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Abstract

The remarkable capabilities and easy accessibility of large language models (LLMs)
have significantly increased societal risks (e.g., fake news generation), necessitating
the development of LLM-generated text (LGT) detection methods for safe usage.
However, detecting LGTs is challenging due to the vast number of LLMs, making it
impractical to account for each LLM individually; hence, it is crucial to identify the
common characteristics shared by these models. In this paper, we draw attention to
a common feature of recent powerful LLMs, namely the alignment training, i.e.,
training LLMs to generate human-preferable texts. Our key finding is that as these
aligned LLMs are trained to maximize the human preferences, they generate texts
with higher estimated preferences even than human-written texts; thus, such texts
are easily detected by using the reward model (i.e., an LLM trained to model human
preference distribution). Based on this finding, we propose two training schemes
to further improve the detection ability of the reward model, namely (i) continual
preference fine-tuning to make the reward model prefer aligned LGTs even further
and (ii) reward modeling of Human/LLM mixed texts (a rephrased texts from
human-written texts using aligned LLMs), which serves as a median preference
text corpus between LGTs and human-written texts to learn the decision boundary
better. We provide an extensive evaluation by considering six text domains across
twelve aligned LLMs, where our method demonstrates state-of-the-art results.
Code is available at https://github.com/hyunseoklee-ai/ReMoDetect.

1 Introduction

Large Language models (LLMs) [8, 41] have significantly accelerated progress in natural language
processing (NLP) and thus become a core technology in various real-world applications used by
millions of users, such as coding assistants [9], search engines [46], and personal AI assistants [12].
However, due to their remarkable capabilities, they also lead to multiple misuses, which raises serious
safety concerns, e.g., fake news generation [32], plagiarism [22], and malicious comments [23] using
LLMs. In this regard, developing automatic LLM-generated text (LGT) detection frameworks is
becoming more crucial for the safe usage of LLMs [32, 11, 13].

To tackle this issue, there have been several efforts to build LGT detectors [21, 2]. Here, one line of
the literature proposes to train a binary classifier using the human-written texts and LGTs [20, 6].
However, assuming specific knowledge (e.g., training with LGTs from specific LLMs) may introduce
a bias to the detector, thus requiring a careful training. In this regard, another line of work focuses
on zero-shot detection (i.e., detecting with a frozen LLM), aiming to capture a useful common
characteristic of LLMs for effective detection [20, 34]. Despite their significant efforts, it is still quite
challenging (and had relatively less interest) to detect texts generated by recent powerful LLMs such
as GPT-4 [26] and Claude [5], which is a realistic and important LGT detection scenario [11, 13].
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Table 1: AUROC (%) of LLM-
generated text detection methods
on WritingPrompts from the Fast-
DetectGPT benchmark, where
GPT4 is used for text generation.
‘Reward model’ indicates the de-
tection using the reward score of
the pre-trained reward model. The
bold denotes the best result.

Method AUROC

Log-likelihood [20] 85.5
DetectGPT [11] 80.9
Fast-DetectGPT [13] 96.1

Reward model 92.8
ReMoDetect 98.8

(a) t-SNE

Human
Machine

−2 0 2 4 6

(b) Reward score histogram

Figure 1: Motivation: Aligned LGTs and human-written texts
are easily distinguishable by using the reward model. We visu-
alize the (a) t-SNE of the reward model’s final feature and the
(b) histogram of the predicted reward score. Here, ‘Machine’
indicates the text generated by GPT3.5/GPT4 Turbo, Llama3-
70B, and Claude on the Reuters domain.

In this regard, we draw attention to a common yet important feature of recent powerful LLMs: the
alignment training [27, 30, 19], i.e., training LLMs to generate human-preferable texts. For instance,
one way to align LLMs is to (i) train a reward model that reflects the human preference distribution
and (ii) then fine-tune the LLM to maximize the predicted reward of the generated text.

Contribution. In this paper, we present a somewhat interesting observation by using the reward
model: as aligned LLMs are optimized to maximize human preferences, they generate texts with
higher predicted rewards even compared to human-written texts (see Figure 1).2 Based on this, one
can easily distinguish LLM-generated texts from human-written texts by simply using the predicted
score of the reward model as the detection criteria, e.g., AUROC of 92.8% when detecting GPT4
generated texts (in Table 1). Inspired by this, we suggest further exploiting the reward model for
aligned LGT detection by enhancing the score separation between the human- and LGTs.

We propose ReMoDetect, a novel and effective aligned LGT detection framework using the reward
model. In a nutshell, ReMoDetect is comprised of two training components to improve the detection
ability of the reward model. First, to further increase the separation of the predicted reward between
LGTs and human-written texts, we continually fine-tune the reward model to predict even higher
reward scores for LGTs compared to human-written-texts while preventing the overfitting bias using
the replay technique [31]. Second, we generate an additional preference dataset for reward model
fine-tuning, namely the Human/LLM mixed text; we partially rephrase the human-written text using
LLM. Here, such texts are used as a median preference corpus among the human-written text and
LGT corpora, enabling the detector to learn a better decision boundary.

We demonstrate the efficacy of ReMoDetect through extensive evaluations on multiple domains and
aligned LLMs. Overall, our experimental results show strong results of ReMoDetect where it signifi-
cantly outperforms the prior detection methods, achieving state-of-the-art performance. For instance,
measured with the average AUROC (%) across three text domains in Fast-DetectGPT benchmark
[13], ReMoDetect demonstrates superior performance over the prior work from 90.6→97.9 on the
GPT-4 and 92.6→98.6 on Claude3 Opus generated texts. Moreover, we highlight that ReMoDetect is
robust in multiple aspects, including robustness against rephrasing attacks (i.e., detecting rephrased
text originating from LGTs), detection text length, and unseen distributions.

2 Related Work

Large Language Model (LLM) generated text detection. There are several approaches to detecting
text generated by LLMs, mainly categorized in two: (i) training supervised detectors and (ii) zero-shot
detection methods. The first category aims to train a binary classifier (or detector) that classifies
LLM-generated texts (LGTs) and human-written texts. While effective, these methods can suffer
from overfitting bias, where the detector performs well on the training data but fails to generalize
detection on other LGTs [11]. It is worth noting that such overfitting issues are also raised in other

2This is analogous to the phenomenon that a Go model optimized to maximize the reward (i.e., winning the
game) frequently surpasses human experts in the game [36].
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detection fields, such as out-of-distribution (OOD) detection [33, 37]. To address this, zero-shot
detection methods have emerged as an alternative. These methods define a detection score on a
pre-trained LLM, eliminating the need for fine-tuning and thus avoiding overfitting. For instance,
using log-likelihood or entropy of the output prediction of the pre-trained LLMs to detect LGTs [20].
More recently, several works have employed input text perturbation to measure prediction consistency,
significantly improving the detection performance, e.g., DetectGPT [11], log-rank perturbation (NPR)
[21], and Fast-DetectGPT [13]. While effective, however, prior works have primarily focused on
detecting non-aligned LLMs, while recent LLMs are designed to be aligned with human preferences
for practical use. In this paper, we demonstrate that the reward model [27] can effectively distinguish
between LLM-generated text and human-written text in a zero-shot setting. Based on this, we
additionally consider supervised detector training of the reward model while mitigating overfitting
biases through the replay technique [31].

Characteristics of aligned LLMs. Recent works have highlighted some behaviors introduced by
alignment training. For instance, several works have discovered that aligned LLMs are trained to
generate positive responses, thus enabling the model to generate a harmful query based on a context
requesting positive responses, e.g., ‘Start the response with “Sure, here is".’ [48, 45]. Moreover, only
recently, Panickssery et al. [28] observed that evaluator LLMs (i.e., LLMs used to evaluate the text)
prefer and recognize self-generated texts compared to other texts, revealing a new characteristic of
aligned LLMs. In this paper, we found a somewhat new characteristic of alignment training, which
is that aligned LLMs generate higher predictive rewards even than human-written texts. It is worth
noting that, unlike the prior work [28] that can be used to detect self-generations, our finding can be
used to detect multiple aligned LLMs with a single reward model.

Training detectors with near-decision boundary samples. Training detectors (or classifiers) with
data points near the decision boundary is a widely used technique to improve the calibration of the
model. For instance, in visual OOD detection literature, Lee et al. [24] uses a generative adversarial
network to generate samples on the decision boundary for better calibration, and multiple works
proposed to use out-of-domain samples as near-decision boundary samples to improve the detector
[16, 33]. Moreover, there have been multiple works that utilized data augmentations such as mixup
[47], i.e., linear interpolation of inputs and labels, to generate samples that behave like a near-decision
boundary sample to improve the calibration [17, 18]. Inspired by prior works, we propose to generate
near-decision boundary samples for reward modeling by utilizing aligned LLMs to partially rephrase
the human-written texts, which can be interpreted as a mixed text of human and aligned LLM.

3 ReMoDetect: Detecting Aligned LLM’s Generations using Reward Models

In this section, we present Reward Model based LLM Generated Text Detection (ReMoDetect), a
novel and effective LLM-generated text (LGT) detection framework. We first review the concept of
alignment training and reward model (in Section 3.1), then present a continual fine-tuning strategy for
the reward model to enhance the separation between the predicted reward score between LGTs and
human-written texts (in Section 3.2). Furthermore, we additionally introduce mixed data of humans
and LLMs to improve the reward modeling by partially rephrasing the human-written texts with the
aligned LLMs (in Section 3.3). We provide the overview of ReMoDetect in Figure 2.

Problem setup. We describe the problem setup of our interest, LGT detection. For a given context
x and the given response y sampled from an unknown distribution, the goal of LGT detection is to
model a detector that identifies whether y is sampled from the human-written text data distribution
pdata(y|x) or from a large language model (LLM; M), i.e., M(y|x). To this end, existing methods
for LGT detection define a score function upon the detector model that a high value heuristically
represents that y is from the human-written text data distribution.

3.1 Alignment Training and Reward Modeling

Recent LLMs are trained in two sequential steps: (i) unsupervised pre-training on a large text corpus
[1, 8] then (ii) training LLMs to generate texts that align with human preferences (also known as
alignment training) [27, 30, 19]. In this paper, we found that this alignment training can force the
LLM to generate texts that are too close to human preferences, even compared to human-written texts.
To quantify such a value of the given text, we use the prediction of the reward model [27], which is
trained to reflect human preferences.

3
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Continual Preference Tuning
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Figure 2: Overview of Reward Model based LLM Generated Text Detection (ReMoDetect): We
continually fine-tune the reward model rϕ to prefer aligned LLM-generated responses yLM even further
while preventing the overfitting by using the replay technique: (xbuf, ybuf) is the replay buffer and
rϕ0

is the initial reward model. Moreover, we generate a human/LLM mixed text yMIX by partially
rephrasing the human response yHU using the aligned LLM, which serves as a median preference data
compared to yLM and yHU, i.e., yLM ≻ yMIX ≻ yHU | x, to improve the reward model’s detection ability.

Reward model. For a given context x and the corresponding response y, the reward model rϕ(x, y) ∈
R parameterized by ϕ, models the human preference of (x, y). To train such a model, one of the
most conventional ways is to use the Bradley-Terry model [7] based on the collection of preference
labels: the labeler is required to choose the better response among two responses based on the given
context x, formally as yw ≻ yl | x where yw and yl indicates the preferred and dispreferred response,
respectively. Then the Bradley-Terry model defines the human preference distribution as follows:

p(yw ≻ yl | x) =
exp (rϕ(x, yw))

exp (rϕ(x, yw)) + exp (rϕ(x, yl))
.

By considering the reward modeling as a binary classification problem, one can minimize the
following negative log-likelihood loss to train the reward model:

LRM(x, yw, yl) := − log σ(rϕ(x, yw)− rϕ(x, yl)).

where σ(·) is the logistic function.

Motivation. By utilizing the pre-trained reward model, we observed that the predicted reward score
of aligned LGT is higher than the human-written text (in Figure 1 and more examples are presented
in Section 4.2). This indicates that the alignment training optimizes the LLM to generate texts with
high human preferences, which makes the LLM generate texts that are actually far away from the
human-written text data distribution pdata(y|x). Inspired by this observation, we suggest utilizing the
reward model for aligned LGT detection.

3.2 Continual Preference Tuning: Increasing the Separation Gap of the Predicted Reward

Based on our observation, we suggest further increasing the separation gap of the predicted rewards
between aligned LGTs and human-written texts. To this end, we use the Bradley-Terry model to
continually fine-tune the reward model so that the model prefers LGTs even further compared to
human-written texts. Furthermore, it is important to consider the overfitting issue when fine-tuning the
reward model as assuming specific prior knowledge may introduce a bias to the detector [37, 11, 13],
e.g., training detector with LGTs of some specific LLMs may not generalize detection on other
LLM’s generated texts. In this regard, we prevent overfitting by regularizing the prediction change of
the current reward model from the initial reward model using replay buffers [31], i.e., samples used
for training the initial reward model. Formally, for a given human-written text/LGT pair (yHU, yLM)
based on the context x, and the reward model’s parameter ϕ, the training objective is as follows:

Lcont := LRM(x, yLM, yHU) + λ d
(
rϕ(xbuf, ybuf), rϕ0

(xbuf, ybuf)
)
, (1)

where ϕ0 is the pre-trained reward model’s parameter, λ is a parameter for controlling the deviation
from the initial reward model, d(·, ·) is the ℓ2 distance function, and (xbuf, ybuf) is the replay buffer.
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3.3 Reward Modeling of Human and LLM Mixed Dataset

We suggest utilizing the human and LLM mixed dataset to further improve the detection performance.
Specifically, we partially rephrase human-written texts using aligned LLMs to generate the mixed
dataset, which are considered as median preference datasets between LGTs and human-written
texts. Note that such a technique introduces new samples that behave like a reasonable near-decision
boundary sample, which enables the detector to learn a better decision boundary. For instance,
multiple out-of-distribution detection methods utilize generated samples [24] such as mixup data
[47, 17] as a near-decision boundary sample to improve the detector’s calibration.

Concretely, for a given context x and the human-written response yHU, we partially rephrase the
response with a ratio of p, using LLM Mrep, i.e., yMIX := Mrep(yHU|x, p). We consider yMIX as
a median preference response between human-written text yHU and LGT yLM which is formally
described as: yLM ≻ yMIX ≻ yHU | x. Since the Bradely-Terry modeling assumes binary classification,
we consider dividing the triplet into three binary classification problems, i.e., yLM ≻ yHU | x,
yLM ≻ yMIX | x, and yMIX ≻ yHU | x. Therefore, the final training objective of ReMoDetect additionally
considers the mixed dataset’s preference modeling in addition to Eq. (1), which is as follows:

Lours := Lcont + β1 LRM(x, yMIX, yHU) + β2 LRM(x, yLM, yMIX) (2)

where β1 and β2 are parameters that chooses the contribution of the mixed data yMIX.

Detection stage. After training ReMoDetect, we use the predicted reward score rϕ(x, y) to deter-
mine whether the given text is LGT or human-written texts where a higher score indicates LGT.
Unlike recent detection schemes that require multiple forwards (for perturbing the input [11, 13]),
ReMoDetect only requires a single forward pass, thus showing inference efficiency (in Section 4.3).

4 Experiments

We provide an empirical evaluation of ReMoDetect by investigating the following questions:

• Can ReMoDetect detect texts generated from aligned LLMs? (Table 2 & Table 3)
• Do reward models recognize aligned LLM’s generations? (Figure 3 & Figure 4)
• Is ReMoDetect robust to rephrasing attacks and challenging setups? (Table 4 & Table 5 & Figure 6)
• How do/Do the proposed components enhance the detection performance? (Figure 5 & Table 7)

Before answering each question, we outline the experimental protocol (more details in Appendix A).

Evaluation setup. We mainly report the area under the receiver operating characteristic curve
(AUROC) as a threshold-free evaluation metric (results with other metrics are presented in Appendix
B.3). Here, the text is written (or generated) in 6 text domains introduced in Fast-DetectGPT [13] and
MGTBench [15], including PubMed [29], XSum [35], Reuters [43], Essay [43], and WritingPrompts
[4] (each benchmark consists of different types of WritingPrompts, thus denoting the version in [13]
as small-sized). In addition to GPT3.5 Turbo, GPT4, and Claude, which are already provided in
the benchmark, we consider more aligned LLMs M, including Llama3 70B instruct [41], Claude3
Opus [5] Gemini pro [38], and GPT4 Turbo [26]. We also consider more aligned LLMs, e.g., models
trained with direct preference optimization (DPO) [30], in Table 6 and Appendix B.2.

Training setup of ReMoDetect. For the main experiment, we use the reward model from OpenAs-
sistant [3], a 500M-sized LLM for efficient training and inference (we also consider other reward
models in Section 4.2). We train ReMoDetect with HC3 dataset by following ChatGPT-Detector [6],
which consists of human and ChatGPT responses to the same context. For generating Human/LLM
mixed datasets, we use Llama3 70B instruct as Mrep to rephrase 50% (p = 0.5) of human-written
texts. Unless otherwise specified, we train a single model for ReMoDetect, which is used across all
experiments (i.e., we did not train separate ReMoDetect for individual datasets or aligned LLMs).

Baselines. We compare ReMoDetect with multiple detection methods, which fall into three categories.
First, we consider zero-shot detectors, including Log-likelihood [20], Rank [20], DetectGPT [11],
LRR [21], NPR [21], and Fast-DetectGPT [13] where we use GPT families as the base detector (e.g.,
GPT-J [44]) by following prior works. For supervised detectors, we consider open-source checkpoints
of OpenAI-Detector [20] and ChatGPT-Detector [6], which are trained on GPT2 generated texts and
HC3 datasets, respectively. Finally, we consider GPTZero [39], a commercial LLM-generated text
(LGT) detection method. We also compare ReMoDetect with more baselines in Appendix B.1.
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Table 2: AUROC (%) of multiple LGT detection methods, including log-likelihood (Loglik.) [20],
Rank [20], DetectGPT (D-GPT) [11], LRR [21], NPR [21], Fast-DetectGPT (FD-GPT) [13], OpenAI-
Detector (Open-D) [20], ChatGPT-Detector (Chat-D) [6], and ReMoDetect (Ours). We consider two
major LGT detection benchmarks from (a) Fast-DetectGPT [13] and (b) MGTBench [15]. The bold
indicates the best result within the group.

(a) Fast-DetectGPT benchmark [13]: PubMed, XSum, and WritingPrompts-small (WP-s)

Model Domain Loglik. Rank D-GPT LRR NPR FD-GPT Open-D Chat-D Ours

GPT3.5
Turbo

PubMed 87.8 59.8 74.4 74.3 67.8 90.2 61.9 21.9 96.4
XSum 95.8 74.9 89.2 91.6 86.6 99.1 91.5 9.7 99.9
WP-s 97.4 80.7 94.7 89.6 94.2 99.2 70.9 27.5 99.8

GPT4
PubMed 81.0 59.7 68.1 68.1 63.3 85.0 53.1 28.1 96.1
XSum 79.8 66.4 67.1 74.5 64.8 90.7 67.8 50.3 98.7
WP-s 85.5 71.5 80.9 70.3 78.0 96.1 50.7 45.3 98.8

GPT4
Turbo

PubMed 86.5 60.8 63.6 73.5 63.7 88.8 55.8 31.0 97.0
XSum 90.9 73.4 83.2 87.9 81.8 97.4 88.2 4.4 100.0
WP-s 97.6 80.8 92.8 92.9 92.5 99.4 72.3 22.5 99.8

Llama3
70B

PubMed 85.4 60.9 66.0 71.3 65.0 90.8 52.9 35.1 96.3
XSum 97.9 74.9 93.2 95.5 93.8 99.7 96.2 7.1 99.8
WP-s 97.1 77.9 95.5 90.1 95.8 99.9 77.5 28.1 99.5

Gemini
pro

PubMed 83.0 58.3 63.2 75.0 66.8 82.1 57.3 39.3 86.4
XSum 78.6 44.5 72.8 73.0 79.6 79.5 72.2 54.7 74.5
WP-s 75.8 63.0 77.8 72.7 81.1 78.0 70.2 48.0 86.4

Calude3
Opus

PubMed 85.5 60.3 66.3 74.3 64.4 88.2 48.9 33.1 96.4
XSum 95.9 71.1 85.3 89.7 84.7 96.2 86.2 5.3 99.9
WP-s 93.8 75.0 91.9 86.5 91.8 93.5 65.7 24.1 99.5

Average - 88.6 67.4 79.2 80.6 78.7 91.9 68.9 28.6 95.8

(b) MGTBench [15]: Essay, Reuters, and WritingPrompts (WP)

Model Domain Loglik. Rank D-GPT LRR NPR FD-GPT Open-D Chat-D Ours

GPT3.5
Turbo

Essay 97.3 95.7 57.8 97.8 48.1 99.6 57.5 81.5 100.0
Reuters 98.2 94.8 50.5 98.7 51.1 99.9 98.5 97.2 99.9
WP 89.8 90.2 52.9 77.2 48.3 91.7 50.8 66.3 100.0

GPT4
Turbo

Essay 96.5 93.9 58.9 93.9 62.4 98.9 55.8 77.1 99.9
Reuters 95.8 93.1 52.6 94.9 53.3 99.4 87.5 92.4 99.9
WP 94.2 91.0 53.5 85.2 55.3 93.0 68.2 67.9 99.9

Llama3
70B

Essay 98.3 95.3 56.2 98.9 57.8 99.5 83.9 91.7 100.0
Reuters 99.9 89.7 58.9 98.7 59.2 100.0 96.7 90.8 100.0
WP 97.3 90.8 57.2 91.1 60.4 99.1 86.6 77.3 99.8

Gemini
pro

Essay 98.3 93.6 64.4 97.7 65.5 98.3 48.9 65.9 100.0
Reuters 99.9 83.1 73.0 99.3 74.9 100.0 95.3 91.5 100.0
WP 91.7 82.0 63.9 76.7 67.3 99.2 68.8 73.4 99.8

Claude
Essay 91.6 85.9 44.2 82.7 48.7 83.6 32.4 19.6 99.7
Reuters 91.3 79.5 68.1 79.2 68.7 87.8 65.5 25.6 99.8
WP 88.4 80.0 60.0 71.2 60.7 74.1 46.2 26.7 99.1

Average - 95.2 89.2 58.1 89.5 58.8 94.9 69.5 69.7 99.9

4.1 Main Results

In Table 2, we show the LGT detection performance of ReMoDetect and other detection baselines.
Overall, ReMoDetect significantly outperforms prior detection methods by a large margin, achieving
state-of-the-art performance in average AUROC. For instance, on the Fast-DetectGPT benchmark,
ReMoDetect improves the prior best average AUROC from 91.9%→95.8%. Moreover, it is worth
noting that the improvement is consistent in MGTbench, indicating the generalization ability of
ReMoDetect, despite the fact that it’s trained on specific LGTs (i.e., ChatGPT texts from HC3). Thus,
we believe the continual preference tuning with replay indeed helped prevent the overfitting.
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Table 3: Comparison with ReMoDetect (Ours) and GPTZero [39], a commercial black-box LGT
detection API. We report the average AUROC (%) on the Fast-DetectGPT benchmark, including
PubMed, XSum, and WritingPrompts. The bold indicates the best results.

Model GPT 3.5 Turbo GPT4 GPT4 Turbo Llama3 70B Gemini pro Claude3-Opus

GPTZero 93.5 88.5 95.7 96.6 82.9 95.7
Ours 98.7 97.9 98.9 98.5 82.4 98.6

Human
Machine

−4 −2 0 2 4 6

(a) Essay

Human
Machine

−8 −6 −4 −2 0 2 4

(b) WritingPrompts-small

Human
Machine

−4 −2 0 2 4

(c) PubMed

Figure 3: Predicted reward distribution of human written texts and LGTs on three different domains,
including (a) Essay, (b) WritingPrompts-small, and (c) PubMed. We use the reward model from
OpenAssistant [3]. ‘Machine’ denotes GPT4 Turbo and Claude3 Opus generated texts.

Human
Machine

−2 0 2 4 6

(a) Gemma 2B based RM

Human
Machine

−8 −6 −4 −2 0 2 4

(b) Gemma 7B based RM

Human
Machine

−10 −5 0 5 10

(c) Llama3 8B based RM

Figure 4: Predicted reward distribution of human-written texts and LGTs on three different reward
models (RMs), including (a) Gemma 2B (b) Gemma 7B, and (c) Llama3 8B. ‘Machine’ denotes
GPT4 Turbo and Claude3 Opus generated texts. We use WritingPrompts-small as the text domain.

Comparison with a commercial detection method. We also compare ReMoDetect with a commer-
cial LGT detection method, GPTZero, under the Fast-DetectGPT benchmark. Somewhat interestingly,
as shown in Table 3, ReMoDetect significantly outperforms GPTZero in all considered aligned LLMs
except for one in terms of the average AUROC. It is worth noting that ReMoDetect only has seen
ChatGPT datasets and partially rephrased texts by Llama3 70B, indicating the rest of the aligned
LLMs are unseen distribution to ReMoDetect. We believe further improving the performance of
ReMoDetect by enlarging the training corpus using more aligned LLM will be an interesting future
direction to explore, showing an impact on the open-source community.

4.2 Reward Model Analysis

More observation studies. In addition to our observation study presented in Table 1 and Figure 1,
we considered (i) more text domains and (ii) different types of reward models to rigorously verify our
observation (i.e., aligned LLMs generate texts with higher predicted preference compared to human-
written texts). To this end, we use a pre-trained reward model without further fine-tuning. First, we
show that our observation is consistent across multiple text domains (in Figure 3). Interestingly, the
predicted reward separation between LGTs and human-written texts is more significant in Essay and
WritingPrompts-small compared to PubMed (i.e., a biology expert written data), possibly implying
that alignment training is done more on relatively common texts compared to expert datasets. Second,
we also observed that LGTs have higher preference compared to human-written texts on other reward
models as well (in Figure 4). Intriguingly, a larger reward model within the same model family (i.e.,
Gemma 7B compared to 2B) shows better separation of the predicted score, showing the possibility
of ReMoDetect’s scaling law, i.e., using a large reward model will improve the detection performance.
We also provide more results of our observation studies in Appendix B.5.
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Table 4: Robustness against rephrasing attacks. We report the average AUROC (%) before (‘Original’)
and after (‘Attacked’) the rephrasing attack with T5-3B on the Fast-DetectGPT benchmark, including
XSum, PubMed, and small-sized WritingPrompts. Values in the parenthesis indicate the relative
performance drop after the rephrasing attack. The bold indicates the best result.

Model Accuracy Loglik. D-GPT NPR FD-GPT Ours

GPT3.5
Turbo

Original 93.6 86.1 82.9 96.1 98.7
Attacked 80.5 (-14.0%) 60.3 (-30.0%) 73.5 (-11.3%) 87.2 (-9.3%) 91.4 (-7.4%)

GPT4
Turbo

Original 91.7 79.9 79.4 95.2 98.9
Attacked 80.0 (-12.7%) 50.3 (-37.0%) 61.3 (-22.8%) 87.3 (-8.3%) 94.6 (-4.4%)

Claude3
Opus

Original 91.7 81.1 80.3 92.6 98.6
Attacked 80.5 (-15.8%) 55.2 (-32.0%) 60.1 (-25.2%) 81.6 (-11.9%) 91.1 (-7.1%)

−5 0 5

(a) Before

Human
Machine

−5 0 5

(b) After

Figure 5: Predicted reward distribution of human writ-
ten texts and LGTs (a) ‘Before’ and (b) ‘After’ train-
ing the reward model with Eq (2). ‘Machine’ denotes
GPT4-Turbo generated texts on Eassy domain.

Reward distribution change after training.
We additionally analyze the predicted reward
distribution change made by our training ob-
jective Eq (2). To this end, we visualize the
reward distribution before and after the train-
ing the reward model by using GPT4-Turbo
generated texts on Eassy domain. As shown
in Figure 5, our training objective indeed in-
creases the separation of the predicted reward
distribution between human-written texts and
LGTs. Interestingly, the LGT’s reward dis-
tribution becomes more compact and equally
higher, whereas the reward distribution of
human-written texts becomes more dispersed.
We conjecture that this difference arises because human-written texts are produced by diverse individ-
uals with varying backgrounds and experiences, while aligned LLMs share somewhat similar training
receipts across models.

4.3 Additional Analysis

In this section, we provide more analysis of ReMoDetect. Here, we mainly consider baselines that
show effectiveness in the main experiment (e.g., Fast-DetectGPT in Table 2) and consider the GPT4
family and Claude3 as aligned LLMs.

Table 5: AUROC (%) of ChatGPT-D and ReMoDetect
(ours), on datasets and models that are seen (S) or unseen
(U) during training time. The bold denotes the best results.

Domain HC3 (S) HC3 (S) WP-s (U)
Model GPT3.5 (S) Claude3 (U) Claude3 (U)

ChatGPT-D 99.8 96.7 24.1
Ours 99.9 99.9 99.5

Robustness to unseen distributions.
We verify the claim that training de-
tectors on specific LGTs may intro-
duce bias and require careful training
by showing the failure cases of the prior
work and the robustness of ReMoDetect
to unseen distributions. To this end, we
compare ReMoDetect with ChatGPT-
Detector, which is trained on the same
dataset (i.e., GPT3.5 Turbo generated texts on the HC3 domain) and evaluate on the unseen do-
main (i.e., WritingPrompts-small) and machine (i.e., Claude3 Opus). As shown in Table 5, both
ReMoDetect and ChatGPT-Detector work well on the seen domain and LLM, while ReMoDetect
shows significant robustness to unseen distributions compared to ChatGPT-Detector. For instance,
the AUROC of ChatGPT-Detector in the seen domain dropped from 99.8%→24.1% when tested on
the unseen domain while ReMoDetect retains the original accuracy, i.e., 99.9%→99.5%.

Robustness against rephrasing attacks. One possible challenging scenario is detecting the rephrased
texts by another LM (known as rephrasing attacks) [42], i.e., first generate texts with powerful LLMs
and later modify them with another LLM. To this end, we follow the prior work by using a T5-3B
specifically trained for rephrasing attack [42]. As shown in Table 4, ReMoDetect significantly and
consistently outperforms all baselines. It is worth noting that our relative drop in performance is also
significantly lower than other baselines, indicating strong robustness of ReMoDetect.
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Figure 6: Average AUROC (%) of various LGT detection methods on various input response lengths
by monotonically increasing 30 words each. We consider three text domains from the Fast-DetectGPT
benchmark and two aligned LLM, including (a) GPT4 Turbo and (b) Claude3 Opus.

Table 6: LGT Detection results on non-RLHF trained LLMs. We report AUROC (%) of multi-
ple LGT detection methods, including log-likelihood (Loglik.), Rank, Fast-DetectGPT (FD-GPT),
OpenAI-Detector (Open-D), ChatGPT-Detector (Chat-D), and ReMoDetect (Ours). We consider LGT
detection benchmarks from Fast-DetectGPT: PubMed, XSum, and WritingPrompts-small (WP-s).
Here, Phi-3 medium is DPO trained and OLMo-7B-SFT is SFT-only trained. The bold indicates the
best result within the group.

Model Domain Loglik. Rank FD-GPT Open-D Chat-D Ours

Phi-3
mini

PubMed 65.0 56.2 63.7 37.7 80.7 94.5
XSum 70.3 64.1 91.0 82.7 23.4 97.6
WP-s 82.4 73. 96.7 60.0 31.1 99.3

Phi-3
small

PubMed 57.2 50.4 59.9 31.9 82.7 91.7
XSum 81.1 69.7 95.6 79.3 19.5 98.7
WP-s 84.0 72.3 97.2 58.6 32.2 97.4

Phi-3
medium

PubMed 65.4 55.4 61.7 34.2 15.8 95.2
XSum 64.5 61.2 85.4 75.0 18.1 98.0
WP-s 83.1 73.6 95.7 53.9 38.5 98.8

OLMo
7B-SFT

PubMed 88.4 60.5 92.8 62.0 23.6 94.1
XSum 96.6 66.0 99.1 97.3 5.9 98.1
WP-s 98.1 78.5 98.8 95.2 19.5 99.2

Average - 86.0 63.8 91.2 72.2 43.8 95.3

Robustness on input response length. By following the prior work [13], we also measure the
robustness of ReMoDetect on the input response length (i.e., # of words in y). Note that shorter
responses are hard to detect as there is less evidence to identify the characteristics of humans
and LLMs. As shown in Figure 6, ReMoDetect significantly outperforms the major baselines.
Interestingly, our method can even outperform the best baseline with 71.4% fewer words, showing
significant robustness on short input responses. For instance, Fast-DetectGPT reaches AUROC of
91.8% with 210 words, while ReMoDetect reaches 94.1% with 60 words under Claude3 Opus.

ReMoDetect for non-RLHF aligned LLMs. We additionally consider aligned LLMs that do not use
reward models for alignment training, i.e., non-RLHF trained LLMs. To this end, we consider aligned
LLMs that use Direct Preference Optimization (DPO) [30], an alternative alignment training to RLHF.
Note that a recently released Phi-3 [25] only uses DPO (followed by supervised fine-tuning; SFT) for
alignment training and shows remarkable performance in various domains, thus being considered an
aligned LLM in our experiment. As shown in Table 6, ReMoDetect also outperforms baselines in all
cases, showing that our method can be applicable even if aligned LLMs are not trained with reward
models. Furthermore, we also considered the detection scenario for the SFT-only model that does not
use the alignment training. Here, we observe that ReMoDetect effectively detects the LGTs from
the SFT-only model as well as outperforming other baselines. We believe this is because the SFT
implicitly trains the model to reflect the human preference from the instruction tuning dataset [10],
thus making the ReMoDetect well-detect the texts from SFT models.
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Table 7: Contribution of each proposed component of ReMoDetect on detecting aligned LGTs from
human-written texts. We report the average detection performance of GPT4 under text domains in
the Fast-DetectGPT benchmark. All values are percentages, and the best results are indicated in bold.

Continual Fine-tuning
(No Replay)

with Replay
Buffers

Mixed Text
Reward Modeling AUROC AUPR TPR

at FPR 1%

- - - 79.0 79.2 16.7
✓ - - 90.5 91.0 38.9
✓ ✓ - 95.5 95.8 59.3
✓ ✓ ✓ 97.9 98.0 77.0

Table 8: Comparison of detection time, model parameters, and average AUROC (%) of Fast-
DetectGPT benchmark for various LGT detection methods. Detection time was measured in an
A6000 GPU, and the overall detection time was measured for 300 XSum dataset samples.

Method Detection Time (secs) Model Parameters AUROC

Log-likelihood 11.7 2.7B 88.6
DetectGPT 7738.8 3B & 2.7B 79.2
NPR 7837.3 3B & 2.7B 78.7
Fast-DetectGPT 62.7 6B & 2.7B 91.9
Ours 8.7 0.5B 95.8

Component analysis. We perform an analysis on each component of our method in detecting GPT4
generated texts: namely, the use of (i) continual fine-tuning with no replay λ = 0, (ii) the replay
buffers, and (iii) the reward modeling with Human/LLM mixed texts, by comparing multiple detection
performance metrics. Results in Table 7 show each component is indeed important, where gradually
applying our techniques shows a stepwise significant improvement.

Inference time efficiency. In Table 8, we compared detection time, model parameter size, and
average AUROC on the Fast-DetectGPT benchmark. The detection time was measured in an A6000
GPU, and the overall detection time was measured with 300 samples of the human/GPT3.5 Turbo
XSum dataset. ReMoDetect shows the best average AUROC performance among the methods, but
7.2 times faster, and uses a 17.4 times smaller model than the second best model, Fast-DetectGPT.

5 Discussion and Conclusion

We propose ReMoDetect, a novel and effective LLM-generated text (LGT) detection framework.
Based on the novel observation that the reward model well recognizes LGTs from human-written texts,
we continually fine-tune the reward model to further separate reward scores of two distributions while
preventing the overfitting bias using the replay technique. Furthermore, we suggest a Human/LLM
mixed text dataset for reward modeling, learning a better decision boundary of the reward model
detector. Experimental results further demonstrate that ReMoDetect significantly improves the prior
state-of-the-art results in detecting aligned LGTs.

Future works and limitations. We believe it will be an interesting future direction to train LLMs
using the reward model of ReMoDetect. Making the predictive reward distribution of LGTs more
well-spread (like the human-written texts in Figure 5), can be a step toward making LLMs more
human-like. Additionally, a potential limitation of ReMoDetect is the somewhat lack of accessibility
of reward models. While there are some open-source reward models available (that we have used
throughout the paper), their number is still limited compared to open-source LLMs. We believe that
as the open-source community grows and more pre-trained reward models (or human preference
datasets) become available, ReMoDetect will be improved further.

Societal impact. This paper presents ReMoDetect that improves the performance of detecting aligned
LGTs. We expect that our approach will show numerous positive impacts by detecting LGTs, such as
in fake news and academic plagiarism. One possible negative impact can be the improved adversarial
mechanism followed by the improved detection method (i.e., ReMoDetect); thus, incorporating such
a scenario will be an interesting future direction to explore, where we believe using ReMoDetect to
such a scenario can be promising (as it shows robustness in multiple cases in Section 4.3).

10

2895https://doi.org/10.52202/079017-0095



Acknowledgements

We thank Jongheon Jeong and Myungkyu Koo for providing helpful feedback and suggestions in
preparing an earlier version of the manuscript. This work was supported by Institute for Information
& communications Technology Promotion(IITP) grant funded by the Korea government(MSIT)
(No.RS-2019-II190075 Artificial Intelligence Graduate School Program(KAIST)) and NIPA(National
IT Industry Promotion Agency), through the Ministry of Science and ICT (Hyperscale AI flagship
project).

References
[1] R. Alec, W. Jeffrey, C. Rewon, L. David, A. Dario, and S. Ilya. Language models are unsuper-

vised multitask learners. OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[2] B. Amrita, K. Tharindu, M. Raha, and L. Huan. Conda: Contrastive domain adaptation for ai-
generated text detection. In Annual Conference of the Association for Computational Linguistics,
2023.

[3] M. Andrew. Laion-ai/open-assistant. https://github.com/LAION-AI/Open-Assistant,
2023.

[4] F. Angela, L. Mike, and D. Yann. Hierarchical neural story generation. In Annual Conference
of the Association for Computational Linguistics, 2018.

[5] Antropic. Introducing the next generation of claude. https: // www. anthropic. com/
news/ claude-3-family , 2024.

[6] G. Biyang, Z. Xin, W. Ziyuan, J. Minqi, N. Jinran, D. Yuxuan, Y. Jianwei, and W. Yupeng.
How close is chatgpt to human experts? com- parison corpus, evaluation, and detection. CoRR
abs/2301.07597, 2023.

[7] R. A. Bradley and M. E. Terry. Rank analysis of incomplete block designs: I. the method of
paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[8] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. In Advances in Neural
Information Processing Systems, 2020.

[9] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

[10] Z. Chen, Y. Deng, H. Yuan, K. Ji, and Q. Gu. Self-play fine-tuning converts weak language
models to strong language models. In International Conference on Machine Learning, 2024.

[11] M. Eric, L. Yoonho, K. Alexander, D. M. Christopher, and F. Chelsea. Detectgpt: Zero-shot
machine-generated text detection using probability curvature. In International Conference on
Machine Learning, 2023.

[12] D. Gao, L. Ji, L. Zhou, K. Q. Lin, J. Chen, Z. Fan, and M. Z. Shou. Assistgpt: A general multi-
modal assistant that can plan, execute, inspect, and learn. arXiv preprint arXiv:2306.08640,
2023.

[13] B. Guangsheng, Z. Yanbin, T. Zhiyang, Y. Linyi, and Z. Yue. Fast-detectgpt: Efficient zero-shot
detection of machine-generated text via conditional probability curvature. In International
Conference on Learning Representations, 2024.

[14] P. He, J. Gao, and W. Chen. Debertav3: Improving deberta using electra-style pre-training with
gradient-disentangled embedding sharing, 2023.

[15] X. He, X. Shen, Z. Chen, M. Backes, and Y. Zhang. MGTBench: Benchmarking Machine-
Generated Text Detection. arXiv preprint arXiv:2303.14822, 2023.

11

2896 https://doi.org/10.52202/079017-0095

https://github.com/LAION-AI/Open-Assistant
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family


[16] D. Hendrycks, M. Mazeika, and T. Dietterich. Deep anomaly detection with outlier exposure.
In International Conference on Learning Representations, 2019.

[17] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lakshminarayanan. Augmix:
A simple data processing method to improve robustness and uncertainty. In International
Conference on Learning Representations, 2020.

[18] D. Hendrycks, A. Zou, M. Mazeika, L. Tang, B. Li, D. Song, and J. Steinhardt. Pixmix: Dream-
like pictures comprehensively improve safety measures. In IEEE Conference on Computer
Vision and Pattern Recognition, 2022.

[19] J. Hong, N. Lee, and J. Thorne. Reference-free monolithic preference optimization with odds
ratio. arXiv preprint arXiv:2403.07691, 2024.

[20] S. Irene, B. Miles, C. Jack, A. Amanda, H.-V. Ariel, W. Jeff, R. Alec, K. Gretchen, K. Jong Wook,
K. Sarah, M. Miles, N. Alex, B. Jason, M. Kris, and W. Jasmine. Release strategies and the
social impacts of language models. arXiv preprint arXiv:1908.09203, 2019.

[21] S. Jinyan, Y. Z. Terry, W. Di, and N. Preslav. Detectllm: Leveraging log-rank information for
zero-shot detection of machine-generated text. arXiv preprint arXiv:2306.05540, 2023.

[22] L. Jooyoung, L. Thai, C. Jinghui, and L. Dongwon. Do language models plagiarize? In In
Proceedings of the ACM Web Conference, 2023.

[23] W. Laura, M. John, R. Maribeth, G. Conor, U. Jonathan, H. Po-Sen, C. Myra, G. Mia, B. Borja,
K. Atoosa, Z. Kenton, S. Brown, W. Hawkins, T. Stepleton, C. Biles, A. Birhane, J. Haas,
L. Rimell, A. H. Lisa, I. William, L. Sean, I. Geoffrey, and G. Iason. Ethical and social risks of
harm from language models. arXiv preprint arXiv:2112.04359, 2021.

[24] K. Lee, H. Lee, K. Lee, and J. Shin. Training confidence-calibrated classifiers for detecting
out-of-distribution samples. In International Conference on Learning Representations, 2018.

[25] Microsoft. Phi-3 technical report: A highly capable language model locally on your phone,
2024.

[26] OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[27] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.
In Advances in Neural Information Processing Systems, 2022.

[28] A. Panickssery, S. R. Bowman, and S. Feng. Llm evaluators recognize and favor their own
generations. arXiv preprint arXiv:2404.13076, 2024.

[29] J. Qiao, D. Bhuwan, L. Zhengping, C. William, and L. Xinghua. Pubmedqa: A dataset for
biomedical research question answering. In n Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), 2019.

[30] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn. Direct prefer-
ence optimization: Your language model is secretly a reward model. In Advances in Neural
Information Processing Systems, 2023.

[31] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne. Experience replay for continual
learning. In Advances in Neural Information Processing Systems, 2019.

[32] Z. Rowan, H. Ari, R. Hannah, B. Yonatan, F. Ali, R. Franziska, and C. Yejin. Defending against
neural fake news. arXiv preprint arXiv:1905.12616, 2021.

[33] L. Ruff, R. A. Vandermeulen, N. Görnitz, A. Binder, E. Müller, K.-R. Müller, and M. Kloft. Deep
semi-supervised anomaly detection. In International Conference on Learning Representations,
2020.

[34] G. Sebastian, S. Hendrik, and M. R. Alexander. Gltr: Statistical detection and visualization of
generated text. In Annual Conference of the Association for Computational Linguistics, 2019.

12

2897https://doi.org/10.52202/079017-0095



[35] N. Shashi, C. Shay, B, and L. Mirella. Don’t give me the details, just the summary! topic-aware
convolutional neural networks for extreme summarization. In Conference on Empirical Methods
in Natural Language Processing, 2018.

[36] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbren-
ner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Master-
ing the game of go with deep neural networks and tree search. Nature, 529:484–503, 2016. URL
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html.

[37] J. Tack, S. Mo, J. Jeong, and J. Shin. Csi: Novelty detection via contrastive learning on
distributionally shifted instances. In Advances in Neural Information Processing Systems, 2020.

[38] G. Team. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023.

[39] E. Tian and A. Cui. Gptzero: Towards detection of ai-generated text using zero-shot and
supervised methods, 2023. URL https://gptzero.me.

[40] Y. Tian, H. Chen, X. Wang, Z. Bai, Q. Zhang, R. Li, C. Xu, and Y. Wang. Multiscale
positive-unlabeled detection of ai-generated texts. In International Conference on Learning
Representations, 2023.

[41] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

[42] S. Vinu, Sankar, K. Aounon, B. Sriram, W. Wenxiao, and F. Soheil. Can ai-generated text be
reliably detected? arXiv preprint arXiv:2303.11156, 2023.

[43] V. Vivek, F. Eve, T. Nicholas, and K. Dan. Ghostbuster: Detecting text ghostwritten by large
language models. In CoRR abs/2305.15047, 2023.

[44] B. Wang and A. Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

[45] A. Wei, N. Haghtalab, and J. Steinhardt. Jailbroken: How does llm safety training fail? In
Advances in Neural Information Processing Systems, 2023.

[46] D. Xuan-Quy, L. Ngoc-Bich, P. Xuan-Dung, N. Bac-Bien, and V. The-Duy. Evaluation of
chatgpt and microsoft bing ai chat performances on physics exams of vietnamese national high
school graduation examination. arXiv preprint arXiv:2306.04538, 2023.

[47] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk mini-
mization. In International Conference on Learning Representations, 2018.

[48] A. Zou, Z. Wang, J. Z. Kolter, and M. Fredrikson. Universal and transferable adversarial attacks
on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

13

2898 https://doi.org/10.52202/079017-0095

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://gptzero.me
https://github.com/kingoflolz/mesh-transformer-jax


Appendix

A Experimental Details

In this section, we describe the experimental details of Section 4, including ReMoDetect and baselines.

A.1 Dataset Details

In this section, we describe the dataset we used in training and evaluation. Also, explain how we
generated the additional datasets.

• HC3. HC3 is a question-and-answering dataset that consists of answers written by humans and
generated by ChatGPT corresponding to the same questions. The dataset is a collection of several
domains: reddit_eli5, open_qa, wiki_csai, medicine, and finance. We used training samples of
2,200 and validation samples of 1,000, which is the same subset of HC3 as the prior work [6, 40].
We used the filtered version of the HC3 dataset.

• Reuters. Reuters is a news dataset that consists of news articles written by humans and generated
by LLM corresponding to the same subjects. We brought the dataset from MGTBench [15] and
followed the construction recipe to generate more evaluation datasets for recent LLMs. The
dataset comprises 1,000 news articles written by humans and generated by LLM, GPT3.5 Turbo,
GPT4 Turbo, Claude, Claude Opus, Llama3 70B instruct. GPT3.5 Turbo and Claude dataset is
from MGTBench [15]. We made the same evaluation set for Essay and WritingPrompts.

• Essay. Essay consists of essays extracted from IvtPandas. We brought the dataset from MGT-
Bench [15] and followed the construction recipe to generate more evaluation datasets for recent
LLMs. The dataset consists of diverse essay subjects across various academic disciplines. The
dataset comprises 1,000 samples of Essays written by humans and generated by aligned LLMs.

• WritingPrompts. WritingPrompts is the creative writing prompt shared on r/WritingPrompts
of Reddit. We brought the dataset from MGTBench [15] and followed the construction recipe
to generate more evaluation datasets for recent LLMs. The dataset comprises 1,000 samples of
WritingPrompts written by humans and generated by LLMs.

• WritingPrompts-small. WritingPrompts-small is the creative writing prompt shared on Reddit
r/WritingPrompts. We brought the dataset from FastDetectGPT [13] and followed the construction
recipe to generate more evaluation datasets for recent LLMs. The dataset comprises 150 samples
of WritingPrompts written by humans and generated by LLM.

• XSum. Xsum is a news dataset comprising news articles written by humans and generated by
LLM corresponding to the same subjects. We brought the dataset from FastDetectGPT [13] and
followed the construction recipe to generate more evaluation datasets for recent LLMs. The
dataset comprises 150 news articles written by humans and generated by LLMs.

• PubMeds. PubMed is a question-and-answering dataset of biomedical research domains written
by humans and generated by LLMs corresponding to the questions. We brought the dataset from
FastDetectGPT [13] and followed the construction recipe to generate more evaluation datasets for
recent LLMs. The dataset comprises 150 QA pairs written by humans and generated by LLMs.

• Human/LLM mixed datasets. We rephrase the human-written text from the HC3 dataset using
Llama3 70B instruct [41]: We first select 50% of the indices in the paragraph, then rephrase
selected sentences using the following prompt to the rephrasing LLM:

Please paraphrase sentence numbers <idxlist> in given written texts.
...
<ith> sentence: <xxx>
<i+1th> sentence: <xxx>
...

The <idxlist> is a 50% randomly selected index list of sentences like "[0,2,5,7]", Then list all the
sentences of the passages like "<5th> sentence: A fellow high school student, typically a 3 or 4 -
there’s a lot of stress involved."
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A.2 Aligned LLM Spec Details

The API version of our dataset is as follows:

• OpenAI / GPT3.5 Turbo : gpt-3.5-turbo-0301

• OpenAI / GPT4 : gpt-4

• OpenAI / GPT4 Turbo : gpt-4-turbo-2024-04-09

• Anthropic / Claude3 Opus : claude-3-opus-20240229

• Anthropic / Claude3 Sonnet : claude-3-sonnet-20240229

• Anthropic / Claude3 Haiku : claude-3-haiku-20240307

• Google / Gemini pro : gemini-pro 2024-02-01

We use the open-source model for Llama3 70B instruct3 and Phi-3 [25]. Here, we use Phi-3 with
a 4K context length for mini4 and medium5, whereas we use an 8K context length for Phi-3 small6
(Phi-3 small only has 8K model). We spent $56.0 for OpenAI API and $156.6 for Anthropic API.

A.3 Training and Evaluation Details

Training details of ReMoDetect. We use AdamW optimizer with a learning rate of 2.0 × 10−5

with 10% warm up and cosine decay and train it for one epoch. For the λ constant for regularization
using replay buffer, we used λ = 0.01. For the β1, β2 parameters that choose the contribution of the
mixed data, we used 0.3 and 0.3. As for the replay buffer datasets, we use ‘Anthropic/hh-rlhf’7 and
‘Dahoas/synthetic-instruct-gptj-pairwise’8 from the huggingface datasets library as our base reward
model [3] used these datasets for training. We use the same batch size for the training sample and
replay buffer sample, which ends up with a total batch size of four.

Reward model details. We mainly used the open-source reward model from OpenAssistant 9,
which is based on DeBERTa-v3-Large [14]; the model parameter size is 435M and trained with a
human preference dataset. Additionally, in Figure 4, we used other reward models, weqweasdas/RM-
Gemma-2B10, weqweasdas/RM-Gemma-7B11, and sfairXC/FsfairX-LLaMA3-RM-v0.112 from the
huggingface library in order to verify our observations in other reward models.

Detection metrics. For the evaluation, we measure the following metrics to verify the effectiveness
of the detection methods in distinguishing human-written texts and LGTs.

• True positive rate (TPR) at 1% false positive rate (FPR). Let TP, TN, FP, and FN denote true
positive, true negative, false positive, and false negative, respectively. We measure TPR = TP /
(TP+FN) when FPR = FP / (FP+TN) is 1%.

• Area under the receiver operating characteristic curve (AUROC). The ROC curve is a graph
plotting TPR against the false positive rate = FP / (FP+TN) by varying a threshold.

• Area under the precision-recall curve (AUPR). The PR curve is a graph plotting the precision
= TP / (TP+FP) against recall = TP / (TP+FN) by varying a threshold.

Resource Details. For the main development, we mainly use Intel(R) Xeon(R) Gold 6426Y CPU @
2.50GHz and a single A6000 48GB GPU.

3https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
4https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
5https://huggingface.co/microsoft/Phi-3-medium-4k-instruct
6https://huggingface.co/microsoft/Phi-3-small-8k-instruct
7https://huggingface.co/Anthropic/hh-rlhf
8https://huggingface.co/Dahoas/synthetic-instruct-gptj-pairwise
9https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2

10https://huggingface.co/weqweasdas/RM-Gemma-2B
11https://huggingface.co/weqweasdas/RM-Gemma-7B
12https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1
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A.4 Robustness Evaluation Details

Rephrasing attack. To check the robustness of our method against rephrasing attacks, we utilized
T5-3B-based paraphraser [42] to paraphrase the sentences in the passage. We conducted experiments
with hyper-parameters to max_length = 256, top_k = 200, top_p = 0.95. The result is in Table 4.

Input response length. To check the robustness of our method against input response length, we
truncated the given test dataset to various word lengths. First, we tokenized the given paragraph into
words using the nltk framework. Then, we truncate each passage into target word lengths. We tested
for word length ∈ [30, 60, 90, 120, 150, 180, 210]. The result is in Figure 6.

A.5 Baseline Details

We describe baselines that we compared with ReMoDetect in Fast-DetectGPT benchmark [13] and
MGTBench [15]. We use implementations and backbone models introduced in Fast-DetectGPT [13].

• Log-likelihood, Rank [20]. These methods use LLM to measure the token-wise log probability
and rank of the words, then average the metric of each token to generate a score for the text. For
the baseline experiments, we utilized GPT-neo-2.7B as their base model.

• DetectGPT [13], NPR [21]. DetectGPT, NPR is designed to measure changes in a model’s
log probability and log-rank function when slight perturbations are introduced to the original
text. For the baseline experiments, we utilized GPT-neo-2.7B as their base model and T5-3B for
paraphrasing, and we perturbed 100 for each paragraph.

• LRR [21]. LRR used the Log-likelihood log-rank Ratio, which merges the benefits of log-
likelihood and log-rank. We utilized GPT-neo-2.7B as their base model.

• Fast-DetectGPT [13]. Fast-DetectGPT shares the same spirt as DetectGPT, where it uses the
conditional probability function by sampling the text using the base model instead of perturbation
using T5 models, thus showing efficiency. Following the original paper setting, we used GPT-J as
a base model and GPT-neo-2.7B as a scoring model.

• OpenAI-Detector [20]. OpenAI-Detector is a RoBERTa-based supervised finetuned model
trained with pairs of human-written and GPT2-generated texts.

• ChatGPT-Detector [6]. ChatGPT-Detector is a RoBERTa-based supervised finetuned model
trained with the HC3 dataset, which consists of human-written and ChatGPT generated texts.

B Additional Experimental Results

B.1 Comparison with Additional Baselines

Table 9: AUROC(%) on MGT benchmark[15] for different baselines: Log Rank [13], Entropy [34],
and GLTR [34]. The bold indicated the best result.

Model Domain GPT 3.5 Turbo GPT4 Turbo Llama3 70B Gemini pro Claude

Log Rank [13]
Essay 98.1 96.7 98.7 97.9 89.1
Reuters 98.6 95.8 99.7 99.7 85.5
WP 86.5 90.5 95.3 87.6 79.9

Entropy [34]
Essay 94.1 90.2 91.9 89.0 84.1
Reuters 77.8 75.5 78.6 78.3 77.9
WP 84.0 85.4 82.0 64.1 80.9

GLTR [34]
Essay 97.8 95.9 98.7 97.8 87.1
Reuters 98.4 94.8 99.5 99.6 84.7
WP 85.9 88.4 95.2 85.9 79.1

ReMoDetect
Essay 100.0 99.9 100.0 100.0 99.7
Reuters 99.9 99.9 100.0 100.0 99.8
WP 100.0 99.9 99.8 99.8 99.1

In Table 9, we compare other baselines Log Rank [13], Entropy [34], GLTR [34], and ReMoDetect
on MGT benchmark. ReMoDetect consistently outperforms other baselines in MGT benchmark.

16

2901https://doi.org/10.52202/079017-0095



B.2 Comparison on Additional Aligned LLMs

Table 10: AUROC(%) on Fast-DetectGPT benchmark [13] for different models: Claude3 Haiku [5]
and Sonnet [5]. The bold indicates the best result.

Model Domain Loglik. Rank D-GPT LRR NPR FD-GPT Open-D Chat-D Ours

Claude3
Haiku

PubMed 87.0 60.9 67.5 75.5 66.9 90.9 56.2 28.3 96.3
XSum 96.2 73.8 91.9 93.0 90.6 99.8 93.9 6.8 99.8
WP-s 98.2 78.8 94.1 93.1 94.8 99.7 82.4 27.9 99.8

Claude3
Sonnet

PubMed 84.4 60.6 64.9 71.8 64.5 86.5 52.4 31.0 96.4
XSum 90.1 70.9 84.4 86.2 84.1 94.7 76.0 13.7 98.7
WP-s 94.9 77.7 93.5 87.5 93.2 98.0 57.1 35.6 99.7

In Table 10, we evaluate Claude3 Haiku and Claude3 Sonnet, which are serviced by Anthropic and
are smaller versions of Claude3 Opus. ReMoDetect consistently outperforms other baselines in the
evaluation, demonstrating that our detector can detect these smaller models effectively.

B.3 Additional Performance Metric

Table 11: TPR(%) at FPR 1% and AUPR (%) of multiple LLM-generated text detection methods,
including log-likelihood (Loglik.) [20], Rank [20], DetectGPT (D-GPT) [11], LRR [21], NPR
[21], Fast-DetectGPT (FD-GPT) [13], OpenAI-Detector (Open-D) [20], ChatGPT-Detector (Chat-
D) [6], and ReMoDetect (Ours). We consider LLM-generated text detection benchmarks from
Fast-DetectGPT [13]. The bold indicates the best result within the group.

(a) TPR at FPR 1%

Model Domain Loglik. Rank D-GPT LRR NPR FD-GPT Open-D Chat-D Ours

GPT3.5
Turbo

PubMed 10.7 4.0 0.0 8.0 5.3 44.0 2.0 1.3 63.3
XSum 68.7 12.7 25.3 47.3 15.3 82.0 46.0 0.0 96.7
WP-s 64.7 13.3 28.0 28.7 37.3 87.3 9.3 0.0 97.3

GPT4
PubMed 8.7 3.3 0.0 6.0 5.3 18.0 2.7 1.3 70.0
XSum 24.0 1.3 1.3 11.3 6.7 32.7 13.3 0.0 79.3
WP-s 9.3 2.7 10.7 2.7 2.0 44.0 1.3 0.0 82.0

GPT4
Turbo

PubMed 12.7 4.7 0.7 13.3 4.7 27.3 0.7 0.0 67.3
XSum 46.3 8.8 9.5 46.3 10.9 68.0 42.9 0.0 99.3
WP-s 60.4 18.8 15.4 41.6 34.2 80.5 11.4 0.0 98.7

Calude3
Opus

PubMed 14.0 5.3 0.7 12.0 4.0 26.0 1.3 0.7 62.7
XSum 42.7 11.3 26.7 44.7 24.0 75.3 43.3 0.0 97.3
WP-s 54.7 16.7 37.3 24.0 55.3 76.7 8.0 0.7 96.0

(b) AUPR

Model Domain Loglik. Rank D-GPT LRR NPR FD-GPT Open-D Chat-D Ours

GPT3.5
Turbo

PubMed 86.5 62.8 55.1 73.7 62.4 90.8 61.5 36.5 96.9
XSum 95.3 77.1 88.2 91.6 85.5 99.2 93.4 32.0 99.9
WP-s 97.7 81.6 94.0 89.3 94.1 99.3 71.0 37.8 99.8

GPT4
PubMed 79.9 60.5 54.7 67.0 59.7 84.4 55.5 38.8 96.7
XSum 80.1 65.4 63.2 75.6 62.5 91.1 73.8 58.6 98.7
WP-s 81.6 68.1 79.4 66.1 74.1 96.0 50.2 46.5 98.7

GPT4
Turbo

PubMed 85.0 62.8 59.1 74.5 61.6 89.4 56.1 38.6 97.4
XSum 91.5 75.7 81.3 89.7 81.4 97.6 90.8 31.0 100.0
WP-s 97.6 82.9 91.5 93.1 92.5 99.4 74.0 36.6 99.8

Calude3
Opus

PubMed 84.6 62.7 60.1 74.4 60.0 88.4 52.1 40.4 96.7
XSum 93.8 74.2 85.5 90.7 85.0 96.9 89.4 31.1 99.9
WP-s 96.4 78.4 92.9 87.9 93.2 95.4 69.3 38.4 99.5

In Table 11, we report the LGT detection performance of ReMoDetect and other detection baselines
by considering additional performance metrics, including true positive rate (TPR) at 1% false positive
rate (FPR) and Area under the precision-recall curve (AUPR). As shown in the table, ReMoDetect
significantly and consistently outperforms in all cases.
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B.4 Dataset Examples and Predicted Reward Scores

Table 12: Dataset examples with their model, domain, and ReMoDetect score.

Model Domain Example ReMo-D
Score

Human WP-s

You are a teenager with the ability to measure how "Dangerous" people
are on a scale from 1 to 10 just by looking at them. A normal child
would be a 1, while a trained man with an assault rifle might be a 7.
Today, you notice the unassuming new kid at school measures a 10.
When I see people, I see numbers. Just floating there. I can’t remember
since when it’s begun, but that’s not important. An innocent baby would
measure as 1. A fellow high school student, typically a 3 or 4 - there’s a
lot of stress involved. The day before my best friend stabbed his entire
family to death and hung himself, he was abnormally quiet - a 9. Just
seeing a living being’s image is enough: on television, the rioters at
Ferguson measured around 6 and 7. When I was daring enough to watch
videos of ISIS members committing atrocious murders: a 9. That day

-6.01

GPT4
Turbo WP-s

You are a teenager with the ability to measure how "Dangerous" people
are on a scale from 1 to 10 just by looking at them. This unusual power
has made you both cautious and curious about the people you encounter
in your daily life. One day, while walking through a busy market, you
notice a man with a danger level of 9. Intrigued, you decide to follow
him discreetly, keeping a safe distance. As you observe his interactions,
you notice he has a commanding presence and seems to be involved in
some shady dealings. However, as you continue to watch, you see him
also display moments of kindness, helping an elderly woman with her
groceries and playing with a group of children. This experience teaches
you that people are complex and multi-dimensional, and that danger
levels don’t necessarily define someone’s entire character. You learn to
use your power with more discernment, understanding that everyone
has both light and dark sides.

4.91

Human XSum

Regina Hungerford, 56, denied striking a 17-year-old as he listened to
music in her class at Merthyr Tydfil College. But a disciplinary panel
ruled contact with the pupil was probably made and her conduct had
been "unacceptable". On Thursday, the Education Workforce Council
imposed the suspension, saying: "The public interest is in favour of her
being able to teach again." Mrs Hungerford admitted shouting and slam-
ming a book on the desk of the "provocative and disruptive" teenager as
he listened to rap music in her classroom - but always denied hitting his
head. She was cleared, on appeal, of a criminal charge for assaulting the
pupil during a maths lesson for those with learning difficulties. But in
November, a disciplinary panel found, on the balance of probabilities,
she had made physical conduct with the pupil on the head or hand. The
panel found she had

-1.70

Claude3
Opus XSum

Regina Hungerford, 56, denied a 17-year-old while she listened to
music in her class at Merthyr Tydfil College. The incident occurred
when the student refused to take his headphones off during a lesson.
Hungerford, who has taught at the college for more than a decade,
maintained her innocence throughout the investigation. Witnesses claim
that the altercation began when Hungerford approached the student and
requested that he stop listening to music and focus on the lesson. The
student apparently ignored her request, resulting in a heated exchange.
Several classmates reported seeing Hungerford striking the student while
others stated that they did not witness physical contact. The college
administration has launched an internal investigation into the matter and
Hungerford has been suspended pending the outcome. The student’s
family has been notified and the local authorities are also examining the
incident. The college has declined to comment on the matter.

4.04

In Table 12, we show dataset examples and their ReMoDetect score.
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B.5 Additional Observational Studies

(a) Reuters (b) Essay (c) WritingPrompts

Figure 7: t-SNE of the reward model’s final feature in multiple domains Reuters, Essay, Writing-
Prompts generated by GPT3.5/GPT4 Turbo, Llama3-70B-instruct, and Claude3 Opus.

(a) Reuters (b) Essay (c) WritingPrompts

Figure 8: t-SNE of the ReMoDetect’s final feature in multiple domains Reuters, Essay, Writing-
Prompts which generated by GPT3.5/GPT4 Turbo, Llama3-70B-instruct, and Claude3 Opus

0 5
(a) Reuters

−5 0 5
(b) Essay

Human
Machine

−10 −5 0 5
(c) WritingPrompts

Figure 9: Reward distribution of the reward model in multiple domains Reuters, Essay, Writing-
Prompts generated by GPT4 Turbo, and Claude3 Opus.

−5 0 5
(a) Reuters

−5 0 5
(b) Essay

Human
Machine

−5 0 5
(c) WritingPrompts

Figure 10: Reward distribution of the ReMoDetect in multiple domains Reuters, Essay, Writing-
Prompts which generated by GPT4 Turbo, and Claude3 Opus.

In Figure 7, and Figure 8, we present t-SNE of the reward model and ReMoDetect. Figure 9 and
Figure 10 display the reward distribution. These figures demonstrate that, even without further
training, the reward model can distinguish between human-written texts and LGT. Additionally,
ReMoDetect emphasizes the separation between human-written text and LGT.
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B.6 Robustness of Reward Models against Rephrasing Attacks

Table 13: Robustness against rephrasing attacks. We report the average AUROC (%) before (‘Orig-
inal’) and after (‘Attacked’) the rephrasing attack with T5-3B on the Fast-DetectGPT benchmark,
including XSum, PubMed, and WritingPrompts-small. Values in the parenthesis indicate the relative
performance drop after the rephrasing attack. The bold indicates the best result.

Model Accuracy Loglik. D-GPT NPR FD-GPT Ours
(reward model)

Ours
(ReMoDetect)

GPT4 Original 82.1 69.0 68.1 90.6 79.0 97.9
Attacked 63.7 (-22.4%) 44.8 (-35.1%) 47.0 (-31%) 74.5 (-17.7%) 71.2 (-9.9%) 87.2 (-10.9%)

Llama3
70B

Original 93.5 84.9 84.9 96.8 80.9 98.5
Attacked 79.9 (-14.5%) 61.7 (-27.4%) 64.7 (-23.7%) 87.9 (-9.2%) 71 (-12.3%) 88.3 (-10.4%)

Gemini
pro

Original 79.2 71.3 75.8 79.9 64.1 81.8
Attacked 64.9 (-18%) 50.7 (-28.9%) 55.7 (-26.6%) 64.5 (-19.3%) 55.8 (-13%) 67.4 (-17.6%)

In Table 13, we compare the robustness against the paraphrased attack of the reward model and other
baselines including ReMoDetect. The experiment shows that the reward model is robust against
paraphrasing attacks (i.e. reward model and ReMoDetect are the two least drops against paraphrasing
attacks). From the results, we hypothesize that the robustness against attack came from the reward
model itself. Conceptually the human preference for the text samples doesn’t change much as the
distribution shifts or paraphrases some words, hence, the reward score is independent of the minor
variation of the sentence. We believe that the result of the experiment supports our hypothesis.
Furthermore, exploring the characteristics and applications of the reward model would be interesting
in the future.

B.7 Additional ReMoDetect Models Trained From Differently Initialized Reward Models.

Table 14: Comparison of multiple ReMoDetect models trained from reward models, including deberta,
Gemma-2B (G. 2B), Llama3-8B (L. 8B). We report the average AUROC (%) on the fastdetectGPT
benchmark, including PubMed, XSum, and WritingPrompts-small (WP-s).

Model Domain FD-GPT Open-D Ours
(deberta)

Ours
(G. 2B)

Ours
(L. 8B)

GPT3.5
Turbo

PubMed 90.2 61.9 96.4 90.1 94.7
XSum 99.1 91.5 99.8 100.0 100.0
WP-s 99.2 70.9 99.9 99.9 99.7

GPT4
PubMed 85.0 53.1 96.1 91.4 92.1
XSum 90.7 67.8 98.8 99.9 100.0
WP-s 96.1 50.7 98.7 99.6 99.4

GPT4
Turbo

PubMed 88.8 55.8 97.0 91.2 92.9
XSum 97.4 88.2 99.8 100.0 100.0
WP-s 99.4 72.3 100.0 100.0 100.0

Llama3
70B

PubMed 90.8 52.9 96.3 91.8 94.3
XSum 99.7 96.2 99.5 100.0 99.9
WP-s 99.9 77.5 99.8 99.6 99.6

Gemini
pro

PubMed 82.1 57.3 85.6 78.8 81.8
XSum 79.5 72.2 88.2 87.5 85.3
WP-s 78.0 70.2 71.6 84.2 89.2

Calude3
Opus

PubMed 88.2 48.9 96.4 90.9 93.3
XSum 96.2 86.2 99.5 99.9 99.8
WP-s 93.5 65.7 99.9 99.7 99.8

Average - 91.9 68.9 95.8 94.6 95.6

We additionally consider the ReMoDetect models trained from differently initialized reward models.
To address the consideration, we conducted experiments to train ReMoDetect using three reward
models. As shown in Table 14, ReMoDetect models consistently outperform other baselines, even
though the model trained from differently initialized reward models. Nonetheless, the ReMoDetect’s
detection performance can vary with initialization. Thus, we suggest interesting future works to find
a better detector, such as ensembling several trained models or using an enhanced reward model.
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B.8 Comparison with GPTZero per domain

Table 15: Detection Score of GPTZero [39], a commercial black-box LGT detection API. We report
the AUROC (%) on the Fast-DetectGPT benchmark, including PubMed, XSum, and WritingPrompts.

Model Domain GPT 3.5 Turbo GPT4 GPT4 Turbo Llama3 70B Gemini pro Claude3 Opus

GPTZero
PubMed 88.0 84.8 87.2 90.1 83.2 88.0
XSum 99.5 98.2 100.0 100.0 85.8 99.9
WP-s 92.9 82.6 100.0 99.8 79.7 99.1

ReMoDetect
PubMed 96.4 96.1 97.0 96.3 86.4 96.4
XSum 99.8 98.8 99.8 99.5 74.5 99.5
WP-s 99.9 98.7 100.0 99.8 86.4 99.9

In Table 15, we report the performance of GPTZero [39] and ReMoDetect in PubMed, XSum, and
WritingPrompts (note that Table 3 reports the average AUROC of these domains). It is worth noting
that ReMoDetect outperforms in most of the cases and consistently shows better performance in
PubMed (which is an expert domain), indicating the effectiveness ReMoDetect on low-data regimes.

B.9 Comparison on Aligned Small Language Models

Table 16: AUROC (%) of multiple LGT detection methods, including log-likelihood (Loglik.),
Rank, Fast-DetectGPT (FD-GPT), OpenAI-Detector (Open-D), ChatGPT-Detector (Chat-D), and
ReMoDetect (Ours). We consider LGT detection benchmarks from Fast-DetectGPT: PubMed, XSum,
and WritingPrompts-small(WP-s). The bold indicates the best result within the group.

Model Domain Loglik. Rank FD-GPT Open-D Chat-D Ours

Llama3
8B-it

PubMed 85.0 60.4 89.6 53.7 33.4 94.6
XSum 82.3 68.9 86.8 95.4 13.1 85.4
WP-s 87.2 72.3 91.0 81.2 26.4 95.5

Gemma2
9B-it

PubMed 69.8 55.9 71.6 36.4 85.1 95.1
XSum 85.1 69.4 94.0 74.0 97.7 99.5
WP-s 86.7 71.9 96.6 50.1 70.3 96.8

Gemma2
2B-it

PubMed 67.9 56.6 72.3 44.4 78.1 90.0
XSum 82.1 18.2 89.8 67.6 97.2 94.9
WP-s 84.6 71.8 99.0 70.8 63.7 94.2

Qwen2
1.5B-it

PubMed 82.3 61.0 89.8 62.9 23.9 92.7
XSum 96.5 66.7 98.3 97.2 1.3 99.6
WP-s 97.5 78.2 98.6 94.3 17.7 99.1

OLMo
7B-sft

PubMed 88.4 60.5 92.8 62.0 23.6 94.1
XSum 96.6 66.0 99.1 97.3 5.9 98.1
WP-s 98.1 78.5 98.8 95.2 19.5 99.2

Average - 86.0 63.8 91.2 72.2 43.8 95.3

We additionally consider small aligned models particularly when the model parameter size is smaller
than 10B, including Llama3-8b, Gemma-2-9b, Gemma-2-2b, Qwen2-1.5b-it, and Olmo7b-sft. As
shown in Table 16, ReMoDetect also effectively detects LGT of small language models. For instance,
ReMoDetect achieves 97.1% average AUROC in Qwen2-1.5b-it while the second-best reaches 84.8%.

21

2906 https://doi.org/10.52202/079017-0095



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claim about the observation of reward models and ReMoDetect’s
detection performance is reflected in abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The paper discussed the limitations of the work in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental results of the paper can be reproduced by following our
methods, and specific experimental details in Section 4, and Appendix A.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide codes and data with instruction files in supplemental materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: All experiments are conducted with the same and commonly used random
seed. Also, our works are consistent in inference time.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify our computer resources, API, API cost, and time of execution at
inference time in Appendix A and Table 8.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed our potential positive and negative societal impacts in Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release data or models that have a high risk for misuse.

26

2911https://doi.org/10.52202/079017-0095

https://neurips.cc/public/EthicsGuidelines


Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited the original paper that produced the code, data, and model and they
included the license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We documented our new assets and included them in the anonymized supple-
mental material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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