𝑝)δª®¬ . (16)
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Finally, note that
∑𝑛

𝑖=1 Pr[𝐼 𝑗 = 𝑖] = 1 for any 𝑗 . Substituting in (16), we have shown the desired
lower bound

E[𝑍] ≥ 𝑝 − 𝑛𝑝(1 − 𝑝)δ
𝑝 + 𝑒ε (1 − 𝑝) .

For the upper bound, we repeat the above analysis with 𝑍 ′ = 1
𝑘

∑
𝑗∈A(𝑋) 1[𝑋 𝑗 = 0], to obtain

E[𝑍 ′] ≥ (1 − 𝑝) − 𝑛𝑝(1 − 𝑝)δ
1 − 𝑝 + 𝑝𝑒ε

.

But note that 𝑍 ′ = 1 − 𝑍 , and hence

E[𝑍] = 1 − E[𝑍 ′] ≤ 𝑝𝑒ε + 𝑛𝑝(1 − 𝑝)δ
1 − 𝑝 + 𝑝𝑒ε

.

■

Proof of Theorem 3. Recall that 𝐸 ⊆ Z is an event satisfying D(𝐸) = 𝑝 for the given distribution
D over Z. Let D|𝐸 denote the distribution D conditioned on the event 𝐸 , and let D|¬𝐸 denote the
distribution D conditioned on the complement of event 𝐸 . Assume for the sake of contradiction
that either E[𝑍] >

𝑝𝑒ε+𝑛𝑝 (1−𝑝)δ
1−𝑝+𝑝𝑒ε or E[𝑍] <

𝑝+𝑛𝑝 (1−𝑝)δ
𝑝+(1−𝑝)𝑒ε . Then, consider an algorithm B, that

takes as input a bit string 𝑌 from a product distribution on {0, 1}𝑛, where each bit is independently
set to 1 with probability 𝑝. Given such an input string 𝑌 , the algorithm constructs a sequence
𝑆 = {𝑧1, . . . , 𝑧𝑛}, where 𝑧𝑖 ∼ D|𝐸 if𝑌𝑖 = 1, and 𝑧𝑖 ∼ D|¬𝐸 otherwise. Thus, 𝑆 is exactly distributed
as 𝐷𝑛. B then passes 𝑆 to the DP sample compression scheme 𝑀 , which selects a compression set
κ(𝑆) = (𝑖1, . . . , 𝑖𝑘)—this is the tuple of indices thatB outputs too. Note that because the compression
function κ is an (ε, δ)-DP mechanism, B is also an (ε, δ)-DP mechanism with respect to its input.
To see this, consider two neighboring bit strings 𝑦, 𝑦′, such that 𝑦𝑖 = 1 and 𝑦′

𝑖
= 0. We will show

that Pr[B(𝑦) ∈ 𝑂] ≤ 𝑒ε · Pr[B(𝑦′) ∈ 𝑂] + δ, and the same calculations will give the bound with
𝑦, 𝑦′ swapped.

Pr[B(𝑦) ∈ 𝑂] =
∑︁
𝑧−𝑖

Pr[𝑧−𝑖]
∑︁
𝑧𝑖∈𝐸

Pr[𝑧𝑖 |𝐸] Pr[A(𝑧−𝑖 ◦ 𝑧𝑖) ∈ 𝑂] (17)

Now, for any 𝑧′
𝑖
∈ ¬𝐸 , we know (since κ is an (ε, δ)-DP mechanism) that

Pr[A(𝑧−𝑖 ◦ 𝑧𝑖) ∈ 𝑂] ≤ 𝑒ε · Pr[A(𝑧−𝑖 ◦ 𝑧′𝑖) ∈ 𝑂] + δ,
and hence

Pr[A(𝑧−𝑖 ◦ 𝑧𝑖) ∈ 𝑂] ≤ 𝑒ε ·
∑︁
𝑧′
𝑖
∈¬𝐸

Pr[𝑧′𝑖 |¬𝐸] Pr[A(𝑧−𝑖 ◦ 𝑧′𝑖) ∈ 𝑂] + δ. (18)

Substituting (18) in (17) gives that

Pr[B(𝑦) ∈ 𝑂] ≤ 𝑒ε ·
∑︁
𝑧−𝑖

Pr[𝑧−𝑖]
∑︁
𝑧′
𝑖
∈¬𝐸

Pr[𝑧′𝑖 |¬𝐸] Pr[A(𝑧−𝑖 ◦ 𝑧′𝑖) ∈ 𝑂] + δ

= 𝑒ε · Pr[B(𝑦′) ∈ 𝑂] + δ.

Now, by our assumption, either E[𝑍] > 𝑝𝑒ε+𝑛𝑝 (1−𝑝)δ
1−𝑝+𝑝𝑒ε or E[𝑍] < 𝑝+𝑛𝑝 (1−𝑝)δ

𝑝+(1−𝑝)𝑒ε . But this means that

either E
[∑𝑘

𝑗=1 1[𝑌𝑖 𝑗 = 1]
]
>

𝑝𝑒ε+𝑛𝑝 (1−𝑝)δ
1−𝑝+𝑝𝑒ε or E

[∑𝑘
𝑗=1 1[𝑌𝑖 𝑗 = 1]

]
<

𝑝+𝑛𝑝 (1−𝑝)δ
𝑝+(1−𝑝)𝑒ε . Thus, B is an

(ε, δ)-DP selection mechanism that violates the bounds in Lemma 4.5, and hence our assumption is
false. ■

B A DP sample compression scheme based on Randomized Response

Definition 7 (Randomized response). Let RR : {0, 1}𝑛 → [𝑛]𝑘 be the randomized response selection
mechanism defined as follows. Given 𝑥 ∈ {0, 1}𝑛, RR flips each bit of 𝑥 independently with probability

1
1+𝑒ε to obtain 𝑥. Let 𝑆 = {𝑖 ∈ [𝑛] : 𝑥𝑖 = 1} and 𝑆′ = [𝑛] \ 𝑆. Further, let |𝑆 | = 𝑡. If 𝑡 ≥ 𝑘 , then RR
outputs a uniformly random subset of 𝑘 indices from 𝑆, ordered arbitrarily. Otherwise, it arbitrarily
orders 𝑆, and outputs 𝑆 ◦ 𝑇 , where 𝑇 is a uniformly random subset of 𝑘 − 𝑡 indices chosen from 𝑆′

(and ordered arbitrarily), and ◦ denotes concatenation.
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Claim B.1 (RR boosts empirical measure optimally). In the setting of Lemma 4.5, let δ = 0 and let
A be the randomized response mechanism RR (Definition 7) . Then,

E[𝑍] ≥
(
1 − 𝑘𝑛𝑘 · exp

(
(𝑘 − 𝑛) (1 − 𝑝 + 𝑝𝑒ε)

1 + 𝑒ε

))
· 𝑝𝑒ε

1 − 𝑝 + 𝑝𝑒ε
. (19)

Remark 3. Observe that when 𝑘 = 𝑜

(
𝑛

log 𝑛

)
and 𝑛 gets large, the expression in the parentheses

approaches 1. Thus, we can conclude that randomized response attains the upper bound from
Lemma 4.5 when δ = 0.

Proof. Recall that for 𝑋 ∼ D, randomized response first constructs 𝑌 by flipping each bit of 𝑋 with
probability 1

1+𝑒ε . That is, the distribution of 𝑌 is the product distribution where each 𝑌𝑖 is 1 with
probability 𝑝 · 𝑒ε

1+𝑒ε + (1 − 𝑝) · 1
1+𝑒ε =

1−𝑝+𝑝𝑒ε
1+𝑒ε := α. Let 𝑆 = {𝑖 ∈ [𝑛] : 𝑌𝑖 = 1}. We first claim that

with high probability, |𝑆 | ≥ 𝑘 .
To see this, note that

Pr[|𝑆 | ≥ 𝑘] = 1 − Pr[|𝑆 | < 𝑘]
= 1 − Pr[∃𝑆′ ∈ [𝑛] : |𝑆′ | > 𝑛 − 𝑘,𝑌𝑖 = 0 ∀𝑖 ∈ 𝑆′]
≥ 1 − Pr[∃𝑆′ ∈ [𝑛] : |𝑆′ | = 𝑛 − 𝑘 + 1, 𝑌𝑖 = 0 ∀𝑖 ∈ 𝑆′]

≥ 1 −
(

𝑛

𝑘 − 1

)
(1 − α)𝑛−𝑘+1

≥ 1 − 𝑛𝑘 · 𝑒−α(𝑛−𝑘 )︸          ︷︷          ︸
:=β

,

where we denote the tail probability by β. Note that since we assume 𝑘 = 𝑜

(
𝑛

log 𝑛

)
, β = 𝑜(1).

Let 𝐼 be the tuple of 𝑘 indices that RR outputs (note that all these indices are always distinct). Recall
that, if |𝑆 | ≥ 𝑘 , then 𝑌𝑖 = 1 for all 𝑖 ∈ 𝐼. Let 𝑍1 =

∑
𝑖∈𝐼 1[𝑌𝑖 = 1] and 𝑍0 =

∑
𝑖∈𝐼 1[𝑌𝑖 = 0]. Then

we have that

E[𝑍1] ≥ 𝑘 · Pr[|𝑆 | ≥ 𝑘] ≥ 𝑘 (1 − β)
=⇒ E[𝑍0] ≤ 𝑘β.

Markov’s inequality then gives us that Pr[𝑍0 ≥ 1] ≤ 𝑘β. Thus, with probability at least 1 − 𝑘β, we
have that 𝑌𝑖 = 1 for all (distinct) indices output by RR: let 𝐺 denote this event.

Finally, let 𝑍 = 1
𝑘

∑
𝑖∈𝐼 1[𝑋𝑖 = 1]. Then, we have that

E[𝑍] ≥ Pr[𝐺] · E[𝑍 |𝐺]
≥ (1 − 𝑘β) · E[𝑍 |𝐺]

= (1 − 𝑘β) ·
∑︁

𝑖1 ,...,𝑖𝑘

Pr[𝐼 = {𝑖1, . . . , 𝑖𝑘}|𝐺] · E[𝑍 |𝐺, 𝐼 = {𝑖1, . . . , 𝑖𝑘}] . (20)

But observe that

E[𝑍 |𝐺, 𝐼 = {𝑖1, . . . , 𝑖𝑘}] =
1
𝑘

∑︁
𝑗∈{𝑖1 ,...,𝑖𝑘 }

Pr[𝑋 𝑗 = 1|𝑌 𝑗 = 1]

=
1
𝑘

∑︁
𝑗∈{𝑖1 ,...,𝑖𝑘 }

Pr[𝑋 𝑗 = 1 ∧ 𝑌 𝑗 = 1]
Pr[𝑌 𝑗 = 1]

=
1
𝑘

∑︁
𝑗∈{𝑖1 ,...,𝑖𝑘 }

𝑝 · 𝑒ε

1+𝑒ε

𝑝 · 𝑒ε

1+𝑒ε + (1 − 𝑝) · 1
1+𝑒ε

=
𝑝𝑒ε

1 − 𝑝 + 𝑝𝑒ε
.
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Substituting in (20) and plugging in the expression for β, we get the desired bound

E[𝑍] ≥
(
1 − 𝑘𝑛𝑘 · exp

(
(𝑘 − 𝑛) (1 − 𝑝 + 𝑝𝑒ε)

1 + 𝑒ε

))
· 𝑝𝑒ε

1 − 𝑝 + 𝑝𝑒ε
.

■
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We state all the assumptions in our theorems, and also provide complete
proofs/references.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend on
the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our work suggests definitions for credit attribution in machine learning algo-
rithms. The hope is that models adhering to these definitions (particularly generative AI
models) will not be able to get away with generating content that is heavily influenced from
existing (possibly copyrighted) artwork without properly citing it. We do not anticipate any
negative societal impact due to our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper is theoretical and does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not entail crowdsourcing experiments or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable for the same reason as above.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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