
Shadowheart SGD: Distributed Asynchronous SGD
with Optimal Time Complexity Under Arbitrary
Computation and Communication Heterogeneity

Alexander Tyurin
KAUST∗, AIRI†, Skoltech‡

Marta Pozzi
KAUST∗, University of Pavia§

Ivan Ilin
KAUST∗

Peter Richtárik
KAUST∗

Abstract

We consider nonconvex stochastic optimization problems in the asynchronous
centralized distributed setup where the communication times from workers to
a server can not be ignored, and the computation and communication times are
potentially different for all workers. Using an unbiassed compression technique,
we develop a new method—Shadowheart SGD—that provably improves the time
complexities of all previous centralized methods. Moreover, we show that the
time complexity of Shadowheart SGD is optimal in the family of centralized
methods with compressed communication. We also consider the bidirectional
setup, where broadcasting from the server to the workers is non-negligible, and
develop a corresponding method.

1 Introduction

We consider the nonconvex smooth optimization problem

min
x∈Rd

{
f(x) := Eξ∼Dξ

[f(x; ξ)]
}
, (1)

where f(·; ·) : Rd × Sξ → R, and Dξ is a distribution on Sξ ̸= ∅. Given ε > 0, we seek to find
a possibility random point x̂ such that E[∥∇f(x̂)∥2] ≤ ε. Such a point x̂ is called an ε–stationary
point. We focus on solving the problem in the following setup:

(a) n workers/nodes are able to compute stochastic gradients ∇f(x; ξ) of f, in parallel and asyn-
chronously, and it takes (at most) hi seconds for worker i to compute a single stochastic gradient;

(b) the workers are connected to a server which acts as a communication hub;
(c) the workers can communicate with the server in parallel and asynchronously; it takes (at most)

τi seconds for worker i to send a compressed message to the server; compression is performed via
applying lossy communication compression to the communicated message (a vector from Rd); see
Def. 2.1;

(d) the server can broadcast compressed vectors to the workers in (at most) τserv seconds; compres-
sion is performed via applying a lossy communication compression operator to the communicated
message (a vector from Rd); see Def. A.1.

The main goal of this work is to find an optimal optimization strategy/method that would work
uniformly well in all scenarios characterized by the values of the computation times h1, . . . , hn and

∗King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
†AIRI, Moscow, Russia
‡Skolkovo Institute of Science and Technology, Moscow, Russia
§University of Pavia, Pavia, Italy

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

3717 https://doi.org/10.52202/079017-0123

Table 1: Time Complexities of Centralized Distributed Algorithms. Assume that it takes at most
hi seconds to worker i to calculate a stochastic gradient and τ̇i seconds to send one coordinate/float
to server. Abbreviations: L = smoothness constant, ε = error tolerance, ∆ = f(x0)− f∗, n = # of
workers, d = dimension of the problem. We take the RandK compressor with K = 1 (Def. D.1) (as
an example) in QSGD and Shadowheart SGD. Due to Property 6.2, the choice K = 1 is optimal for
Shadowheart SGD up to a constant factor.

Method Time Complexity Time Complexities in Some Regimes
max{hn, τ̇n} → ∞,

max{hi, τ̇i} < ∞∀i < n
(the last worker is slow)

hi = h, τ̇i = τ̇ ∀i ∈ [n]
(equal performance)

Numerical Comparison(b)

σ2/ε =

1 103 106

Minibatch SGD (see (2)) max
i∈[n]

max{hi, dτ̇i}
(

L∆
ε + σ2L∆

nε2

) ∞
(non-robust)

max{h, dτ̇ , dτ̇σ2

nε , hσ2

nε }L∆
ε

(worse, e.g., when τ̇ , d or n large)
×103 ×103 ×104

QSGD (see (5))
(Alistarh et al., 2017)

(Khaled and Richtárik, 2020)
max
i∈[n]

max{hi, τ̇i}
((

d
n + 1

)
L∆
ε + dσ2L∆

nε2

) ∞
(non-robust)

≥ dhσ2

nε
L∆
ε

(worse, e.g., when ε small)
×3 ×102 ×104

Rennala SGD
(Tyurin and Richtárik, 2023c),

Asynchronous SGD
(e.g., (Mishchenko et al., 2022))

≥ min
j∈[n]

max

{
hπ̄j

, dτ̇π̄j
, σ2

ε

(
j∑

i=1

1
hπ̄i

)−1}
L∆
ε

(a) < ∞
(robust)

≥ max
{
h, dτ̇ , hσ2

nε

}
L∆
ε

(worse, e.g., when τ̇ , d or n large)
×102 ×10 ×1.5

Shadowheart SGD
(see (9) and Alg. 1)

(Corollary 4.3)
t∗(d− 1, σ2/ε, [hi, τ̇i]

n
1)

L∆
ε

(c) < ∞
(robust) max

{
h, τ̇ , dτ̇

n ,

√
dτ̇hσ2

nε , hσ2

nε

}
L∆
ε ×1 ×1 ×1

Lower Bound
(see Section 5 and Theorem O.5) t∗(d− 1, σ2/ε, [hi, τ̇i]

n
1)

L∆
ε

(d) — — — — —

The time complexity of Shadowheart SGD is not worse than the time complexity of the competing centralized methods, and is strictly better in many regimes (see Section 7.1).
We show that (10) is the optimal time complexity in the family of centralized methods with compression (see Section 5 and Theorem O.5).

(a) Upper bound time complexities are not derived for Rennala SGD and Asynchronous SGD. However, we can derive the lower bound using Theorem O.5 with ω = 0. One should take dτ̇i instead of τi when apply
Theorem O.5 because these methods send d coordinates. π̄ is a permutation that sorts max{hi, dτ̇i} : max{hπ̄1

, dτ̇π̄1
} ≤ · · · ≤ max{hπ̄n , dτ̇π̄n}

(b) We numerically compute time complexities for d = 106, n = 103, hi ∼ U(0.1, 1), τ̇i ∼ U(0.1, 1) (uniform i.i.d.), and three noise regimes σ2/ε ∈ {1, 103, 106}. We report the factors by which the time
complexities of the competing methods are worse compared to the time complexity of our method Shadowheart SGD. So, for example, Minibatch SGD, QSGD and Asynchronous SGD can be worse by the factors ×104,
×104, and ×102, respectively.
(c) The mapping t∗ is defined in Def. 3.1.
(d) The lower bound constructed with the RandK compressor and the dimension d = Θ(L∆/ε) .

communication times τ1, . . . , τn and τserv. Since we allow these times to be arbitrarily heterogeneous,
designing a single algorithm that would be optimal in all these scenarios seems challenging.

Let us clarify what we mean by {τi} and take, for instance, the RandK compressor (see Def. D.1
and Sec. 2.2) (sends K random entries). Then τi is # of seconds required to send K coordinates
of a vector. Now assume that the communication is proportional to the number of coordinates/bits
that a worker sends, i.e., it takes τ̇i seconds to send a one coordinate/bit. Then, clearly, we have
τi = K × τ̇i. and, τi is a function of K. While the dependence is clear for RandK, for all possible
compressors, the dependence on the amount of sent information can be less nontrivial. We generally
fix an arbitrary unbiased compressor and assume it takes τi seconds to send the compressed message.

From the viewpoint of federated learning (Konečný et al., 2016; Kairouz et al., 2021), our work
is a theoretical study of device heterogeneity. Moreover, our formalism captures both cross-silo
and cross-device settings as special cases. Due to our in-depth focus on device heterogeneity and
the challenges that need to be overcome, we do not consider statistical heterogeneity, and leave an
extension to this setup to future work.

We rely on assumptions which are standard in the literature on stochastic gradient methods: smooth-
ness, lower-boundedness and bounded variance.
Assumption 1.1. f is differentiable &L–smooth, i.e., ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥, ∀x, y ∈ Rd.
Assumption 1.2. There exist f∗ ∈ R such that f(x) ≥ f∗ for all x ∈ Rd. We define ∆ :=
f(x0)− f∗, where x0 ∈ Rd is a starting point of all algorithms we consider.

Assumption 1.3. For all x ∈ Rd, the stochastic gradients ∇f(x; ξ) are unbiased, and their variance
is bounded by σ2 ≥ 0, i.e., Eξ[∇f(x; ξ)] = ∇f(x) and Eξ[∥∇f(x; ξ)−∇f(x)∥2] ≤ σ2.

To simplify the exposition, in what follows we first focus on the regime in which the broadcast cost
can be ignored. We describe a strategy for extending our algorithm to the more general regime in
Sec. A.

2 Related Work

2.1 Communication time can be ignored

We now briefly review related work and important concepts. Consider the regime when the
communication cost is negligible (τi = 0 for all i), and the computation times hi are arbitrary

2

3718https://doi.org/10.52202/079017-0123

but fixed. It is well-known that under Assumptions 1.1, 1.2, and 1.3, the vanilla SGD method
xk+1 = xk − γ∇f(xk; ξk), where x0 ∈ Rd is a starting point, and γ > 0 is the step size,
solves (1) using the optimal number of stochastic gradients (Ghadimi and Lan, 2013; Arjevani
et al., 2022). Since the # of iterations of SGD to get an ε–stationary point is O

(
L∆/ε+ σ2L∆/ε2

)
,

SGD run on a single worker whose computation time is h1 seconds would have time complexity
O
(
h1 ×

(
L∆/ε+ σ2L∆/ε2

))
seconds. The time complexity of Minibatch SGD with n workers, i.e.,

xk+1 = xk − γ
n

n∑
i=1

∇f(xk; ξki), (2)

can be shown (Gower et al., 2019) to be

O
(
hmax ×

(
L∆
ε + σ2L∆

nε2

))
, (3)

where hmax := maxi∈[n] hi, where [n] denotes {1, . . . , n}. The dependence on hmax is due to
Minibatch SGD employing synchronous parallelism which forces it to wait for the slowest worker.
While the stochastic part of (3) can be n times smaller than in the single worker case, (3) does not
guarantee an improvement since hmax can be arbitrarily large. In real systems, computation times
can be very heterogeneous and vary in time in chaotic ways (Dutta et al., 2018; Chen et al., 2016).

Recently, Cohen et al. (2021); Mishchenko et al. (2022) and Koloskova et al. (2022) showed that it is
possible to improve upon (3) using the celebrated Asynchronous SGD method (Recht et al., 2011;
Feyzmahdavian et al., 2016; Nguyen et al., 2018) and get the time complexity O((1/n

∑n
i=1

1
hi
)−1 ×(

L∆/ε+ σ2L∆/nε2
)
), which improves the dependence from hmax to the harmonic mean of the

computation times. Subsequently, Tyurin and Richtárik (2023c) developed the Rennala SGD method
whose time complexity is

O

(
min
m∈[n]

(
1
m

m∑
i=1

1
hπi

)−1

×
(
L∆
ε + σ2L∆

mε2

))
, (4)

where π is a permutation forwhich hπ1
≤ · · · ≤ hπn

. They also showed that the time complexity (4)
is optimal by providing a matching lower bound.

2.2 Communication time is a factor

In many practical scenarios, communication times can be the main bottleneck, and can not be ignored,
e.g., in distributed/federated training of machine learning models (Ramesh et al., 2021; Kairouz
et al., 2021; Wang et al., 2023). There are two main techniques for reducing the communication
bottleneck: local training steps (McMahan et al., 2017) and compressed communication (Seide et al.,
2014; Alistarh et al., 2017). In our work, we investigate the latter technique. In particular, efficient
methods with compressed communication such as DIANA (Mishchenko et al., 2019), Accelerated
DIANA (Li et al., 2020), MARINA (Gorbunov et al., 2021) and DASHA (Tyurin and Richtárik, 2023b)
employ unbiased compressors, defined next. Assume that Sν is a nonempty arbitrary set of samples,
and Dν is a distribution on Sν .
Definition 2.1. A mapping C : Rd × Sν → Rd is an unbiased compressor if there exists ω ≥ 0 such
that Eν [C(x; ν)] = x, Eν [∥C(x; ν)− x∥2] ≤ ω ∥x∥2 for all x. Let U(ω) denote the family of such
compressors5.
Assumption 2.2. Samples from Dξ and Dν are mutually independent.

The canonical example of an unbiased compressor is the RandK compressor (see Def. D.1) that
scales K random entries of the input vector x by d/K and zeros out the rest. Many more examples
of unbiased compressors are considered in the literature (Beznosikov et al., 2020; Xu et al., 2021a;
Horváth et al., 2022). One of the most straightforward methods which use compression is QSGD6

(Alistarh et al., 2017):

xk+1 = xk − γ
n

n∑
i=1

Ci
(
∇f(xk; ξki)

)
, (5)

5For convenience, following the previous literature, we use the shortcuts C(x; ν) ≡ C(x) and C(x; νij) ≡
Cij(x) assuming that ν and νij are mutually independent.

6It is also called the distributed compressed stochastic gradient descent method (DCGD/DCSGD) (Khaled and
Richtárik, 2020).

3

3719 https://doi.org/10.52202/079017-0123

where each worker calculates one stochastic gradient, compresses it using Ci ∈ U(ω) drawn indepen-
dently, and sends it to the server. The server aggregates the compressed vectors and performs step (5).
With a proper stepsize choice γ, QSGD converges after O

(
(ω/n+ 1)× L∆/ε+ (ω + 1)× σ2L∆/nε2

)
iterations7 (Khaled and Richtárik, 2020). Let’s assume it takes τi seconds for worker i to send one
compressed vector to the server. Since the workers act in parallel, the time complexity of QSGD is

max
i∈[n]

(hi + τi)×
(
(ωn + 1)L∆ε + (ω + 1)σ

2L∆
nε2

)
. (6)

We can go through a similar exercise with any other method that uses compressed communication
(e.g., (Tyurin and Richtárik, 2023a; Gauthier et al., 2023; Jia et al., 2023)). Nevertheless, as far as
we know, the optimal time complexities for asynchronous centralized distributed optimization with
communication compression are not known.

3 Summary of Contributions

In the regime in which the communication time can be ignored (see Sec. 2.1), Tyurin and Richtárik
(2023c) showed that (4) is the optimal time complexity. In this work we endeavor to take the next
step: we wish to understand the fundamental limits of the regime in which communication time is a
factor. Our main contributions are:
♠ We develop a new method—Shadowheart SGD (Algorithm 1)—that guarantees to find an
ε–stationary point of problem (1) with time complexity T∗ given in (10). While the general
expression we give for T∗ is hard to parse since it involves the equilibrium time t∗(·) whose definition
is implicit (see Def. 3.1), we show (see Sec. 7) that T∗ is not worse than the time complexity of
known centralized8 methods, and also who that it can be strictly better in many regimes, even by
many degrees of magnitude (see Sec. 7.1 and Table 1).
♣ In Sec. 5 we show that (10) is the optimal time complexity in the family of centralized methods
with compression. This is the first such result in the literature.
♦ We also developed Adaptive Shadowheart SGD (Sec. 4.2 and M), which does not require the
knowledge of the computation and communication times and can work with arbitrary changing times.
Moreover, we designed Bidirectional Shadowheart SGD (Sec. A), which works in the regime when
broadcast cost not negligible as well.
♥ Our theoretical study of Shadowheart SGD is supported by judiciously designed synthetic
experiments and machine-learning experiments with logistic regression; see Sec. Q.

4 Development of Shadowheart SGD

Our method bears some resemblance to Rennala SGD (Tyurin and Richtárik, 2023c) and QSGD
(Alistarh et al., 2017), and involves some additional algorithmic elements which play a key role. First,
we adopted the main suggestion of Tyurin and Richtárik (2023c)[Sec.7] behind the design of Rennala
SGD that an optimal method should calculate stochastic gradients at the last iterate. Second, QSGD
served as an inspiration for how to perform gradient compression. In particular, Shadowheart SGD
has the form xk+1 = xk − γgk, where

gk =
n∑
i=1

wi
mi∑
j=1

Cij
(
bi∑
l=1

∇f(xk; ξkil)
)
/

n∑
i=1

wimibi. (9)

In Shadowheart SGD, worker i calculates bi stochastic gradients, adds them up to form∑bi
l=1 ∇f(xk; ξkil), and compresses the result mi times using independently drawn compressors.

The compressed messages are sent to the server. The first non-trivial step in the design of our method
is the presence of weights wi: the server aggregates the

∑n
i=1mi compressed messages across all

workers by performing a conic combination with coefficient wi∑n
i=1 wimibi

for messages coming from
worker i. One can easily show that (9) is equivalent to Alg. 1. Note that we recover QSGD (see (5))
as a special (suboptimal) case with wi = bi = mi = 1 for all i ∈ [n].

7For ω = 0, the rate reduces to the rate of Minibatch SGD.
8We say that a method is centralized if the workers calculate stochastic gradients only at points calculated by

the server.

4

3720https://doi.org/10.52202/079017-0123

Algorithm 1 Shadowheart SGD

1: Input: starting point x0 ∈ Rd, stepsize γ >
0, ratio σ2

/ε, computation times hi > 0, and
communication times τi > 0 for i ∈ [n]

2: Find equilibrium time t∗ using Def. 3.1
3: Set bi =

⌊
t∗

hi

⌋
and mi =

⌊
t∗

τi

⌋
for all i ∈ [n]

4: Find SA = {i ∈ [n] : bi ∧mi > 0}
5: for k = 0, 1, . . . ,K − 1 do
6: Run Alg. 2 in active workers SA
7: Broadcast xk, bi, mi to active workers SA
8: Initialize gk = 0
9: for i ∈ SA in parallel do

10: wi
(a)
=
(
biω + ω σ

2

ε +mi
σ2

ε

)−1

11: for j = 1, . . . ,mi do
12: Receive Cij

(
gki
)

from worker i
13: gk = gk + wiCij

(
gki
)

14: end for
15: end for
16: gk = gk/ (

∑n
i=1 wimibi)

17: xk+1 = xk − γgk

18: end for

Algorithm 2 Strategy of Worker i

1: Receive xk, bi, mi from server, init gki = 0
2: for l = 1, . . . , bi do
3: Calculate ∇f(xk; ξkil), ξkil ∼ Dξ
4: gki = gki +∇f(xk; ξkil)
5: end for
6: for j = 1, . . . ,mi do
7: Send Cij

(
gki
)
≡ C

(
gki ; ν

k
ij

)
to server,

νkij ∼ Dν , Cij ∈ U(ω)
8: end for

Definition 3.1 (Equilibrium Time).
A mapping t∗ : R≥0︸︷︷︸

ω

×R≥0︸︷︷︸
σ2/ε

× (R≥0 × R≥0)︸ ︷︷ ︸
(h1,τ1)

× · · · × (R≥0 × R≥0)︸ ︷︷ ︸
(hn,τn)

→ R≥0

with inputs ω, σ
2
/ε, h1, τ1, . . . , hn, τn

is called the equilibrium time if it is
defined as follows. Find a permuta-
tiona π that sorts the pairs (hi, τi) as
max{hπ1

, τπ1
} ≤ · · · ≤ max{hπn

, τπn
} and

find the solution s∗(j) ∈ [0,∞] in s ofb(
j∑
i=1

1

2τπi
ω+

4τπi
hπi

σ2ω

s×ε +
2hπi

σ2

ε

)−1

= s

(7)

for all j ∈ [n]. Then the mapping returns the
value

t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn)

≡ min
j∈[n]

max{max{hπj , τπj}, s∗(j)} ∈ [0,∞].

(8)
We shall use the short notation
t∗(ω, σ

2
/ε, [hi, τi]

n
1).

aIt is possible that a permutation is not unique.
The result of the mapping does not depend on the
choice of the permutation. See the proof of Prop-
erty 4.1.

bFor convenience, we use the projectively ex-
tended real line and define 1/0 = ∞.

(a) : If ω = 0 and σ2

ε = 0, then wi = 1

The weights {wi} are chosen so as to minimize the variance in the proof of Lemma H.1. However,
we still need to find the right values for bi and mi. Since the computation and communication times
of worker i are hi and τi, respectively, the following strategy makes intuitive sense: the server sets
some time budget t for all workers, and each worker then calculates ⌊t/hi⌋ stochastic gradients and
sends ⌊t/τi⌋ compressed vectors to the server. But what is the right way to choose t? If t is too small,
then, intuitively, some workers may not have time to calculate “enough” gradients, or may even not
have time to send any messages to the server. On the other hand, if t is too large, then the workers
will eventually send information of diminishing utility which will not be worth the extra time this
takes.

We find out that, and this one of the key insights of our work, that there exists an optimal time
budget t∗ which depends on the quantities ω, σ2

/ε, h1, τ1, . . . , hn, τn, for which we coin the name
equilibrium time; see Def. 3.1. Admittedly, the definition of the equilibrium time is implicit; we do
not know if it is possible to give a more explicit formula in general. To provide for some peace of
mind, we prove the following property:

Property 4.1. If all inputs of the equilibrium time are non-negative, then the equilibrium time is well
defined.

More importantly, in Sec. 5 we provide a lower bound that involves the same mapping. Thus, the
equilibrium time is not an “artifact” of our method, but is of a fundamental nature. We use the
equilibrium time t∗ in Shadowheart SGD when we choose bi and mi.

5

3721 https://doi.org/10.52202/079017-0123

Our first main result provides iteration complexity:
Theorem 4.2. Lett Assumptions 1.1, 1.2, 1.3, 2.2 hold. Let us take γ = 1/2L in Shadowheart SGD

(Alg. 1). Then as long as K ≥ 16L∆/ε, we have the guarantee 1
K

∑K−1
k=0 E

[∥∥∇f(xk)∥∥2] ≤ ε.

This result guarantees that Shadowheart SGD will converge after O (L∆/ε) iterations. Our second
main result provides a much more relevant complexity measure: time complexity.
Corollary 4.3. Shadowheart SGD (Alg. 1) converges after at most T∗ seconds, where

T∗ := 32L∆
ε × t∗(ω, σ

2
/ε, h1, τ1, . . . , hn, τn). (10)

Surprisingly, we show in Sec. 5 that our time complexity guarantee (10) is optimal for the family of
centralized methods with compressed communication. Moreover, in Sec. 7 and 7.1, we show that
(10) is no worse and can be significantly better than the time complexities of previous centralized
methods (see also Table 1 for a summary).

4.1 Tighter result with per-iteration times hki and τki

A slight modification of Alg. 1 leads to Alg. 4, which can work with iteration-dependent computation
and communication times hki and τki . Our main result in this setup is Theorem H.3; here we present
its corollary.
Theorem 4.4. Alg. 4 converges after

⌈ 16L∆
ε ⌉∑

k=0

2t∗(ω, σ
2
/ε, hk1 , τ

k
1 , . . . , h

k
n, τ

k
n) (11)

seconds, where hki > 0 and τki > 0 are computation and communication times for worker i in
iteration k.

For presentation simplicity sake, in the main part we continue to work with static {hi} and {τi}.

4.2 On the problem of estimating the times in Algorithms 1 and 4

One of the main features of asynchronous methods (e.g., Rennala SGD, Asynchronous SGD) is their
adaptivity to and independence from processing times. In Sec. M, we design Adaptive Shadowheart
SGD (Alg. 7) with this feature. Unlike Alg. 1, it does not require the knowledge of {hi} and {τi} (or
{hki } and {τki } in the case of Alg. 4), and does not calculate the equilibrium time t∗. However, as a
byproduct of this flexibility, this method has a slightly worse time complexity guarantee. In order to
present our result, we need to define an auxiliary sequence.
Definition 4.5. Assume that the workers have computation and communication times less or equal to
{hi} and {τi}. Assume that h̄ij is the actual time required to calculate the jth stochastic gradient by
worker i, hmin > 0 is the smallest possible computation time. Then

ri := sup
k≥0

sup1≤j≤lmax
h̄i,(k+j)

inf1≤j≤lmax h̄i,(k+j)
, lmax :=

⌈
tmax

hmin

⌉
,

tmax := 128× t∗(ω, σ
2
/ε, [max{hi, τi},max{hi, τi}]n1).

That is, ri ∈ [1,∞] is the largest ratio between the fastest and the slowest computation of stochastic
gradients in local time windows. ri defines a degree of fluctuations in computation times. Note that
ri describes local fluctuations; it is true that ri ≤ supj≥1 h̄i,j/infj≥1 h̄i,j for all i ∈ [n] and ri can be
arbitrarily smaller.

A corollary of our main result in this part (Theorem M.1) is presented next.
Corollary 4.6. If the computation and communication times are positive, the time complexity of
Alg. 7 is L∆

ε × t∗(ω, σ
2
/ε, [max{hi, τi},min {τiri,max{hi, τi}}]n1) up to a constant factor, where

ri is defined in Def. 4.5.

Unlike Alg. 1 and Alg. 4, Alg. 7 is more “greedy”; it calculates stochastic gradients and sends
compressed vectors in parallel, and it does not know the times hi and τi (or hki and τki). That is why
this method gets a suboptimal complexity and depends on ri. Nevertheless, if we assume that i) the
computation times do not fluctuate significantly, i.e., ri = Θ(1), and ii) τi ≤ hi for all i ∈ [n], then
this complexity reduces to the optimal complexity L∆/ε× t∗(ω, σ

2
/ε, [hi, τi]

n
1).

6

3722https://doi.org/10.52202/079017-0123

5 Lower Bound

Protocol 3 Simplified Representation of Protocol 9

1: Init S = ∅ on the server (all available information)
2: while True do
3: Server calculates a new point x̄ using S and broadcasts x̄ and S to any worker

(broadcasting does not take time)
4: end while
ith Worker (in parallel):

5: while True do
6: Receives x̄ and S, calculates as many stochastic gradients as it want at the point x̄ (each

calculation takes hi seconds), aggregates all available information, and sends compressed
vectors (each dispatch takes τi seconds), which will be added to the set S

7: end while

In Sec. 4, we stated that Shadowheart SGD converges after T∗ seconds; with T∗ given in (10). Our
next step is to understand if it might be possible to improve this complexity. In Sec. O, we formalize
our setup and show in Theorem O.5 that up to a constant factor, the result (10) is optimal. Here we
present a simplified illustration of our approach.

Protocol 3 can describe all centralized methods (the server updates the iterates, and the workers
calculate stochastic gradients at these points), including Minibatch SGD, Asynchronous SGD, Rennala
SGD, and Shadowheart SGD. In Theorem O.5, we show that up to a constant factor, no method
described by Protocol 3 can converge faster than (10) seconds. In order to use our lower bound, the
workers must calculate stochastic gradients at a point that was calculated by the server.

Let us briefly explain the proof’s idea. The general approach is the same as in (Nesterov, 2003;
Arjevani et al., 2022; Huang et al., 2022): we take the “difficult” function (Sec. P.1), which has large
gradients while the last coordinate equals to zero. Every algorithm starts with the point x0 = 0, and
the only way to discover the next coordinate is to calculate a stochastic gradient. Oracles associated
with the workers return the next non-zero coordinate with the probability pσ ≈ ε/σ2. Even if the
stochastic oracle returns a non-zero coordinate for some worker, the corresponding communication
oracle on this worker also has to return a non-zero coordinate, which happens with probability
pω ≈ 1/ω+1. We fix the RandK compressor in the lower bound theorem with K ≈ L∆/ε(ω+1),
and the number of coordinates ≈ L∆/ε; thus, indeed, pω ≈ 1/ω+1. Since all n workers work in
parallel, they can discover and send to the server the next non-zero coordinate not earlier than after
minm∈[n] {hmηm + τmµm} seconds, where ηm and µm are i.i.d. geometric random variables with
pσ and pω.With a high probability, we show that this quantity is Ω(t∗(1/pω, 1/pσ, h1, τ1, . . . , hn, τn)).
The number of coordinates is ≈ L∆/ε. Therefore, the lower bound is (10) seconds up to a constant
factor.

6 Equilibrium Time

Since the time complexity (10) of Shadowheart SGD is optimal, we believe that the equilibrium time
is a fundamental mapping that should be investigated more deeply.

6.1 Calculation strategy

The calculation of t∗ requires us to sort max{hi, τi}. Next, it is sufficient to solve n equations from
(7). In Property 4.1, we prove that (7) has one unique solution that can be easily found, for instance,
using the bisection method. Then, is it left to find the minimum in (8).

6.2 Intuition behind the equilibrium time t∗

Assuming we found an optimal j∗ in (8), we have t∗ = max{max{hπj∗ , τπj∗}, s∗(j∗)}.
The first observation is that t∗ does not depend on the workers that correspond
to max{hπj∗+1

, τπj∗+1
}, . . . ,max{hπn

, τπn
}. Since these values are greater or equal to

max{hπj∗ , τπj∗}, the mapping “decides” to ignore them because they are too slow. The following

7

3723 https://doi.org/10.52202/079017-0123

derivations are not rigorous and are merely supposed to offer some intuition. We define αi := τπiω
and βi := hπi

σ2
/ε. Next, using (7), we have

1 =
j∗∑
i=1

s∗(j∗)

2αi+
4αiβi
s∗(j∗)

+2βi

≈ s∗(j∗)
∑
i∈M

1
max{αi,βi} + s∗(j∗)2

∑
i ̸∈M

1
αiβi

, (12)

where M := {i ∈ [j∗] : max{αi, βi} ≥ αiβi/s∗(j∗)}. Solving this, one can get that

s∗(j∗) ≈

(∑
i∈M

1
max{αi,βi} +

√ ∑
i ̸∈M

1
αiβi

)−1

. (13)

Thus, s∗(j∗) divides the active workers into two groups M and [j∗] \M. Both groups contribute to
(13) with a harmonic mean-like and a quadratic harmonic mean-like dependences, correspondingly.
The transition between two groups is decided by the rule max{αi, βi} ≥ αiβi/s∗(j∗) ⇔ s∗(j∗) ≥
min{αi, βi}. Intuitively, the last inequality means that if τi or hi is small (a worker can quickly com-
pute a gradient or send a compressed vector), it belongs to M. Otherwise, if a worker’s computation
and communication performance are balanced, it belongs to [j∗] \M.

6.3 Properties of the equilibrium time t∗

We now provide some properties and particular cases to understand t∗ better. One can find the proofs
and more properties in Sec. E. The first result says that t∗ is monotonic.
Property 6.1. If ω̄ ≥ ω ≥ 0, σ̄

2
/ε̄ ≥ σ2

/ε ≥ 0, h̄1 ≥ h1 ≥ 0, τ̄1 ≥ τ1 ≥ 0, . . . , h̄n ≥ hn ≥ 0, and
τ̄n ≥ τn ≥ 0, then t∗(ω̄, σ̄2

/ε̄, [h̄i, τ̄i]
n
1) ≥ t∗(ω, σ

2
/ε, [hi, τi]

n
1).

Consider the RandK compressor. If it takes τ̇i sec to send one coordinate by worker i, then, up to a
constant factor, Property 6.2 ensures that an optimal choice of K is 1.
Property 6.2. For all K ∈ [1, d],σ

2
/ε, h1, τ̇1, . . . , hn, τ̇n ≥ 0, we have 24 ×

t∗
(
d/K − 1, σ

2
/ε, h1,Kτ̇1, . . . , hn,Kτ̇n

)
≥ t∗

(
d− 1, σ

2
/ε, h1, τ̇1, . . . , hn, τ̇n

)
.

6.4 Examples

We now list several examples, starting with simple corner/extreme cases. One can find the derivations
in Sec. F. For brevity, we will sometimes write t∗ instead of t∗(ω, σ2

/ε, h1, τ1, . . . , hn, τn).
Example 6.3. [Infinitely Fast Worker] If exists j ∈ [n] such that τj = 0 and hj = 0, then t∗ = 0.
Example 6.4. [Infinitely Slow Workers] If τi = ∞ and hi = ∞ for all i ∈ [n], then t∗ = ∞.
Example 6.5. [Equal Performance] If τi = τ and hi = h for all i ∈ [n], then9

t∗ ≤ 6max

{
h, τ, τωn ,

hσ2

nε ,
√

τhσ2ω
nε

}
. (14)

In the next example, we consider the setting from Sec. 2.1. Example 6.6 and Corollary 4.3 restore the
optimal rate (4) of Rennala SGD.
Example 6.6. [Infinitely Fast Communication] If τi = 0 for all i ∈ [n], then

t∗ ≤ 2 min
m∈[n]

max

{
hπm ,

σ2

ε

(
m∑
i=1

1
hπi

)−1
}

= Θ

(
min
m∈[n]

(
1
m

m∑
i=1

1
hπi

)−1 (
1 + σ2

mε

))
, (15)

where π is a permutation that sorts {hi}ni=1.

The following two examples show that t∗ is robust to slow workers or workers that do not participate.
Example 6.7. [Ignoring Slow Workers] If hi and τi are fixed and finite for all i ≤ p, and
max{hi, τi} = m ∈ R for all i > p, then, for m large enough, we have t∗(ω, σ2

/ε, [hi, τi]
n
1) =

t∗(ω, σ
2
/ε, [hi, τi]

p
1).

Example 6.8. [Partial Participation] If max{hi, τi} = ∞ for all i > p ≥ 1, then
t∗(ω, σ

2
/ε, [hi, τi]

n
1) = t∗(ω, σ

2
/ε, [hi, τi]

p
1).

9From the proof, it is clear that the result is tight up to a constant factor.

8

3724https://doi.org/10.52202/079017-0123

7 Comparison with Baselines

In the previous sections, we did not invoke any assumptions about the compressors except for Def. 2.1.
Inspired by Property 6.2, to make the comparisons with the baselines easier, we consider the RandK
compressor with K = 1. Using Theorem D.2, we have ω = d − 1. We also assume that worker i
takes τ̇i seconds to send one coordinate to the server; thus τi = τ̇i, since we use Rand1. Also, it takes
dτ̇i to send a non-compressed vector for all i ∈ [n].

Minibatch SGD and QSGD. It is well known (Lan, 2020) that the number of iterations of Minibatch
SGD required to find an ε–solution is O

(
L∆/ε+ σ2L∆/ε2

)
. In Minibatch SGD, each worker calculates

one stochastic gradient and sends a non-compressed vector. Since the server waits for the slowest
worker, the time complexity of such method (up to a constant factor) is

TMB := max
i∈[n]

(hi + dτ̇i)
(
L∆
ε + σ2L∆

nε2

)
. (16)

In Sec. J, we compare (16) with (10) and show
Comparison 7.1. T∗ = O(TMB).

However, there are many regimes when T∗ ≪ TMB. For instance, if max{hi, τ̇i} = ∞ for some
worker (Example 6.8), then TMB = ∞ and T∗ <∞. Also, under the conditions of Example 6.7, if
m→ ∞, we get TMB → ∞ whereas T∗ is bounded. The same reasoning applies to QSGD because
its time complexity (6) depends on maxi∈[n] (hi + τ̇i) . Due to Theorem O.5, up to a constant factor,
T∗ is less or equal to (6); see also Table 1.

Rennala SGD and Asynchronous SGD. When the communication time is negligible, Tyurin and
Richtárik (2023c) proved that the optimal time complexity is attained by Rennala SGD. When τ̇i → 0
for all i ∈ [n], we show in Example 6.6 that (10) is the same as the time complexity of Rennala SGD
obtained by Tyurin and Richtárik (2023c). Assume τ̇i > 0 for all i ∈ [n]. We can apply the result
from Theorem O.5 to Rennala SGD, thus the time complexity of Rennala SGD is not better than

TR := L∆
ε × t∗(0, σ

2
/ε, h1, dτ̇1, . . . , hn, dτ̇n). (17)

Note that Asynchronous SGD also has the same lower bound. In Sec. J, we compare (17) with (10)
and show
Comparison 7.2. T∗ = O(TR).

7.1 Shadowheart SGD is strictly better in many regimes.

Due to the non-explicit nature, it is not transparent that the time complexity of Shadowheart SGD is
universally strictly better than in all baselines in many practical regimes. Let us prove it. Take

hi = h for all i < n, hn = ∞, and τ̇i = τ̇ for all i ∈ [n]. (18)

Due to (16) and (17), the time complexities of Minibatch SGD and QSGD are ∞, and the time
complexities of Asynchronous SGD and Rennala SGD are not smaller than

Ω
(
max

{
h, dτ̇ , hσ2

(n−1)ε

}
L∆
ε

)
, which n→∞→ Ω

(
max {h, dτ̇} L∆

ε

)
.

From (14), the time complexity of Shadowheart SGD is at most

O
(
max

{
h, τ̇ , dτ̇

n−1 ,
hσ2

(n−1)ε ,
√

τ̇hσ2d
(n−1)ε

}
L∆
ε

)
, which n→∞→ O

(
max {h, τ̇} L∆

ε

)
.

Thus, Shadowheart SGD can be d times faster than all previous methods if the number of workers n
is large. Using the same reasoning, Shadowheart SGD can be n− 1 times faster if the dimension d
or τ̇ is large. Due to the continuity of the complexities, such huge differences hold even if we take
n <∞, and start considering more heterogenous times hi and τi by perturbating (18).

7.2 The fastest worker works locally

Another important baseline is the vanilla SGD method, which works on the fastest worker, does not
communicate with the server, and performs local steps (non-centralized method). For simplicity,
assume that σ2

/ε ≥ 1. Then, the time complexity of such an algorithm (Lan, 2020) is TSGD :=

9

3725 https://doi.org/10.52202/079017-0123

mini∈[n] hi × σ2L∆/ε2. Clearly, comparing TSGD and (10), if τ̇i are large enough, then TSGD can be
smaller than T∗. However, this does not contradict our lower bounds because this method does not
satisfy the conditions of Theorem O.5: it does not communicate with the server. In other words,
if the communication channel is too slow, it does not make sense to communicate. One may now
ask: “Under which conditions is it beneficial to communicate?” Comparing TSGD and (10), one can
see that (10) is better when t∗(d− 1, σ

2
/ε, h1, τ̇1, . . . , hn, τ̇n) ≤ mini∈[n] hi × σ2

/ε. It is sufficient to
substitute the initial parameters to this inequality and decide which method to use. For instance, in the
view of Example 6.5, one should compare max{h, τ̇ , τ̇(d−1)/n, hσ

2
/nε,

√
τ̇hσ2(d−1)/nε} vs. hσ2

/ε. In
the regime when n is large enough or ε is small enough, we have t∗ < hσ2

/ε, and Alg. 7 has better
convergence guarantees. On the other hand, if τ̇ is large enough, then it is possible that t∗ > hσ2

/ε.

Acknowledgments and Disclosure of Funding

The research reported in this publication was supported by funding from King Abdullah University of
Science and Technology (KAUST): i) KAUST Baseline Research Scheme, ii) Center of Excellence
for Generative AI, under award number 5940, iii) SDAIA-KAUST Center of Excellence in Artificial
Intelligence and Data Science. The work of A.T. was partially supported by the Analytical center
under the RF Government (subsidy agreement 000000D730321P5Q0002, Grant No. 70-2021-00145
02.11.2021).

References
Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic, M. (2017). QSGD: Communication-

efficient SGD via gradient quantization and encoding. In Advances in Neural Information Process-
ing Systems (NIPS), pages 1709–1720.

Arjevani, Y., Carmon, Y., Duchi, J. C., Foster, D. J., Srebro, N., and Woodworth, B. (2022). Lower
bounds for non-convex stochastic optimization. Mathematical Programming, pages 1–50.

Beznosikov, A., Horváth, S., Richtárik, P., and Safaryan, M. (2020). On biased compression for
distributed learning. arXiv preprint arXiv:2002.12410.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. (2020). Lower bounds for finding stationary
points i. Mathematical Programming, 184(1):71–120.

Chen, J., Pan, X., Monga, R., Bengio, S., and Jozefowicz, R. (2016). Revisiting distributed syn-
chronous sgd. arXiv preprint arXiv:1604.00981.

Cohen, A., Daniely, A., Drori, Y., Koren, T., and Schain, M. (2021). Asynchronous stochastic
optimization robust to arbitrary delays. Advances in Neural Information Processing Systems,
34:9024–9035.

Dutta, S., Joshi, G., Ghosh, S., Dube, P., and Nagpurkar, P. (2018). Slow and stale gradients can win
the race: Error-runtime trade-offs in distributed SGD. In International Conference on Artificial
Intelligence and Statistics, pages 803–812. PMLR.

Feyzmahdavian, H. R., Aytekin, A., and Johansson, M. (2016). An asynchronous mini-batch
algorithm for regularized stochastic optimization. IEEE Transactions on Automatic Control,
61(12):3740–3754.

Gauthier, F., Gogineni, V. C., Werner, S., Huang, Y.-F., and Kuh, A. (2023). Asynchronous online
federated learning with reduced communication requirements. arXiv preprint arXiv:2303.15226.

Ghadimi, S. and Lan, G. (2013). Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368.

Gorbunov, E., Burlachenko, K., Li, Z., and Richtárik, P. (2021). MARINA: Faster non-convex
distributed learning with compression. In 38th International Conference on Machine Learning.

Gower, R. M., Loizou, N., Qian, X., Sailanbayev, A., Shulgin, E., and Richtárik, P. (2019). SGD:
General analysis and improved rates. In International Conference on Machine Learning, pages
5200–5209. PMLR.

10

3726https://doi.org/10.52202/079017-0123

Gruntkowska, K., Tyurin, A., and Richtárik, P. (2023). EF21-P and friends: Improved theoreti-
cal communication complexity for distributed optimization with bidirectional compression. In
International Conference on Machine Learning, pages 11761–11807. PMLR.

Horváth, S., Ho, C.-Y., Horváth, v., Sahu, A. N., Canini, M., and Richtárik, P. (2022). Natural
compression for distributed deep learning. In Mathematical and Scientific Machine Learning,
pages 129–141. PMLR.

Huang, X., Chen, Y., Yin, W., and Yuan, K. (2022). Lower bounds and nearly optimal algorithms in
distributed learning with communication compression. arXiv preprint arXiv:2206.03665.

Jia, J., Liu, J., Zhou, C., Tian, H., Dong, M., and Dou, D. (2023). Efficient asynchronous federated
learning with sparsification and quantization. arXiv preprint arXiv:2312.15186.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K.,
Charles, Z., Cormode, G., Cummings, R., et al. (2021). Advances and open problems in federated
learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210.

Khaled, A. and Richtárik, P. (2020). Better theory for SGD in the nonconvex world. arXiv preprint
arXiv:2002.03329.

Koloskova, A., Stich, S. U., and Jaggi, M. (2022). Sharper convergence guarantees for asynchronous
SGD for distributed and federated learning. arXiv preprint arXiv:2206.08307.

Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., and Bacon, D. (2016). Federated
learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492.

Lan, G. (2020). First-order and stochastic optimization methods for machine learning. Springer.

LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2.

Li, Z., Kovalev, D., Qian, X., and Richtárik, P. (2020). Acceleration for compressed gradient descent
in distributed and federated optimization. In International Conference on Machine Learning.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics,
pages 1273–1282. PMLR.

Mishchenko, K., Bach, F., Even, M., and Woodworth, B. (2022). Asynchronous SGD beats minibatch
SGD under arbitrary delays. arXiv preprint arXiv:2206.07638.

Mishchenko, K., Gorbunov, E., Takáč, M., and Richtárik, P. (2019). Distributed learning with
compressed gradient differences. arXiv preprint arXiv:1901.09269.

Nemirovskij, A. S. and Yudin, D. B. (1983). Problem complexity and method efficiency in optimiza-
tion.

Nesterov, Y. (2003). Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media.

Nesterov, Y. (2018). Lectures on convex optimization, volume 137. Springer.

Nguyen, L., Nguyen, P. H., Dijk, M., Richtárik, P., Scheinberg, K., and Takác, M. (2018). SGD and
hogwild! convergence without the bounded gradients assumption. In International Conference on
Machine Learning, pages 3750–3758. PMLR.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., and Sutskever, I. (2021).
Zero-shot text-to-image generation. In International Conference on Machine Learning, pages
8821–8831. PMLR.

Recht, B., Re, C., Wright, S., and Niu, F. (2011). Hogwild!: A lock-free approach to parallelizing
stochastic gradient descent. Advances in Neural Information Processing Systems, 24.

11

3727 https://doi.org/10.52202/079017-0123

Richtárik, P., Sokolov, I., and Fatkhullin, I. (2021). EF21: A new, simpler, theoretically better, and
practically faster error feedback. arXiv preprint arXiv:2106.05203.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. (2014). 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech DNNs. In Fifteenth Annual Conference
of the International Speech Communication Association.

Tyurin, A. and Richtárik, P. (2023a). A computation and communication efficient method for
distributed nonconvex problems in the partial participation setting. Advances in Neural Information
Processing Systems (NeurIPS).

Tyurin, A. and Richtárik, P. (2023b). DASHA: Distributed nonconvex optimization with communica-
tion compression, optimal oracle complexity, and no client synchronization. 11th International
Conference on Learning Representations (ICLR).

Tyurin, A. and Richtárik, P. (2023c). Optimal time complexities of parallel stochastic optimization
methods under a fixed computation model. Advances in Neural Information Processing Systems
(NeurIPS).

Vogels, T., Karimireddy, S. P., and Jaggi, M. (2019). PowerSGD: Practical low-rank gradient
compression for distributed optimization. In Neural Information Processing Systems.

Wang, J., Lu, Y., Yuan, B., Chen, B., Liang, P., De Sa, C., Re, C., and Zhang, C. (2023). Cocktailsgd:
Fine-tuning foundation models over 500mbps networks. In International Conference on Machine
Learning, pages 36058–36076. PMLR.

Xu, H., Ho, C.-Y., Abdelmoniem, A. M., Dutta, A., Bergou, E. H., Karatsenidis, K., Canini, M.,
and Kalnis, P. (2021a). Grace: A compressed communication framework for distributed machine
learning. In 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS),
pages 561–572. IEEE.

Xu, H., Kostopoulou, K., Dutta, A., Li, X., Ntoulas, A., and Kalnis, P. (2021b). Deepreduce: A sparse-
tensor communication framework for federated deep learning. Advances in Neural Information
Processing Systems, 34:21150–21163.

12

3728https://doi.org/10.52202/079017-0123

Contents

1 Introduction 1

2 Related Work 2

2.1 Communication time can be ignored . 2

2.2 Communication time is a factor . 3

3 Summary of Contributions 4

4 Development of Shadowheart SGD 4

4.1 Tighter result with per-iteration times hki and τki 6

4.2 On the problem of estimating the times in Algorithms 1 and 4 6

5 Lower Bound 7

6 Equilibrium Time 7

6.1 Calculation strategy . 7

6.2 Intuition behind the equilibrium time t∗ . 7

6.3 Properties of the equilibrium time t∗ . 8

6.4 Examples . 8

7 Comparison with Baselines 9

7.1 Shadowheart SGD is strictly better in many regimes. 9

7.2 The fastest worker works locally . 9

A Bidirectional Compression 15

B Frequently Used Notation 16

C Basic Facts 16

D RandK Compressor 17

E Proofs of the Properties of the Equilibrium Time 17

F Derivations of the Examples for the Equilibrium Time 24

G Generic Lemma For Unbiased Gradient Estimators 27

H Proofs for Algorithms 1 and 4 30

I The Classical SGD Theorem 32

J Comparison with Baselines 33

13

3729 https://doi.org/10.52202/079017-0123

K Description of Alg. 5 in the Bidirectional Setting 35

L Proofs for Alg. 5 35

M Development of Adaptive Shadowheart SGD 37

N Proofs for Alg. 7 38

O Construction of the Lower Bound 42

P Proof of Theorem O.5 44

P.1 The “Worst Case” Function . 44

P.1.1 Proof of Lemma P.2 . 46

P.2 Proof of Lemma P.3 . 52

P.3 Another Construction . 54

Q Experiments 55

Q.1 Experiments with Logistic Regression . 55

Q.2 Experiments with quadratic optimization tasks and multiplicative noise 56

Q.2.1 Discussion of the experiments from Sec. Q.2.2 56

Q.2.2 Plots . 56

Q.3 Experiments with quadratic optimization tasks and additive noise 57

Q.3.1 Plots . 58

14

3730https://doi.org/10.52202/079017-0123

A Bidirectional Compression

In this section, we discuss a simple way to use the Shadowheart SGD techniques in the setup when
broadcasting is expensive (Line 7 in Alg. 1); i.e., when τserv ≫ 0. We will employ the following
family of compressors.
Definition A.1. A mapping C : Rd × Sν → Rd is a biased compressor if there exists α ∈ (0, 1]
such that

Eν
[
∥C(x; ν)− x∥2

]
≤ (1− α) ∥x∥2 , ∀x ∈ Rd. (19)

We shall use the shortcut C(x; ν) ≡ C(x), and denote the family of such biased compressors as
B(α).

The family B(α) is more general than U(ω) in the sense that if C ∈ U(ω), then (ω + 1)−1C ∈
B((ω + 1)−1). It includes the TopK and RankK compressors (Vogels et al., 2019; Beznosikov et al.,
2020), among many others.

Let Cserv ∈ B(α) be the compressor used by the server. We use the primal error-feedback mechanism
EF21-P (Gruntkowska et al., 2023) which requires us to add the following changes to Alg. 1 and
Alg. 2. We add the steps

pk+1 = Cserv(xk+1 − wk), wk+1 = wk + pk+1

to Alg. 1 and broadcast pk+1 instead of xk. This change leads to Bidirectional Shadowheart SGD
(Alg. 5). In Alg. 2, the workers should receive pk+1, calculate wk+1, and use wk instead of xk in the
calculations of stochastic gradients. We provide the pseudo-codes of these algorithms in Sec. K.

Our main results are:
Theorem A.2. Let Assumptions 1.1, 1.2, 1.3, 2.2 hold. Choose γ = α

16L . Then as long as K ≥
768L∆
αε , Bidirectional Shadowheart SGD (Alg. 5) guarantees to find an ε–stationary point.

Corollary A.3. If the broadcast time of Cserv is not greater than τserv, then Bidirectional Shadowheart
SGD (Alg. 5) converges after at most

T∗,serv := 768L∆
αε ×

(
τserv + 2t∗(ω, σ

2
/ε, [hi, τi]

n
1)
)

(20)

seconds.

Remark A.4. If the broadcast cost can’t be ignored, the time complexity of Alg. 1 changes from (10)
to

T∗ := 16L∆
ε × (τ fullserv + 2t∗(ω, σ

2
/ε, [hi, τi]

n
1)), (21)

where τ fullserv is the time required to broadcast a full/ non-compressed vector.

We should compare (21) obtained by the unidirectional algorithm and (20) obtained by the bidirec-
tional algorithm. Consider that Cserv = TopK with K ≤ d. We can see (20) that depends on τserv,
that is much less than τ fullserv because K ≪ d. At the same time, (20) is 1/α times larger than (21).
This is a standard price for the fact that we use a biased compressor (e.g. (Richtárik et al., 2021;
Gruntkowska et al., 2023)). However, α is very close 1 in practice (Beznosikov et al., 2020; Vogels
et al., 2019; Xu et al., 2021b). It turns out that we can always choose K in TopK (we take this
compressor as an example) in such a way that Alg. 5 is never worse than Alg. 1.
Comparison A.5. Assume that it takes τ̇serv seconds to send one coordinate from the server to the
workers. If we take K ≥ min

{
d, t∗(ω, σ

2
/ε, [hi, τi]

n
1)/τ̇serv

}
in TopK, then T∗,serv = O(T∗) .

If τ fullserv = dτ̇serv is the bottleneck in (21) with Alg. 1, i.e., dτ̇serv ≫ t∗, then one can take K =
t∗/τ̇serv ≪ d in TopK with Alg. 5 and improve the time complexity.

15

3731 https://doi.org/10.52202/079017-0123

B Frequently Used Notation

We thought a table of frequently used notation could be useful. Here it is:

Notation Meaning
ε error tolerance
f Function f : Rd → R whose ε-stationary point we want to find (see (1))
L Smoothness parameter of f (see Assumption 1.1)
f∗ Lower bound on f (see (1.2))
σ2 Stochastic gradients ∇f(x; ξ) have variance bounded by σ2 (see Assumption 1.3)
x0 Starting point of all algorithms; a vector in Rd
γ Positive stepsize used by all algorithms
∆ ∆ := f(x0)− f∗

n number of workers
hi Maximal time it takes for worker i to compute one stochastic gradient of ∇f(·; ξ)
bi Minibatch size associated with worker i (worker i compresses minibatch gradients)
mi Number of compressed messages sent to the server by worker i in a single iteration
U(ω) Set of unbiased compressors with variance parameter ω ≥ 0 (see Definition 2.1)
Cij Compressors used by worker i; Cij ∈ U(ω), j ∈ {1, . . . ,mi}
τi Maximal time it takes for worker i to communicate vector Cij(·), where Cij ∈ U(ω), to the server
τ̇i Time it takes to send to worker i one float to the server (equal to τi of the Rand1 compressor is used)

B(α) Set of biased compressors with contraction parameter 0 < α ≤ 1 (see Definition A.1)
Cserv Compressor used by the server; Cserv ∈ B(α)
τ fullserv Maximal time it takes for server to broadcast a non-compressed vector from Rd to the workers
τserv Maximal time it takes for server to broadcast a vector Cserv(·), where Cserv ∈ B(α), to the workers
τ̇serv Time it takes for server to broadcast one float to the workers
t∗ Equilibrium time; a function of ω, σ2

/ε, h1, τ1, . . . , hn, τn (see Definition 3.1)
T∗ Time complexity of Shadowheart SGD (see Corollary 4.3)
TMB Time complexity of Minibatch SGD (see (16))
TR Time complexity of Rennala SGD (see (17))

g = O(f) Exist C > 0 such that g(z) ≤ C × f(z) for all z ∈ Z
g = Ω(f) Exist C > 0 such that g(z) ≥ C × f(z) for all z ∈ Z
g = Θ(f) g = O(f) and g = Ω(f)
{a, . . . , b} Set {i ∈ Z | a ≤ i ≤ b}

[n] {1, . . . , n}

C Basic Facts

Here we collect some basic facts which are used repeatedly in the proofs.

Variance decomposition. Let x ∈ Rd be a random vector with finite mean and finite variance. Then
for any deterministic vector c ∈ Rd, we have the identity

E
[
∥x− E [x]∥2

]
= E

[
∥x− c∥2

]
− ∥E [x]− c∥2 . (22)

Lemma C.1. Consider a sequence q1, . . . , qn ∈ [0, 1], then

1−
n∑

m=1

qm ≤
n∏

m=1

(1− qm) .

Proof. We prove by induction. For n = 1, is it true: 1 −
∑1
m=1 qm =

∏1
m=1 (1− qm) . Assume

that that it is true for n− 1. Then

1−
n−1∑
m=1

qm ≤
n−1∏
m=1

(1− qm) .

Multiply both parts by 1− qn ∈ [0, 1] to obtain

n∏
m=1

(1− qm) ≥ (1− qn)

(
1−

n−1∑
m=1

qm

)
= 1−

n−1∑
m=1

qm − qn + qn

(
n−1∑
m=1

qm

)
≥ 1−

n∑
m=1

qm

since qm ∈ [0, 1] for all m ∈ [n].

16

3732https://doi.org/10.52202/079017-0123

D RandK Compressor

Definition D.1. Assume that S is a random subset from [d], |S| = K, K ∈ [d]. A stochastic mapping
C : Rd × Sν → Rd is RandK if

C(x;S) = d

K

∑
j∈S

xjej ,

where {ei}di=1 is the standard unit basis.

Theorem D.2. If C is RandK, then C ∈ U
(
d
k − 1

)
.

One can find the proof in (Beznosikov et al., 2020).

E Proofs of the Properties of the Equilibrium Time

Property 4.1. If all inputs of the equilibrium time are non-negative, then the equilibrium time is well
defined.

Proof.
(Part 1: s∗(j) is well-defined)
First, we show that s∗(j) is well-defined for all j ∈ [n]. We fix j ∈ [n] and consider the equation
from Def. 3.1: (

j∑
i=1

1

2τπiω +
4τπi

hπi
σ2ω

s×ε +
2hπi

σ2

ε

)−1

︸ ︷︷ ︸
ϕ(s)

= s︸︷︷︸
ψ(s)

(23)

w.r.t s. The function ϕ(s) is a non-increasing function for all s ≥ 0, and the function ψ(s) is an
increasing function for all s ≥ 0. Let us consider two cases.

1) Exists p ≤ j such that τπp
ω = 0 and

hπpσ
2

ε = 0, then

ϕ(s) =

∑
i ̸=p

1

2τπi
ω +

4τπi
hπi

σ2ω

s×ε +
2hπi

σ2

ε

+
1

0

−1

= (∞)
−1

= 0.

for all s ≥ 0, then the only solution to the equation is s = 0.
2) Otherwise, we have

ϕ(s) =

(
j∑
i=1

1

2τπi
ω +

4τπi
hπi

σ2ω

s×ε +
2hπi

σ2

ε

)−1

≥

(
j∑
i=1

1

2τπi
ω +

2hπi
σ2

ε

)−1

> 0

for all s ≥ 0. Then ϕ(0) > 0 (can be equal to ∞). Using ψ(0) = 0 and the monotonicity of the
functions, one can show the unique solution (greater zero) exists.

If a permutation π is unique, then the formula minj∈[n] max{max{hπj , τπj}, s∗(j)} is well-defined
and we can finish the proof.

(Part 2: non-unique permutation)
We assume that there exists i ∈ [n] such that max{hi, τi} < ∞. Otherwise,
minj∈[n] max{max{hπj , τπj}, s∗(j)} = ∞ for any permutation. Next, note that s∗(j + 1) ≤ s∗(j)
for all j < n because(

j+1∑
i=1

1

2τπiω +
4τπi

hπi
σ2ω

s×ε +
2hπi

σ2

ε

)−1

≤

(
j∑
i=1

1

2τπiω +
4τπi

hπi
σ2ω

s×ε +
2hπi

σ2

ε

)−1

for all s ≥ 0. We will use this property later.

17

3733 https://doi.org/10.52202/079017-0123

Consider that there are two non-equal permutations π and π̄ that sort the pairs (hi, τi) by max{hi, τi},
and there are two corresponding solutions s∗(j) and s̄∗(j). Each permutation divides the pairs (hi, τi)
into the same equivalence classes:

max{hπ1
, τπ1

} = · · · = max{hπj1
, τπj1

}︸ ︷︷ ︸
C1

< max{hπj1+1
, τπj1+1

} = · · · = max{hπj2
, τπj2

}︸ ︷︷ ︸
C2

< . . . ,

max{hπ̄1 , τπ̄1} = · · · = max{hπ̄j1
, τπ̄j1

}︸ ︷︷ ︸
C1

< max{hπ̄j1+1 , τπ̄j1+1} = · · · = max{hπ̄j2
, τπ̄j2

}︸ ︷︷ ︸
C2

<

The order within each class can be different, but the elements are the same. Next, since s∗(j + 1) ≤
s∗(j) for all j < n, we can conclude that the minimum in

min
j∈[n]

max{max{hπj
, τπj

}, s∗(j)}

is attained for j∗ such that max{hπj∗ , τπj∗} < max{hπj∗+1
, τπj∗+1

} (max{hπn+1
, τπn+1

} ≡ ∞).
Since max{hπj∗ , τπj∗} < max{hπj∗+1

, τπj∗+1
}, we have max{hπj∗ , τπj∗} = max{hπ̄j∗ , τπ̄j∗}.

Therefore, we obtain

min
j∈[n]

max{max{hπj
, τπj

}, s∗(j)} = max{max{hπj∗ , τπj∗ }, s
∗(j∗)} = max{max{hπ̄j∗ , τπ̄j∗}, s

∗(j∗)}.

Also, for all j ∈ [n] such that max{hπj
, τπj

} < max{hπj+1
, τπj+1

}, we have(
j∑
i=1

1

2τπiω +
4τπi

hπi
σ2ω

s×ε +
2hπi

σ2

ε

)−1

=

(
j∑
i=1

1

2τπ̄iω +
4τπ̄i

hπ̄i
σ2ω

s×ε +
2hπ̄i

σ2

ε

)−1

Therefore, we get s∗(j∗) = s̄∗(j∗) and

min
j∈[n]

max{max{hπj
, τπj

}, s∗(j)} = max{max{hπ̄j∗ , τπ̄j∗}, s̄
∗(j∗)} ≥ min

j∈[n]
max{max{hπ̄j

, τπ̄j
}, s̄∗(j)}.

Using the same reasoning, we can show that

min
j∈[n]

max{max{hπ̄j
, τπ̄j

}, s̄∗(j)} ≥ min
j∈[n]

max{max{hπj
, τπj

}, s∗(j)}.

It means that minj∈[n] max{max{hπ̄j
, τπ̄j

}, s̄∗(j)} = minj∈[n] max{max{hπj
, τπj

}, s∗(j)}, thus
the final result of the mapping does not depend on a chosen permutation.

Property 6.1. If ω̄ ≥ ω ≥ 0, σ̄
2
/ε̄ ≥ σ2

/ε ≥ 0, h̄1 ≥ h1 ≥ 0, τ̄1 ≥ τ1 ≥ 0, . . . , h̄n ≥ hn ≥ 0, and
τ̄n ≥ τn ≥ 0, then t∗(ω̄, σ̄2

/ε̄, [h̄i, τ̄i]
n
1) ≥ t∗(ω, σ

2
/ε, [hi, τi]

n
1).

Proof. Assume that π is a permutation that sorts the pairs (hi, τi) by max{hi, τi}, and π̄ is a
permutation that sorts the pairs (h̄i, τ̄i) by max{h̄i, τ̄i}, then(

j∑
i=1

1

2τπiω +
4τπi

hπi
σ2ω

sε +
2hπi

σ2

ε

)−1

≤

(
j∑
i=1

1

2τ̄π̄i ω̄ +
4τ̄π̄i

h̄π̄i
σ̄2ω̄

sε̄ +
2h̄π̄i

σ̄2

ε̄

)−1

for all j ∈ [n]. It means s̄∗(j) ≥ s∗(j), where s∗(j) and s̄∗(j) are the solutions of the equation
(7) with the pairs (hi, τi) and (h̄i, τ̄i) and corresponding permutations π and π̄. Also, we have
max{hπj

, τπj
} ≤ max{h̄π̄j

, τ̄π̄j
} for all j ∈ [n]. Therefore, we have

t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn) = min

j∈[n]
max{max{hπj

, τπj
}, s∗(j)} ≤ min

j∈[n]
max{max{h̄π̄j

, τ̄π̄j
}, s̄∗(j)}

= t∗(ω̄, σ̄
2
/ε̄, h̄1, τ̄1, . . . , h̄n, τ̄n).

Property E.1. For all c ∈ (0, 1] and ω, σ2
/ε, h1, τ1, . . . , hn, τn ≥ 0, we have

t∗(c× ω, c× σ2
/ε, h1, τ1, . . . , hn, τn) ≥ c× t∗(ω, σ

2
/ε, h1, τ1, . . . , hn, τn).

18

3734https://doi.org/10.52202/079017-0123

Proof. Using the definition of the equilibrium time, we have

t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn) = min

j∈[n]
max{max{hπj

, τπj
}, s∗(j)},

where s∗(j) is the solution of(
j∑
i=1

1

2τπi
ω +

4τπi
hπi

σ2ω

sε +
2hπi

σ2

ε

)−1

= s, (24)

and

t∗(c× ω, c× σ2
/ε, h1, τ1, . . . , hn, τn) = min

j∈[n]
max{max{hπj

, τπj
}, s∗c(j)},

where s∗c(j) is the solution of(
j∑
i=1

1

2cτπiω +
4c2τπi

hπi
σ2ω

sε +
2chπi

σ2

ε

)−1

= s.

Using simple algebra, we obtain(
j∑
i=1

1

2cτπi
ω +

4c2τπi
hπi

σ2ω

sε +
2chπi

σ2

ε

)−1

= c

 j∑
i=1

1

2τπi
ω +

4τπi
hπi

σ2ω
s
c ε

+
2hπi

σ2

ε

−1

.

Thus, s∗c(j) is the solution of j∑
i=1

1

2τπi
ω +

4τπi
hπi

σ2ω
s
c ε

+
2hπi

σ2

ε

−1

=
s

c
(25)

Comparing (24) and (25), one can see that s∗c(j) = c×s∗(j) for all j ∈ [n]. Using this and c ∈ (0, 1],
we get

t∗(c× ω, c× σ2
/ε, h1, τ1, . . . , hn, τn) = min

j∈[n]
max{max{hπj

, τπj
}, c× s∗(j)}

≥ c× min
j∈[n]

max{max{hπj , τπj}, s∗(j)} = c× t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn).

Property E.2. For all c ≥ 1 and ω, σ2
/ε, h1, τ1, . . . , hn, τn ≥ 0, we have

t∗(c× ω, c× σ2
/ε, h1, τ1, . . . , hn, τn) ≤ c× t∗(ω, σ

2
/ε, h1, τ1, . . . , hn, τn).

Proof. The proof of this property repeats the proof of Property E.1 up to the last inequality. Using
c ≥ 1, we get

t∗(c× ω, c× σ2
/ε, h1, τ1, . . . , hn, τn) = min

j∈[n]
max{max{hπj , τπj}, c× s∗(j)}

≤ c× min
j∈[n]

max{max{hπj
, τπj

}, s∗(j)} = c× t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn).

Property E.3. For all c ∈ (0, 1] and ω, σ2
/ε, h1, τ1, . . . , hn, τn ≥ 0, we have

t∗(c × ω, σ
2
/ε, [hi, τi]

n
1) ≥ c × t∗(ω, σ

2
/ε, [hi, τi]

n
1) and t∗(ω, c × σ2

/ε, [hi, τi]
n
1) ≥ c ×

t∗(ω, σ
2
/ε, [hi, τi]

n
1).

For all c ≥ 1 and ω, σ
2
/ε, h1, τ1, . . . , hn, τn ≥ 0, we have t∗(c × ω, σ

2
/ε, [hi, τi]

n
1) ≤ c ×

t∗(ω, σ
2
/ε, [hi, τi]

n
1) and t∗(ω, c× σ2

/ε, [hi, τi]
n
1) ≤ c× t∗(ω, σ

2
/ε, [hi, τi]

n
1)

Remark E.4. We can obtain stronger inequalities. See Properties E.1 and E.2.

19

3735 https://doi.org/10.52202/079017-0123

Proof. For all c ∈ (0, 1], using Properties 6.1 and E.1, we have

t∗(c× ω, σ
2
/ε, h1, τ1, . . . , hn, τn) ≥ t∗(c× ω, c× σ2

/ε, h1, τ1, . . . , hn, τn) ≥ c× t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn)

and

t∗(ω, c× σ2
/ε, h1, τ1, . . . , hn, τn) ≥ t∗(c× ω, c× σ2

/ε, h1, τ1, . . . , hn, τn) ≥ c× t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn).

For all c ≥ 1, using Properties 6.1 and E.2, we have

t∗(c× ω, σ
2
/ε, h1, τ1, . . . , hn, τn) ≤ t∗(c× ω, c× σ2

/ε, h1, τ1, . . . , hn, τn) ≤ c× t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn)

and

t∗(ω, c× σ2
/ε, h1, τ1, . . . , hn, τn) ≤ t∗(c× ω, c× σ2

/ε, h1, τ1, . . . , hn, τn) ≤ c× t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn).

Property E.5. For all c ≥ 0 and ω, σ2
/ε, h1, τ1, . . . , hn, τn ≥ 0, we have

t∗(ω, σ
2
/ε, c× h1, c× τ1, . . . , c× hn, c× τn) = c× t∗(ω, σ

2
/ε, h1, τ1, . . . , hn, τn).

Proof. For c = 0, it it clear. Assume that c > 0. Using the definition of the equilibrium time, we
have

t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn) = min

j∈[n]
max{max{hπj , τπj}, s∗(j)},

where s∗(j) is the solution of(
j∑
i=1

1

2τπiω +
4τπi

hπi
σ2ω

sε +
2hπi

σ2

ε

)−1

= s, (26)

and

t∗(ω, σ
2
/ε, c× h1, c× τ1, . . . , c× hn, c× τn) = min

j∈[n]
max{max{c× hπj

, c× τπj
}, s∗c(j)},

where s∗c(j) is the solution of(
j∑
i=1

1

2cτπi
ω +

4c2τπi
hπi

σ2ω

sε +
2chπi

σ2

ε

)−1

= s.

For both cases, we can take the same permutation π. Using simple algebra, we obtain(
j∑
i=1

1

2cτπiω +
4c2τπi

hπi
σ2ω

sε +
2chπi

σ2

ε

)−1

= c

 j∑
i=1

1

2τπiω +
4τπi

hπi
σ2ω

s
c ε

+
2hπi

σ2

ε

−1

.

Thus, s∗c(j) is the solution of j∑
i=1

1

2τπi
ω +

4τπi
hπi

σ2ω
s
c ε

+
2hπi

σ2

ε

−1

=
s

c
(27)

Comparing (26) and (27), one can see that s∗c(j) = c× s∗(j) for all j ∈ [n]. Using this, we get

t∗(ω, σ
2
/ε, c× h1, c× τ1, . . . , c× hn, c× τn) = min

j∈[n]
max{max{c× hπj

, c× τπj
}, c× s∗(j)}

= c× min
j∈[n]

max{max{hπj , τπj}, s∗(j)} = c× t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn).

Property E.6. We fix a nonempty subset S = {k1, . . . , km} from the set [n] with a size m ≥ 1. For
all ω, σ2

/ε, h1, τ1, . . . , hn, τn ≥ 0, we have

t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn) ≤ t∗(ω, σ

2
/ε, hk1 , τk1 , . . . , hkm , τkm).

20

3736https://doi.org/10.52202/079017-0123

Proof. Using Property 6.1 with τ̄i = ∞ and h̄i = ∞ for all i ̸∈ S and τ̄i = τi and h̄i = hi for all
i ∈ S, we have

t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn) ≤ t∗(ω, σ

2
/ε, h̄1, τ̄1, . . . , h̄n, τ̄n).

Next, using Def. 3.1, we obtain

t∗(ω, σ
2
/ε, h̄1, τ̄1, . . . , h̄n, τ̄n) = min

j∈[n]
max{max{h̄πj

, τ̄πj
}, s∗(j)},

where s∗(j) is the solution of j∑
i=1

1

2τ̄πi
ω +

4τ̄πi
h̄πi

σ2ω

s×ε +
2h̄πi

σ2

ε

−1

= s (28)

w.r.t s for all j ∈ [n], and π is a permutation that sorts max{h̄i, τ̄i} in such a way that the set
{π1, . . . , πm} equals to the set {k1, . . . , km} (the order of elements can be different). Such permuta-
tion exists because max{h̄i, τ̄i} = ∞ for all i ̸∈ S. Using max{h̄πi , τ̄πi} = ∞ for all i > m, we
have

t∗(ω, σ
2
/ε, h̄1, τ̄1, . . . , h̄n, τ̄n) = min

j∈[m]
max{max{h̄πj

, τ̄πj
}, s∗(j)}. (29)

By the construction of π, (28) and (29) depend only on the elements from S. Thus, we have

t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn) ≤ t∗(ω, σ

2
/ε, h̄1, τ̄1, . . . , h̄n, τ̄n) = t∗(ω, σ

2
/ε, h̄k1 , τ̄k1 , . . . , h̄km , τ̄km)

= t∗(ω, σ
2
/ε, hk1 , τk1 , . . . , hkm , τkm).

Property E.7. For all σ2
/ε, h1, τ̇1, . . . , hn, τ̇n ≥ 0, we have

12t∗
(
0, σ

2
/ε, h1, dτ̇1, . . . , hn, dτ̇n

)
≥ t∗

(
d− 1, σ

2
/ε, h1, τ̇1, . . . , hn, τ̇n

)
.

Proof. For d = 1, it is clear. Assume that d > 1. Using the definition of t∗, we have

t∗
(
0, σ

2
/ε, h1, dτ̇1, . . . , hn, dτ̇n

)
≥ min
j∈[n]

max

max{hπ̄j
, dτ̇π̄j

}, σ
2

ε

(
j∑
i=1

1

hπ̄i

)−1
 (30)

where π̄ is a permutation that sorts max{hi, dτ̇i}. Assume that j∗ is the minimal index that minimizes
(30). Then

t∗
(
0, σ

2
/ε, h1, dτ̇1, . . . , hn, dτ̇n

)
≥ max

max{hπ̄j∗ , dτ̇π̄j∗},
σ2

ε

 j∗∑
i=1

1

hπ̄i

−1
 . (31)

Let us define

I∗ := t∗(d− 1, σ
2
/ε, h1, τ̇1, . . . , hn, τ̇n).

Using Property E.6, we have

I∗ ≤ t∗(d− 1, σ
2
/ε, hπ̄1 , τ̇π̄1 , . . . , hπ̄j∗ , τ̇π̄j∗).

Using Def. 3.1 of t∗, we get

I∗ ≤ max{max
j∈[j∗]

max{hπ̄j , τ̇π̄j}, s∗}, (32)

where s∗ is the solution of j∗∑
i=1

1

2τ̇π̄i
(d− 1) +

4τ̇π̄i
hπ̄i

σ2(d−1)

s×ε +
2hπ̄i

σ2

ε

−1

= s. (33)

21

3737 https://doi.org/10.52202/079017-0123

Let us take s′ = 12max

{
(d− 1)maxj∈[j∗] τ̇π̄j

, σ
2

ε

(∑j∗

i=1
1
hπ̄i

)−1
}
. Since s′ ≥ (d −

1)maxj∈[j∗] τ̇π̄j , we have j∗∑
i=1

1

2τ̇π̄i
(d− 1) +

4τ̇π̄i
hπ̄i

σ2(d−1)

s′×ε +
2hπ̄i

σ2

ε

−1

≤

 j∗∑
i=1

1

2τ̇π̄i(d− 1) +
4hπ̄i

σ2

ε +
2hπ̄i

σ2

ε

−1

≤

 j∗∑
i=1

1

2τ̇π̄i(d− 1) +
6hπ̄i

σ2

ε

−1

≤ 12

 j∗∑
i=1

min

{
1

τ̇π̄i
(d− 1)

,
1

hπ̄i
σ2

ε

}−1

.

If there exists p ∈ [j∗] such that 1
τ̇π̄p (d−1) <

1
hπ̄pσ2

ε

, then

j∗∑
i=1

min

{
1

τ̇π̄i
(d− 1)

,
1

hπ̄i
σ2

ε

}
≥ 1

τ̇π̄p
(d− 1)

and j∗∑
i=1

1

2τ̇π̄i
(d− 1) +

4τ̇π̄i
hπ̄i

σ2(d−1)

s′×ε +
2hπ̄i

σ2

ε

−1

≤ 12(d− 1)τ̇π̄p ≤ 12(d− 1) max
j∈[j∗]

τ̇π̄j .

Otherwise, we have
j∗∑
i=1

min

{
1

τ̇π̄i(d− 1)
,

1
hπ̄i

σ2

ε

}
=

j∗∑
i=1

1
hπ̄i

σ2

ε

and j∗∑
i=1

1

2τ̇π̄i
(d− 1) +

4τ̇π̄i
hπ̄i

σ2(d−1)

s′×ε +
2hπ̄i

σ2

ε

−1

≤ 12

 j∗∑
i=1

1
hπ̄i

σ2

ε

−1

= 12
σ2

ε

 j∗∑
i=1

1

hπ̄i

−1

.

Considering both cases, we have j∗∑
i=1

1

2τ̇π̄i
(d− 1) +

4τ̇π̄i
hπ̄i

σ2(d−1)

s′×ε +
2hπ̄i

σ2

ε

−1

≤ 12max

(d− 1) max
j∈[j∗]

τ̇π̄j ,
σ2

ε

 j∗∑
i=1

1

hπ̄i

−1
 = s′.

It means that s∗ ≤ s′ because s∗ is the solution of (33). Using (32), we get

I∗ ≤ 12max

max
j∈[j∗]

max{hπ̄j
, τ̇π̄j

},max

(d− 1) max
j∈[j∗]

τ̇π̄j
,
σ2

ε

 j∗∑
i=1

1

hπ̄i

−1

 .

Using d ≥ 1 and dτ̇π̄j
≤ max{hπ̄j

, dτ̇π̄j
}, we get

I∗ ≤ 12max

max
j∈[j∗]

max{hπ̄j
, dτ̇π̄j

},max

max
j∈[j∗]

max{hπ̄j
, dτ̇π̄j

}, σ
2

ε

 j∗∑
i=1

1

hπ̄i

−1



≤ 12max

max
j∈[j∗]

max{hπ̄j
, dτ̇π̄j

}, σ
2

ε

 j∗∑
i=1

1

hπ̄i

−1
 .

22

3738https://doi.org/10.52202/079017-0123

Due to maxj∈[j∗] max{hπ̄j , dτ̇π̄j} = max{hπ̄j∗ , dτ̇π̄j∗} and (31), we obtain

I∗ = t∗(d− 1, σ
2
/ε, h1, τ̇1, . . . , hn, τ̇n) ≤ 12max

max{hπ̄j∗ , dτ̇π̄j∗},
σ2

ε

 j∗∑
i=1

1

hπ̄i

−1


≤ 12t∗
(
0, σ

2
/ε, h1, dτ̇1, . . . , hn, dτ̇n

)
.

Property 6.2. For all K ∈ [1, d],σ
2
/ε, h1, τ̇1, . . . , hn, τ̇n ≥ 0, we have 24 ×

t∗
(
d/K − 1, σ

2
/ε, h1,Kτ̇1, . . . , hn,Kτ̇n

)
≥ t∗

(
d− 1, σ

2
/ε, h1, τ̇1, . . . , hn, τ̇n

)
.

Proof.
(Part 1: K ≤ d+1

2)
For all K ≤ d+1

2 , we have

t∗
(
d

K
− 1, σ

2
/ε, h1,Kτ̇1, . . . , hn,Kτ̇n

)
= min
j∈[n]

max{max{hπj
,Kτ̇πj

}, s∗(j)}, (34)

where s∗(j) is the solution of j∑
i=1

1

2Kτ̇πi

(
d
K − 1

)
+

4Kτ̇πi
hπi

σ2(d
K −1)

s×ε +
2hπi

σ2

ε

−1

= s,

and π is a permutation that sorts max{hj ,Kτ̇j}. Also, assume that j∗ is a minimizer in (34). For all
j ∈ [n], we get

s∗(j) =

 j∑
i=1

1

2Kτ̇πi

(
d
K − 1

)
+

4Kτ̇πi
hπi

σ2(d
K −1)

s∗(j)×ε +
2hπi

σ2

ε

−1

=

 j∑
i=1

1

2τ̇πi
(d−K) +

4τ̇πi
hπi

σ2(d−K)

s∗(j)×ε +
2hπi

σ2

ε

−1

.

Since K ≤ d+1
2 , we have

s∗(j) ≥ 1

2

 j∑
i=1

1

2τ̇πi
(d− 1) +

4τ̇πi
hπi

σ2(d−1)

s∗(j)×ε +
2hπi

σ2

ε

−1

and

2× s∗(j) ≥

 j∑
i=1

1

2τ̇πi
(d− 1) +

4τ̇πi
hπi

σ2(d−1)

2×s∗(j)×ε +
2hπi

σ2

ε

−1

. (35)

At the same time, using Property E.6, we have

t∗
(
d− 1, σ

2
/ε, h1, τ̇1, . . . , hn, τ̇n

)
≤ t∗

(
d− 1, σ

2
/ε, hπ1 , τ̇π1 , . . . , hπj∗ , τ̇πj∗

)
≤ max{max

j∈[j∗]
max{hπ̄j

, τ̇π̄j
}, s′(j∗)},

(36)

where s′(j∗) is the solution of j∗∑
i=1

1

2τ̇πi
(d− 1) +

4τ̇πi
hπi

σ2(d−1)

s×ε +
2hπi

σ2

ε

−1

= s.

From (35), we can conclude that 2× s∗(j∗) ≥ s′(j∗). Using this and (36), we obtain

t∗
(
d− 1, σ

2
/ε, h1, τ̇1, . . . , hn, τ̇n

)
≤ max{max

j∈[j∗]
max{hπ̄j , τ̇π̄j}, 2s∗(j∗)}

23

3739 https://doi.org/10.52202/079017-0123

≤ 2max{max
j∈[j∗]

max{hπ̄j , τ̇π̄j}, s∗(j∗)}

≤ 2max{max
j∈[j∗]

max{hπ̄j ,Kτ̇π̄j}, s∗(j∗)}.

Note that maxj∈[j∗] max{hπ̄j ,Kτ̇π̄j} = max{hπ̄j∗ ,Kτ̇π̄j∗}, thus

t∗
(
d− 1, σ

2
/ε, h1, τ̇1, . . . , hn, τ̇n

)
≤ 2max{max{hπ̄j∗ ,Kτ̇π̄j∗}, s

∗(j∗)} = 2t∗
(
d

K
− 1, σ

2
/ε, h1,Kτ̇1, . . . , hn,Kτ̇n

)
.

(Part 2: K > d+1
2)

For all K > d+1
2 , using Property 6.1, we get

t∗
(
d

K
− 1, σ

2
/ε, h1,Kτ̇1, . . . , hn,Kτ̇n

)
≥ t∗

(
0, σ

2
/ε,

1

2
h1,

d

2
τ̇1, . . . ,

1

2
hn,

d

2
τ̇n

)
.

Next, using Property E.5, we have

t∗
(
d

K
− 1, σ

2
/ε, h1,Kτ̇1, . . . , hn,Kτ̇n

)
≥ 1

2
t∗
(
0, σ

2
/ε, h1, dτ̇1, . . . , hn, dτ̇n

)
.

It is left to use Property E.7 to get

t∗
(
d

K
− 1, σ

2
/ε, h1,Kτ̇1, . . . , hn,Kτ̇n

)
≥ 1

24
t∗
(
d− 1, σ

2
/ε, h1, τ̇1, . . . , hn, τ̇n

)
.

F Derivations of the Examples for the Equilibrium Time

Example 6.3. [Infinitely Fast Worker] If exists j ∈ [n] such that τj = 0 and hj = 0, then t∗ = 0.

Proof. Let us take a permutation π where π1 = j. Such a permutation exists because max{hj , τj} =
0. By the definition of t∗, we have

t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn) = min

j∈[n]
max{max{hπj

, τπj
}, s∗(j)}

≤ max{max{hπ1
, τπ1

}, s∗(1)}
= max{0, s∗(1)},

(37)

where s∗(1) is the solution of(
1∑
i=1

1

2τπi
ω +

4τπi
hπi

σ2ω

sε +
2hπi

σ2

ε

)−1

= s.

Since (
1∑
i=1

1

2τπiω +
4τπi

hπi
σ2ω

sε +
2hπi

σ2

ε

)−1

=

(
1∑
i=1

1

0

)−1

= (∞)
−1

= 0,

we obtain s∗(1) = 0. We substitute it to (37) to get t∗(ω, σ2
/ε, h1, τ1, . . . , hn, τn) = 0.

Example 6.4. [Infinitely Slow Workers] If τi = ∞ and hi = ∞ for all i ∈ [n], then t∗ = ∞.

Proof. By the definition of t∗, we have

t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn) = min

j∈[n]
max{max{hπj

, τπj
}, s∗(j)} = min

j∈[n]
max{∞, s∗(j)} = ∞.

24

3740https://doi.org/10.52202/079017-0123

Example 6.5. [Equal Performance] If τi = τ and hi = h for all i ∈ [n], then10

t∗ ≤ 6max

{
h, τ, τωn ,

hσ2

nε ,
√

τhσ2ω
nε

}
. (14)

Proof. By the definition, we have
t∗(ω, σ

2
/ε, h1, τ1, . . . , hn, τn) = min

j∈[n]
max{max{h, τ}, s∗(j)} = max{max{h, τ}, min

j∈[n]
s∗(j)} = max{max{h, τ}, s∗}

(38)
where s∗ is the solution of (

n∑
i=1

1

2τω + 4τhσ2ω
sε + 2hσ2

ε

)−1

= s.

Since(
n∑
i=1

1

2τω + 4τhσ2ω
sε + 2hσ2

ε

)−1

=

(
n

2τω + 4τhσ2ω
sε + 2hσ2

ε

)−1

=
2τω

n
+

4τhσ2ω

snε
+

2hσ2

nε
,

we have to solve and find the non-negative solution of the quadratic equation

s2 − s

(
2τω

n
+

2hσ2

nε

)
− 4τhσ2ω

nε
= 0.

The solution is

s∗ =

(
τω

n
+
hσ2

nε

)
+

√(
τω

n
+
hσ2

nε

)2

+
4τhσ2ω

nε
≤ 2

(
τω

n
+
hσ2

nε
+

√
τhσ2ω

nε

)
.

Therefore, we have

t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn) ≤ max

{
max{h, τ}, 2

(
τω

n
+
hσ2

nε
+

√
τhσ2ω

nε

)}

≤ 6max

{
h, τ,

τω

n
,
hσ2

nε
,

√
τhσ2ω

nε

}
.

Example 6.6. [Infinitely Fast Communication] If τi = 0 for all i ∈ [n], then

t∗ ≤ 2 min
m∈[n]

max

{
hπm ,

σ2

ε

(
m∑
i=1

1
hπi

)−1
}

= Θ

(
min
m∈[n]

(
1
m

m∑
i=1

1
hπi

)−1 (
1 + σ2

mε

))
, (15)

where π is a permutation that sorts {hi}ni=1.

Proof. By the definition, we have t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn) = minj∈[n] max{hπj

, s∗(j)},
where s∗(j) is the solution of (

j∑
i=1

1
2hπi

σ2

ε

)−1

= s.

Therefore, we have

t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn) ≤ 2 min

j∈[n]
max

hπj
,
σ2

ε

(
j∑
i=1

1

hπi

)−1
 = Θ

min
j∈[n]

hπj
+
σ2

ε

(
j∑
i=1

1

hπi

)−1
 .

Using Lemma F.1, we obtain

t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn) ≤ 2 min

j∈[n]
max

hπj
,
σ2

ε

(
j∑
i=1

1

hπi

)−1
 = Θ

min
j∈[n]

(
j +

σ2

ε

)(j∑
i=1

1

hπi

)−1
 .

10From the proof, it is clear that the result is tight up to a constant factor.

25

3741 https://doi.org/10.52202/079017-0123

Lemma F.1. Let us consider the two functions

g(j) := hj + a

(
j∑
i=1

1

hi

)−1

, p(j) := (j + a)

(
j∑
i=1

1

hi

)−1

for all j ∈ [n], where hi ≥ 0 for all i ∈ [n], a ≥ 0, and h1 ≤ · · · ≤ hn. Then

1

2
min
j∈[n]

g(j) ≤ min
j∈[n]

p(j) ≤ min
j∈[n]

g(j)

Proof. If h1 = 0, then p(1) = h(1) = 0 and mini∈[n] p(i) = mini∈[n] h(i) = 0. Assume that
h1 > 0. Using the fact that a harmonic mean is less or equal to the maximum, we have

min
j∈[n]

p(j) = min
j∈[n]

(j + a)

(
j∑
i=1

1

hi

)−1

≤ min
j∈[n]

hj + a

(
j∑
i=1

1

hi

)−1
 = min

j∈[n]
g(j).

Thus, we proved the upper bound. Next, assume that j∗ is the smallest minimizer of p(j). If j∗ = 1,
then

min
j∈[n]

p(j) = p(1) = (1 + a)h1 = h1 + ah1 = g(1) ≥ min
j∈[n]

g(j).

Otherwise, if j∗ > 1, then p(j∗) ≤ p(j∗ − 1). Using simple algebra, we obtain

(j∗ + a)

 j∗∑
i=1

1

hi

−1

≤ (j∗ − 1 + a)

j∗−1∑
i=1

1

hi

−1

⇔ (j∗ + a)

j∗−1∑
i=1

1

hi

 ≤ (j∗ − 1 + a)

 j∗∑
i=1

1

hi


⇔

 j∗∑
i=1

1

hi

 ≤ (j∗ + a)

(
1

hj∗

)

⇔ hj∗ ≤ (j∗ + a)

 j∗∑
i=1

1

hi

−1

.

Using the last inequality, we get

min
j∈[n]

p(j) = (j∗ + a)

 j∗∑
i=1

1

hi

−1

=
1

2
(j∗ + a)

 j∗∑
i=1

1

hi

−1

+
1

2
(j∗ + a)

 j∗∑
i=1

1

hi

−1

≥ 1

2
hj∗ +

1

2
a

 j∗∑
i=1

1

hi

−1

=
1

2
g(j∗) ≥ 1

2
min
j∈[n]

g(j).

Example 6.7. [Ignoring Slow Workers] If hi and τi are fixed and finite for all i ≤ p, and
max{hi, τi} = m ∈ R for all i > p, then, for m large enough, we have t∗(ω, σ2

/ε, [hi, τi]
n
1) =

t∗(ω, σ
2
/ε, [hi, τi]

p
1).

Proof. By the definition, we have

t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn) = min

j∈[n]
max{max{hπj

, τπj
}, s∗(j)}.

26

3742https://doi.org/10.52202/079017-0123

For m > maxi∈[p] max {hi, τi}, we have max {hi, τi} < m for all i ≤ p and the set {1, . . . , p}
equals to {π1, . . . , πp}. Thus, we get

t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn) = min

{
min
j∈[p]

max{max{hπj , τπj}, s∗(j)}, min
j∈{p+1,...,n}

max{m, s∗(j)}
}

= min

{
t∗(ω, σ

2
/ε, h1, τ1, . . . , hp, τp), min

j∈{p+1,...,n}
max{m, s∗(j)}

}

By taking m > t∗(ω, σ
2
/ε, h1, τ1, . . . , hp, τp), we obtain

min
j∈{p+1,...,n}

max{m, s∗(j)} ≥ m > t∗(ω, σ
2
/ε, h1, τ1, . . . , hp, τp).

Therefore, we have

t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn) = t∗(ω, σ

2
/ε, h1, τ1, . . . , hp, τp).

Example 6.8. [Partial Participation] If max{hi, τi} = ∞ for all i > p ≥ 1, then
t∗(ω, σ

2
/ε, [hi, τi]

n
1) = t∗(ω, σ

2
/ε, [hi, τi]

p
1).

Proof. By the definition, we have

t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn) = min

j∈[n]
max{max{hπj

, τπj
}, s∗(j)},

where π is a permutation such that the set {πp+1, . . . , πn} equals to the set {p+ 1, . . . , n}. Such a
permutation exists because max{hi, τi} = ∞ for all i > p. Using this, we have

t∗(ω, σ
2
/ε, h1, τ1, . . . , hn, τn) = min

{
min
j∈[p]

max{max{hπj , τπj}, s∗(j)}, min
j∈{p+1,...,n}

max{max{hπj , τπj}, s∗(j)}
}

= min

{
min
j∈[p]

max{max{hπj
, τπj

}, s∗(j)},∞
}

= min
j∈[p]

max{max{hπj
, τπj

}, s∗(j)}

= t∗(ω, σ
2
/ε, h1, τ1, . . . , hp, τp).

G Generic Lemma For Unbiased Gradient Estimators

We prove the following generic lemma that estimates the variance of the general family of unbiased
gradient estimators.
Lemma G.1. Consider that Assumptions 1.3 and 2.2 hold. Let us consider the gradient estimator

gk =
1∑n

i=1

∑mi

j=1 wijbij

n∑
i=1

mi∑
j=1

wijCij

 bij∑
l=1

∇f(xk; ξkil)

 ,

where mi ≥ 0 for all i ∈ [n], bij ≥ 0 for all i ∈ [n] and j ∈ [mi] are ordered batch sizes
(bi1 ≤ · · · ≤ bi,mi

for all i ∈ [n]), wij ≥ 0 are weights for all i ∈ [n] and j ∈ [mi], and∑n
i=1

∑mi

j=1 wijbij > 0, Cij ∈ U (ωij) are mutually independent compressors from Def. 2.1 for all
i ∈ [n] and j ∈ [mi], and xk ∈ Rd is an arbitrary point. Then E

[
gk
]
= ∇f(xk) and

E
[∥∥gk −∇f(xk)

∥∥2] ≤ 1(∑n
i=1

∑mi

j=1 wijbij

)2 n∑
i=1

mi∑
j=1

w2
ijb

2
ijωij

∥∥∇f(xk)∥∥2

+
1(∑n

i=1

∑mi

j=1 wijbij

)2 n∑
i=1

mi∑
j=1

w2
ijbijωijσ

2 +

mi∑
j=1

mi∑
p=1

min{bij , bip}wijwipσ2

 .

(39)

27

3743 https://doi.org/10.52202/079017-0123

Proof. First, we show the gradient estimator is unbiased:

E
[
gk
]
= E

 1∑n
i=1

∑mi

j=1 wijbij

n∑
i=1

mi∑
j=1

wijCij

 bij∑
l=1

∇f(xk; ξkil)


=

1∑n
i=1

∑mi

j=1 wijbij

n∑
i=1

mi∑
j=1

wijE

Cij
 bij∑
l=1

∇f(xk; ξkil)

 .
Using Def. 2.1 and Assumption 1.3, we have

E
[
gk
]
=

1∑n
i=1

∑mi

j=1 wijbij

n∑
i=1

mi∑
j=1

wijbij∇f(xk) = ∇f(xk).

Next, we estimate the variance

E
[∥∥gk −∇f(xk)

∥∥2]
= E

∥∥∥∥∥∥ 1∑n
i=1

∑mi

j=1 wijbij

n∑
i=1

mi∑
j=1

wijCij

 bij∑
l=1

∇f(xk; ξkil)

−∇f(xk)

∥∥∥∥∥∥


=
1(∑n

i=1

∑mi

j=1 wijbij

)2E

∥∥∥∥∥∥
n∑
i=1

mi∑
j=1

wijCij

 bij∑
l=1

∇f(xk; ξkil)

−
n∑
i=1

mi∑
j=1

wijbij∇f(xk)

∥∥∥∥∥∥
2
 .

Using the independence and (22), we have

E
[∥∥gk −∇f(xk)

∥∥2]
=

1(∑n
i=1

∑mi

j=1 wijbij

)2 n∑
i=1

E


∥∥∥∥∥∥
mi∑
j=1

wijCij

 bij∑
l=1

∇f(xk; ξkil)

−
mi∑
j=1

wijbij∇f(xk)

∥∥∥∥∥∥
2


=
1(∑n

i=1

∑mi

j=1 wijbij

)2 n∑
i=1

E


∥∥∥∥∥∥
mi∑
j=1

wijCij

 bij∑
l=1

∇f(xk; ξkil)

−
mi∑
j=1

wij

bij∑
l=1

∇f(xk; ξkil)

∥∥∥∥∥∥
2


︸ ︷︷ ︸
I1

+
1(∑n

i=1

∑mi

j=1 wijbij

)2 n∑
i=1

E


∥∥∥∥∥∥
mi∑
j=1

wij

bij∑
l=1

∇f(xk; ξkil)−
mi∑
j=1

wijbij∇f(xk)

∥∥∥∥∥∥
2


︸ ︷︷ ︸
I2

.

(40)
Using the independence of the compressors and Def. 2.1, we get

I1 =
1(∑n

i=1

∑mi

j=1 wijbij

)2 n∑
i=1

mi∑
j=1

w2
ijE


∥∥∥∥∥∥Cij

 bij∑
l=1

∇f(xk; ξkil)

−
bij∑
l=1

∇f(xk; ξkil)

∥∥∥∥∥∥
2


≤ 1(∑n
i=1

∑mi

j=1 wijbij

)2 n∑
i=1

mi∑
j=1

w2
ijωijE


∥∥∥∥∥∥
bij∑
l=1

∇f(xk; ξkil)

∥∥∥∥∥∥
2
 .

In the view of (22), the independence of the stochastic gradients, and Assumption 1.3, we obtain

I1 ≤ 1(∑n
i=1

∑mi

j=1 wijbij

)2 n∑
i=1

mi∑
j=1

w2
ijωijE


∥∥∥∥∥∥
bij∑
l=1

∇f(xk; ξkil)−
bij∑
l=1

∇f(xk)

∥∥∥∥∥∥
2


28

3744https://doi.org/10.52202/079017-0123

+
1(∑n

i=1

∑mi

j=1 wijbij

)2 n∑
i=1

mi∑
j=1

w2
ijωijb

2
ij

∥∥∇f(xk)∥∥2

=
1(∑n

i=1

∑mi

j=1 wijbij

)2 n∑
i=1

mi∑
j=1

w2
ijωij

bij∑
l=1

E
[∥∥∇f(xk; ξkil)−∇f(xk)

∥∥2]

+
1(∑n

i=1

∑mi

j=1 wijbij

)2 n∑
i=1

mi∑
j=1

w2
ijωijb

2
ij

∥∥∇f(xk)∥∥2
≤ 1(∑n

i=1

∑mi

j=1 wijbij

)2 n∑
i=1

mi∑
j=1

w2
ijbijωijσ

2 +
1(∑n

i=1

∑mi

j=1 wijbij

)2 n∑
i=1

mi∑
j=1

w2
ijb

2
ijωij

∥∥∇f(xk)∥∥2 .
We now consider

I2 =
1(∑n

i=1

∑mi

j=1 wijbij

)2 n∑
i=1

E


∥∥∥∥∥∥
mi∑
j=1

wij

bij∑
l=1

∇f(xk; ξkil)−
mi∑
j=1

wijbij∇f(xk)

∥∥∥∥∥∥
2
 .

Let us consider the set Sil := {j ∈ [mi] | l ≤ bij} for all i, l ∈ N. Then we can rewrite the norm in
the following way

I2 =
1(∑n

i=1

∑mi

j=1 wijbij

)2 n∑
i=1

E


∥∥∥∥∥∥
bi,mi∑
l=1

∑
j∈Sil

wij

(∇f(xk; ξkil)−∇f(xk)
)∥∥∥∥∥∥

2
 .

The stochastic vectors are independent, thus

I2 =
1(∑n

i=1

∑mi

j=1 wijbij

)2 n∑
i=1

bi,mi∑
l=1

∑
j∈Sil

wij

2

E
[∥∥∇f(xk; ξkil)−∇f(xk)

∥∥2]

≤ 1(∑n
i=1

∑mi

j=1 wijbij

)2 n∑
i=1

bi,mi∑
l=1

∑
j∈Sil

wij

2

σ2.

Note that

bi,mi∑
l=1

∑
j∈Sil

wij

2

=

bi,mi∑
l=1

∑
j∈Sil

∑
p∈Sil

wijwip.

The number of appearances of the term wijwip in the sum equals to min{bij , bip}. Thus

I2 ≤ 1(∑n
i=1

∑mi

j=1 wijbij

)2 n∑
i=1

mi∑
j=1

mi∑
p=1

min{bij , bip}wijwipσ2.

We now substitute the bounds on I1 and I2 to (40), and get (39).

29

3745 https://doi.org/10.52202/079017-0123

Algorithm 4 Shadowheart SGD (Alg. 1 is equivalent to Alg. 4 when hki = hk and τki = τk)

1: Input: starting point x0, stepsize γ, the ratio σ2
/ε

2: for k = 0, 1, . . . ,K − 1 do
3: Find the maximum computation speeds hki > 0

and compressors’ communication speeds τki > 0 of the workers in the current iteration
4: Find the equilibrium time t∗ using Def. 3.1 with hki and τki
5: Set bi =

⌊
t∗

hk
i

⌋
and mi =

⌊
t∗

τk
i

⌋
for all i ∈ [n] (t∗, bi and mi are local and can be different in

every iteration)
6: Find active workers SA = {i ∈ [n] : bi ∧mi > 0}
7: Run Alg. 2 in all active workers SA
8: Broadcast xk, bi, and mi to all active workers SA
9: Init gk = 0

10: for i ∈ SA in parallel do

11: wi
(a)
=
(
biω + ω σ

2

ε +mi
σ2

ε

)−1

12: for j = 1, . . . ,mi do
13: Receive Cij

(
gki
)

from the ith worker
14: gk = gk + wiCij

(
gki
)

15: end for
16: end for
17: gk = gk/ (

∑n
i=1 wimibi)

18: xk+1 = xk − γgk

19: end for
(a) : If ω = 0 and σ2

ε = 0, then wi = 1

H Proofs for Algorithms 1 and 4

In the appendix, we work with Alg. 4 instead of Alg. 1. Alg. 4 is more general and estimates all the
parameters based on local per-iteration times hki and τki instead of hi and τi. All results for Alg. 1
can be easily obtained by taking hki = hi and τki = τi.

Lemma H.1. Consider that Assumptions 1.3 and 2.2 hold. Then the gradient estimator (9) with the
weights wi from Alg. 4 is unbiased and

E
[∥∥gk −∇f(xk)

∥∥2] ≤ (∑
i : bi∧mi>0

bimi

biω + ω σ
2

ε +mi
σ2

ε

)−1 (∥∥∇f(xk)∥∥2 + ε
)
. (41)

Proof. Alg. 4 implements the gradient estimator (9). We can use Lemma G.1 with bij = bi, wij = wi
and ωij = ω for all i ∈ [n] and j ∈ [mi]. Using (39), we have

E
[∥∥gk −∇f(xk)

∥∥2] ≤ 1(∑n
i=1

∑mi

j=1 wijbij

)2 n∑
i=1

mi∑
j=1

w2
ijb

2
ijωij

∥∥∇f(xk)∥∥2 +
1(∑n

i=1

∑mi

j=1 wijbij

)2 n∑
i=1

mi∑
j=1

w2
ijbijωijσ

2 +

mi∑
j=1

mi∑
p=1

min{bij , bip}wijwipσ2


=

1

(
∑n
i=1miwibi)

2

n∑
i=1

w2
i

(
mib

2
iω
) ∥∥∇f(xk)∥∥2 +

1

(
∑n
i=1miwibi)

2

n∑
i=1

w2
i

(
mibiωσ

2 + bim
2
iσ

2
)
.

We add nonnegative terms to the last inequality to obtain

E
[∥∥gk −∇f(xk)

∥∥2] ≤ 1

(
∑n
i=1miwibi)

2

n∑
i=1

w2
i

(
mib

2
iω +mibiω

σ2

ε
+ bim

2
i

σ2

ε

)∥∥∇f(xk)∥∥2 +
30

3746https://doi.org/10.52202/079017-0123

1

(
∑n
i=1miwibi)

2

n∑
i=1

w2
i

(
mib

2
iωε+mibiωσ

2 + bim
2
iσ

2
)

=
1

(
∑n
i=1miwibi)

2

n∑
i=1

w2
i

(
mib

2
iω +mibiω

σ2

ε
+ bim

2
i

σ2

ε

)(∥∥∇f(xk)∥∥2 + ε
)
.

Using the choice of the weights wi, we get (41).

Lemma H.2. Consider two quantities ω ≥ 0 and σ2
/ε ≥ 0, and n ∈ N. Also, consider a sequence

of positive pairs {(hi, τi)}ni=1. We take bi =
⌊
t∗

hi

⌋
and mi =

⌊
t∗

τi

⌋
for all i ∈ [n], where t∗ ≡

t∗
(
ω, σ

2
/ε, h1, τ1, . . . , hn, τn

)
is the equilibrium time from Def. 3.1. Then(∑
i : bi∧mi>0

bimi

biω + ω σ
2

ε +mi
σ2

ε

)−1

≤ 1.

Proof. Assume that j∗ ∈ [n] is the smallest index that minimizes max{max{hπj , τπj}, s∗(j)}, then

t∗ = max{max{hπj∗ , τπj∗}, s
∗(j∗)}. (42)

Therefore, we have t∗ ≥ max{hπj∗ , τπj∗} ≥ max{hπj
, τπj

} for all j ≤ j∗ since max{hπj
, τπj

}
are sorted. It means that bπj =

⌊
t∗

hπj

⌋
≥ 1 and mπj =

⌊
t∗

τπj

⌋
≥ 1 for all j ≤ j∗. Using this, we have

I :=

(∑
i : bi∧mi>0

bimi

biω + ω σ
2

ε +mi
σ2

ε

)−1

≤

 j∗∑
i=1

bπi
mπi

bπi
ω + ω σ

2

ε +mπi

σ2

ε

−1

=

 j∗∑
i=1

1
ω
mπi

+ ωσ2

bπi
mπi

ε +
σ2

bπi
ε

−1

.

Since bπj
=
⌊
t∗

hπj

⌋
≥ 1 and mπj

=
⌊
t∗

τπj

⌋
≥ 1, we can also conclude that bπj

≥ t∗

2hπj
and

mπj
≥ t∗

2τπj
for all j ≤ j∗. Therefore, we obtain

I ≤

 j∗∑
i=1

1
2τπi

ω

t∗ +
4τπi

hπi
ωσ2

(t∗)2ε +
2hπi

σ2

t∗ε

−1

≤

 j∗∑
i=1

1
2τπi

ω

s∗(j∗) +
4τπi

hπi
ωσ2

(s∗(j∗))2ε +
2hπi

σ2

s∗(j∗)ε

−1

=
1

s∗(j∗)

 j∗∑
i=1

1

2τπiω +
4τπi

hπi
ωσ2

s∗(j∗)×ε +
2hπi

σ2

ε

−1

.

where the last inequality follows from (42). Recall that s∗(j∗) is the solution of the equation (7).
Thus  j∗∑

i=1

1

2τπi
ω +

4τπi
hπi

ωσ2

s∗(j∗)×ε +
2hπi

σ2

ε

−1

= s∗(j∗)

and

I ≤ 1

s∗(j∗)
× s∗(j∗) = 1.

Theorem H.3. Assume that Assumptions 1.1, 1.2, 1.3, 2.2 hold. Let us take γ = 1
2L in Alg. 4. Then

for all iterations

K ≥ 16L∆

ε
, (43)

Alg. 4 guarantees that 1
K

∑K−1
k=0 E

[∥∥∇f(xk)∥∥2] ≤ ε.

31

3747 https://doi.org/10.52202/079017-0123

Proof. Let us fix any iteration k ∈ N. Consider that Gk is a σ-algebra generated by g0, . . . , gk−1.
Then, given Gk, xk is a deterministic vector. Using Lemma H.1, we have

E
[∥∥gk −∇f(xk)

∥∥2∣∣∣Gk] ≤ (∑
i : bi∧mi>0

bimi

biω + ω σ
2

ε +mi
σ2

ε

)−1 (∥∥∇f(xk)∥∥2 + ε
)
.

Note that the choice of the parameters in Alg. 4 satisfy the conditions of Lemma H.2. Thus, we have

E
[∥∥gk −∇f(xk)

∥∥2∣∣∣Gk] ≤ ∥∥∇f(xk)∥∥2 + ε

for all k ≥ 0. It is left to use the standard SGD analysis from Theorem I.1 with B = 1 and C = ε to
finish the proof.

Theorem 4.2. Lett Assumptions 1.1, 1.2, 1.3, 2.2 hold. Let us take γ = 1/2L in Shadowheart SGD

(Alg. 1). Then as long as K ≥ 16L∆/ε, we have the guarantee 1
K

∑K−1
k=0 E

[∥∥∇f(xk)∥∥2] ≤ ε.

Proof. It immediately follows from Theorem H.3 for hi = hki and τi = τki .

Theorem 4.4. Alg. 4 converges after

⌈ 16L∆
ε ⌉∑

k=0

2t∗(ω, σ
2
/ε, hk1 , τ

k
1 , . . . , h

k
n, τ

k
n) (11)

seconds, where hki > 0 and τki > 0 are computation and communication times for worker i in
iteration k.

Proof. Let us fix an iteration index k ∈ [n]. In every iteration, every worker calculates bi stochastic
gradients and sends mi compressed vectors. Thus, the processing time of each iteration is not greater
than

max
i∈[n]

{
hki bi + τki mi

}
= max

i∈[n]

{
hki

⌊
t∗

hki

⌋
+ τki

⌊
t∗

τki

⌋}
≤ 2t∗(ω, σ

2
/ε, hk1 , τ

k
1 , . . . , h

k
n, τ

k
n).

(44)

Using the fact that the number of iterations equals to (43), we finally get (11).

Corollary 4.3. Shadowheart SGD (Alg. 1) converges after at most T∗ seconds, where

T∗ := 32L∆
ε × t∗(ω, σ

2
/ε, h1, τ1, . . . , hn, τn). (10)

Proof. It immediately follows from Theorem 4.4 for hi = hki and τi = τki .

I The Classical SGD Theorem

Let us consider a slightly modified classical SGD result from (Ghadimi and Lan, 2013; Khaled and
Richtárik, 2020).

Theorem I.1. Assume that Assumptions 1.1 and 1.2 hold. We consider the SGD method:

xk+1 = xk − γg(xk),

where

γ = min

{
1

L(1 +B)
,

ε

2LC

}
For all k ≥ 0, the vector g(x) is a random vector such that E

[
g(xk)

∣∣Gk] = ∇f(xk),

E
[∥∥g(xk)−∇f(xk)

∥∥2∣∣∣Gk] ≤ B
∥∥∇f(xk)∥∥2 + C, (45)

32

3748https://doi.org/10.52202/079017-0123

where Gk is a σ-algebra generated by g(x0), . . . , g(xk−1). The quantities B and C are arbitrary
nonnegative constants. Then

1

K

K−1∑
k=0

E
[∥∥∇f(xk)∥∥2] ≤ ε

for

K ≥ 4L∆(1 +B)

ε
+

8L∆C

ε2
.

Proof. From Assumption 1.1, we have

f(xk+1) ≤ f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+
L

2

∥∥xk+1 − xk
∥∥2

= f(xk)− γ
〈
∇f(xk), g(xk)

〉
+
Lγ2

2

∥∥g(xk)∥∥2 .
We denote Gk as a sigma-algebra generated by g(x0), . . . , g(xk−1). Using unbiasedness and (45),
we obtain

E
[
f(xk+1)

∣∣Gk] ≤ f(xk)− γ

(
1− Lγ

2

)∥∥∇f(xk)∥∥2 + Lγ2

2
E
[∥∥g(xk)−∇f(xk)

∥∥2∣∣∣Gk]
≤ f(xk)− γ

(
1− Lγ(1 +B)

2

)∥∥∇f(xk)∥∥2 + Lγ2C

2
.

Since γ ≤ 1
L(1+B) , we get

E
[
f(xk+1)

∣∣Gk] ≤ f(xk)− γ

2

∥∥∇f(xk)∥∥2 + Lγ2C

2
.

We subtract f∗ and take the full expectation to obtain

E
[
f(xk+1)− f∗

]
≤ E

[
f(xk)− f∗

]
− γ

2
E
[∥∥∇f(xk)∥∥2]+ Lγ2C

2
.

Next, we sum the inequality for k ∈ {0, . . . ,K − 1}:

E
[
f(xK)− f∗

]
≤ f(x0)− f∗ −

K−1∑
k=0

γ

2
E
[∥∥∇f(xk)∥∥2]+ KLγ2C

2

= ∆−
K−1∑
k=0

γ

2
E
[∥∥∇f(xk)∥∥2]+ KLγ2C

2
.

Finally, we rearrange the terms and use that E
[
f(xK)− f∗

]
≥ 0:

1

K

K−1∑
k=0

E
[∥∥∇f(xk)∥∥2] ≤ 2∆

γK
+ LγC.

The choice of γ and K ensures that

1

K

K−1∑
k=0

E
[∥∥∇f(xk)∥∥2] ≤ ε.

J Comparison with Baselines

In the following proofs, we use assumptions and definitions from Sec. 7.
Comparison 7.1. T∗ = O(TMB).

33

3749 https://doi.org/10.52202/079017-0123

Proof. Without loss of generality, we assume that all workers are sorted by max{hi, τ̇i}. For the
Rand1 compressor, we have ω = d− 1. From Corollary 4.3, we know that the time complexity of
Alg. 1 is

T∗ :=
L∆

ε
× t∗(ω, σ

2
/ε, h1, τ̇1, . . . , hn, τ̇n)

up to a constant factor. Using Def. 3.1 of t∗, we have

T∗ ≤ max{max{hn, τ̇n}, s∗(n)} ×
L∆

ε
, (46)

where s∗(n) is the solution of(
n∑
i=1

1

2τ̇iω + 4τ̇ihiσ2ω
s×ε + 2hiσ2

ε

)−1

= s. (47)

Let us take s′ = 12maxi∈[n] max
{
hiσ

2

nε , ωτ̇i

}
. Using simple bounds, we have(

n∑
i=1

1

2τ̇iω + 4τ̇ihiσ2ω
s′×ε + 2hiσ2

ε

)−1

≤

 n

maxi∈[n]

(
2τ̇iω + 4τ̇ihiσ2ω

s′×ε + 2hiσ2

ε

)
−1

=
maxi∈[n]

(
2τ̇iω + 4τ̇ihiσ

2ω
s′×ε + 2hiσ

2

ε

)
n

.

Since s′ ≥ ωmaxi∈[n] τ̇i, we get(
n∑
i=1

1

2τ̇iω + 4τ̇ihiσ2ω
s′×ε + 2hiσ2

ε

)−1

≤
maxi∈[n]

(
2τ̇iω + 4hiσ

2

ε + 2hiσ
2

ε

)
n

≤
12maxi∈[n] max

{
hiσ

2

ε , ωτ̇i

}
n

≤ s′.

It means that s∗(n) ≤ s′ since s∗(n) is the solution of (47). Using the properties of max and (46),
we get

T∗ = O

(
max

{
max{hn, τ̇n},max

i∈[n]
max

{
hiσ

2

nε
, ωτ̇i

}}
× L∆

ε

)
= O

(
max

{
max
i∈[n]

(hi + (ω + 1)τ̇i) ,

(
max
i∈[n]

hiσ
2

nε
+max
i∈[n]

ωτ̇i

)}
× L∆

ε

)
= O

(
max

{
max
i∈[n]

(hi + (ω + 1)τ̇i)×
L∆

ε
,max
i∈[n]

hi ×
σ2L∆

nε2
,max
i∈[n]

(ω + 1)τ̇i ×
L∆

ε

})
= O

(
max
i∈[n]

(hi + (ω + 1)τ̇i)

(
L∆

ε
+
σ2L∆

nε2

))
= O

(
max
i∈[n]

(hi + dτ̇i)

(
L∆

ε
+
σ2L∆

nε2

))
,

where we use ω + 1 = d.

Comparison 7.2. T∗ = O(TR).

Proof. From Sec. 7, we know that

T∗ :=
L∆

ε
× t∗(ω, σ

2
/ε, h1, τ̇1, . . . , hn, τ̇n)

and

TR :=
L∆

ε
× t∗(0, σ

2
/ε, h1, dτ̇1, . . . , hn, dτ̇n).

Using Property E.7, we get T∗ = O(TR) since ω = d− 1 for Rand1.

34

3750https://doi.org/10.52202/079017-0123

K Description of Alg. 5 in the Bidirectional Setting

In this section, we provide the modification of Alg. 4 with the EF21-P mechanism (Gruntkowska
et al., 2023). Almost all steps are the same as in Alg. 4 except for the EF21-P mechanism (we mark
the main changes with the color).

Algorithm 5 Bidirectional Shadowheart SGD

1: Input: starting point x0, stepsize γ, the ratio σ2
/ε

2: for k = 0, 1, . . . ,K − 1 do
3: Find the current computation speeds hki > 0

and communication speeds τki > 0 of the workers
4: Find the equilibrium time t∗ using Def. 3.1
5: Set bi =

⌊
t∗

hk
i

⌋
and mi =

⌊
t∗

τk
i

⌋
for all i ∈ [n]

6: Find active workers SA = {i ∈ [n] : bi ∧mi > 0}
7: Run Alg. 6 in all workers
8: Broadcast bi, and mi to all workers
9: Init gk = 0

10: for i ∈ SA in parallel do

11: wi
(a)
=
(
biω + ω σ

2

ε +mi
σ2

ε

)−1

12: for j = 1, . . . ,mi do
13: Receive Cij

(
gki
)

from the ith worker
14: gk = gk + wiCij

(
gki
)

15: end for
16: end for
17: gk = gk/ (

∑n
i=1 wimibi)

18: xk+1 = xk − γgk

19: pk+1 = Cserv(xk+1 − wk)
20: wk+1 = wk + pk+1

21: Broadcast pk+1 to all workers
22: end for
(a) : If ω = 0 and σ2

ε = 0, then wi = 1

Algorithm 6 ith Worker’s Strategy (init all workers with w0 = x0)

1: Receive bi, and mi from the server
2: if bi ∧mi > 0 then
3: Init gki = 0
4: for l = 1, . . . , bi do
5: Calculate ∇f(wk; ξkil), ξkil ∼ Dξ
6: gki = gki +∇f(wk; ξkil)
7: end for
8: for j = 1, . . . ,mi do
9: Send Cij

(
gki
)
≡ C

(
gki ; ν

k
ij

)
to the server,

νkij ∼ Dν , Cij ∈ U(ω)
10: end for
11: end if
12: Receive pk+1 from the server
13: wk+1 = wk + pk+1

L Proofs for Alg. 5

Theorem A.2. Let Assumptions 1.1, 1.2, 1.3, 2.2 hold. Choose γ = α
16L . Then as long as K ≥

768L∆
αε , Bidirectional Shadowheart SGD (Alg. 5) guarantees to find an ε–stationary point.

35

3751 https://doi.org/10.52202/079017-0123

Proof. In the bidirectional setting, the idea of proof is the same as in Theorem H.3. Let us fix any
iteration k ∈ N. The gradient estimator has the same structure as (9) but with wk instead of xk :

gk =
1∑n

i=1 wimibi

n∑
i=1

wi

mi∑
j=1

Cij

(
bi∑
l=1

∇f(wk; ξkil)

)
,

Consider that Gk is a σ-algebra generated by all random variables from the iterations 0, . . . , k − 1.
Then, given Gk, wk is a deterministic vector. Using Lemma H.1 with xk ≡ wk and Lemma H.2, we
have

E
[∥∥gk −∇f(wk)

∥∥2∣∣∣Gk] ≤ ∥∥∇f(wk)∥∥2 + ε

for all k ≥ 0. It is left to use Theorem E.3 from (Gruntkowska et al., 2023) with B = 2 and C = ε to
ensure that min0≤k≤K−1 E

[∥∥∇f(xk)∥∥2] ≤ ε after 768L∆
αε iterations.

Corollary A.3. If the broadcast time of Cserv is not greater than τserv, then Bidirectional Shadowheart
SGD (Alg. 5) converges after at most

T∗,serv := 768L∆
αε ×

(
τserv + 2t∗(ω, σ

2
/ε, [hi, τi]

n
1)
)

(20)

seconds.

Proof. Let us fix an iteration index k ∈ [n]. In every iteration, the server broadcasts one compressed
vector, every worker calculates bi stochastic gradients and sends mi compressed vectors. Thus, the
processing time of each iteration is not greater than

τserv +max
i∈[n]

{
hki bi + τki mi

}
= τserv +max

i∈[n]

{
hki

⌊
t∗

hki

⌋
+ τki

⌊
t∗

τki

⌋}
≤ τserv + 2t∗(ω, σ

2
/ε, hk1 , τ

k
1 , . . . , h

k
n, τ

k
n)

P.6.1
≤ τserv + 2t∗(ω, σ

2
/ε, h1, τ1, . . . , hn, τn).

Using the converge rate from Theorem A.2, we finally get (20).

Comparison A.5. Assume that it takes τ̇serv seconds to send one coordinate from the server to the
workers. If we take K ≥ min

{
d, t∗(ω, σ

2
/ε, [hi, τi]

n
1)/τ̇serv

}
in TopK, then T∗,serv = O(T∗) .

Proof. From the assumption, we have τserv = Kτ̇serv and τ fullserv = dτ̇serv. For TopK, α ≥ K/d.
Therefore, up to a constant factor, we obtain

T∗,serv =
L∆

αε
×
(
τserv + t∗(ω, σ

2
/ε, [hi, τi]

n
1)
)

≤ dL∆

Kε
×
(
Kτ̇serv + t∗(ω, σ

2
/ε, [hi, τi]

n
1)
)

=
dL∆

ε
τ̇serv +

dL∆

Kε
t∗(ω, σ

2
/ε, [hi, τi]

n
1)

≤ dL∆

ε
τ̇serv +max

{
dL∆

ε
τ̇serv,

L∆

ε
t∗(ω, σ

2
/ε, [hi, τi]

n
1)

}
≤ 2

(
dL∆

ε
τ̇serv +

L∆

ε
t∗(ω, σ

2
/ε, [hi, τi]

n
1)

)
.

Also, up to a constant factor, we have

T∗ =
L∆

ε
× (τ fullserv + t∗(ω, σ

2
/ε, [hi, τi]

n
1))

=
L∆

ε
× (dτ̇serv + t∗(ω, σ

2
/ε, [hi, τi]

n
1))

=
dL∆

ε
τ̇serv +

L∆

ε
t∗(ω, σ

2
/ε, [hi, τi]

n
1).

Therefore, T∗,serv = O(T∗) .

36

3752https://doi.org/10.52202/079017-0123

M Development of Adaptive Shadowheart SGD

Algorithm 7 Adaptive Shadowheart SGD

1: Input: starting point x0, stepsize γ, the ratio σ2
/ε

2: for k = 0, 1, . . . ,K − 1 do
3: Run Alg. 8 in all workers
4: Broadcast xk to the workers
5: Init li = 0 for all i ∈ [n]

6: while

 ∑
i : li>0

(
li∑
j=1

(
ω

l2imij
+ ωσ2

l3imijε

)
+ σ2

liε

)−1
−1

> 1
4 do

7: Receive Ci,li,mi,li
(gi) , li and mi,li from some worker (we indicate this worker with i)

8: if mi,li = 1 and li > 1 then
9: ḡi = ḡi +

1
mi,(li−1)

ĝi and ĝi = 0

10: end if
11: ĝi = ĝi + Ci,li,mi,li

(gi)
12: end while
13: Init gk = 0
14: for i ∈ [n] : li > 0 do
15: ḡi = ḡi +

1
mi,li

ĝi

16: wi
(a)
=
(∑li

j=1
ω
mij

+
∑li
j=1

ωσ2

limijε
+ liσ

2

ε

)−1

17: gk = gk + wiḡi
18: end for
19: gk = gk/

(∑
i : li>0 wi

∑li
j=1 j

)
20: xk+1 = xk − γgk

21: end for
(a) : If ω = 0 and σ2

ε = 0, then wi = 1

In this section, we design a new method that, unlike Alg. 1 and 4, does not require the bounds on
computations times. It automatically understands when to stop the collection of compressed vectors
in gk.

Let us consider Alg. 7, which we call Adaptive Shadowheart SGD. It implements the following
gradient estimator:

gk =
1∑n

i=1 wi
∑li
j=1 j

n∑
i=1

wi

li∑
j=1

1

mij

mij∑
p=1

Cijp

(
j∑
r=1

∇f(xk; ξkir)

)
. (48)

The idea is that each worker calculate and send compressed vectors in parallel: while the next stochas-
tic gradients ∇f(xk; ξki,j+1) are calculating, the workers are sending Cij·

(∑j
r=1 ∇f(xk; ξkir)

)
to

server. The main difficulty is to understand when to stop. It turns out that it is sufficient to wait for
the moment when the condition in Line 6 of Alg. 7 does not hold. For this method, we can prove the
following guarantees.

Theorem M.1. Let Assumptions 1.1, 1.2, 1.3, 2.2 hold. Let us take γ = 1
2L in Alg. 7. Then for all

iterations K ≥ 16L∆
ε , Alg. 7 guarantees that 1

K

∑K−1
k=0 E

[∥∥∇f(xk)∥∥2] ≤ ε.

Corollary 4.6. If the computation and communication times are positive, the time complexity of
Alg. 7 is L∆

ε × t∗(ω, σ
2
/ε, [max{hi, τi},min {τiri,max{hi, τi}}]n1) up to a constant factor, where

ri is defined in Def. 4.5.

37

3753 https://doi.org/10.52202/079017-0123

Algorithm 8 ith Worker’s Strategy

1: Receive xk from the server
2: Init li = 1
3: Calculate gi = ∇f(xk; ξki1), ξki1 ∼ Dξ
4: while True do
5: Start calculating ∇f(xk; ξki,li+1), ξ

k
i,li+1 ∼ Dξ,

and go to the next step
6: Init mi,li = 0
7: while ∇f(xk; ξki,li+1) is not calculated OR mi,li = 0 do
8: mi,li = mi,li + 1
9: Send Ci,li,mi,li

(gi) , li and mi,li to the server, Ci,li,mi,li
∈ U(ω)

10: end while
11: gi = gi +∇f(xk; ξki,li+1)
12: li = li + 1
13: end while

N Proofs for Alg. 7

Lemma N.1. Consider that Assumptions 1.3 and 2.2 hold. Then the gradient estimator (48) with the
parameters from Alg. 7 is unbiased and

E
[∥∥gk −∇f(xk)

∥∥2] ≤ 4

 ∑
i∈[n] : li>0

 li∑
j=1

ω

l2imij
+

li∑
j=1

ωσ2

l3imijε
+
σ2

liε

−1


−1 (∥∥∇f(xk)∥∥2 + ε
)
.

(49)

Proof. Alg. 7 implements the gradient estimator (48). Note that since Cijp ∈ U(ω), then
1
mij

∑mij

p=1 Cijp ∈ U(ω/mij). Therefore, we can use Lemma G.1 with ωij = ω/mij , bij = j, wij = wi,

and mi = li, and get

E
[∥∥gk −∇f(xk)

∥∥2] ≤ 1(∑n
i=1 wi

∑li
j=1 j

)2 n∑
i=1

w2
i

li∑
j=1

j2ω

mij

∥∥∇f(xk)∥∥2

+
1(∑n

i=1 wi
∑li
j=1 j

)2 n∑
i=1

w2
i

 li∑
j=1

jωσ2

mij
+

li∑
j=1

li∑
p=1

min{j, p}σ2

 .

Since
∑li
j=1

∑li
p=1 min{j, p} ≤ l3i , we have

E
[∥∥gk −∇f(xk)

∥∥2] ≤ 1(∑n
i=1 wi

∑li
j=1 j

)2 n∑
i=1

w2
i

li∑
j=1

j2ω

mij

∥∥∇f(xk)∥∥2

+
1(∑n

i=1 wi
∑li
j=1 j

)2 n∑
i=1

w2
i

 li∑
j=1

jωσ2

mij
+ l3i σ

2

 .

38

3754https://doi.org/10.52202/079017-0123

We add nonnegative terms to the last inequality to obtain

E
[∥∥gk −∇f(xk)

∥∥2] ≤ 1(∑n
i=1 wi

∑li
j=1 j

)2 n∑
i=1

w2
i

 li∑
j=1

j2ω

mij
+

li∑
j=1

jω

mij

σ2

ε
+ l3i

σ2

ε

∥∥∇f(xk)∥∥2

+
1(∑n

i=1 wi
∑li
j=1 j

)2 n∑
i=1

w2
i

 li∑
j=1

j2ωε

mij
+

li∑
j=1

jωσ2

mij
+ l3i σ

2


=

1(∑n
i=1 wi

∑li
j=1 j

)2 n∑
i=1

w2
i

 li∑
j=1

j2ω

mij
+

li∑
j=1

jω

mij

σ2

ε
+ l3i

σ2

ε

(∥∥∇f(xk)∥∥2 + ε
)
.

Using
∑li
j=1 j ≥

l2i
2 , we obtain

E
[∥∥gk −∇f(xk)

∥∥2] ≤ 4

(
∑n
i=1 wil

2
i)

2

n∑
i=1

w2
i

 li∑
j=1

j2ω

mij
+

li∑
j=1

jω

mij

σ2

ε
+ l3i

σ2

ε

(∥∥∇f(xk)∥∥2 + ε
)
.

In the last two sums, we bound the terms j with li to get

E
[∥∥gk −∇f(xk)

∥∥2] ≤ 4

(
∑n
i=1 wil

2
i)

2

n∑
i=1

w2
i

 li∑
j=1

l2iω

mij
+

li∑
j=1

liω

mij

σ2

ε
+ l3i

σ2

ε

(∥∥∇f(xk)∥∥2 + ε
)
.

It is left to use the choice of the weights wi to obtain (49).

Theorem M.1. Let Assumptions 1.1, 1.2, 1.3, 2.2 hold. Let us take γ = 1
2L in Alg. 7. Then for all

iterations K ≥ 16L∆
ε , Alg. 7 guarantees that 1

K

∑K−1
k=0 E

[∥∥∇f(xk)∥∥2] ≤ ε.

Proof. The proof of this theorem is very close to the proof of Theorem H.3. Let us fix any iteration k ∈
N. Consider that Gk is a σ-algebra generated by g0, . . . , gk−1. Then, given Gk, xk is a deterministic
vector. Using Lemma N.1, we have

E
[∥∥gk −∇f(xk)

∥∥2∣∣∣Gk] ≤ 4

 ∑
i∈[n] : li>0

 li∑
j=1

ω

l2imij
+

li∑
j=1

ωσ2

l3imijε
+
σ2

liε

−1


−1 (∥∥∇f(xk)∥∥2 + ε
)
.

The algorithm is constructed in such a way that the first bracket in the last inequality is less or equal
to 1 (see Line 6 in Alg. 7). Thus

E
[∥∥gk −∇f(xk)

∥∥2∣∣∣Gk] ≤ ∥∥∇f(xk)∥∥2 + ε

for all k ≥ 0. It is left to use the standard SGD analysis from Theorem I.1 with B = 1 and C = ε to
ensure that the algorithm converges after 16L∆

ε iterations.

Corollary 4.6. If the computation and communication times are positive, the time complexity of
Alg. 7 is L∆

ε × t∗(ω, σ
2
/ε, [max{hi, τi},min {τiri,max{hi, τi}}]n1) up to a constant factor, where

ri is defined in Def. 4.5.

Proof. Let us fix an iteration and take k ∈ [K]. It is sufficient to find a time required to send enough
compressed vectors such that the inequality

4

 ∑
i∈[n] : li>0

 li∑
j=1

ω

l2imij
+

li∑
j=1

ωσ2

l3imijε
+
σ2

liε

−1


−1

≤ 1

39

3755 https://doi.org/10.52202/079017-0123

holds. As soon as this inequality holds, the algorithm stops the loop in Line 6 from Alg. 7. Then the
upper bound on the time complexity equals to the number of iterations × the upper bound on the
time of each iteration. The previous inequality is equivalent to

H :=
∑

i∈[n] : li>0

1∑li
j=1

4ω
l2imij

+
∑li
j=1

4ωσ2

l3imijε
+ 4σ2

liε

≥ 1. (50)

Let us show that

t′ := 128× t∗(ω, σ
2
/ε,max{h1, τ1},min {τ1r1,max{h1, τ1}} , . . . ,max{hn, τn},min {τnrn,max{hn, τn}})

is a sufficient time such that (50) holds.

By the definition of the equilibrium time t∗, in order to apply this mapping, we first have to find a
permutation π that sorts the input pairs (max{hi, τi},min {τiri,max{hi, τi}}) by

max {max{hi, τi},min {τiri,max{hi, τi}}} .
This term equals to max{hi, τi}.Without loss of generality, we assume that the sequence max{hi, τi}
is sorted, thus πi = i for all i ∈ [n]. Therefore, we have

t′ = 128 min
j∈[n]

max{max{hj , τj}, s∗(j)}, (51)

where s∗(j) is the solution of the equation(
j∑
i=1

(
2min {τiri,max{hi, τi}}ω +

4min {τiri,max{hi, τi}}max{hi, τi}σ2ω

sε
+

2max{hi, τi}σ2

ε

)−1
)−1

= s

(52)

for all j ∈ [n].

Let us define j∗ as the smallest by index minimizer in (51). Then

t′ = 128max{max{hj∗ , τj∗}, s∗(j∗)}.

Assume that li is the number of iterations (the number of calculated stochastic gradients) that the ith
worker does by the time t′. Since t′ ≥ 4max{hj∗ , τj∗} and the workers are sorted by max{hi, τi},
we have t′ ≥ 2 (hi + τi) for all i ≤ j∗. Therefore, for all i ≤ j∗, the ith worker will have time to
calculate and send at least one compressed vector, i.e., li ≥ 1 for i ≤ j∗.

Next, the ith worker requires at most τi seconds to send a compressed vector and it waits for at
least one calculated gradient. Consider that the computation time of the jth stochastic gradient in
the kth iteration equals to hkij . Thus t′

2 ≤
∑li
j=1

(
hkij + τi

)
. Indeed, if t

′

2 >
∑li
j=1

(
hkij + τi

)
, then

the ith worker will have time to calculate and send at least one more compressed vector because
t′

2 ≥ 2max{hi, τi} ≥ hi + τi for all i ≤ j∗. It would contradict the definition of li. Therefore, we
have

t′

2
≤

li∑
j=1

(
hkij + τi

)
≤ li max

j∈[li]
hkij + liτi

and

li ≥
t′

2

(
max
j∈[li]

hkij + τi

) . (53)

At the same time, by the definition of li, we have

t′

hmin
≥ li,

because hmin > 0 is the smallest possible calculating time. Therefore, we have

li ≤ lmax :=

⌈
tmax

hmin

⌉
,

40

3756https://doi.org/10.52202/079017-0123

where tmax is defined in Def. 4.5 (tmax ≥ t′). Since li ≥ 1 for all i ≤ j∗, we get

H :=
∑

i∈[n] : li>0

 li∑
j=1

4ω

l2imij
+

li∑
j=1

4ωσ2

l3imijε
+

4σ2

liε

−1

≥
j∗∑
i=1


li∑
j=1

4ω

l2imij
+

li∑
j=1

4ωσ2

l3imijε︸ ︷︷ ︸
A

+
4σ2

liε︸︷︷︸
B


−1

.

(54)

Using (53), we obtain

B :=
4σ2

εli
≤

8σ2

(
max
j∈[li]

hkij + τi

)
εt′

≤ 8σ2 (hi + τi)

εt′
≤ 16σ2 max{hi, τi}

εt′
.

For every jth stochastic gradient, the ith worker sends at least one compressed vector or
⌊
hk
ij

τi

⌋
compressed vectors because it is possible that τi ≤ hkij , then the worker will have time to send more
than one compressed vector. Therefore, we have

mij ≥ max

{⌊
hkij
τi

⌋
, 1

}
≥ max

{
hkij
2τi

, 1

}
≥ max


min
j∈[li]

hkij

2τi
, 1

 .

and

1

li

li∑
j=1

1

mij
≤ 2

li

li∑
j=1

min

 τi
min
j∈[li]

hkij
, 1

 = 2min

 τi
min
j∈[li]

hkij
, 1

 .

Using the last inequality and (53), we get

1

l2i

li∑
j=1

1

mij
≤

4

(
max
j∈[li]

hkij + τi

)
t′

min

 τi
min
j∈[li]

hkij
, 1


≤

8max{max
j∈[li]

hkij , τi}

t′
min

 τi
min
j∈[li]

hkij
, 1


= min

8τi
t′

×
max{max

j∈[li]
hkij , τi}

min
j∈[li]

hkij
,

8max{max
j∈[li]

hkij , τi}

t′

︸ ︷︷ ︸
T

.

It is clear that T ≤
8max{max

j∈[li]
hk
ij ,τi}

t′ . If τi < min
j∈[li]

hkij , then T = 8τi
t′ ×

max
j∈[li]

hk
ij

min
j∈[li]

hk
ij

. If τi ≥ min
j∈[li]

hkij

and τi < max
j∈[li]

hkij , then T =
8 max

j∈[li]
hk
ij

t′ ≤ 8τi
t′ ×

max
j∈[li]

hk
ij

min
j∈[li]

hk
ij

. If τi ≥ max
j∈[li]

hkij , then T = 8τi
t′ ≤

8τi
t′ ×

max
j∈[li]

hk
ij

min
j∈[li]

hk
ij

.

Thus, we have

1

l2i

li∑
j=1

1

mij
≤ min

8τi
t′

×
max
j∈[li]

hkij

min
j∈[li]

hkij
,

8max{max
j∈[li]

hkij , τi}

t′


41

3757 https://doi.org/10.52202/079017-0123

≤ min

8τi
t′

×
supj∈[lmax] h

k
ij

infj∈[lmax] h
k
ij

,

8max{max
j∈[li]

hkij , τi}

t′


≤ min

{
8τiri
t′

,
8max{hi, τi}

t′

}
,

where we use the definition of ri. Using the last inequality and li ≥ t′

4max{hi,τi} , we have

A := 4

li∑
j=1

ω

mij l2i
+ 4

li∑
j=1

ωσ2

mijεl3i

≤ 32ωmin {τiri,max{hi, τi}}
t′

+
32ωσ2 min {τiri,max{hi, τi}}

εt′li

≤ 32ωmin {τiri,max{hi, τi}}
t′

+
128ωσ2 min {τiri,max{hi, τi}}max{hi, τi}

ε (t′)
2 ,

where we use (53) and max
j∈[li]

hkij ≤ hi. One can substitute the bounds on A and B to (54) and obtain

H ≥ 1

128

j∗∑
i=1

(
ωmin {τiri,max{hi, τi}}

t′
+
ωσ2 min {τiri,max{hi, τi}}max{hi, τi}

ε (t′)
2 +

σ2 max{hi, τi}
εt′

)−1

.

Note that t′ ≥ 128s∗(j∗), thus

H ≥
j∗∑
i=1

(
ωmin {τiri,max{hi, τi}}

s∗(j∗)
+
ωσ2 min {τiri,max{hi, τi}}max{hi, τi}

ε (s∗(j∗))
2 +

σ2 max{hi, τi}
εs∗(j∗)

)−1

≥
j∗∑
i=1

(
2ωmin {τiri,max{hi, τi}}

s∗(j∗)
+

4ωσ2 min {τiri,max{hi, τi}}max{hi, τi}
ε (s∗(j∗))

2 +
2σ2 max{hi, τi}

εs∗(j∗)

)−1

= s∗(j∗)×
j∗∑
i=1

(
2ωmin {τiri,max{hi, τi}}+

4ωσ2 min {τiri,max{hi, τi}}max{hi, τi}
εs∗(j∗)

+
2σ2 max{hi, τi}

ε

)−1

.

It is left to use the definition of s∗(j∗) (see (52)) to obtain that H ≥ s∗(j∗)× 1
s∗(j∗) = 1.

It means that after at most t′ seconds, we can ensure that the algorithm will finish the loop in Line 6
from Alg. 7. In the view of Theorem M.1, the time complexity is less or equal to K × t′.

O Construction of the Lower Bound

We prove the lower bound by generalizing the time multiple oracles protocol from (Tyurin and
Richtárik, 2023c). Note that in the classical approaches (Nemirovskij and Yudin, 1983; Carmon
et al., 2020; Arjevani et al., 2022; Nesterov, 2018), the researchers bound the number of oracle calls
required to find an ε–solution. Our approach is based on the idea from (Tyurin and Richtárik, 2023c),
where the authors propose to bound the time required to find an ε–solution. We refer to a detailed
explanation to (Tyurin and Richtárik, 2023c)[Sections 3-6].

First, we define an oracle that emulates the process of computing stochastic gradients or the process
of sending a compressed vector (Tyurin and Richtárik, 2023c)[Section 4]:

Og,Dτ : R≥0︸︷︷︸
time

× Rd︸︷︷︸
point

×{0, 1}︸ ︷︷ ︸
control

× (R≥0 × Rd × {0, 1})︸ ︷︷ ︸
input state

→ (R≥0 × Rd × {0, 1})︸ ︷︷ ︸
output state

×Rd

such that Og,Dτ (t, x, c, (st, sx, sq)) =


((t, x, 1), 0), c = 1, sq = 0,

((st, sx, 1), 0), c = 1, sq = 1, t < st + τ,

((0, 0, 0), g(sx; ξ)), c = 1, sq = 1, t ≥ st + τ,

((0, 0, 0), 0), c = 0,
(55)

42

3758https://doi.org/10.52202/079017-0123

where ξ ∼ D, g is an arbitrary mapping such that g : Rd × S → Rd, and S is the sample space of a
distribution D. Next, we define the time multiple oracles protocol with compression:

Protocol 9 Time Multiple Oracles Protocol with Compression

1: Input: function(s) f ∈ F , computation oracles (O1, ..., On) ∈ O(f), communication oracles
(Ĉ1, ..., Ĉn) ∈ U , algorithm A = {(Bk, Nk

1 , . . . , N
k
n)}∞k=0 ∈ A

2: s∇f,0i = sC,0i = 0 for all i ∈ [n]
3: for k = 0, . . . ,∞ do
4: (tk+1, ik+1, c∇f,k+1, cC,k+1, xk) = Bk(g1, . . . , gk), ▷ tk+1 ≥ tk

5: (s∇f,k+1
ik+1 , gk+1

ik+1) = Oik+1(tk+1, xk, c∇f,k+1, s∇f,k
ik+1)

∀j ̸= ik+1 : s∇f,k+1
j = s∇f,kj , gk+1

j = 0

6: gk+1
pre = Nk

ik+1(g
1, . . . , gk, g1ik+1 , . . . , g

k+1
ik+1),

7: (sC,k+1
ik+1 , gk+1) = Ĉik+1(tk+1, gk+1

pre , cC,k+1, sC,k
ik+1)

8: end for

In this protocol, the server via Bk returns a new point xk, and broadcasts it to the ik+1th worker.
Then, the worker calls the oracle Oik+1 that calculates stochastic gradients. Next, the oracle returns
the vector gk+1

ik+1 , and the worker processes it with Nk
ik+1 . Finally, the worker sends gk+1

pre to the oracle
Ĉik+1 that sends compressed vectors to the server. Using the parameters c∇f,k+1 and cC,k+1, it can
decide if it wants to start/stop the process of a gradient calculation and the process of communicating
a compressed vector (See Sec. F in (Tyurin and Richtárik, 2023c)). As far as we know, all centralized
distributed optimization methods can be described by Protocol 9, including Minibatch SGD, QSGD,
Asynchronous SGD, Rennala SGD, and Shadowheart SGD.

We consider the standard function class from the optimization literature (Nesterov, 2018; Arjevani
et al., 2022; Carmon et al., 2020):
Definition O.1 (Function Class F∆,L). We assume that a function f : Rd → R is differentiable,
∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ ∀x, y ∈ Rd, (L-smooth) and f(0) − infx∈Rd f(x) ≤ ∆ (∆-
bounded). The set of all functions with such properties we denote by F∆,L.

Next, we define the class of algorithms that we analyze.
Definition O.2 (Algorithm Class Azr). Let us consider Protocol 9. We say that the sequence of tuples
of mappings A = {(Bk, Nk

1 , . . . , N
k
n)}∞k=0 is a zero-respecting algorithm, if

1. Bk : Rd × · · · × Rd︸ ︷︷ ︸
k times

→ R≥0 ×N×N×N×Rd for all k ≥ 1, and B0 ∈ R≥0 ×N×N×

N× Rd.

2. For all k ≥ 1 and and g1, . . . , gk ∈ Rd, tk+1 ≥ tk, where tk+1 and tk are defined as
(tk+1, . . .) = Bk(g1, . . . , gk) and (tk, . . .) = Bk−1(g1, . . . , gk−1).

3. Nk
i : Rd × · · · × Rd︸ ︷︷ ︸

k times

×Rd × · · · × Rd︸ ︷︷ ︸
k+1 times

→ Rd for all k ≥ 0 and for all i ∈ [n].

4. supp
(
xk
)
⊆
⋃k
j=1 supp

(
gj
)
, and supp

(
gk+1

pre

)
⊆
⋃k
j=1 supp

(
gj
)⋃k+1

j=1 supp
(
gj
ik+1

)
,

for all k ∈ N0, where supp(x) := {i ∈ [d] |xi ̸= 0}.

The set of all algorithms with this properties we define as Azr.

The properties 1 and 3 are only required to define the domains of the mappings. The property 4
ensures that these mappings are zero-respecting (Arjevani et al., 2022). The property 2 is explained
in (Tyurin and Richtárik, 2023c)[Section 4, Definition 4.1]. It ensures that our algorithm does not
“travel into the past”.

The following oracle class is the same as in (Tyurin and Richtárik, 2023c). For any f ∈ F∆,L, it
returns n oracles that require h1, . . . , hn seconds to calculate a stochastic gradient. These oracles
emulate the real behavior where the workers have different processing times.

43

3759 https://doi.org/10.52202/079017-0123

Definition O.3 (Computation Oracle Class Oσ2

h1,...,hn
). Let us consider an oracle class such that,

for any f ∈ F∆,L, it returns oracles Oi = O
∇f,D∇f

i

hi
for all i ∈ [n], where ∇f(x; ξ) is an unbiased

σ2-variance-bounded mapping (see Assumption 1.3). The oracles O∇f,D∇f
i

hi
are defined in (55). We

define such oracle class as Oσ2

h1,...,hn
.

The following oracle class emulates the behavior of compressors. It returns n oracles that require
τ1, . . . , τn seconds to send a compressed vector to the server.

Definition O.4 (Communication Oracle Class Uωτ1,...,τn). Let us consider an oracle class such that, it

returns oracles Ĉi = O
C,DC

i
τi for all i ∈ [n], where C is an unbiased compressor with a parameter ω,

i.e., C ∈ U(ω) (see Def. 2.1). The oracles OC,DC
i

τi are defined in (55). We define such oracle class as
Uωτ1,...,τn .

Finally, we present our lower bound theorem:

Theorem O.5. Let us consider Protocol 9. We take any hi > 0, τi > 0 for all i ∈ [n], ω ≥
0, L,∆, ε, σ2 > 0 such that ε < c1L∆ and ω + 1 ≤ T,11 where T =

⌊
∆L
c2ε

⌋
is the dimension of the

construction. For any algorithm A ∈ Azr, there exists a function f ∈ F∆,L, computation oracles
(O1, . . . , On) ∈ Oσ2

h1,...,hn
(f), and communication oracles (Ĉ1, . . . , Ĉn) ∈ Uωτ1,...,τn ,

12 such that

E
[
infk∈St

∥∥∇f(xk)∥∥2] > ε, where St :=
{
k ∈ N0 | tk ≤ t

}
and

t = c3 ×
L∆

ε
× t∗(ω, σ

2
/ε, h1, τ1, . . . , hn, τn).

The quantities c1, c2, and c3 are universal constants. The sequences xk and tk are defined in
Protocol 9.

P Proof of Theorem O.5

P.1 The “Worst Case” Function

Let us consider the “worst case” function, which is a standard function to obtain lower bounds in the
nonconvex world. We define

prog(x) := max{i ≥ 0 |xi ̸= 0} (x0 ≡ 1).

In our proofs, we use the construction from (Carmon et al., 2020; Arjevani et al., 2022). For any
T ∈ N, the authors define

FT (x) := −Ψ(1)Φ(x1) +

T∑
i=2

[Ψ(−xi−1)Φ(−xi)−Ψ(xi−1)Φ(xi)] , (56)

where

Ψ(x) =

{
0, x ≤ 1/2,

exp
(
1− 1

(2x−1)2

)
, x ≥ 1/2,

and Φ(x) =
√
e

∫ x

−∞
e−

1
2 t

2

dt.

The main property of the function FT (x) is that its gradients are large unless prog(x) ≥ T.

Lemma P.1 (Carmon et al. (2020); Arjevani et al. (2022)). The function FT satisfies:

1. FT (0)− infx∈RT FT (x) ≤ ∆0T, where ∆0 = 12.

11We can avoid this constraint using a slightly different construction of a compressor. However, the number of
non-zero returned values by the new construction is random. See Sec. P.3.

12The function f defined on RT with T = Θ(L∆/ε) , and the constructed compressor C preserves only
K = ⌈T/ω+1⌉ non-zero coordinates.

44

3760https://doi.org/10.52202/079017-0123

2. The function FT is l1–smooth, where l1 = 152.

3. For all x ∈ RT , ∥∇FT (x)∥∞ ≤ γ∞, where γ∞ = 23.

4. For all x ∈ RT , prog(∇FT (x)) ≤ prog(x) + 1.

5. For all x ∈ RT , if prog(x) < T, then ∥∇FT (x)∥ > 1.

Theorem O.5. Let us consider Protocol 9. We take any hi > 0, τi > 0 for all i ∈ [n], ω ≥
0, L,∆, ε, σ2 > 0 such that ε < c1L∆ and ω + 1 ≤ T,13 where T =

⌊
∆L
c2ε

⌋
is the dimension of the

construction. For any algorithm A ∈ Azr, there exists a function f ∈ F∆,L, computation oracles
(O1, . . . , On) ∈ Oσ2

h1,...,hn
(f), and communication oracles (Ĉ1, . . . , Ĉn) ∈ Uωτ1,...,τn ,

14 such that

E
[
infk∈St

∥∥∇f(xk)∥∥2] > ε, where St :=
{
k ∈ N0 | tk ≤ t

}
and

t = c3 ×
L∆

ε
× t∗(ω, σ

2
/ε, h1, τ1, . . . , hn, τn).

The quantities c1, c2, and c3 are universal constants. The sequences xk and tk are defined in
Protocol 9.

Proof.

Without loss of generality, we assume that the workers are sorted by max{hi, τi} : max{h1, τ1} ≤
· · · ≤ max{hn, τn}.
(Step 1: f ∈ F∆,L)
Let us fix λ > 0 and take the function f(x) := Lλ2

l1
FT
(
x
λ

)
, where the function FT is defined in

Sec. P.1. Tyurin and Richtárik (2023c)[Sec. D.2, Proof of Thm. 6.4] show that the function f is
L–smooth and f(0)− infx∈RT f(x) ≤ ∆ if

T =

⌊
∆l1

Lλ2∆0

⌋
.

Thus, we have f ∈ F∆,L.

(Step 2: Oracle Class) Let us construct a stochastic gradient mapping. For our lower bound, we take

[∇f(x; ξ)]j := ∇jf(x)

(
1 + 1 [j > prog(x)]

(
ξ

p
− 1

))
∀x ∈ RT ,

and D∇f
i = Bernoulli(p) for all i ∈ [n], where p ∈ (0, 1]. We denote [x]j as the jth index of a vector

x ∈ RT . Let us take

p = min

{
L2λ2γ2∞
σ2l21

, 1

}
.

Then Tyurin and Richtárik (2023c)[Sec. D.2, Proof of Thm. 6.4] show that this mapping is unbiased
and σ2-variance-bounded.

(Step 3: Compression Operator) In our construction, we take the RandK compressor (outputs K
random values of an input vector without replacement, scaled by T/K (Def. D.1)). From Theorem D.2,
we know that C is unbiased and T

K − 1–variance bounded, i.e.,

ES [C(x;S)] = x, ES
[
∥C(x;S)− x∥2

]
≤
(
T

K
− 1

)
∥x∥2 , ∀x ∈ RT ,

where

[C(x;S)]j :=
{
T
Kxj , j ∈ S,

0, j ̸∈ S,
∀j ∈ [T].

13We can avoid this constraint using a slightly different construction of a compressor. However, the number of
non-zero returned values by the new construction is random. See Sec. P.3.

14The function f defined on RT with T = Θ(L∆/ε) , and the constructed compressor C preserves only
K = ⌈T/ω+1⌉ non-zero coordinates.

45

3761 https://doi.org/10.52202/079017-0123

and S is an uniformly random subset of [T] without replacement. It is sufficient to take K =
⌈

T
ω+1

⌉
to ensure that C ∈ U(ω). Let us define pω := K

T . We take mutually independent distributions DC
i that

generate random subsets S described above.

(Step 4: Analysis of Protocol)
Let us take

λ =

√
2εl1
L

to ensure that ∥∇f(x)∥2 = L2λ2

l21

∥∥∇FT (xλ)∥∥2 > 2ε1 [prog(x) < T] for all x ∈ RT , where we use
Lemma P.1. Thus

T =

⌊
∆L

2εl1∆0

⌋
(57)

and

p = min

{
2εγ2∞
σ2

, 1

}
.

Protocol 9 generates the sequence {xk}∞k=0. We have

inf
k∈St

∥∥∇f(xk)∥∥2 > 2ε inf
k∈St

1
[
prog(xk) < T

]
. (58)

Using Lemma P.2 with δ = 1/2 and (58), we obtain

E
[
inf
k∈St

∥∥∇f(xk)∥∥2] ≥ 2εP
(

inf
k∈St

1
[
prog(xk) < T

]
≥ 1

)
> ε

for

t ≤ 1

48
t∗
(
T

K
,max

{
σ2

2εγ2∞
, 1

}
, h1, τ1, . . . , hn, τn

)(
∆L

8εl1∆0
− 1

)
.

By the assumption of the theorem, we have ω + 1 ≤ T. Therefore, we get the series of inequalities:

T

K
=

T⌈
T
ω+1

⌉ ≥ ω + 1

2

and, using Properties 6.1 and E.1, we have

t∗
(
T

K
,max

{
σ2

2εγ2∞
, 1

}
, h1, τ1, . . . , hn, τn

)
≥ t∗

(
ω + 1

2
,max

{
σ2

2εγ2∞
, 1

}
, h1, τ1, . . . , hn, τn

)
≥ t∗

(
1

2γ2∞
× ω,

1

2γ2∞
× σ2

ε
, h1, τ1, . . . , hn, τn

)
≥ 1

2γ2∞
× t∗

(
ω, σ

2
/ε, h1, τ1, . . . , hn, τn

)
,

Thus, we can take

t =
1

48
× 1

2γ2∞
× t∗

(
ω, σ

2
/ε, h1, τ1, . . . , hn, τn

)(∆L

8εl1∆0
− 1

)
.

P.1.1 Proof of Lemma P.2

Lemma P.2. Let us fix T, T ′ ∈ N such that T ≤ T ′, consider Protocol 9 with an algorithm A ∈ Azr,
a differentiable function f : RT ′ → R such that prog(∇f(x)) ≤ prog(x)+1 for all x ∈ domain(f).

46

3762https://doi.org/10.52202/079017-0123

1. We take stochastic oracles Oi = O
∇f,D∇f

i

hi
with the distributions D∇f

i = Bernoulli(pσ),
pσ ∈ (0, 1], hi > 0, and the mappings

[∇f(x; ξ)]j = ∇jf(x)

(
1 + 1 [j > prog(x)]

(
ξ

pσ
− 1

))
∀x ∈ RT

′
,∀ξ ∈ {0, 1},∀j ∈ [T].

(59)

2. We take compression oracles Ĉi = O
C,DC

i
τi with the distributions DC

i = uniform(K,T ′) (=
“uniformly random subset of [T ′] of the size K without replacement”) and the mappings

[C(x;S)]j :=

{
T ′

K xj , j ∈ S,

0, j ̸∈ S,
∀x ∈ RT

′
,∀S ⊆ [n],∀j ∈ [T ′], (60)

τi > 0. We define pω := K
T ′ . We assume that the workers are sorted by max{hm, τm} :

max{h1, τ1} ≤ · · · ≤ max{hn, τn}. With probability not less than 1− δ, the following inequality
holds:

inf
k∈St

1
[
prog(xk) < T

]
≥ 1

for

t ≤ 1

48
t∗(1/pω, 1/pσ, h1, τ1, . . . , hn, τn)

(
T

2
+ log δ

)
,

where St :=
{
k ∈ N0 | tk ≤ t

}
, the iterates tk and xk are defined in Protocol 9, and t∗ is the

equilibrium time from Def. 3.1.

Proof.
(Part 1): The Construction of Random Variables.
Let us fix t ≥ 0 and define the smallest index k(i) of the sequence when the progress prog(xk(i))
equals i :

k(i) := inf
{
k ∈ N0 | i = prog(xk)

}
∈ N0 ∪ {∞}.

If infk∈St
1
[
prog(xk) < 1

]
< 1 holds, then exists k ∈ St such that prog(xk) = 1, thus, by the

definition of k(1), tk(1) ≤ tk ≤ t, and k(1) <∞. Note that tk(1) is the smallest time when we make
progress to the 1th (first) coordinate.

Since x0 = 0 and A is a zero-respecting algorithm, the algorithm can return a vector xk with a
non-zero first coordinate only if some of returned by the stochastic gradients oracles and compression
oracles have the first coordinate not equal to zero. The oracles Oi and Ĉi are constructed in such a
way (see (59) and (60)) that they zero out a coordinate based on i.i.d. bernoulli and uniform trials.
According to Protocol 9, even if a stochastic oracle returns a non-zero coordinate, it would not mean
that the server will get a non-zero coordinate because a subsequent compression oracle also has to
return a non-zero coordinate.

Every time when the oracle (55) evaluates g(sx; ξ), it draws i.i.d. random variables ξ ∼ D. Let us
enumerate them:

1. For the stochastic/computation oracles Oi = O
∇f,D∇f

i

hi
, we consider the sequence

{ξm,j}∞j=1, where ξm,j is a bernoulli random variable drawn in jth call of g(sx; ξ) in
the mth worker in Line 5 of Protocol 9.

2. For the compression oracles Ĉi = O
C,DC

i
τi , we consider the sequence {Sm,j}∞j=1, where

Sm,j is a uniform random variable drawn in jth call of g(sx; ξ) in the mth worker in Line 7
of Protocol 9.

Let us define the following useful random variables based on previous definitions. We define

ηm,j :=

{
inf{i | ξm,(i+b

η
m,j−1) = 1 and i ∈ N} ∈ N ∪ {∞}, bηm,j <∞,

∞, bηm,j = ∞,
∀j ∈ {1, . . . , T},

(61)

47

3763 https://doi.org/10.52202/079017-0123

µm,j :=

{
inf{i | j ∈ Sm,(i+e

µ
m,j−1) and i ∈ N} ∈ N ∪ {∞}, eµm,j <∞,

∞, eµm,j = ∞,
∀j ∈ {1, . . . , T},

(62)

where

1. For all m ∈ [n], j ≥ 1, bηm,j ∈ N ∪ {∞} is the first index of the sequence {ξm,j}∞j=1 that
started calculating in (55) in the stochastic oracle Om in or after the iteration k(j − 1).

2. For all m ∈ [n], j ≥ 1, bµm,j ∈ N ∪ {∞} is the first index of the sequence {Sm,j}∞j=1 that
started calculating in (55) in the compression oracle Ĉm in or after the iteration k(j − 1).

3. For all m ∈ [n], j ≥ 1, if bηm,j = ∞, then eηm,j = ∞. For all m ∈ [n], j ≥ 1, if bηm,j <∞,

then eηm,j ∈ N ∪ {∞} is the first index of the sequence {ξm,j}∞j=1 that started calculating
in (55) in the stochastic oracle Om in or after the iteration k(j − 1) and the first moment
when ξm,(i+b

η
m,j−1) = 1 for some i ≥ 1.

4. For all m ∈ [n], j ≥ 1, if bηm,j = ∞, then eµm,j = ∞. For all m ∈ [n], j ≥ 1, if bηm,j <∞,

then eµm,j ∈ N ∪ {∞} is the first index of the sequence {Sm,j}∞j=1 that started calculating
in (55) in the compression oracle Ĉm in or after the iteration k(j − 1) and the first moment
when ξm,(i+b

η
m,j−1) = 1 for some i ≥ 1.

It possible that such indexes do not exist, then we take bηm,j = ∞, bµm,j = ∞, eηm,j = ∞, or
eµm,j = ∞, accordingly. By the construction, eηm,j ≥ bηm,j and eµm,j ≥ bµm,j .

Let us clarify the definitions. At the beginning x0 = 0, thus k(0) = 0. It would mean that the first
index of the sequence {ξm,j}∞j=1, when the worker evaluates g(sx; ξ) in (55), simply equals bηm,1 = 1

or bηm,1 = ∞ (by the definition, it equals to ∞ if the oracle was never called). Assume that bηm,1 = 1,

then ηm,1 = inf{i | ξm,i = 1 and i ∈ N} is the first time when the oracle draws a “successful”
random bernoulli trial. This random variable is distributed according to the geometric distribution.
Then, eηm,1 can be equal to ηm,1 + 1 or ∞. At some (random) iteration k(1), the algorithm A can get
the first non-zero coordinate through gk, then bµm,2 is the next index of the sequence {ξm,j}∞j=1 that
started calculating in (55).15

The server gets a non-zero coordinate if at least one worker draws a successful bernoulli trial, and
this coordinate belongs to a set generated by the uniform distribution. It takes hi seconds to generate
one bernoulli trial and τi seconds to generate one uniform trial.

Then, if := infk∈St 1
[
prog(xk) < 1

]
< 1 holds, then

t̂1 := min
m∈[n]

{hmηm,1 + τmµm,1} ≤ tk(1).

because hmηm,1 + τmµm,1 is the time required to generate ηm,1 bernoulli and µm,1 uniform trials.
In other words, the algorithm can not progress to the next coordinate before the moment when at least
one worker generates “successful” bernoulli and uniform trials.

Using the same reasoning, tk(j) ≥ tk(j−1) + t̂j , where

t̂j := min
m∈[n]

{hmηm,j + τmµm,j} .

15Let us consider an example with the mth worker. Assume that it starts calculations of stochastic gradients and
with ηm,1 = 5 (as an example) it gets a “successful” trial: ξm,ηm,ηm,1 = ξm,5 = 1 (ξm,1 = · · · = ξm,4 = 0).
And only then, starting with eµm,1, the compression oracle can get a vector with a non-zero coordinate. Even if
there was a previous “successful” trial: 1 ∈ Sm,i for some i < eµm,1. This trial did not return a vector with a
non-zero coordinate because the stochastic oracle did not return a vector with a non-zero coordinate by that time.
Assume that eµm,1 = 10, then the server waits for µm,1 = inf{i | 1 ∈ Sm,(i+e

µ
m,1−1)}. Assume that µm,1 = 7,

then the time moment, when 1 ∈ Sm,(µm,1+e
µ
m,1−1) = 1 ∈ Sm,(7+10−1), is the first possible moment when

the mth worker can send a vector with a non-zero coordinate to the server.

48

3764https://doi.org/10.52202/079017-0123

Combining the observations, if infk∈St 1
[
prog(xk) < T

]
< 1 holds, then∑T

j=1 minj∈[n] (hiηi,j + τiµi,j) ≤ tk(T) ≤ t. Thus

P
(

inf
k∈St

1
[
prog(xk) < T

]
< 1

)
≤ P

(
T∑
i=1

t̂i ≤ t

)
= P

(
T∑
i=1

min
j∈[n]

(hiηi,j + τiµi,j) ≤ t

)
∀t ≥ 0.

(Part 2): The Chernoff Method

Let us fix s ≥ 0 and t̂ ≥ 0. Using the Chernoff method, we have

P

(
T∑
i=1

t̂i ≤ t̂

)
= P

(
−s

(
T∑
i=1

t̂i

)
≥ −st̂

)
= P

(
exp

(
−s

T∑
i=1

t̂i

)
≥ exp

(
−st̂

))

≤ est̂E

[
exp

(
−s

T∑
i=1

t̂i

)]
.

(63)

Let us bound the expected value separately. For all j ∈ [T], let us define Gj as the σ–algebra
generated by random variables

bη1,j , . . . , b
η
n,j

ξ1,1, ξ1,2, . . . , ξ1,b
η
1,j−1,

. . .

ξn,1, ξn,2, . . . , ξ1,b
η
n,j−1,

bµ1,j , . . . , b
µ
n,j ,

S1,1, S1,2, . . . , S1,bµ1,j−1,

. . .

Sn,1, Sn,2, . . . , Sn,b
µ
n,j−1.

(64)

The σ–algebra GT contains all information about the random variables before the moment when
prog(xk) = T − 1. Then, we have

E

[
exp

(
−s

T∑
i=1

t̂i

)]
= E

[
E

[
exp

(
−s

T−1∑
i=1

t̂i − st̂T

)∣∣∣∣∣GT
]]

.

Note that if the random variables from (64) are “fixed,” then t̂i is deterministic for all i ∈ [T − 1]
because t̂i is a deterministic function of (64), and does not depend on other subsequent random
variables.

Let us show it using a contradiction proof. Without the loss of generality, assume that t̂T−1 depends
on ξ1,b

η
1,T ̸∈ (64). By the definition of bη1,T , it would mean that the first time when the server can

get a vector gk with a non-zero coordinate in the index T − 1 is after the moment tk(T−1). We get
a contradiction since tk(T−1) is the first time when the algorithm return an iterate with a non-zero
coordinate in the index T − 1.

Thus, t̂i is GT –measurable for all i ∈ [T − 1] and

E

[
exp

(
−s

T∑
i=1

t̂i

)]
= E

[
exp

(
−s

T−1∑
i=1

t̂i

)
E
[
exp

(
−st̂T

)∣∣GT]] . (65)

Let us fix t′ ≥ 0, then, since t̂T ≥ 0, we have

E
[
e−st̂T

∣∣∣GT] = E
[
e−st̂T

∣∣∣ t̂T ≤ t′,GT
]
P
(
t̂T ≤ t′

∣∣GT)+ E
[
e−st̂T

∣∣∣ t̂T > t′,GT
] (

1− P
(
t̂T ≤ t′

∣∣GT))
≤ P

(
t̂T ≤ t′

∣∣GT)+ e−st
′ (
1− P

(
t̂T ≤ t′

∣∣GT)) .
(66)

We now use the result of the following lemma that we prove separately.

49

3765 https://doi.org/10.52202/079017-0123

Lemma P.3. Using the notations from the proof of Lemma P.2, we have

P
(
t̂j ≤ t′

∣∣Gj) ≤ 1−
n∏

m=1

(
1−

(
1− (1− pω)

⌊
t′
τm

⌋)(
1− (1− pσ)

⌊
t′

hm

⌋))
(67)

for all j ∈ [T].

Let us temporarily define

p′ := 1−
n∏

m=1

(
1−

(
1− (1− pω)

⌊
t′
τm

⌋)(
1− (1− pσ)

⌊
t′

hm

⌋))
We substitute (67) to (66) and (65) to obtain

E

[
exp

(
−s

T∑
i=1

t̂i

)]
≤
(
p′ + e−st

′
(1− p′)

)
E

[
exp

(
−s

T−1∑
i=1

t̂i

)]
≤
(
p′ + e−st

′
(1− p′)

)T
.

Next, using (63), we get

P

(
T∑
i=1

t̂i ≤ t̂

)
≤ est̂

(
p′ + e−st

′
(1− p′)

)T
= est̂−st

′T
(
1 +

(
est

′
− 1
)
p′
)T

.

Let us take s = 1/t′, and get

P

(
T∑
i=1

t̂i ≤ t̂

)
≤ et̂/t

′−T (1 + (e− 1) p′)
T ≤ et̂/t

′−T+2p′T . (68)

Let us recall the definition of p′ :

p′ := 1−
n∏

m=1

(
1−

(
1− (1− pω)

⌊
t′
τm

⌋)(
1− (1− pσ)

⌊
t′

hm

⌋))
= 1−

n∏
m=1

(1− qm)

where we define qm :=

(
1− (1− pω)

⌊
t′
τm

⌋)(
1− (1− pσ)

⌊
t′

hm

⌋)
∈ [0, 1]. Using Lemma C.1,

we have

p′ ≤
n∑

m=1

qm.

Using the inequality16 1− (1− p)m ≤ pm for all p ∈ [0, 1] and m ∈ N0, we can get the following
three inequalities:

qm ≤ 1− (1− pσ)

⌊
t′

hm

⌋
≤ pσ

⌊
t′

hm

⌋
,

qm ≤ 1− (1− pω)

⌊
t′
τm

⌋
≤ pω

⌊
t′

τm

⌋
,

and

qm ≤
(
1− (1− pω)

⌊
t′
τm

⌋)(
1− (1− pσ)

⌊
t′

hm

⌋)
≤ pω

⌊
t′

τm

⌋
pσ

⌊
t′

hm

⌋
.

Therefore, we get

qm ≤ min

{
pσ

⌊
t′

hm

⌋
, pω

⌊
t′

τm

⌋
, pωpσ

⌊
t′

τm

⌋⌊
t′

hm

⌋}
16We implicitly assume that 1− (1− p)m = 0 if p = 1 and m = 0. See footnote 17 for the details.

50

3766https://doi.org/10.52202/079017-0123

and

p′ ≤
n∑

m=1

min

{
pσ

⌊
t′

hm

⌋
, pω

⌊
t′

τm

⌋
, pωpσ

⌊
t′

τm

⌋⌊
t′

hm

⌋}
. (69)

Now, we have to take the right t′. Assume that s∗(j) is the solution of(
j∑

m=1

1
2τm
pω

+ 4τmhm

pωpσs
+ 2hm

pσ

)−1

= s (70)

and

j∗ = inf {j ∈ [n] | s∗(j) < max{hj+1, τj+1}} ∈ [n], max{hn+1, τn+1} ≡ ∞.

Then we take t′ = 1
24s

∗(j∗). If j∗ = 1, then

s∗(j∗) =

(
1

2τ1
pω

+ 4τ1h1

pωpσs∗(j∗)
+ 2h1

pσ

)−1

≥

(
1

2τ1
pω

+ 2h1

pσ

)−1

≥
(

1

2τ1 + 2h1

)−1

≥ 1

2
max{h1, τ1}.

Otherwise, if j∗ > 1, since s∗(j∗) ≤ s∗(j∗ − 1), we have

s∗(j∗) =

 j∗∑
m=1

1
2τm
pω

+ 4τmhm

pωpσs∗(j∗)
+ 2hm

pσ

−1

≥

j∗−1∑
m=1

1
2τm
pω

+ 4τmhm

pωpσs∗(j∗−1) +
2hm

pσ

+
1

2τj∗

pω
+

2hj∗

pσ

−1

≥

j∗−1∑
m=1

1
2τm
pω

+ 4τmhm

pωpσs∗(j∗−1) +
2hm

pσ

+
1

max{hj∗ , τj∗}

−1

.

By the definitions of s∗(j∗ − 1) and j∗, we havej∗−1∑
m=1

1
2τm
pω

+ 4τmhm

pωpσs∗(j∗−1) +
2hm

pσ

−1

= s∗(j∗ − 1) ≥ max{hj∗ , τj∗}.

Therefore, we get

s∗(j∗) ≥
(

1

max{hj∗ , τj∗}
+

1

max{hj∗ , τj∗}

)−1

=
1

2
max{hj∗ , τj∗}.

Using s∗(j∗) ≥ 1
2 max{hj∗ , τj∗}, we obtain

t′ =
1

24
max

{
1

2
max{hj∗ , τj∗}, s∗(j∗)

}
≥ 1

48
min
j∈[n]

max{max{hj , τj}, s∗(j)}. (71)

We use the last inequality later. Let us return to the inequality (69). Using the definition of j∗, we
obtain

⌊
t′

τm

⌋
= 0 or

⌊
t′

hm

⌋
= 0 for all m > j∗ and

p′ ≤
n∑

m=1

min

{
pσ

⌊
t′

hm

⌋
, pω

⌊
t′

τm

⌋
, pωpσ

⌊
t′

τm

⌋⌊
t′

hm

⌋}

=

j∗∑
m=1

min

{
pσ

⌊
t′

hm

⌋
, pω

⌊
t′

τm

⌋
, pωpσ

⌊
t′

τm

⌋⌊
t′

hm

⌋}

≤
j∗∑
m=1

min

{
pσt

′

hm
,
pωt

′

τm
,
pωpσt

′2

τmhm

}
,

51

3767 https://doi.org/10.52202/079017-0123

where we use ⌊x⌋ ≤ x for all x ≥ 0. Using max{x, y, z} ≥ 1
3 (x+ y + z) for all x, y, z ≥ 0, we

have

p′ ≤
j∗∑
m=1

(
max

{
hm
pσt′

,
τm
pωt′

,
τmhm
pωpσt′2

})−1

≤
j∗∑
m=1

3
τm
pωt′

+ τmhm

pωpσt′2
+ hm

pσt′

.

Since t′ = 1
24s

∗(j∗), we obtain

p′ ≤
j∗∑
m=1

3
24τm

pωs∗(j∗)
+ 242τmhm

pωpσ(s∗(j∗))2
+ 24hm

pσs∗(j∗)

≤ 1

4

j∗∑
m=1

1
2τm

pωs∗(j∗)
+ 4τmhm

pωpσ(s∗(j∗))2
+ 2hm

pσs∗(j∗)

.

Note that s∗(j∗) is the solution of (70), thus, we get

p′ ≤ 1

4
.

Substituting this inequality to (68), we obtain

P

(
T∑
i=1

t̂i ≤ t̂

)
≤ et̂/t

′−T
2 .

For t̂ ≤ t′
(
T
2 + log δ

)
, we have

P

(
T∑
i=1

t̂i ≤ t̂

)
≤ δ.

Recall that the definition of t′. Using (71), we have

t′ ≥ 1

48
min
j∈[n]

max{max{hj , τj}, s∗(j)}.

The last term equals to the equilibrium time t∗(1/pω, 1/pσ, h1, τ1, . . . , hn, τn) from Def. 3.1 since the
pairs (hj , τj) are sorted by max{hj , τj}. Thus, we obtain

t′ ≥ 1

48
t∗(1/pω, 1/pσ, h1, τ1, . . . , hn, τn).

Finally, we obtain

P
(

inf
k∈St

1
[
prog(xk) < T

]
< 1

)
≤ P

(
T∑
i=1

t̂i ≤ t

)
≤ δ (72)

for

t ≤ 1

48
t∗(1/pω, 1/pσ, h1, τ1, . . . , hn, τn)

(
T

2
+ log δ

)
.

P.2 Proof of Lemma P.3

Lemma P.3. Using the notations from the proof of Lemma P.2, we have

P
(
t̂j ≤ t′

∣∣Gj) ≤ 1−
n∏

m=1

(
1−

(
1− (1− pω)

⌊
t′
τm

⌋)(
1− (1− pσ)

⌊
t′

hm

⌋))
(67)

for all j ∈ [T].

Proof. We prove the result for j = T. The proofs for the cases 1 ≤ j < T are the same. We consider
the conditional probability

P
(
t̂T ≤ t′

∣∣GT) = P
(

min
m∈[n]

{hmηm,T + τmµm,T } ≤ t′
∣∣∣∣GT) .

52

3768https://doi.org/10.52202/079017-0123

Let us consider the σ–algebra HT generated by (64) with j = T and

eη1,T , . . . , e
η
n,T

ξ1,1, ξ1,2, . . . , ξ1,e
η
1,T−1,

. . .

ξn,1, ξn,2, . . . , ξ1,e
η
n,T−1,

eµ1,T , . . . , e
µ
n,T ,

S1,1, S1,2, . . . , S1,eµ1,T−1,

. . .

Sn,1, Sn,2, . . . , Sn,e
µ
n,T−1.

(73)

By the construction, eηm,T ≥ bηm,T and eµm,T ≥ bµm,T . Since GT ⊆ HT , we have

P
(
t̂T ≤ t′

∣∣GT) = E
[
P
(

min
m∈[n]

{hmηm,T + τmµm,T } ≤ t′
∣∣∣∣HT

)∣∣∣∣GT] .
Since GT ⊆ HT , then bµm,T is HT –measurable. By the definition of eηm,T , ηm,T are HT -measurable.
Let us show it using a contradiction proof. Without the loss of generality, assume that ηm,T depends
on ξ1,e

η
m,T ̸∈ (73). It would mean that the first time, when ξm,i = 1 after the iteration k(T − 1),

happens with i ≥ eηm,T . At the same time, by the definition of eηm,T , there exists i < eηm,T such
that ξm,i = 1 calculated after the iteration k(T − 1). We get a contradiction. Given HT , µm,T
are mutually independent since {Sm,j}∞j=1 are mutually independent and eµm,T are HT -measurable.
Therefore, we have

P
(
t̂T ≤ t′

∣∣GT) = E
[
P
(

min
m∈[n]

{hmηm,T + τmµm,T } ≤ t′
∣∣∣∣HT

)∣∣∣∣GT]
= 1− E

[
P

(
n⋂

m=1

{hmηm,T + τmµm,T > t′}

∣∣∣∣∣HT

)∣∣∣∣∣GT
]

= 1− E

[
n∏

m=1

P (hmηm,T + τmµm,T > t′|HT)

∣∣∣∣∣GT
]
.

(74)

Let us consider the probability P (hmηm,T + τmµm,T > t′|HT) :

P (hmηm,T + τmµm,T > t′|HT) = 1− P (hmηm,T + τmµm,T ≤ t′|HT)

≥ 1− P (hmηm,T ≤ t′, τmµm,T ≤ t′|HT)

= 1− E [1 [hmηm,T ≤ t′]1 [τmµm,T ≤ t′]|HT]

because the event {hmηm,T ≤ t′}
⋂
{τmµm,T ≤ t′} follows from {hmηm,T +τmµm,T ≤ t′}. Since

ηm,T is HT –measurable, we have

P (hmηm,T + τmµm,T > t′|HT) ≥ 1− E [1 [τmµm,T ≤ t′]|HT]1 [hmηm,T ≤ t′]

= 1− P (τmµm,T ≤ t′|HT)1 [hmηm,T ≤ t′] .
(75)

Let us consider the probability P (τmµm,T ≤ t′|HT) . Given HT , if eµm,T = ∞, then µm,T = ∞
and P (τmµm,T ≤ t′|HT) = 0. Otherwise, if eµm,T = e <∞, then

µm,T = inf{i | j ∈ Sm,(i+e−1) and i ∈ N}.

and it is distributed with the geometric distribution with pω. Thus, we have17

P (τmµm,T ≤ t′|HT) =

{
1− (1− pω)

⌊
t′
τm

⌋
, eµm,T <∞

0, eµm,T = ∞
≤ 1− (1− pω)

⌊
t′
τm

⌋
,

17We implicitly assume that 1 − (1 − pω)

⌊
t′
τm

⌋
= 0 if pω = 1 and

⌊
t′

τm

⌋
= 0, because if t′ < τm, then

P (τmµm,T ≤ t′) = 0 for the r.v. µm,T from the geometric distribution for all pω ∈ (0, 1].

53

3769 https://doi.org/10.52202/079017-0123

because the probability that jth coordinate belongs to Sm,(i+e−1) equals to pω. We substitute this
inequality to (75) and get

P (hmηm,T + τmµm,T > t′|HT) ≥ 1−
(
1− (1− pω)

⌊
t′
τm

⌋)
1 [hmηm,T ≤ t′] .

Next, we substitute this inequality to (74) and obtain

P
(
t̂T ≤ t′

∣∣GT) ≤ 1− E

[
n∏

m=1

(
1−

(
1− (1− pω)

⌊
t′
τm

⌋)
1 [hmηm,T ≤ t′]

)∣∣∣∣∣GT
]
.

Given GT , ηm,T are independent because bηm,T are GT –measurable. Thus

P
(
t̂T ≤ t′

∣∣GT) ≤ 1−
n∏

m=1

(
1−

(
1− (1− pω)

⌊
t′
τm

⌋)
E [1 [hmηm,T ≤ t′]| GT]

)

= 1−
n∏

m=1

(
1−

(
1− (1− pω)

⌊
t′
τm

⌋)
P (hmηm,T ≤ t′|GT)

)
.

Using the same reasoning as with µm,T , we get

P (hmηm,T ≤ t′|GT) =

{
1− (1− pσ)

⌊
t′

hm

⌋
, bηm,T <∞

0, bηm,T = ∞
≤ 1− (1− pσ)

⌊
t′

hm

⌋
.

because, given GT , ηm,T equals ∞ or a random variable distributed according to the geometric
distribution with pσ. Therefore, we obtain

P
(
t̂T ≤ t′

∣∣GT) ≤ 1−
n∏

m=1

(
1−

(
1− (1− pω)

⌊
t′
τm

⌋)(
1− (1− pσ)

⌊
t′

hm

⌋))
.

P.3 Another Construction

In the proof of Theorem O.5, we could use the following construction:

(Step 3: Compression Operator) Let us define pω := 1
ω+1 . In our construction, we take a compressor

that outputs random coordinates of an input vector, scaled by 1/pω, where each coordinate is taken
with the probability pω. Each worker has access to the independent compressed realizations of a such
compressor. More formally, we assume that

[C(x;S)]j :=

{
1
pω
xj , j ∈ S,

0, j ̸∈ S,
∀j ∈ [T],

where S is a random subset of [T], where each element from [T] appears with the probability pω
independently. Then

ES [[C(x;S)]j] = xj

and

ES
[
∥C(x;S)∥2

]
= ES

 T∑
j=1

1 [j ∈ S]
1

p2ω
x2j

 =

T∑
j=1

P (j ∈ S)
1

p2ω
x2j =

T∑
j=1

1

pω
x2j = (ω + 1) ∥x∥2 .

Thus, we have C ∈ U(ω). We take mutually independent distributions DC
i that generate random

subsets S described above.

This construction is also valid and does not require the assumption ω + 1 ≲ L∆/ε. However, unlike
the construction from Theorem O.5, this construction can return a random number of non-zero
coordinates.

54

3770https://doi.org/10.52202/079017-0123

Q Experiments

The experiments were prepared in Python. The distributed environment was emulated on machines
with Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz and 64 cores.

Q.1 Experiments with Logistic Regression

0 10000 20000 30000 40000 50000
times (seconds)

2.6 × 10 1

2.8 × 10 1

3 × 10 1

3.2 × 10 1

3.4 × 10 1

f(x
t)

f(x
*)

Asynchronous SGD: Step size: 0.015625
SGDone: Step size: 0.03125
Minibatch SGD: Step size: 1.0
QSGD: Step size: 0.5
Shadowheart SGD: Step size: 1.0, 2/ : 80

(a) Experiment with computation speeds hi =
√
i

and high communications speeds τ̇i =
√
i/d

0 100000 200000 300000 400000 500000 600000 700000 800000
times (seconds)

3 × 10 1

4 × 10 1

f(x
t)

f(x
*)

Asynchronous SGD: Step size: 0.015625
SGDone: Step size: 0.015625
Minibatch SGD: Step size: 1.0
QSGD: Step size: 0.25
Shadowheart SGD: Step size: 1.0, 2/ : 20

(b) Experiment with computation speeds hi =
√
i

and low communications speeds τ̇i =
√
i/d1/2

0 25000 50000 75000 100000 125000 150000 175000 200000
times (seconds)

2.4 × 10 1

2.6 × 10 1

2.8 × 10 1

3 × 10 1

3.2 × 10 1

3.4 × 10 1

f(x
t)

f(x
*)

Asynchronous SGD: Step size: 0.015625
SGDone: Step size: 0.03125
Minibatch SGD: Step size: 1.0
QSGD: Step size: 0.25
Shadowheart SGD: Step size: 1.0, 2/ : 20

(c) Experiment with computation speeds hi =
√
i

and medium communications speeds τ̇i =
√
i/d3/4

We start our experiments with a practical setup: a logistic regression problem with the MNIST dataset
(LeCun et al., 2010). The optimization steps of algorithms are emulated in Python, where we fix the
number of workers to n = 100, each worker has access to the MNIST dataset and sample 4 samples
when calculating a stochastic gradient. We compare Shadowheart SGD with QSGD, Asynchronous
SGD (we implement the version from (Koloskova et al., 2022)), Minibatch SGD, and SGDone. SGDone

is the method described in Sec. 7, where SGD is run on the fastest worker locally. In Shadowheart
SGD, we fine-tune the parameter σ2

/ε ∈ {1, 5, 10, 20, 30, 40, 80, 120, 150, 200}. In all the methods,
we also finetune the step sizes. The dimension of the problem in the logistic regression problem is
d = 7850. In Shadowheart SGD and QSGD, we take RandK with K = 700.

We assume that the computations time hi of a stochastic gradient equals to
√
i seconds in the

ith worker. We consider three communication time setups, where it takes τ̇i seconds to send one
coordinate from the ith worker to the server and

1. τ̇i =
√
i/d (High-speed communications),

2. τ̇i =
√
i/d3/4 (Medium-speed communications),

3. τ̇i =
√
i/d1/2 (Low-speed communications).

In the high-speed regime, the communication between the server and the worker is relatively fast.
At the same time, in low-speed regimes, communication is expensive. We are ready to present the
results of our experiments in Fig. 1a, 1c, and 1b.

In Figure 1a, one can see that Shadowheart SGD, Asynchronous SGD, and Minibatch SGD are the
fastest because it is not expensive to send a non-compressed vector in the “high-speed communications”
regime. SGDone is the slowest since it utilizes only one worker.

55

3771 https://doi.org/10.52202/079017-0123

Next, we analyze Figure 1b, where Shadowheart SGD and SGDone have the best performance. SGDone

improves the convergence relative to other methods because the communication speed is much slower
than in Figure 1a, and it is expensive to send a non-compressed vector.

One can see that Shadowheart SGD is very robust to all regimes and has one of the best convergence
rates in all experiments. Notably, in the “medium-speed communications” regime, where it is still
expensive to send a non-compressed vector, our new method converges faster than other baseline
methods.

Q.2 Experiments with quadratic optimization tasks and multiplicative noise

In real machine learning tasks, it is not easy to control noise. Thus, we generated synthetic quadratic
optimization tasks where we can control the noise of stochastic gradients. In particular, we consider

f(x) =
1

2
x⊤Ax− b⊤x

for all x ∈ Rd and take d = 1000,

A =
1

4


2 −1 0

−1
.
. −1

0 −1 2

 ∈ Rd×d and b =
1

4


−1
0
...
0

 ∈ Rd.

We consider the following stochastic gradients:

[∇f(x; ξ)]j := ∇jf(x)

(
1 + 1 [j > prog(x)]

(
ξ

p
− 1

))
∀x ∈ Rd, (76)

where ξ ∼ Bernoulli(p) for all i ∈ [n], and p ∈ (0, 1]. We denote [x]j as the jth index of a vector
x ∈ Rd. In our experiments, we take the starting point x0 = [

√
d, 0, . . . , 0]⊤ and p ∈ {10−3, 10−4};

the smaller p the larger the noise of stochastic gradients.

Q.2.1 Discussion of the experiments from Sec. Q.2.2

Using this setup, in Figures 2, 3, 4, we fix all parameters except one that we vary to understand the
dependencies. In all experiments, we observe that Shadowheart SGD is the most robust to input
changes among other centralized methods (QSGD, Asynchronous SGD, Minibatch SGD) and can
converge significantly faster. At the same time, we observe that SGDone can be faster than our method
in some setups. It happens in the regimes when communication is expensive (see Figure 2a), which is
expected and discussed in Sec. 7. Even if communication is expensive, SGDone starts to slow down
relative to other methods when we increase the noise (compare Figures 2b and 2a). The following
experiments agree with our theoretical discussion in Sec. 7.

Q.2.2 Plots

In these experiments, we take n = 10000, p = 10−3, hi =
√
i, τ̇i =

√
i/d3/4 as base parameters; in

each plot, we vary one parameter.

0 50000 100000 150000 200000 250000 300000
times (seconds)

10 3

10 2

f(x
t)

f(x
*)

Asynchronous SGD: Step size: 0.00048828125
SGDone: Step size: 2.0
Minibatch SGD: Step size: 2.0
QSGD: Step size: 1.0
Shadowheart SGD: Step size: 2.0, 2/ : 75

(a) n = 10000, p = 10−3, hi =
√
i, τ̇i =

√
i/d3/4

0 50000 100000 150000 200000 250000 300000
times (seconds)

10 3

10 2

f(x
t)

f(x
*)

Asynchronous SGD: Step size: 0.00048828125
SGDone: Step size: 2.0
Minibatch SGD: Step size: 2.0
QSGD: Step size: 2.0
Shadowheart SGD: Step size: 2.0, 2/ : 200

(b) n = 10000, p = 10−4, hi =
√
i, τ̇i =

√
i/d3/4

Figure 2: SGDone starts to slow down relative to Shadowheart SGD and other methods when we
increase the noise.

56

3772https://doi.org/10.52202/079017-0123

0 50000 100000 150000 200000 250000 300000
times (seconds)

10 3

10 2
f(x

t)
f(x

*)

Asynchronous SGD: Step size: 0.00048828125
Minibatch SGD: Step size: 2.0
QSGD: Step size: 1.0
Shadowheart SGD: Step size: 2.0, 2/ : 150

(a) n = 10000, p = 10−3, hi =
√
i, τ̇i =

√
i/d

0 50000 100000 150000 200000 250000 300000
times (seconds)

10 3

10 2

f(x
t)

f(x
*)

Asynchronous SGD: Step size: 0.00048828125
Minibatch SGD: Step size: 2.0
QSGD: Step size: 1.0
Shadowheart SGD: Step size: 2.0, 2/ : 75

(b) n = 10000, p = 10−3, hi =
√
i, τ̇i =

√
i/d3/4

Figure 3: The non-compressed methods Asynchronous SGD and Minibatch SGD slow down relative
to Shadowheart SGD when we increase the communication times.

0 50000 100000 150000 200000 250000 300000
times (seconds)

10 3

10 2

f(x
t)

f(x
*)

Asynchronous SGD: Step size: 0.00048828125
SGDone: Step size: 2.0
Minibatch SGD: Step size: 2.0
QSGD: Step size: 1.0
Shadowheart SGD: Step size: 2.0, 2/ : 75

(a) n = 10000, p = 10−3, hi =
√
i, τ̇i =

√
i/d3/4

0 50000 100000 150000 200000 250000 300000
times (seconds)

10 3

10 2

f(x
t)

f(x
*)

Asynchronous SGD: Step size: 0.00048828125
SGDone: Step size: 2.0
Minibatch SGD: Step size: 2.0
QSGD: Step size: 1.0
Shadowheart SGD: Step size: 2.0, 2/ : 40

(b) n = 10000, p = 10−3, hi = 1, τ̇i =
√
i/d3/4

Figure 4: Shadowheart SGD improves when we decrease the computation times from
√
i to 1.

Q.3 Experiments with quadratic optimization tasks and additive noise

In this section, we consider the same problem as in Sec. Q.2. However, unlike the multiplicative
noise, we consider the following additive noise:

[∇f(x; ξ)]j := ∇jf(x) + ζ ∀x ∈ Rd,

where ζ ∼ N (0, σ2) is a sample from the normal distribution. Be default, we take n = 100 workers,
the dimension d = 100, and use the Rand1 compressor (ω = d/1 − 1 = 99), x0 = [1, · · · , 1]⊤,
σ = 10−1, ε = 10−4; thus, the ratio σ2

/ε = 102. For all methods, we choose the step sizes in such a
way that they converge to the same neighborhood of the stationary point.

In Figure 5, we sample hki and τ̇ki from the uniform distribution U(0.1, 1), hence the communication
and computation time vary on each iteration for each client. If we increase the number of clients n,
Shadowheart SGD improves (Fig. 5) compared to other methods, confirming our theory.

In Figure 6, we can see the similar results with different ratios σ2
/ε: Shadowheart SGD is much better

when the ratio is large (Fig. 6). On the other hand, when σ2
/ε is small (Fig. 6a) SGDone can be better

because, intuitively, we only need a few workers to find the minimum with a small noise (see also
Sec. 7).

Next, we perform a series of experiments with different computation time and communication times
ratios. We take τ̇k

i/hk
i = c for all i ∈ [n], where c > 0.

In Figure 7, we take hki ∼ U(0.1, 1) and τ̇ki ∼ c · U(0.1, 1). Shadowheart SGD is better in the high
and medium communication speed regimes (Fig. 7b), when the communication times are not too large.
On the other hand, with large c = 102, Shadowheart SGD spends much time on sending gradients to
the server, whereas SGDone does not spend time on communication and does not compress (Fig. 7c).
Similar to Figure 7, we obtain the results with hki =

√
i and τ̇ki = c ·

√
i in Figure 8.

57

3773 https://doi.org/10.52202/079017-0123

Q.3.1 Plots

0 1000 2000 3000 4000 5000
Time, tk

10 3

10 2

10 1
f(x

k)
2

Asynchronous SGD
SGDone

Minibatch SGD
QSGD
Shadowheart SGD

(a) n = 10

0 1000 2000 3000 4000 5000
Time, tk

10 3

10 2

10 1

f(x
k)

2

Asynchronous SGD
SGDone

Minibatch SGD
QSGD
Shadowheart SGD

(b) n = 102

0 1000 2000 3000 4000 5000
Time, tk

10 3

10 2

10 1

f(x
k)

2

Asynchronous SGD
SGDone

Minibatch SGD
QSGD
Shadowheart SGD

(c) n = 103

Figure 5: hki , τ̇
k
i ∼ U(0.1, 1)

0 500 1000 1500 2000 2500 3000
Time, tk

10 4

10 3

10 2

10 1

f(x
k)

2

Asynchronous SGD
SGDone

Minibatch SGD
QSGD
Shadowheart SGD

(a) σ2
/ε = 1

0 500 1000 1500 2000 2500 3000
Time, tk

10 3

10 2

10 1

f(x
k)

2

Asynchronous SGD
SGDone

Minibatch SGD
QSGD
Shadowheart SGD

(b) σ2
/ε = 10

0 2000 4000 6000 8000 10000
Time, tk

10 3

10 2

10 1

f(x
k)

2

Asynchronous SGD
SGDone

Minibatch SGD
QSGD
Shadowheart SGD

(c) σ2
/ε = 102

Figure 6: hki , τ̇
k
i ∼ U(0.1, 1)

0 200 400 600 800 1000
Time, tk

10 3

10 2

10 1

f(x
k)

2

Asynchronous SGD
SGDone

Minibatch SGD
QSGD
Shadowheart SGD

(a) c = 10−1

0 200 400 600 800 1000
Time, tk

10 3

10 2

10 1

f(x
k)

2

Asynchronous SGD
SGDone

Minibatch SGD
QSGD
Shadowheart SGD

(b) c = 1

0 1000 2000 3000 4000 5000
Time, tk

10 3

10 2

10 1

f(x
k)

2

Asynchronous SGD
SGDone

Minibatch SGD
QSGD
Shadowheart SGD

(c) c = 102

Figure 7: hki ∼ U(0.1, 1), τ̇ki ∼ c · U(0.1, 1)

0 1000 2000 3000 4000 5000
Time, tk

10 2

10 1

f(x
k)

2

Asynchronous SGD
SGDone

Minibatch SGD
QSGD
Shadowheart SGD

(a) c = 10−2

0 1000 2000 3000 4000 5000
Time, tk

10 3

10 2

10 1

f(x
k)

2

Asynchronous SGD
SGDone

Minibatch SGD
QSGD
Shadowheart SGD

(b) c = 10−1

0 1000 2000 3000 4000 5000
Time, tk

10 3

10 2

10 1

f(x
k)

2

Asynchronous SGD
SGDone

Minibatch SGD
QSGD
Shadowheart SGD

(c) c = 1

Figure 8: hki =
√
i, τ̇ki = c ·

√
i

58

3774https://doi.org/10.52202/079017-0123

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section 3 and Table 1

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Sections 4.1, 4.2, and 7.2

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

59

3775 https://doi.org/10.52202/079017-0123

Justification: Section 1 and Appendix
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section Q
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

60

3776https://doi.org/10.52202/079017-0123

Answer: [Yes]
Justification: In the supplementary material
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section Q
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: While each particular experiment in every plot from Section Q was run with
one seed, the amount of provided experiments and considered settings can give a high
confidence in our judgments that the experimental part supports the theoretical part, which
is our main contribution.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

61

3777 https://doi.org/10.52202/079017-0123

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section Q
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work considers a mathematical problem from the machine learning
domain.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work considers a mathematical problem from the machine learning
domain.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

62

3778https://doi.org/10.52202/079017-0123

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work considers a mathematical problem from the machine learning
domain.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Section Q
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

63

3779 https://doi.org/10.52202/079017-0123

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code for the experiments is in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

64

3780https://doi.org/10.52202/079017-0123

