
Goal Reduction with Loop-Removal Accelerates RL
and Models Human Brain Activity in Goal-Directed

Learning

Huzi Cheng
Department of Psychological and Brain Sciences

Indiana University Bloomington
hzcheng15@gmail.com

Joshua W. Brown
Department of Psychological and Brain Sciences

Indiana University Bloomington
jwmbrown@iu.edu

Abstract

Goal-directed planning presents a challenge for classical RL algorithms due to the
vastness of the combinatorial state and goal spaces, while humans and animals
adapt to complex environments, especially with diverse, non-stationary objectives,
often employing intermediate goals for long-horizon tasks. Here, we propose a
goal reduction mechanism for effectively deriving subgoals from arbitrary and
distant original goals, using a novel loop-removal technique.1 The product of the
method, called goal-reducer, distills high-quality subgoals from a replay buffer, all
without the need for prior global environmental knowledge. Simulations show that
the goal-reducer can be integrated into RL frameworks like Deep Q-learning and
Soft Actor-Critic. It accelerates performance in both discrete and continuous action
space tasks, such as grid world navigation and robotic arm manipulation, relative
to the corresponding standard RL models. Moreover, the goal-reducer, when
combined with a local policy, without iterative training, outperforms its integrated
deep RL counterparts in solving a navigation task. This goal reduction mechanism
also models human problem-solving. Comparing the model’s performance and
activation with human behavior and fMRI data in a treasure hunting task, we found
matching representational patterns between a goal-reducer agent’s components
and corresponding human brain areas, particularly the vmPFC and basal ganglia.
The results suggest that humans may use a similar computational framework for
goal-directed behaviors.

1 Introduction

Humans and animals must develop capabilities to pursue time-varying goals in continuously changing
environments. The pressure for survival prohibits slow, linear adaptation to different goals, i.e.,
learning value functions from scratch for each new objective. A quick and versatile paradigm is
necessary for such goal-directed learning scenarios. However, traditional Reinforcement Learning
(RL) algorithms are not specifically designed for this, encountering challenges in the goal-directed
learning context. They are highly optimized for scenarios with relatively fixed goals, e.g., winning
in Go, or reducing building energy consumption [51]. In these situations, iterative methods like the

1Our code is available at github.com/chenghuzi/goal-reducer.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

3185 https://doi.org/10.52202/079017-0104

https://github.com/chenghuzi/goal-reducer

Bellman equation are effective for approximating value/advantage/negative cost functions across
various states, maintaining stability over time. Nonetheless, if the goal changes during training,
classical RL becomes highly inefficient due to: 1) The significant increase in state space caused by
the introduction of the goal set; 2) The inability to reuse experiences across different goals.

On the other hand, traditional heuristic algorithms like Dijkstra’s shortest path algorithm [12]
and the A* path-finding algorithm [24] excel in these problems. These algorithms leverage goal-
independent environment knowledge to construct real-time goal-conditioned maps during navigation.
They use selective intermediate goal states to simplify the problem, thus reducing pathfinding
time. By breaking down a distant goal into nearer ones, these algorithms utilize local knowledge,
independent of goal changes, to solve the problem. More importantly, this principle resembles ways
humans use to deal with complex problems. Recently, a number of studies have shown that, besides
stimuli and association representation, human and animal brains leverage goal and reduced subgoal
representations to solve tasks in various settings [44, 11, 45, 40]. But a common drawback of these
algorithms is that they require predefined representations of all states in the task, prohibiting them
from scaling to large-scale realistic tasks.

In this paper, we try to bridge such goal reduction mechanisms with neural models. The resulting
algorithm is an effective goal-reducer that can accelerate and beat standard RL in different tasks
through recursively reducing complex goals into simpler subgoals. The main contributions of this
paper are two-fold: 1) Computationally, we propose novel methods to train an effective goal-reducer.
After just random walking, it extracts nearly optimal subgoals when the state-goal combination
space is large without prior knowledge about the cost/effort between them. This is based on the
effective representation structure learned during training. This mechanism, as shown below, can not
only be used to accelerate standard RL algorithms in various settings but also to guide navigation
in a multi-goal setting without iterative Bellman equation convergence processes and outperforms
RL accelerated with it, let alone standard RL itself. 2) Biologically, by comparing the model’s
activity with brain fMRI data in the same cognitive task, we show the similarity between the model’s
component, e.g., the goal-reducer, and brain regions like vmPFC and putamen, highlighting the
potential of using this model to explain how brains solve goal-directed problems.

2 Related work

2.1 Goal-directed RL in deep learning

Developing an effective goal-directed algorithm has been a long-lasting open question in the RL
community [2]. Various methods have been proposed to mitigate the experience sparsity issue in
goal-directed learning. For an extensive review, we refer the reader to [35]. Here, we introduce some
representative solutions, where some focus on the modification of reward functions, using tricks like
average action cost [25] and sibling trajectory average goals [49] to alleviate the sharpness in reward
distribution in the early stage of training. Another line of work uses planning to solve the problem.
For example, an explicit graph can be constructed from sensory inputs for traditional path-finding
algorithms [16, 55, 34, 26]. However, we see these approaches as not completely neural-based
models, and the pathfinding algorithm part may prohibit them from smoothly scaling to tasks with
larger state spaces.

Another family of algorithms uses subgoal generation as a core mechanism to resolve the same
issue. [18] trained a GAN to predict intermediate goals. There are also attempts to construct
subgoals with different heuristics: [56] uses the uncertainty of Q-functions to help train subgoals.
[9] treats the midpoint of value functions as optimal subgoals during training. [3] optimizes subgoal
generation by minimizing integrated segment costs produced by “local” subgoals. These subgoal-
related approaches are intriguing as they match the “divide and conquer” principle in a neural way,
but a common limitation of these methods is that they work in a bootstrapping manner, i.e., the quality
of the Q-function indirectly determines the quality of subgoals generated, as it is involved in the
subgoal sampling process.

2.2 Goal-directed learning and subgoal generation in neuroscience

There exists a duality of interest in neuroscience on goal-directed learning that can be dated back
to the 1940s, when [48] famously showed that rats can take shortcuts that hadn’t been experienced

2

3186https://doi.org/10.52202/079017-0104

before to reach goals in a maze. Later research showed that there are representations for different
goals in the brain that are tailored for planning optimal paths to the ultimate goal [13]. Models
have been built for these processes to reveal possible mechanisms of how the brain may make use
of these goal representations to calculate subgoals (or called “landmarks”) for navigation [46, 47].
Recently, more empirical and modeling work has come out showing that the subgoal navigation
hypothesis, and the underlying cognitive map theory that supports it [5], could be implemented by
animals [23, 45] and humans [50, 15, 54]. Altogether, these studies imply the existence of a subgoal
generation mechanism in the brain to support effective planning in complex environments.

However, many models for subgoal generation in neuroscience still either rely on manual/one-hot
coding of states [15, 54] or focus on revealing the existence rather than the potential development of
subgoals during training [45]. We therefore think that, in these two fields, the community of deep RL
and neuroscience, there is space for a neurally plausible algorithm that can provide a biological model
of how subgoals are naturally generated from the brain during training and can show its computational
efficiency over plain RL algorithms.

Our resulting work presents a trained goal-reducer neural network that generates nearly optimal
subgoals without requiring additional value information from the environment. This approach
distinguishes itself from other subgoal generators that depend on Q-functions. It can integrate
seamlessly with standard RL frameworks and independently operate with a local policy that just
learns associations in neighboring states. Using the latter approach, we also demonstrate its capability
in solving cognitive tasks in a human-like manner and its correspondence with various brain regions,
indicating its potential for modeling human problem-solving processes.

3 Methods

3.1 Problem formulation

For a goal-directed Markov decision process, we characterize it with (S,A,G), where S and A are
the observation and action spaces, respectively, and G is the goal space. One interaction step in this
environment can be written as (st, g, at, rt, ĝt, st+1), where st is the current observation, g is the
assigned goal, at is the action executed, rt is the reward, ĝt is the achieved goal, and st+1 is the next
state. In some cases, G = S occurs when a possible goal is among one of all states, e.g., spatial
navigation when the input and goal space is all plausible locations. In other words, the goal and state
space are the same. In such settings, we may use G and S interchangeably, and the interaction can be
reduced to (st, g, at, rt, st+1). But in some real-world tasks, G may be in a different space from S:
G could be a target coordinate in allocentric space when S is the pose of a multi-joint robot arm.

With this formulation, we first consider the simple case when G = S as the general case can be easily
extended from it. In goal-directed learning, g ∈ G may change substantially, making conventional
RL algorithms inadequate due to the enormous size of S × G. Additionally, in many scenarios, the
reward is sparse, and the agent only receives a positive reward or avoids punishment when it reaches
the goal state, i.e., when G = S and r(st, at, g) = 1(st = g). This, combined with the complexity
of the state space, further complicates goal-directed learning.

We propose that, given a specific g, if an agent can effectively reduce a goal g into a subgoal sg ∈ G
that is “closer” to its current state st, it may alleviate the task’s difficulty. Furthermore, this can be
applied recursively to find subgoals that are arbitrarily close to the current state st.

3.2 Effective goal-reducer through Loop-removal sampling

The most straightforward solution to the problem above is to train a function Φ that generates sg,
which we refer to as a goal-reducer: Φ(st, g) : S × G → G. The goal-reducer can reduce the
computational burden of a policy π(a|s, g) as it can now generate a subgoal sg = Φ(s, g) for a hard
task, under a basic assumption that harder problems can be decomposed into simpler problems as
long as these problems are in the optimal path towards the final solution (Fig. 1A). Training such a
goal-reducer, however, can be challenging. There are two intuitive strategies. First, one can sample
sg uniformly from S, as done by [9]. This approach is referred to as Random sampling (Fig. 1B
left). An alternative is to sample sg from past experiences, a strategy known as Trajectory sampling.
Assuming a sequence of interactions (st, g, at, rt, st+1) for t = 1, 2, · · · , T is stored in memory, sg
can be sampled from the st in this sequence (Fig. 1B middle). A common technique in goal-directed

3

3187 https://doi.org/10.52202/079017-0104

RL, Hindsight Experience Replay (HER), proposed by [2], conceptually resembles this approach,
as it encourages the agent to learn associations between current states and some of its future states
in the same trajectory. Other studies, such as [41], also find trajectory-based sampling effective
in goal-directed learning, though expert experience is not required in our case [41]. Furthermore,
neuroscience research indicates that episodic memories, i.e., sequences of experienced states, are
vital for learning [20].

However, this strategy does not guarantee the sampled sg to be effective: an agent with limited
environmental knowledge may simply engage in a random walk within the state transition graph,
rendering the states experienced in the episodic memory ineffective for connecting the trajectory’s
start and end points. To address this, we introduce a third strategy, termed Loop-removal sampling
(Fig. 1B right), which may mitigate this issue. The underlying rationale is that when the agent has
minimal knowledge of the environment, the trajectories it creates will likely be random and involve
numerous “loops”. A “loop” occurs when the agent revisits the same state at least twice within a
trajectory. The Loop-removal sampling posits that by eliminating these “loops” from the episodic
memory, the sg sampled from the remaining trajectories will be more advantageous, as ineffective
experiences are excluded, potentially resulting in a trajectory that more closely resembles a linear or
shortest path in the best-case scenario.

While Loop-removal sampling is effective when S is discrete, i.e., observations are either the same or
different, it faces challenges in environments where si ∈ S can be infinitely close but not the same to
each other, e.g., when the observation is an image input for an agent’s current location. This issue is
also encountered in earlier concepts like [28]. To overcome this, we adopt an idea from persistent
homology [14], defining a filtration process to determine the existence of “loops.”

D

Filtration radius increases

ProperSparse ClutteredC

Random Sampling Trajectory Sampling Loop-removal SamplingBA

Fig. 1: A: A schematic view of how a goal-reducer can be integrated with a policy network to
generate actions. B: 3 types of subgoal sampling strategies. Red triangles: current states, green
squares: goals, light green squares: subgoals sampled. C: An diagram of filtration radius changes
trajectory connectivity. D: An example of proper filtered trajectory (black) compared with original
random walk (gray) in 3D space.

This process is schematically depicted in Fig. 1C: In a continuous space, trajectories are sparse, as
distances between states are always greater than zero, making exact state overlaps unlikely. However,
by assigning a filtration radius ρ to each state and incrementally increasing it, the connectivity of
the episodic memory trajectory changes. At a certain point, the algorithm detects a “loop” (proper
case in Fig. 1C), where Loop-removal sampling is most effective. If the filtration radius continues to
increase, the trajectory becomes fully interconnected, leading to Loop-removal sampling failure. We
demonstrate that with an appropriate filtration parameter, a random walk path in 3D space can be
effectively simplified (Fig. 1D) with ρ set to 0.8. The optimal radius is determined through a grid
search between 0 and the longest distance between any pair of points in the space, with the objective
of maximizing the rate at which task performance improves with learning. This search process is
also used in later experiments to maximize learning efficiency in terms of two efficiency metrics,
Optimality and Equidex (described in detail below).

4

3188https://doi.org/10.52202/079017-0104

This approach may seem akin to the Search on the Replay Buffer by [17], but there is a key distinction:
Search on the Replay Buffer depends on a value function to estimate distances among states, whereas
Loop-removal sampling operates independently of any prior environmental knowledge. Instead, it
relies on a minimal assumption applicable to all state spaces: loops indicate redundancy. Following
this, we developed an online mechanism (Algorithm 1 in appendix) to train the goal-reducer, Φ,
using loop-removed trajectories stored in D′, which is refined from the replay buffer D.

To test if a goal-reducer trained with Loop-removal sampling generates better subgoals compared
to Trajectory sampling and Random sampling, we developed two metrics to quantify the quality of
generated subgoals: Optimality and Equidex. First, we represent the effort required for an agent
to reach goal g from state s as ||s, g||, the distance across legal transitions of the state graph. This
concept mirrors the idea of shortest distances, though it may not be symmetrical, i.e., ||s, g|| ≠ ||g, s||,
due to potentially irreversible state transitions. Also, the state space graph of legal transitions may
not be fully connected – because barriers may exist in the state space so that some transitions are
not possible, sg is generally not simply the linear midpoint between s and g ∈ S. Building on this,
Optimality is defined as:

Optimality(s, g, sg) = ||s, g||/
(
||s, sg||+ ||sg, g||

)
. (1)

When Optimality → 1, the total effort expended by an agent to reach g via sg is near the optimal
effort. However, a sg with an Optimality close to 1 may not be informative if sg is set to either g or s,
where no new information is provided. To address this, Equidex is introduced:

Equidex(s, g, sg) =
(
||sg, g|| − ||s, sg||

)
/
(
||s, sg||+ ||sg, g||

)
. (2)

When Equidex → 0, it indicates that the effort from s to subgoal sg is similar to the effort from sg
to the final goal g. This suggests that sg is situated on the hyperplane formed by midpoints in the
state space between s and g. Accordingly, as Equidex → 1, the subgoal becomes closer to the current
state, while a value nearing -1 suggests the subgoal is closer to the ultimate goal. In summary, the
quality of a single subgoal can be characterized by both Optimality and Equidex. The ideal subgoal is
one where Optimality equals 1 and Equidex equals 0.

A B C

Fig. 2: goal-reducer training results of geometric random graph (top) and the four-room gridworld
task (bottom) with different strategies. A: Environment examples. B: Left: training loss, middle:
training Optimality, right: training Equidex. C: Left: Optimality change when applying a trained
goal-reducer recursively, right: same, but for Equidex.

Using these indices, we assess the performance of the goal-reducer on two datasets. The first dataset
derives from a constructed state graph, characterized by random connections among states and
allowing self-connections (Fig. 2A top). We execute undirected random walks on this graph. The
second is based on a four-room gridworld task, commonly used in multi-goal RL benchmark tests
(Fig. 2A bottom). In this dataset, we simulate an agent exploring the environment without any prior
knowledge of its structure.

For both datasets, we use the goal-reducer architecture to learn the s, g → sg association, employing
an VAE [31]. This network accepts concatenated representations of s and g as inputs, initially
producing a latent probabilistic representation z through the encoder EncΦ. A prediction of sg is
then generated by DecΦ. To circumvent sparse and discrete encoding in both datasets, and also
to avoid introducing prior knowledge, random embeddings are applied for each. Consequently, s,

5

3189 https://doi.org/10.52202/079017-0104

g, and sg are represented as high-dimensional random vectors. All random embeddings remain
fixed during training. The adopted loss function mirrors that of a classical VAE, comprising a
subgoal reconstruction loss and a weighted (α) KL divergence penalty with a prior latent distribution
p(z) ∼ N (0, I):

L = −αDKL(EncΦ(sg|s, g)||p(z)) + EEncΦ(z|s,g)[logDecΦ(sg|z)]. (3)

Training results (Fig. 2B left) indicate that in both datasets Loop-removal sampling surpasses and is
more stable than Trajectory sampling, which in turn outperforms Random sampling in terms of loss.
The Optimality values follow a similar trend (Fig. 2B middle):

Loop-removal sampling > Trajectory sampling ≫ Random sampling.

Given that all subgoals are uniformly sampled from the dataset, the Equidex for all strategies
approximates 0 (Fig. 2B right). To further examine the capability and stability of the trained goal-
reducer, we assess its proficiency in recursive subgoal reduction. In this process, we input the
predicted subgoal embedding into the goal-reducer, treating it as g to generate a subsequent subgoal
s′g . By iterating this procedure for several steps, we postulate that the goal-reducer, particularly when
trained with Loop-removal sampling, will produce subgoals that are both effective and sufficiently
close to the current states to facilitate easier navigation. The experimental results reveal that, after
three iterations of recursive goal reduction (t = 3, in Fig. 2C), the goal-reducer trained with
Loop-removal sampling achieves the most favorable optimality distribution (Fig. 2C left).

In terms of Equidex, as illustrated in the right column of Fig. 2C, recursive goal reductions enhance
the goal-reducer’s ability to predict subgoals that are nearer to the current states. This improvement
is evidenced by the shift in the equidex distribution from t = 1 to t = 3. Together, the results in Fig.
2 demonstrate the superiority of Loop-removal sampling as a training strategy for goal-reducer to
produce proper subgoals.

3.3 goal-reducer integrated with RL

The above experiments have shown the superiority of Loop-removal sampling over other strategies in
training goal-reducer from environments without external knowledge about the “distance” between
any two states in them. Next we integrate this process with RL algorithms into tasks with discrete
and continuous action spaces using Deep Q-learning (DQL) [38] and Soft Actor-Critic (SAC) [22].

Discrete case In the discrete setting, DQL is used. The algorithm is trained to optimize a value
function Q through Bellman equation convergence:

Qϕk+1
= argmin

ϕ

1

2
E(st,g,at,st+1)∼D [Q∗

t −Qϕ (st, g, at)]
2 (4)

Q∗
t = r (st, g, at) + γEat+1∼π(.|st+1,g)Qϕk

(st+1, g, at+1) . (5)

Since we assume goal-reducer, Φ(s, g), can learn to generate subgoals without a mature Q, we use it
to accelerate the convergence of Eq. 4 by updating Q’s parameter using an extra regularization loss

Lsg =
∑
st,g

wst,g ·DKL

[
π
(
at|st, g

)∣∣∣∣∣∣∣∣π(at|st,Φ(s, g))], (6)

where the policy π
(
at|st, g

)
is a categorical distribution softmaxQ(st, g) and the loss is weighted by

the entropy of policy, H[π(at|st, g)]:

wst,g =

{
1, if H[π(at|st, g)] ≥ H[π(at|st,Φ(s, g))]
0, otherwise.

(7)

Continuous case In continuous action space, SAC is used. Since π
(
at|st, g

)
cannot be calculated

explicitly, we approximate it with an online sampling process of actions executed a′t:

Lsg =
∑

st,a′
t,g

wst,g · π
(
a′t|st, g

)
· log π

(
a′t|st,Φ(s, g)

)
, (8)

6

3190https://doi.org/10.52202/079017-0104

where the wst,g = 1 if π
(
a′t|st, g

)
< π

(
a′t|st,Φ(s, g)

)
and otherwise 0. In both cases, wst,g = 1

means Q is more uncertain about the ultimate goal when compared with a trustworthy goal generated
by the goal-reducer.

For both cases, for baseline RL methods (plain DQL and SAC) and their goal-reducer augmented
version, to accelerate learning, we used Hindsight Experience Replay (HER) during training, a
standard technique used to improve RL algorithm’s performance in goal-directed learning [2].

3.4 Standalone goal-reducer

As shown in previous Optimality and Equidex experiments, goal-reducer can gradually reduce the
“distance” between the agent and the goal through recursive goal reduction. We thus test if this
mechanism alone can solve some tasks that are usually handled with model-free RL using Bellman
equation iteration. To do this, we take an unsupervised approach: When an agent is initialized, it
explores the environment randomly. We train the goal-reducer using such exploration trajectories. At
the same time, we train a local policy πlocal

(
at|st, g

)
that only learns goals that are one step away

from st and generates a uniform distribution otherwise. When these two components are trained, we
execute the planning process by detecting reachable goals using the entropy of πlocal (for details, see
the appendix).

4 Results

4.1 goal-reducer accelerates standard RL

Four-room maze navigation task In a modified mini-grid environment [10] (Fig. 3A left), an
agent receives two images as inputs and outputs an action indicating which direction to go among four
possible directions. One image is the partial observation in a four-room grid world maze, st, while
the other image is a similar “picture” from the “goal” location, g. No other visual cue beyond the
“picture” of the goal location is given, preventing the agent from cheating using easy visual landmarks
like the green dots used in the original version of this task. In each episode within this environment,
g and s0 are uniformly sampled from all possible locations. The agent receives a constant negative
reward every step until it reaches g. In this experiment, the DQL algorithm is represented as DRL,
while goal-reducer augmented DQL is denoted DRL+GR. The results clearly show that DRL+GR
outperforms DRL in terms of convergence time (Fig. 3A right).

Robot arm reach task We adopted panda-gym [19] to implement an environment where a robot
arm with 7 degrees of freedom is trained to reach an arbitrary location sampled uniformly in the space
(Fig. 3B left). Like the navigation task, the agent receives a constant negative reward every interaction
before reaching within a close region centered on the specified goal location. In this experiment, for
plain DQL we used SAC (denoted as DRL) and goal-reducer augmented SAC (DRL+GR). The
results (Fig. 3B right) are consistent with the navigation task.

Invisible

A B C

Fig. 3: goal-reducer accelerates standard RL. A: An example input in the four-room navigation task
(left) and performance comparison (right). B: Robot arm reach task (left) and performance comparison
(right). C: How a goal-reducer agent works with only a local policy (left) and performance comparison
of 3 algorithms (right).

4.2 Standalone goal-reducer surpasses goal-reducer-accelerated RL

The next question we ask is related to the results in recursive goal reduction (Fig. 2C): Can one use
just the goal-reducer to perform a task as it seems to reduce Equidex recursively to neighbor goals?
This requires a standalone goal-reducer and a “local” policy πlocal that can learn how to associate st

7

3191 https://doi.org/10.52202/079017-0104

and st+1 with at. The Four-room navigation task naturally fits this need, as a πlocal in it can be easily
defined as a policy that learns to associate two connecting grids. Under this setting, a goal-reducer
can recursively generate subgoals using existing goals/subgoals until πlocal finds proper subgoals that
are close enough to make a proper decision.

This time a 19x19 maze is used to make the task harder, as goal-reducer’s training effect may not be
obvious in smaller environments. In this environment, we dropped the Bellman equation (for details,
see appendix) and compared its performance (denoted as GR) with the previous winner, goal-reducer
augmented DQL (GR+DRL), and the baseline plain DQL (DRL). Results in Fig. 3C right column
clearly show that GR outperforms both GR+DRL and DRL, while the latter two’s performance
relationship is consistent with the right column in Fig. 3A.

4.3 goal-reducer in the Brain

The efficiency the goal-reducer has shown in previous experiments, when compared to plain RLs,
naturally leads us to wonder if the brain adopts a similar strategy to solve goal-directed behaviors.
To address this, we used a cognitive task, treasure-hunting (Fig. 4A), that necessitates flexible goal
representation changes. In the task, subjects were placed in one of four possible starting states on one
of two maps (Fig. 4B) and were required to reach states designated as a “chest” (the ultimate goal).
But having a “key” is necessary when reaching the “chest” to obtain a reward. The locations of the
“key” and “chest” are presented to the subject at the start of each episode and change randomly across
episodes. The goal-reducer, Φ(s, g), when paired with a πlocal, forms an agent and is also trained on
the same task, using the same strategy adopted in Fig. 3C.

C

E F

D

A B

Fig. 4: goal-reducer in the treasure hunting task. A: The treasure hunting task description. B: Two
configurations of maps used in the task. C: Population z-maps of S, G, and Φ in vmPFC. D: The
relative representation z-value distribution for the three centers marked as S , G, and Φ in vmPFC. E:
Population z-maps of S , Int.S , and Φ in bilateral putamen. F: Same as D, but for bilateral putamen.

After training, we analyzed the goal-reducer agent’s neural activation and compared it with human
subjects’ brain activity measured via fMRI. The fMRI data, including human subjects’ participation
details, were reported previously, and human subjects were compensated $25/hr for fMRI participation
[54]. In particular, subjects were apprised of the mild risks of fMRI including boredom, fatigue,
and loss of confidentiality. All research was approved by the institution’s IRB, and all subjects
provided full informed consent. Our fMRI analysis used representational similarity analysis (RSA)
[32]. RSA considers all conditions that occurred in the task and compares the activity similarity of the

8

3192https://doi.org/10.52202/079017-0104

model/brain between each pair of conditions via Pearson correlation, thereby forming a symmetric
representational dissimilarity matrix (RDM). The entries in the RDM range from 0 to 2 (1 minus the
possible correlation ranging from -1 to 1), where a lower value indicates higher similarity. RDMs are
calculated for all voxels in human subjects’ brains and for different components in the goal-reducer
agent, including the input representation S , the goal representation G, and the goal-reducer, Φ(s, g).

The results show that the activity in the ventromedial prefrontal cortex (vmPFC) corresponds to
g ∈ G in the goal-reducer agent. Next, we evaluated the activity matching the internal neurons of the
goal-reducer Φ(s, g). As depicted in Fig. 4C, there are several regions whose activities correlate with
Φ, including parts of the vmPFC (indicated by the right circle in Fig. 4C) and the left accumbens.
This finding is particularly interesting for two reasons: 1) numerous studies have established that
the vmPFC is related to value and goal representations [29, 43]; 2) the close spatial relationship
between regions matching G and Φ (Fig. 4C middle and right columns) reflects the goal-reducer’s
organization (Fig. 4C right), wherein Φ and G are interconnected through the generation and input of
different goals. This recurrent connectivity suggests that the widespread recurrent connections in the
vmPFC [37] may fulfill the role of goal reduction or perform reverse future simulation [6], thereby
simplifying the task. The finding is consistent with a posterior-to-anterior hierarchy of goal planning
in the prefrontal cortex [7], and our results may suggest the function of such a hierarchy - namely
that anterior regions provide goal reduction functionality for more posterior regions.

Following this, we next investigated the Z map of state representations and indeed found a region
above Φ and G in the vmPFC that is correlated with S (as denoted by the top circle in Fig. 4C left).
The average z-values in these regions show differential representational loading on the goal-reducer
agent components (Fig. 4D), although the ROI z-value comparison is a descriptive statistic only given
that the regions were selected for strong loading on the various model layers [33].

Aside from the goal reduction, we also compared S in the goal-reducer agent with brain data. The
RSA results indicate significantly elevated representational loading for these two layers in the bilateral
putamen (Fig. 4E), while there is a lower level of loading for the goal representation layer and an
even lesser extent for the goal reduction layer. The putamen, a component of the larger basal ganglia
system, is recognized for its involvement in habitual behaviors [53] and goal-directed actions [4, 27].
This suggests that such an area should engage in both local policy enactment (the habitual aspect) and
goal reduction (goal-directed component). The congruence between the state representation and its
intermediate layer with this role may illuminate why activation related to the goal and its reduction is
lower in this region (Fig. 4F), since they are not as essential for the habitual component of the local
policy.

5 Discussion

Limitations and future work In this work, the trained goal reduction mechanism has shown its
capability in terms of its computational advantage and as a biological model of human goal-directed
behaviors. This suggests a possible bridge between efficient human problem-solving in multi-goal
settings and machine learning. However, a key part of the training of the goal-reducer, the loop
removal sampling process, does not have a clear mechanistic biological process correspondence. Two
ways exist to address this issue in the future. Computationally, it may be possible to derive a purely
neural model to perform the loop removal process, making the sampling process also biologically
plausible. A potential solution will be to leverage a lateral-inhibition-like [8] mechanism to inhibit
all associative synaptic connections between neurons when the same group of neurons are activated
more than once in a time range, simulating canceling the “loop” in a memory trajectory. Empirically,
it may be possible to collect brain activity data during training of the same or similar tasks, or during
offline replay, which may incorporate the loop removal as part of memory consolidation.

Conclusion We developed a novel general goal reduction mechanism using the loop removal trick
and trained a network goal-reducer that can learn to predict nearly optimal subgoals from distant
ultimate goals. We show that this approach does not rely on prior knowledge about the global
structure/distance of the environment and uses just random explorations. We further demonstrate
that it can be integrated into various existing RL frameworks and outperforms them. Besides, after
removing the Bellman equation part, when applied recursively, this framework can perform goal-
directed learning and even outperform goal-reducer augmented RL methods. This goal-reducer
agent was next applied to a cognitive task and compared with human fMRI data. Our analyses show

9

3193 https://doi.org/10.52202/079017-0104

that various regions in the brain, including the vmPFC and basal ganglia, can be mapped to the goal
reduction representation and state representations in the goal-reducer agent, implying that the brain
may instantiate a similar computational circuit to perform goal-directed learning.

References
[1] A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller, J. Kossaifi, A. Gramfort,

B. Thirion, and G. Varoquaux. Machine learning for neuroimaging with scikit-learn. Frontiers
in neuroinformatics, 8:14, 2014.

[2] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
O. Pieter Abbeel, and W. Zaremba. Hindsight experience replay. Advances in neural information
processing systems, 30, 2017.

[3] S. Ao, T. Zhou, G. Long, Q. Lu, L. Zhu, and J. Jiang. Co-pilot: Collaborative planning and
reinforcement learning on sub-task curriculum. Advances in Neural Information Processing
Systems, 34:10444–10456, 2021.

[4] B. W. Balleine and J. P. O’doherty. Human and rodent homologies in action control: corticostri-
atal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35(1):48–69,
2010.

[5] T. E. Behrens, T. H. Muller, J. C. Whittington, S. Mark, A. B. Baram, K. L. Stachenfeld, and
Z. Kurth-Nelson. What is a cognitive map? organizing knowledge for flexible behavior. Neuron,
100(2):490–509, 2018.

[6] R. G. Benoit, D. J. Davies, and M. C. Anderson. Reducing future fears by suppressing the brain
mechanisms underlying episodic simulation. Proceedings of the National Academy of Sciences,
113(52):E8492–E8501, 2016.

[7] I. K. Brunec and I. Momennejad. Predictive representations in hippocampal and prefrontal
hierarchies. J. Neurosci., 42(2):299–312, Jan. 2022.

[8] G. Buzsáki. Feed-forward inhibition in the hippocampal formation. Progress in neurobiology,
22(2):131–153, 1984.

[9] E. Chane-Sane, C. Schmid, and I. Laptev. Goal-conditioned reinforcement learning with
imagined subgoals. ArXiv, abs/2107.00541, 2021.

[10] M. Chevalier-Boisvert, B. Dai, M. Towers, R. de Lazcano, L. Willems, S. Lahlou, S. Pal, P. S.
Castro, and J. Terry. Minigrid & miniworld: Modular & customizable reinforcement learning
environments for goal-oriented tasks. CoRR, abs/2306.13831, 2023.

[11] J. Crivelli-Decker, A. Clarke, S. A. Park, D. J. Huffman, E. Boorman, and C. Ranganath.
Goal-centered representations in the human hippocampus. bioRxiv, pages 2021–08, 2021.

[12] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[13] D. Dupret, J. O’neill, B. Pleydell-Bouverie, and J. Csicsvari. The reorganization and reactivation
of hippocampal maps predict spatial memory performance. Nature neuroscience, 13(8):995–
1002, 2010.

[14] H. Edelsbrunner and J. L. Harer. Computational topology: an introduction. American Mathe-
matical Society, 2022.

[15] R. A. Epstein, E. Z. Patai, J. B. Julian, and H. J. Spiers. The cognitive map in humans: spatial
navigation and beyond. Nature neuroscience, 20(11):1504–1513, 2017.

[16] B. Eysenbach, R. Salakhutdinov, and S. Levine. Search on the replay buffer: Bridging planning
and reinforcement learning. In Neural Information Processing Systems, 2019.

10

3194https://doi.org/10.52202/079017-0104

[17] B. Eysenbach, R. R. Salakhutdinov, and S. Levine. Search on the replay buffer: Bridging
planning and reinforcement learning. Advances in Neural Information Processing Systems, 32,
2019.

[18] C. Florensa, D. Held, X. Geng, and P. Abbeel. Automatic goal generation for reinforcement
learning agents. In International conference on machine learning, pages 1515–1528. PMLR,
2018.

[19] Q. Gallouédec, N. Cazin, E. Dellandréa, and L. Chen. panda-gym: Open-source goal-
conditioned environments for robotic learning. arXiv preprint arXiv:2106.13687, 2021.

[20] S. J. Gershman and N. D. Daw. Reinforcement learning and episodic memory in humans and
animals: an integrative framework. Annual review of psychology, 68:101–128, 2017.

[21] D. Ha and J. Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

[22] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

[23] D. A. Hamilton, C. S. Rosenfelt, and I. Q. Whishaw. Sequential control of navigation by locale
and taxon cues in the morris water task. Behavioural brain research, 154(2):385–397, 2004.

[24] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

[25] K. Hartikainen, X. Geng, T. Haarnoja, and S. Levine. Dynamical distance learning for semi-
supervised and unsupervised skill discovery. arXiv preprint arXiv:1907.08225, 2019.

[26] C. Hoang, S. Sohn, J. Choi, W. Carvalho, and H. Lee. Successor feature landmarks for long-
horizon goal-conditioned reinforcement learning. In Neural Information Processing Systems,
2021.

[27] M. Jahanshahi, I. Obeso, J. C. Rothwell, and J. A. Obeso. A fronto–striato–subthalamic–pallidal
network for goal-directed and habitual inhibition. Nature Reviews Neuroscience, 16(12):719–
732, 2015.

[28] Z. Jin, J. Jin, and W. Liu. Autonomous discovery of subgoals using acyclic state trajectories.
In Information Computing and Applications: First International Conference, ICICA 2010,
Tangshan, China, October 15-18, 2010. Proceedings 1, pages 49–56. Springer, 2010.

[29] J. W. Kable and P. W. Glimcher. The neural correlates of subjective value during intertemporal
choice. Nature neuroscience, 10(12):1625–1633, 2007.

[30] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[31] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[32] N. Kriegeskorte, M. Mur, and P. A. Bandettini. Representational similarity analysis-connecting
the branches of systems neuroscience. Frontiers in systems neuroscience, page 4, 2008.

[33] N. Kriegeskorte, W. K. Simmons, P. S. F. Bellgowan, and C. I. Baker. Circular analysis in
systems neuroscience: the dangers of double dipping. Nat. Neurosci., 12(5):535–540, May
2009.

[34] H. Lai, J. Shen, W. Zhang, and Y. Yu. Bidirectional model-based policy optimization. ArXiv,
abs/2007.01995, 2020.

[35] M. Liu, M. Zhu, and W. Zhang. Goal-conditioned reinforcement learning: Problems and
solutions. arXiv preprint arXiv:2201.08299, 2022.

11

3195 https://doi.org/10.52202/079017-0104

[36] N. Makris, J. M. Goldstein, D. Kennedy, S. M. Hodge, V. S. Caviness, S. V. Faraone, M. T.
Tsuang, and L. J. Seidman. Decreased volume of left and total anterior insular lobule in
schizophrenia. Schizophrenia research, 83(2-3):155–171, 2006.

[37] E. K. Miller. The prefontral cortex and cognitive control. Nature reviews neuroscience, 1(1):59–
65, 2000.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529–533, 2015.

[39] H. Nili, C. Wingfield, A. Walther, L. Su, W. Marslen-Wilson, and N. Kriegeskorte. A toolbox
for representational similarity analysis. PLoS computational biology, 10(4):e1003553, 2014.

[40] N. Nyberg, É. Duvelle, C. Barry, and H. J. Spiers. Spatial goal coding in the hippocampal
formation. Neuron, 110(3):394–422, 2022.

[41] S. Paul, J. Vanbaar, and A. Roy-Chowdhury. Learning from trajectories via subgoal discovery.
Advances in Neural Information Processing Systems, 32, 2019.

[42] W. D. Penny, K. J. Friston, J. T. Ashburner, S. J. Kiebel, and T. E. Nichols. Statistical parametric
mapping: the analysis of functional brain images. Elsevier, 2011.

[43] M. F. Rushworth, M. P. Noonan, E. D. Boorman, M. E. Walton, and T. E. Behrens. Frontal
cortex and reward-guided learning and decision-making. Neuron, 70(6):1054–1069, 2011.

[44] A. B. Satpute, K. N. Ochsner, and D. Badre. The neuroscience of goal-directed behavior. In
Goal-directed behavior, pages 49–84. Psychology Press, 2012.

[45] P. Shamash, S. F. Olesen, P. Iordanidou, D. Campagner, N. Banerjee, and T. Branco. Mice learn
multi-step routes by memorizing subgoal locations. Nature neuroscience, 24(9):1270–1279,
2021.

[46] H. J. Spiers and S. J. Gilbert. Solving the detour problem in navigation: a model of prefrontal
and hippocampal interactions. Frontiers in human neuroscience, 9:125, 2015.

[47] K. L. Stachenfeld, M. M. Botvinick, and S. J. Gershman. The hippocampus as a predictive map.
Nature neuroscience, 20(11):1643–1653, 2017.

[48] E. C. Tolman. Cognitive maps in rats and men. Psychological review, 55(4):189, 1948.

[49] A. Trott, S. Zheng, C. Xiong, and R. Socher. Keeping your distance: Solving sparse reward
tasks using self-balancing shaped rewards. Advances in Neural Information Processing Systems,
32, 2019.

[50] A. Verma and B. Mettler. Investigating human learning and decision-making in navigation of
unknown environments. IFAC-PapersOnLine, 49(32):113–118, 2016.

[51] T. Wei, Y. Wang, and Q. Zhu. Deep reinforcement learning for building hvac control. In
Proceedings of the 54th annual design automation conference 2017, pages 1–6, 2017.

[52] J. Weng, H. Chen, D. Yan, K. You, A. Duburcq, M. Zhang, Y. Su, H. Su, and J. Zhu. Tianshou: A
highly modularized deep reinforcement learning library. Journal of Machine Learning Research,
23(267):1–6, 2022.

[53] H. H. Yin and B. J. Knowlton. The role of the basal ganglia in habit formation. Nature Reviews
Neuroscience, 7(6):464–476, 2006.

[54] N. Zarr and J. W. Brown. Foundations of human spatial problem solving. Scientific Reports, 13,
2023.

[55] L. Zhang, G. Yang, and B. C. Stadie. World model as a graph: Learning latent landmarks for
planning. ArXiv, abs/2011.12491, 2020.

[56] Y. Zhang, P. Abbeel, and L. Pinto. Automatic curriculum learning through value disagreement.
Advances in Neural Information Processing Systems, 33:7648–7659, 2020.

12

3196https://doi.org/10.52202/079017-0104

A Appendix

The appendix is divided into four sections. Section A.1 introduces the computational resources used
for all experiments. Section A.2 describes the training algorithm used for Loop-removal sampling.
Section A.3 details the experiment setup and extra results of how goal-reducer is used to accelerate
RL. Section A.4 is similar to Section A.3, but focuses on the standalone goal-reducer experiment.
The last section, A.5, includes training and analysis details of the goal-reducer-brain fMRI data
comparison experiment.

A.1 Computation resources

We evaluated all simulations on a server with an 11 GB NVIDIA 2080Ti GPU and a computational
node with a 32 GB Tesla V100 GPU. The fMRI data processing was executed on a server with 128
GB RAM and an Intel(R) Xeon(R) X7560 CPU.

A.2 Loop-removal sampling

In this experiment, three types of sampling strategies are used. For Random sampling, we uniformly
sample subgoals from the set of all possible state representations. For Trajectory sampling, in a single
trajectory, subgoals are uniformly sampled from states that are between the first (start state) and the
last state (goal). For Loop-removal sampling, we implemented a filtering algorithm to remove loops
from trajectories. Below (Algorithm 1) is the pseudocode we used to implement the Loop-removal
sampling in all experiments:

Algorithm 1 Train goal-reducer with Loop-removal sampling

Input: Replay buffer D, filtration threshold ρ, and a loop-removed set D′.
for each iteration do

Sample a trajectory d ∼ D.
Initialize an empty d′.
for each (st, g, at, rt, st+1) in d do

for each (s′t, g, a
′
t, r

′
t, st′+1) in d′ do

if ||st − s′t|| < ρ then
Remove all transitions from t′ to the tail of d′.
break

end if
end for
Append (st, g, at, rt, st+1) to d′.

end for
Sample t0, t1 from d′ where t0 ≤ t1.
Append (st0 , st1 , g) to D′.

end for

Training For the two environments in Fig. 2A, we used the same goal-reducer architecture for all
sampling: a VAE with two architecturally identical 3-layer MLPs for encoding and decoding. The
Adam optimizer [30] is used for training. For some important hyperparameters, see Table 1.

Table 1: Hyperparameters used in A.2
Name Description Value

lr Learning rate for goal-reducer optimizer 1× 10−3

bsz Batch size 256
epochs Max number of epochs 4096

A.3 goal-reducer accelerates DRL

Task In the four-room navigation task, we created a new environment based on Minigrid [10].
Specifically, we:

13

3197 https://doi.org/10.52202/079017-0104

• uniformly sampled initial locations and goal locations among all plausible locations.

• changed the action space from a composition of turning angle and moving forward to a plain
four directions (up, down, left, right).

• made the environment partially observable to the agent by allowing it to see only a limited
squared image of its surroundings (a 13x13 image with the agent in the center).

• made the goal (the green square) invisible to the agent, i.e., the agent will only receive a
picture taken as if it is in the goal location as its goal input.

In the robot arm reach task, we adopted the panda-gym library [19]. Initial joint angles and goal
coordinates are also uniformly sampled from plausible value ranges.

Scalability One reason we used the four-room navigation task to test the capability of goal-reducer
is that we can easily adjust the size of the maze. This gives us a sense about how goal-reducer with
Loop-removal sampling scales. As shown in Fig. 3A, a four-room environment is composed of two
rooms and three walls (left border, middle, right border) if one looks from a single side, so the legal
border size takes the form of 3 + 2k, where k is the size of the room. We initially tested sizes 15 and
19, as shown in the main text. Next, we examined other sizes and formed results for 13, 15, 17, 19,
and 21. From Fig.S. 1, we can see a trend that DRL+GR outperforms DRL in all cases. Though
the gap in a finite step becomes smaller as the sizes increase, given the increased task difficulty, the
performance difference is positive and consistent across different conditions.

A

B

Fig.S. 1: Performance comparison between DRL+GR and DRL in the four-room navigation task
with different sizes.

Training For the DRL (DQL) and DRL+GR (DQL+goal-reducer) agent implementation, we used
and modified Tianshou [52] to implement the baseline algorithm and the trainer. To handle pixel-like
inputs in the four-room navigation task, an extra single CNN (ObsEnc) is used to preprocess the st
and g (this is not used in the robot arm reach task). Following that, an MLP is used as the Q-net
in DQL. Two Adam optimizers are used during training. One is used to train the DQL part, while
another is turned on only when the goal-reducer is ON. In both DRL and DRL+GR, we applied the
same Hindsight Experience Replay [2] buffer to accelerate training.

For some important hyperparameters used, see Table 2.

A.4 goal-reducer surpasses DRL+GR training details

Task In this experiment, we compared a standalone local policy, GR, with DRL+GR and DRL in
a four-room gridworld navigation task.

Planning process In the GR case, a standalone goal-reducer and a local policy are used to generate
actions for every possible st, g combination. The pseudocode for this process is listed in Algorithm

14

3198https://doi.org/10.52202/079017-0104

Table 2: Hyperparameters used in A.3
Name Description Value

lr learning rate for DQL optimizer 5× 10−4

lrGR learning rate for goal-reducer optimizer 5× 10−4

bsz batch size 256
epochs max number of epochs 6

2. Using this algorithm, the goal-reducer agent can navigate in the environment by recursively
producing a batch of subgoals over time, until at least one of them is close enough to the current
location. The local policy’s entropy plays the role of epistemic uncertainty [56] to help goal-reducer
decide whether a goal/subgoal is close enough. An example is shown in Fig.S. 2.

Algorithm 2 Action generation of goal-reducer with a local policy

Input: Goal reduction step t = 0, max allowed goal reduction steps K, state representation st,
goal representation g, parallel goal numbers M , entropy threshold η
at = πlocal(st, g)
if Entropy(at) < η then

return at
end if
Initialize subgoal list GM = [g]×M
while t < K do

for i = 1 to M do
GM[i] = Φ(st,GM[i])

end for
if min(Entropy(GM[i])) < η then

g∗ = argmin(Entropy(GM))
at = πlocal(st, g

∗)
return at

end if
t = t+ 1

end while
return at

t=1 t=12 t=26

Fig.S. 2: An example of the goal-reducer planning process. Red dots show the agent’s location,
dark green dots (upper left) show the goal, and shadowed green circles show subgoals generated by
goal-reducer over time. Darker green indicates more subgoals at the same location.

Training The training and agent settings are the same as above for DRL+GR and DRL. For the
GR case, besides the optimizers for the DQL part and the goal-reducer part, we introduced an extra
Adam optimizer for the CNN preprocessing part in the pipeline. Without the constraint from a Q
function to learn effective state representations, an extra self-supervised learning approach must be
used. Similar to [21], we introduced a “world model” (WorldModel) and a decoder (ObsDec) for the
agent. Specifically, a decoder and an abstract next state representation are introduced:

ht+1 = WorldModel(ObsEnc(st), at) (1)
ŝt+1 = ObsDec(ht+1), (2)

15

3199 https://doi.org/10.52202/079017-0104

where ŝt+1 is the prediction of st+1. To train this model, BCE loss between ŝt+1 and st+1 is used,
paired with a weighted (0.001) L2-norm penalty of ht+1 to avoid exploding gradients. For some
important hyperparameters used, see Table 3.

Table 3: Hyperparameters used in A.4
Name Description Value

lr learning rate for DQL optimizer 5× 10−4

lrGR learning rate for goal-reducer optimizer 5× 10−4

lrWorldModel learning rate for “world model” 5× 10−4

bsz batch size 256
epochs max number of epochs 40
M max goal generation number 12
η entropy threshold 0.8
K max goal reduction steps 3

A.5 goal-reducer fMRI data analysis

Task For human subjects, the treasure hunting task is presented with a series of images and verbal
instructions on the screen (see Fig. 4A). To train the GR agent to perform this task, we turned all
presentations into verbal instructions (see Fig.S. 3) and then encoded them with OpenAI’s ada-002
text embedding model to transform them into vectors.

Fig.S. 3: An example of text input in the treasure hunting task for the goal-reducer agent

This unifies the representation of this task with all previous tasks and allows future generalization to
novel tasks without modifying the agent itself.

Training The network architecture is the same as the GR agent used in previous experiments. For
some important hyperparameters used, see Table 4.

Table 4: Hyperparameters used in A.5
Name Description Value

lr Learning rate for DQL optimizer 1× 10−3

lrGR Learning rate for goal-reducer optimizer 1× 10−3

lrWorldModel Learning rate for WorldModel 1× 10−3

bsz Batch size 256
steps Max number of transition steps 15000
M Max goal generation number 12
η Entropy threshold 0.8
K Max goal reduction steps 3

fMRI data analysis We included 24 human subjects’ fMRI data for analysis.2 All research
involving human subjects was approved by the institution’s IRB. Subjects provided informed consent,
and the procedures adhered to applicable guidelines and the Declaration of Helsinki. The data were
re-used from [54], which also provides the full methods.

2Data is available at osf.io: part 1,part 2 and part 3.

16

3200https://doi.org/10.52202/079017-0104

https://osf.io/hu5ct/?view_only=381568fcc2bd41babb9d6d4df77d8eb5
https://osf.io/caxrp/?view_only=0eaf1cf61d714de8892260ecbebf5a3b
https://osf.io/cmht9/?view_only=940a458ae594448ab1a5eab5169e0923

In the RDM analysis, each RDM for a brain voxel or model component is a 64× 64 matrix, where
64 = 4× 8× 2. Here, 4 represents the four possible current subject/model locations on the map. 8
represents all possible episode configurations (comprising four two-step key-chest configurations
when the subject/model is at the starting location, two one-step “key-chest” configurations when
the subject/model is at the starting location, and two two-step key-chest configurations when the
subject/model is at the middle location). The factor 2 accounts for the two phases of each movement
(planning and action phase).

For the human fMRI data, such RDMs are calculated for each voxel in the brain for each subject,
with a neighborhood radius set to 10 mm. For the model, RDMs are first calculated for learned S
and G representations and the intermediate representations in the corresponding neural networks.
Moreover, we calculated RDMs for the goal-reducer’s hidden representations as well when the goal
reduction is performed. The action layer, i.e., the output distribution at each step is also calculated.
Together, these form the following model RDMs: S RDM for state representations, Int.S RDM
for state representations in hidden layers, G RDM for goal representations, Int.G RDM for goal
representations in hidden layers, π RDM for action representation, and Φ RDM for goal-reducer’s
hidden layers.

Once RDMs are calculated, Pearson correlation between each voxel and a model RDM’s upper
triangular part, given their symmetrical nature, is calculated. This forms a series of fMRI RSA
maps for each subject, showing whether certain brain regions are positively correlated with the
aforementioned model components. Second-level analysis is then performed to extract the population
effect. To do so, we first transform the individual correlations into z-scores using the Fisher transform.
Then, all z-score maps are projected into a shared space, and a 1-sample T-test is performed for each
voxel in the shared brain space to examine whether the corresponding correlation is significant across
subjects. After that, cluster-based correction is performed to filter out statistically significant regions.
We used nilearn [1], rsatoolbox [39]’s Python version, and SPM5 [42] to perform this process.

With the above analysis pipeline, we found that different brain regions have a high match with distinct
components in the goal-reducer agent. For a complete list of all clusters, see Table 5.

17

3201 https://doi.org/10.52202/079017-0104

Table 5: Significant similarity clusters derived from SPM5 [42] for RSA analysis. Anatomical region
labels are derived from [36]. The pcorrected and cluster size (clusterkE

) values are both corrected using
SPM5. Note that some layers may involve more than one region due to the probabilistic nature of
atlases in [36].

Component X Y Z pcorrected clusterkE
Region(s)

Int.S 32 -9 21 0 15,323 Right Cerebral White Matter
Int.S 29 -9 11 0 15,323 Right Putamen
Int.S 15 -12 -2 0 15,323 Right Cerebral White Matter
Int.S 39 43 38 0.02 82 Frontal Pole, Right Cerebral Cor-

tex
Int.S -50 -64 28 0.01 96 Lateral Occipital Cortex, supe-

rior division, Left Cerebral Cor-
tex

Int.S -44 -67 21 0.01 96 Lateral Occipital Cortex, supe-
rior division, Left Cerebral Cor-
tex

Int.S -50 -47 35 0.01 96 Supramarginal Gyrus, posterior
division, Left Cerebral White
Matter

Int.G -37 -12 -26 0 18,578 Parahippocampal Gyrus, ante-
rior division, Left Cerebral Cor-
tex

Int.G -26 -23 1 0 18,578 Left Cerebral White Matter
Int.G -26 -16 32 0 18,578 Left Cerebral White Matter
Φ -30 -9 15 0 10,362 Left Cerebral White Matter
Φ -23 -26 32 0 10,362 Left Cerebral White Matter
Φ 25 -40 21 0 10,362 Right Cerebral White Matter
Φ -13 32 52 0 183 Superior Frontal Gyrus, Left

Cerebral Cortex
Φ -16 43 45 0 183 Frontal Pole, Left Cerebral Cor-

tex
Φ -13 50 35 0 183 Frontal Pole, Left Cerebral Cor-

tex
S 29 -9 18 0 14,266 Right Cerebral White Matter
S 25 -23 35 0 14,266 Right Cerebral White Matter
S 18 -12 1 0 14,266 Right Cerebral White Matter
S -50 -50 38 0.05 70 Supramarginal Gyrus, posterior

division, Left Cerebral Cortex
S -47 -54 28 0.05 70 Angular Gyrus, Left Cerebral

White Matter
a 29 -9 -13 0 1,148 Right Cerebral White Matter
a -2 -26 -40 0 1,148 Brain-Stem
a 22 -19 32 0 1,148 Right Cerebral White Matter
a -16 36 -2 0.01 104 Left Cerebral White Matter
a -13 32 -9 0.01 104 Frontal Medial Cortex, Left

Cerebral White Matter
a -9 22 -13 0.01 104 Subcallosal Cortex, Left Cere-

bral White Matter
G -16 8 -9 0 16,195 Left Putamen
G 29 -12 28 0 16,195 Right Cerebral White Matter
G 25 -5 8 0 16,195 Right Putamen

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

18

3202https://doi.org/10.52202/079017-0104

Answer: [Yes]

Justification: We developed a goal reduction model and test it in both simulations and
cognitive tasks and compared it with brain fMRI data. All experiments results match the
clasim we made in the abstract and intro.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations of the work are discussed in the last part, the discussion section, of
the main text.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper is mostly about empirical observations and has no theorems.

Guidelines:

19

3203 https://doi.org/10.52202/079017-0104

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Code is released along the manuscript.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

20

3204https://doi.org/10.52202/079017-0104

Justification: For the simulation part, people can reproduce the results with provided code
and without any extra data. For the brain imaging analysis part, data will be available upon
reasonable request.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experiment settings are revealed in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For all experiments we’ve included errorbar (STE). But notice that in Fig. 2
there seem to be no error bars, because the STE is too small.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

21

3205 https://doi.org/10.52202/079017-0104

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We’ve disclosed resources in A.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Research in this paper conform the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper’s central results are not about social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22

3206https://doi.org/10.52202/079017-0104

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We have no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We’ve credited 3rd party code bases we used in the research in the appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23

3207 https://doi.org/10.52202/079017-0104

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We have no new assets in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: The human subjects data were reused from a previous paper, which is cited in
the text and reports all the details of the human subjects participation.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The human subjects data were reused from a previous paper, which is cited in
the text and reports all the details of the human subjects participation. In particular, we also
enumerate in the main text the risks, IRB approval, and full informed consent obtained from
all subjects.

24

3208https://doi.org/10.52202/079017-0104

