Shadowheart SGD: Distributed Asynchronous SGD
with Optimal Time Complexity Under Arbitrary
Computation and Communication Heterogeneity

Alexander Tyurin Marta Pozzi Ivan Ilin Peter Richtarik
KAUST; AIRI Skoltecht ~ KAUST; University of Pavia® ~ KAUST* KAUST*
Abstract

We consider nonconvex stochastic optimization problems in the asynchronous
centralized distributed setup where the communication times from workers to
a server can not be ignored, and the computation and communication times are
potentially different for all workers. Using an unbiassed compression technique,
we develop a new method—Shadowheart SGD—that provably improves the time
complexities of all previous centralized methods. Moreover, we show that the
time complexity of Shadowheart SGD is optimal in the family of centralized
methods with compressed communication. We also consider the bidirectional
setup, where broadcasting from the server to the workers is non-negligible, and
develop a corresponding method.

1 Introduction

We consider the nonconvex smooth optimization problem

min {f(a:) = Eenp, [f(58)] }, ()

z€ERY

where f(+;-) : R? x S¢ — R, and D¢ is a distribution on S¢ # (). Given ¢ > 0, we seek to find

a possibility random point Z such that E[||V f(2)||°] < e. Such a point is called an e—stationary
point. We focus on solving the problem in the following setup:

(a) n workers/nodes are able to compute stochastic gradients V f(x; &) of f, in parallel and asyn-
chronously, and it takes (at most) /; seconds for worker i to compute a single stochastic gradient;

(b) the workers are connected to a server which acts as a communication hub;

(c) the workers can communicate with the server in parallel and asynchronously; it takes (at most)
7; seconds for worker ¢ to send a compressed message to the server; compression is performed via
applying lossy communication compression to the communicated message (a vector from R%); see
Def. 2.1;

(d) the server can broadcast compressed vectors to the workers in (at most) 7zery Seconds; compres-
sion is performed via applying a lossy communication compression operator to the communicated
message (a vector from R%); see Def. A.1.

The main goal of this work is to find an optimal optimization strategy/method that would work
uniformly well in all scenarios characterized by the values of the computation times hq, ..., h, and

*King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
t AIRI, Moscow, Russia

Skolkovo Institute of Science and Technology, Moscow, Russia

§University of Pavia, Pavia, Italy

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

3717 https://doi.org/10.52202/079017-0123

Table 1: Time Complexities of Centralized Distributed Algorithms. Assume that it takes at most
h; seconds to worker 7 to calculate a stochastic gradient and 7; seconds to send one coordinate/float
to server. Abbreviations: L = smoothness constant, ¢ = error tolerance, A = f(2°) — f*, n =# of
workers, d = dimension of the problem. We take the Rand K’ compressor with K = 1 (Def. D.1) (as
an example) in QSGD and Shadowheart SGD. Due to Property 6.2, the choice K = 1 is optimal for
Shadowheart SGD up to a constant factor.

Time Complexities in Some Regimes

Method Time Complexity (i)
maxifin, Tn o0, hi =h,# =7 Vi € [n] Numerical Comparison®
maxths, fi} < oo¥i <n (equal performance) .
(the last worker is slow) qual p /o=)
1 10° 10°
2 . dic? he?yLA
Minibatch SGD (see (2. ax max{hi, di;} (L2 + 22LA o max{h, dr, 47e=, B2=} L2 10% 103 10*
inibatch SGD (see (2)) max max{h d"}(o T) (non-robust) (worse, e.g., when 7, d ot lafge) X107 10T x10
QSGD (sce (5)) ; dno? La
(Alistarh etal., 2017) max max{h, 71} (& +1) L& 4 de2ka) > 2 G X3 x10° x10*
(Khaled and Richtdrik, 2020) i€[n] " © ne (non-robust) (worse, e.g., when & small)
Rennala SGD . { 5 }
(Tyurin and Richtdrik, 2023c), . 2 (& LA® < oo > max { h, di, L= L LA 2
Y > min max § ha, dis,, = = Lac 2 ne J e x10° x10 x1.5
} /(*:{":hl:o"fus SIGE’OH)) = el { (AR (El 23 B (robust) (worse, e.g., when 7, d or n large) ?
e.g., (Mishchenko et al., 2
Shadowheart SGD
(see (9) and Alg. 1) t(d =1, 9%/, [hi, #1]7) LA© <o max { h, 7, 42 \/dthe? o2 lLa g x1 x1
5 1Te (robust) n e 0 ne G
(Corollary 4.3)

Lower Bound

“(d_1.0%. Ly LA@ _ B — B —
(see Section 5 and Theorem 0.5) t7(d =1, 7%, [ha, i]T) &

The time complexity of Shadowheart SGD is not worse than the time complexity of the competing centralized methods, and is strictly better in many regimes (see Section 7.1).
We show that (10) is the optimal time complexity in the family of centralized methods with compression (see Section 5 and Theorem 0.5).

@ Upper bound time complexities are not derived for Rennala SGD and Asynchronous SGD. However, we can derive the lower bound using Theorem O.5 with w = 0. One should take d+; instead of 7; when apply
Theorem O.5 because these methods send d coordinates. 7 is a permutation that sorts max{h;, d7; } : max{hz,diz, } < -+ < max{hz, , dix, }

® We numerically compute time complexities for d = 10%, n = 10%, h; ~ U(0.1,1), # ~ U(0.1, 1) (uniform i.i.d.), and three noise regimes =2/ € {1, 10%, 10°}. We report the factors by which the time
complexities of the competing methods are worse compared to the time complexity of our method Shadowheart SGD. So, for example, Minibatch SGD, QSGD and Asynchronous SGD can be worse by the factors x 10,
x10%, and x 102, respectively.

© The mapping ¢* is defined in Def. 3.1.

 The lower bound constructed with the Rand & compressor and the dimension d = © (LA /) .

communication times 7y, . . . , T, and Tgepy. Since we allow these times to be arbitrarily heterogeneous,
designing a single algorithm that would be optimal in all these scenarios seems challenging.

Let us clarify what we mean by {7;} and take, for instance, the Rand K compressor (see Def. D.]1
and Sec. 2.2) (sends K random entries). Then 7; is # of seconds required to send K coordinates
of a vector. Now assume that the communication is proportional to the number of coordinates/bits
that a worker sends, i.e., it takes 7; seconds to send a one coordinate/bit. Then, clearly, we have
7; = K X 7;. and, 7; is a function of K. While the dependence is clear for Rand /<, for all possible
compressors, the dependence on the amount of sent information can be less nontrivial. We generally
fix an arbitrary unbiased compressor and assume it takes 7; seconds to send the compressed message.

From the viewpoint of federated learning (Konecny et al., 2016; Kairouz et al., 2021), our work
is a theoretical study of device heterogeneity. Moreover, our formalism captures both cross-silo
and cross-device settings as special cases. Due to our in-depth focus on device heterogeneity and
the challenges that need to be overcome, we do not consider statistical heterogeneity, and leave an
extension to this setup to future work.

We rely on assumptions which are standard in the literature on stochastic gradient methods: smooth-
ness, lower-boundedness and bounded variance.

Assumption 1.1. f is differentiable & L—smooth, i.e., |V f(x) — Vf(y)|| < L ||z — y|, Vz,y € R%.
Assumption 1.2. There exist f* € R such that f(x) > f* for all € R?. We define A :=
f(x%) — f*, where 2° € R? is a starting point of all algorithms we consider.

Assumption 1.3. For all = € RY the stochastic gradients V f(z; £) are unbiased, and their variance
is bounded by % > 0, i.e., E¢[V f(2;€)] = V f(z) and E¢[||V f(2;€) — Vf(2)[]?] < o2

To simplify the exposition, in what follows we first focus on the regime in which the broadcast cost
can be ignored. We describe a strategy for extending our algorithm to the more general regime in
Sec. A.

2 Related Work

2.1 Communication time can be ignored

We now briefly review related work and important concepts. Consider the regime when the
communication cost is negligible (7; = 0 for all), and the computation times h; are arbitrary

https://doi.org/10.52202/079017-0123 3718

but fixed. It is well-known that under Assumptions 1.1, 1.2, and 1.3, the vanilla SGD method
ol = gk — 4V f(2F; €F), where 20 € R is a starting point, and v > 0 is the step size,
solves (1) using the optimal number of stochastic gradients (Ghadimi and Lan, 2013; Arjevani
et al., 2022). Since the # of iterations of SGD to get an e—stationary point is O (LA/E + U2LA/€2) ,
SGD run on a single worker whose computation time is hy seconds would have time complexity
O (h1 X (LA/E + UQLA/52)) seconds. The time complexity of Minibatch SGD with n workers, i.e.,

R PO /(T @
i=1
can be shown (Gower et al., 2019) to be
2
O (Fmax x (£2 4+ 242, 3
where hmax := max;c[y) hi, where [n] denotes {1,...,n}. The dependence on hyay is due to

Minibatch SGD employing synchronous parallelism which forces it to wait for the slowest worker.
While the stochastic part of (3) can be n times smaller than in the single worker case, (3) does not
guarantee an improvement since hy,,x can be arbitrarily large. In real systems, computation times
can be very heterogeneous and vary in time in chaotic ways (Dutta et al., 2018; Chen et al., 2016).

Recently, Cohen et al. (2021); Mishchenko et al. (2022) and Koloskova et al. (2022) showed that it is
possible to improve upon (3) using the celebrated Asynchronous SGD method (Recht et al., 2011;
Feyzmahdavian et al., 2016; Nguyen et al., 2018) and get the time complexity O((1/n >, h%,)_1 X
(LA/E + ‘TZLA/naz))7 which improves the dependence from Ay, .5 to the harmonic mean of the
computation times. Subsequently, Tyurin and Richtarik (2023c) developed the Rennala SGD method
whose time complexity is

m -1
O min (L3 4 X(ﬂﬁ-@)) 4)
meln] \"™ ;=1 i c e
where 7 is a permutation forwhich h,, < --- < h, . They also showed that the time complexity (4)
is optimal by providing a matching lower bound.

2.2 Communication time is a factor

In many practical scenarios, communication times can be the main bottleneck, and can not be ignored,
e.g., in distributed/federated training of machine learning models (Ramesh et al., 2021; Kairouz
et al., 2021; Wang et al., 2023). There are two main techniques for reducing the communication
bottleneck: local training steps (McMahan et al., 2017) and compressed communication (Seide et al.,
2014; Alistarh et al., 2017). In our work, we investigate the latter technique. In particular, efficient
methods with compressed communication such as DIANA (Mishchenko et al., 2019), Accelerated
DIANA (Li et al., 2020), MARINA (Gorbunov et al., 2021) and DASHA (Tyurin and Richtarik, 2023b)
employ unbiased compressors, defined next. Assume that S, is a nonempty arbitrary set of samples,
and D, is a distribution on S,,.

Definition 2.1. A mapping C : R? x S, — R? is an unbiased compressor if there exists w > 0 such
that B, [C(z;)] = z, E,[||C(z;v) — z||*] < w]||* for all z. Let U(w) denote the family of such
compressors’.

Assumption 2.2. Samples from D, and D,, are mutually independent.

The canonical example of an unbiased compressor is the Rand X' compressor (see Def. D.1) that
scales K random entries of the input vector x by 4¢/k and zeros out the rest. Many more examples
of unbiased compressors are considered in the literature (Beznosikov et al., 2020; Xu et al., 2021a;
Horvith et al., 2022). One of the most straightforward methods which use compression is QSGD°
(Alistarh et al., 2017):

S R
n

s

Ci (Vf(zF;eF)), Q)

=1

>For convenience, following the previous literature, we use the shortcuts C(z; v) = C(x) and C(z; vi;) =
C;j(z) assuming that v and v;; are mutually independent.

®1t is also called the distributed compressed stochastic gradient descent method (DCGD/DCSGD) (Khaled and
Richtdérik, 2020).

3719 https://doi.org/10.52202/079017-0123

where each worker calculates one stochastic gradient, compresses it using C; € U(w) drawn indepen-
dently, and sends it to the server. The server aggregates the compressed vectors and performs step (5).
With a proper stepsize choice v, QSGD converges after O ((«/n + 1) x EA/c + (w + 1) X 0°LA/ne?)
iterations’ (Khaled and Richtarik, 2020). Let’s assume it takes 7; seconds for worker i to send one
compressed vector to the server. Since the workers act in parallel, the time complexity of QSGD is

2
e (b + 7) X ((2+1E2 + @+ 1)2ER), ©)
We can go through a similar exercise with any other method that uses compressed communication
(e.g., (Tyurin and Richtarik, 2023a; Gauthier et al., 2023; Jia et al., 2023)). Nevertheless, as far as
we know, the optimal time complexities for asynchronous centralized distributed optimization with
communication compression are not known.

3 Summary of Contributions

In the regime in which the communication time can be ignored (see Sec. 2.1), Tyurin and Richtarik
(2023c) showed that (4) is the optimal time complexity. In this work we endeavor to take the next
step: we wish to understand the fundamental limits of the regime in which communication time is a
factor. Our main contributions are:

& We develop a new method—Shadowheart SGD (Algorithm 1)—that guarantees to find an
e—stationary point of problem (1) with time complexity 7, given in (10). While the general
expression we give for T is hard to parse since it involves the equilibrium time ¢, (-) whose definition
is implicit (see Def. 3.1), we show (see Sec. 7) that T, is not worse than the time complexity of
known centralized® methods, and also who that it can be strictly better in many regimes, even by
many degrees of magnitude (see Sec. 7.1 and Table 1).

& In Sec. 5 we show that (10) is the optimal time complexity in the family of centralized methods
with compression. This is the first such result in the literature.

4 We also developed Adaptive Shadowheart SGD (Sec. 4.2 and M), which does not require the
knowledge of the computation and communication times and can work with arbitrary changing times.
Moreover, we designed Bidirectional Shadowheart SGD (Sec. A), which works in the regime when
broadcast cost not negligible as well.

¥ Our theoretical study of Shadowheart SGD is supported by judiciously designed synthetic
experiments and machine-learning experiments with logistic regression; see Sec. Q.

4 Development of Shadowheart SGD

Our method bears some resemblance to Rennala SGD (Tyurin and Richtarik, 2023c) and QSGD
(Alistarh et al., 2017), and involves some additional algorithmic elements which play a key role. First,
we adopted the main suggestion of Tyurin and Richtdrik (2023c)[Sec.7] behind the design of Rennala
SGD that an optimal method should calculate stochastic gradients at the last iterate. Second, QSGD
served as an inspiration for how to perform gradient compression. In particular, Shadowheart SGD
has the form 21 = z* — y¢*, where

n ms b; n
gr = lez 21 Cij <l21 Vf(xﬁfﬁ)) / leqzmibw)
i= j= = i=

In Shadowheart SGD, worker i calculates b; stochastic gradients, adds them up to form

Z?;l Vf(a*;€k), and compresses the result m; times using independently drawn compressors.
The compressed messages are sent to the server. The first non-trivial step in the design of our method
is the presence of weights w;: the server aggregates the Z?zl m,; compressed messages across all
workers by performing a conic combination with coefficient < l“l’u"imibi for messages coming from
worker ¢. One can easily show that (9) is equivalent to Alg. 1. Note that we recover QSGD (see (5))
as a special (suboptimal) case with w; = b; = m; = 1 for all i € [n].

"For w = 0, the rate reduces to the rate of Minibatch SGD.

8We say that a method is centralized if the workers calculate stochastic gradients only at points calculated by
the server.

https://doi.org/10.52202/079017-0123 3720

Algorithm 1 Shadowheart SGD

1:

Input: starting point 20 € R?, stepsize v >
0, ratio ”/e, computation times h; > 0, and
communication times 7; > 0 for ¢ € [n]

Definition 3.1 (Equilibrium Time).
A mapping t* : R>g X R>g X (R>p X R>g)
> > > >

w ,,2/E

(hlﬂ'l)

2: Find equilibrium time ¢* using Def. 3.1 XX \(RZO ¢ RZO), — Rxo

3: Setb; = UL—J and m; = U—J for all i € [n] (o, 7n)

4: Find Sa = {i € [n] : b; Am; > 0} with inputs w,o%/e, Ry, Ty, B, Th
5:fork=0,1,...,K — 1do is called the equilibrium time if it is
6: Run Alg. 2 in active workers Sy defined as follows. Find a permuta-
7. Broadcast ¥, b;, m; to active workers Sx tion 7 that sorts the pairs (h;,7;) as
8: Initialize ¢g* = 0 max{hr, ,Tr, } < --- < max{hy,, 7. }and
9: for i € S, in parallel do X find the solution s*(j) € [0, oc] in s of”

10: w; @ bw + w"; + mﬂé) ; =1

11: forj=1,...,m; do <Z ey 2hw‘a2> =5
12: Receive C;; (gf) from worker ¢ i=1 2Tm, Wt — e ———

13: gk = gk + w,-CM (gf) @
14: end for . :

15 end for f}(;{uagl Jj € [n]. Then the mapping returns the
16: g~ = g*/ (i wimibs))

17: xk"’l:mk—’ygk’ t*(w, 7 /e, hy T1y e By)

18: end for

= m%n] max{max{hr,, 7, },s"(j)} € [0, 00].
JE|IN

Algorithm 2 Strategy of Worker ¢ (8)
1: Receive z*, b;, m; from server, init gl’? =0 :Y?w 6521/1a11[hA 171_5}9;1) e st s
2: forl=1,...,b; do AR S
3: Calculate V f(x F; 55)s 5 ~ D¢ “It is possible that a permutation is not unique.
4: gF =gl +Vf(ak; k) The result of the mapping does not depend on the
5:- end for choice of the permutation. See the proof of Prop-
6: forj=1,...,m; do erty 4.1.

7: Send C;; (g’_c) =C (g’:f; ylf.) to server, "For convenience, we use the projectively ex-
L I\ A tended real line and define 1/0 = oo.
Vi ™~ D,, CL] € U(w))
8: end for (a) :Ifw=0and Z =0, then w; = 1

The weights {w;} are chosen so as to minimize the variance in the proof of Lemma H.1. However,
we still need to find the right values for b; and m;. Since the computation and communication times
of worker 7 are h; and 7;, respectively, the following strategy makes intuitive sense: the server sets
some time budget ¢ for all workers, and each worker then calculates |/n; | stochastic gradients and
sends |t/7; | compressed vectors to the server. But what is the right way to choose ¢? If ¢ is too small,
then, intuitively, some workers may not have time to calculate “enough” gradients, or may even not
have time to send any messages to the server. On the other hand, if ¢ is too large, then the workers
will eventually send information of diminishing utility which will not be worth the extra time this
takes.

We find out that, and this one of the key insights of our work, that there exists an optimal time
budget t* which depends on the quantities w, 02/5, hi, 7, ..., hy, T, for which we coin the name
equilibrium time; see Def. 3.1. Admittedly, the definition of the equilibrium time is implicit; we do
not know if it is possible to give a more explicit formula in general. To provide for some peace of
mind, we prove the following property:

Property 4.1. If all inputs of the equilibrium time are non-negative, then the equilibrium time is well
defined.

More importantly, in Sec. 5 we provide a lower bound that involves the same mapping. Thus, the
equilibrium time is not an “artifact” of our method, but is of a fundamental nature. We use the
equilibrium time ¢* in Shadowheart SGD when we choose b; and m;.

3721 https://doi.org/10.52202/079017-0123

Our first main result provides iteration complexity:
Theorem 4.2. Lett Assumptions 1.1, 1.2, 1.3, 2.2 hold. Let us take v = 1/2L in Shadowheart SGD

(Alg. 1). Then as long as K > 16 LA /e, we have the guarantee % ZkK:_Ol E [HVf(xk)HQ} <e.

This result guarantees that Shadowheart SGD will converge after O (L4/e) iterations. Our second
main result provides a much more relevant complexity measure: time complexity.

Corollary 4.3. Shadowheart SGD (Alg. 1) converges after at most T, seconds, where
Ty = 32L8 5 % (w, 0% e, by, Ty oo B,). (10)

Surprisingly, we show in Sec. 5 that our time complexity guarantee (10) is optimal for the family of
centralized methods with compressed communication. Moreover, in Sec. 7 and 7.1, we show that
(10) is no worse and can be significantly better than the time complexities of previous centralized
methods (see also Table 1 for a summary).

4.1 Tighter result with per-iteration times h* and 7*

A slight modification of Alg. 1 leads to Alg. 4, which can work with iteration-dependent computation
and communication times A and 7. Our main result in this setup is Theorem H.3; here we present
its corollary.

Theorem 4.4. Alg. 4 converges after
|'16LA"|
> 2w, e BT e TE) (11
k=0
k

seconds, where h¥ > 0 and

> 0 are computation and communication times for worker i in
iteration k.

For presentation simplicity sake, in the main part we continue to work with static {h;} and {r;}.

4.2 On the problem of estimating the times in Algorithms 1 and 4

One of the main features of asynchronous methods (e.g., Rennala SGD, Asynchronous SGD) is their
adaptivity to and independence from processing times. In Sec. M, we design Adaptive Shadowheart
SGD (Alg. 7) with this feature. Unlike Alg. 1, it does not require the knowledge of {h;} and {7;} (or
{h¥} and {7F} in the case of Alg. 4), and does not calculate the equilibrium time t*. However, as a
byproduct of this flexibility, this method has a slightly worse time complexity guarantee. In order to
present our result, we need to define an auxiliary sequence.

Definition 4.5. Assume that the workers have computation and communication times less or equal to
{h;} and {7;}. Assume that h;; is the actual time required to calculate the j stochastic gradient by
worker i, by, > 0 is the smallest possible computation time. Then

SUPL < <t P, (k1) [tmax—‘
i 1= SUp IS max =
! k>13 infi<)<imax P, (hrg) 7 TN hamin | 7

tmax := 128 X t*(w, 7° /e, [max{h;, 7; }, max{h;, ; }]7).

That is, r; € [1, 00] is the largest ratio between the fastest and the slowest computation of stochastic
gradients in local time windows. r; defines a degree of fluctuations in computation times. Note that
r; describes local fluctuations; it is true that 7; < sup;>1hii/inf; 5, h ; for all ¢ € [n] and r; can be
arbitrarily smaller.

A corollary of our main result in this part (Theorem M.1) is presented next.

Corollar{ 4.6. If the computation and communication times are positive, the time complexity of
Alg. 7 is L2 x t*(w, o°/c, [max{h;, 7;}, min {7;r;, max{h;, 7;}}]1) up to a constant factor, where
4 is defined in Def. 4.5.

Unlike Alg. 1 and Alg. 4, Alg. 7 is more “greedy”; it calculates stochastic gradients and sends
compressed vectors in parallel, and it does not know the times h; and 7; (or h¥ and 7F). That is why
this method gets a suboptimal complexity and depends on r;. Nevertheless, if we assume that i) the
computation times do not fluctuate significantly, i.e., r; = ©(1), and ii) ; < h; for all ¢ € [n], then
this complexity reduces to the optimal complexity LA/ x t*(w, o /e, [hs, T;]}).

https://doi.org/10.52202/079017-0123 3722

5 Lower Bound

Protocol 3 Simplified Representation of Protocol 9

1: Init .S =) on the server (all available information)

2: while True do

3: Server calculates a new point Z using S and broadcasts Z and S to any worker
(broadcasting does not take time)

4: end while

i'" Worker (in parallel):

5: while True do

6: Receives and S, calculates as many stochastic gradients as it want at the point T (each
calculation takes h; seconds), aggregates all available information, and sends compressed
vectors (each dispatch takes 7; seconds), which will be added to the set S

7: end while

In Sec. 4, we stated that Shadowheart SGD converges after T, seconds; with 7}, given in (10). Our
next step is to understand if it might be possible to improve this complexity. In Sec. O, we formalize
our setup and show in Theorem O.5 that up to a constant factor, the result (10) is optimal. Here we
present a simplified illustration of our approach.

Protocol 3 can describe all centralized methods (the server updates the iterates, and the workers
calculate stochastic gradients at these points), including Minibatch SGD, Asynchronous SGD, Rennala
SGD, and Shadowheart SGD. In Theorem O.5, we show that up to a constant factor, no method
described by Protocol 3 can converge faster than (10) seconds. In order to use our lower bound, the
workers must calculate stochastic gradients at a point that was calculated by the server.

Let us briefly explain the proof’s idea. The general approach is the same as in (Nesterov, 2003;
Arjevani et al., 2022; Huang et al., 2022): we take the “difficult” function (Sec. P.1), which has large
gradients while the last coordinate equals to zero. Every algorithm starts with the point 2z = 0, and
the only way to discover the next coordinate is to calculate a stochastic gradient. Oracles associated
with the workers return the next non-zero coordinate with the probability p, ~ ¢/s2. Even if the
stochastic oracle returns a non-zero coordinate for some worker, the corresponding communication
oracle on this worker also has to return a non-zero coordinate, which happens with probability
P & lJw+1. We fix the RandK compressor in the lower bound theorem with K ~ LA/e(w+1),
and the number of coordinates ~ LA/e; thus, indeed, p, & !/w+1. Since all n workers work in
parallel, they can discover and send to the server the next non-zero coordinate not earlier than after
min, ¢ [n] {hmMm + Tmlim } seconds, where 7, and fi,,, are i.i.d. geometric random variables with
Po and p,,. With a high probability, we show that this quantity is Q(t*(Y/pe, Ypo, B1, T1y - - oy By Tn))-
The number of coordinates is = LA/e. Therefore, the lower bound is (10) seconds up to a constant
factor.

6 Equilibrium Time

Since the time complexity (10) of Shadowheart SGD is optimal, we believe that the equilibrium time
is a fundamental mapping that should be investigated more deeply.

6.1 Calculation strategy

The calculation of ¢* requires us to sort max{h;, 7; }. Next, it is sufficient to solve n equations from
(7). In Property 4.1, we prove that (7) has one unique solution that can be easily found, for instance,
using the bisection method. Then, is it left to find the minimum in (8).

6.2 Intuition behind the equilibrium time ¢*

Assuming we found an optimal j* in (8), we have t* = max{max{h,.,7r.},s*(j*)}.
The first observation is that ¢* does not depend on the workers that correspond
to max{hz . s Truy}s- o max{hy, , 7, }. Since these values are greater or equal to

max{h,,j* 3 Ty }, the mapping “decides” to ignore them because they are too slow. The following

3723 https://doi.org/10.52202/079017-0123

derivations are not rigorous and are merely supposed to offer some intuition. We define a; := 7, w
and 3; := hm,”z/s. Next, using (7), we have

J .
1= s (J7) ~ g* (7 1 (%2 1 12
z; 20 S +26i s)7§A EEOED G") zeZX/\:/l b (12

where M := {i € [j*] : max{ay, 8;} > «iBi/s*(j*)}. Solving this, one can get that

—1
k(% AU 1 1
§ (‘7) ~ (zezj\/l max{a;,B; } + “igzj\/l 01757> . (13)

Thus, s*(j*) divides the active workers into two groups M and [j*] \ M. Both groups contribute to
(13) with a harmonic mean-like and a quadratic harmonic mean-like dependences, correspondingly.
The transition between two groups is decided by the rule max{o;, 8;} > «iBi/s*(;*) & s*(j*) >
min{«;, §;}. Intuitively, the last inequality means that if 7; or h; is small (a worker can quickly com-
pute a gradient or send a compressed vector), it belongs to M. Otherwise, if a worker’s computation
and communication performance are balanced, it belongs to [7*] \ M.

6.3 Properties of the equilibrium time ¢*

We now provide some properties and particular cases to understand ¢* better. One can find the proofs
and more properties in Sec. E. The first result says that £* is monotonic.

Property 6.1. [fo > w > 0,7°/z > /e > 0,hy > hy > 0,7 > 71 >0,...,hy, > h,, >0, and
T = Ty > 0, then t*(@0,7°/e, [hy, 7)) > t*(w, 9% /e, [hi, 7]T).

Consider the Rand K compressor. If it takes 7; sec to send one coordinate by worker ¢, then, up to a
constant factor, Property 6.2 ensures that an optimal choice of K is 1.

Property 6.2. For all K € [1,d],°’/s, hi, T1,.. hnyTn > 0, we have 24 x
t (YK — 1,9, ha, K71, .o hyy Ki) 287 (d = 1,0%/e, by, 71, By) -

6.4 Examples

We now list several examples, starting with simple corner/extreme cases. One can find the derivations
in Sec. F. For brevity, we will sometimes write t* instead of t*(w, o /e, h1, 71, . -, By T)-

Example 6.3. [Infinitely Fast Worker] If exists j € [n] such that 7; = 0 and h; = 0, then t* = 0.
Example 6.4. [Infinitely Slow Workers] If 7, = oo and h; = oo for all ¢ € [n], then t* = oo.
Example 6.5. [Equal Performance] If 7, = 7 and h; = h for all i € [n], then’

- gﬁmax{m,:;u,h;j,./w}. (14)

In the next example, we consider the setting from Sec. 2.1. Example 6.6 and Corollary 4.3 restore the
optimal rate (4) of Rennala SGD.

Example 6.6. [Infinitely Fast Communication] If 7; = 0 for all ¢ € [n], then

m -1 m -1
#* < 2 min max hﬂm,*<z . > — 0| min <1Zh1) (1+”—2) . (15)
me[n] CE\im me[n) \™ i=1 "™ me

where 7 is a permutation that sorts {h;}7 ;.

The following two examples show that ¢* is robust to slow workers or workers that do not participate.
Example 6.7. [Ignoring Slow Workers] If h; and 7; are fixed and finite for all ¢ < p, and
max{h;, 7;} = m € R for all i > p, then, for m large enough, we have t*(w, o"/e, [h;, T:]}) =
t*(w, "2/5, [hi, Ti]zl)).

Example 6.8. [Partial Participation] If max{h;,7;} = oo for all ¢ > p > 1, then
t* (wv 02/5a [hlv TZHL) =t (w’ 02/53 [hlv Tl]zl))

From the proof, it is clear that the result is tight up to a constant factor.

https://doi.org/10.52202/079017-0123 3724

7 Comparison with Baselines

In the previous sections, we did not invoke any assumptions about the compressors except for Def. 2.1.
Inspired by Property 6.2, to make the comparisons with the baselines easier, we consider the Rand K
compressor with K = 1. Using Theorem D.2, we have w = d — 1. We also assume that worker ¢
takes 7; seconds to send one coordinate to the server; thus 7; = 7;, since we use Rand1. Also, it takes
df; to send a non-compressed vector for all ¢ € [n].

Minibatch SGD and QSGD. It is well known (Lan, 2020) that the number of iterations of Minibatch
SGD required to find an e-solution is O (LA/e + ¢*LA/:?) . In Minibatch SGD, each worker calculates
one stochastic gradient and sends a non-compressed vector. Since the server waits for the slowest
worker, the time complexity of such method (up to a constant factor) is

Tiap := max (hi +) (% n %) . (16)
In Sec. J, we compare (16) with (10) and show
Comparison.1. T, = O(Tug).

However, there are many regimes when T, < Tyg. For instance, if max{h;,7;} = oo for some
worker (Example 6.8), then Tyg = oo and T, < oo. Also, under the conditions of Example 6.7, if
m — 0o, we get Tyg — oo whereas T is bounded. The same reasoning applies to QSGD because
its time complexity (6) depends on max; ¢y (h; + 7;) - Due to Theorem O.5, up to a constant factor,
T, is less or equal to (6); see also Table 1.

Rennala SGD and Asynchronous SGD. When the communication time is negligible, Tyurin and
Richtarik (2023c¢) proved that the optimal time complexity is attained by Rennala SGD. When 7; — 0
for all ¢ € [n], we show in Example 6.6 that (10) is the same as the time complexity of Rennala SGD
obtained by Tyurin and Richtérik (2023c). Assume 7; > 0 for all ¢ € [n]. We can apply the result
from Theorem O.5 to Rennala SGD, thus the time complexity of Rennala SGD is not better than

Tk = L2 x t*(0,9%/c, h1, d1, . .. by, din). (17)

Note that Asynchronous SGD also has the same lower bound. In Sec. J, we compare (17) with (10)
and show

Comparison1.2. T, = O(1R).

7.1 Shadowheart SGD is strictly better in many regimes.

Due to the non-explicit nature, it is not transparent that the time complexity of Shadowheart SGD is
universally strictly better than in all baselines in many practical regimes. Let us prove it. Take

h; = hforalli <mn, h, = oo, and 7; = 7 for all ¢ € [n]. (18)

Due to (16) and (17), the time complexities of Minibatch SGD and QSGD are oo, and the time
complexities of Asynchronous SGD and Rennala SGD are not smaller than

0 (max {h, di, he } %) ,which "=5° Q (max {h, d7} £2).

(n—1)e

From (14), the time complexity of Shadowheart SGD is at most

. - 2 - . L .
O (max {n, 7, 3257, he, [2hmpd h L&) which "= O (max {h, 7} £2).
Thus, Shadowheart SGD can be d times faster than all previous methods if the number of workers n
is large. Using the same reasoning, Shadowheart SGD can be n — 1 times faster if the dimension d
or 7 is large. Due to the continuity of the complexities, such huge differences hold even if we take
n < oo, and start considering more heterogenous times h; and 7; by perturbating (18).

7.2 The fastest worker works locally
Another important baseline is the vanilla SGD method, which works on the fastest worker, does not

communicate with the server, and performs local steps (non-centralized method). For simplicity,
assume that 02/5 > 1. Then, the time complexity of such an algorithm (Lan, 2020) is Tsgp :=

3725 https://doi.org/10.52202/079017-0123

miney) i X UQLA/ez. Clearly, comparing Tsgp and (10), if 7; are large enough, then Tsgp can be
smaller than 7. However, this does not contradict our lower bounds because this method does not
satisfy the conditions of Theorem O.5: it does not communicate with the server. In other words,
if the communication channel is too slow, it does not make sense to communicate. One may now
ask: “Under which conditions is it beneficial to communicate?” Comparing Tsgp and (10), one can
see that (10) is better when t*(d — 1,%/e, hy, 71, ..., hp, Tn) < min;ep,) by X o? /. It is sufficient to
substitute the initial parameters to this inequality and decide which method to use. For instance, in the
view of Example 6.5, one should compare max{h, 7, 7(d=1)/n, ho®/ne \/Tho®(d=1)/ne} vs. ho® /e, In
the regime when 7 is large enough or ¢ is small enough, we have t* < ho®/c, and Alg. 7 has better
convergence guarantees. On the other hand, if 7 is large enough, then it is possible that t* > ho?/c.

Acknowledgments and Disclosure of Funding

The research reported in this publication was supported by funding from King Abdullah University of
Science and Technology (KAUST): i) KAUST Baseline Research Scheme, ii) Center of Excellence
for Generative Al, under award number 5940, iii) SDAIA-KAUST Center of Excellence in Artificial
Intelligence and Data Science. The work of A.T. was partially supported by the Analytical center
under the RF Government (subsidy agreement 000000D730321P5Q0002, Grant No. 70-2021-00145
02.11.2021).

References

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic, M. (2017). QSGD: Communication-
efficient SGD via gradient quantization and encoding. In Advances in Neural Information Process-
ing Systems (NIPS), pages 1709-1720.

Arjevani, Y., Carmon, Y., Duchi, J. C., Foster, D. J., Srebro, N., and Woodworth, B. (2022). Lower
bounds for non-convex stochastic optimization. Mathematical Programming, pages 1-50.

Beznosikov, A., Horvéth, S., Richtérik, P., and Safaryan, M. (2020). On biased compression for
distributed learning. arXiv preprint arXiv:2002.12410.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. (2020). Lower bounds for finding stationary
points i. Mathematical Programming, 184(1):71-120.

Chen, J., Pan, X., Monga, R., Bengio, S., and Jozefowicz, R. (2016). Revisiting distributed syn-
chronous sgd. arXiv preprint arXiv:1604.00981.

Cohen, A., Daniely, A., Drori, Y., Koren, T., and Schain, M. (2021). Asynchronous stochastic
optimization robust to arbitrary delays. Advances in Neural Information Processing Systems,
34:9024-9035.

Dutta, S., Joshi, G., Ghosh, S., Dube, P., and Nagpurkar, P. (2018). Slow and stale gradients can win
the race: Error-runtime trade-offs in distributed SGD. In International Conference on Artificial
Intelligence and Statistics, pages 803-812. PMLR.

Feyzmahdavian, H. R., Aytekin, A., and Johansson, M. (2016). An asynchronous mini-batch
algorithm for regularized stochastic optimization. IEEE Transactions on Automatic Control,
61(12):3740-3754.

Gauthier, F., Gogineni, V. C., Werner, S., Huang, Y.-F., and Kuh, A. (2023). Asynchronous online
federated learning with reduced communication requirements. arXiv preprint arXiv:2303.15226.

Ghadimi, S. and Lan, G. (2013). Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341-2368.

Gorbunov, E., Burlachenko, K., Li, Z., and Richtarik, P. (2021). MARINA: Faster non-convex
distributed learning with compression. In 38th International Conference on Machine Learning.

Gower, R. M., Loizou, N., Qian, X., Sailanbayev, A., Shulgin, E., and Richtérik, P. (2019). SGD:
General analysis and improved rates. In International Conference on Machine Learning, pages
5200-5209. PMLR.

https://doi.org/10.52202/079017-0123 3726

Gruntkowska, K., Tyurin, A., and Richtarik, P. (2023). EF21-P and friends: Improved theoreti-
cal communication complexity for distributed optimization with bidirectional compression. In
International Conference on Machine Learning, pages 11761-11807. PMLR.

Horvath, S., Ho, C.-Y., Horvath, v., Sahu, A. N., Canini, M., and Richtarik, P. (2022). Natural
compression for distributed deep learning. In Mathematical and Scientific Machine Learning,
pages 129-141. PMLR.

Huang, X., Chen, Y., Yin, W., and Yuan, K. (2022). Lower bounds and nearly optimal algorithms in
distributed learning with communication compression. arXiv preprint arXiv:2206.03665.

Jia, J., Liu, J., Zhou, C., Tian, H., Dong, M., and Dou, D. (2023). Efficient asynchronous federated
learning with sparsification and quantization. arXiv preprint arXiv:2312.15186.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K.,
Charles, Z., Cormode, G., Cummings, R., et al. (2021). Advances and open problems in federated
learning. Foundations and Trends® in Machine Learning, 14(1-2):1-210.

Khaled, A. and Richtarik, P. (2020). Better theory for SGD in the nonconvex world. arXiv preprint
arXiv:2002.03329.

Koloskova, A., Stich, S. U., and Jaggi, M. (2022). Sharper convergence guarantees for asynchronous
SGD for distributed and federated learning. arXiv preprint arXiv:2206.08307.

Konecny, J., McMahan, H. B., Yu, F. X, Richtdarik, P., Suresh, A. T., and Bacon, D. (2016). Federated
learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492.

Lan, G. (2020). First-order and stochastic optimization methods for machine learning. Springer.

LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2.

Li, Z., Kovalev, D., Qian, X., and Richtarik, P. (2020). Acceleration for compressed gradient descent
in distributed and federated optimization. In International Conference on Machine Learning.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics,
pages 1273-1282. PMLR.

Mishchenko, K., Bach, F., Even, M., and Woodworth, B. (2022). Asynchronous SGD beats minibatch
SGD under arbitrary delays. arXiv preprint arXiv:2206.07638.

Mishchenko, K., Gorbunov, E., Taka¢, M., and Richtarik, P. (2019). Distributed learning with
compressed gradient differences. arXiv preprint arXiv:1901.09269.

Nemirovskij, A. S. and Yudin, D. B. (1983). Problem complexity and method efficiency in optimiza-
tion.

Nesterov, Y. (2003). Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media.

Nesterov, Y. (2018). Lectures on convex optimization, volume 137. Springer.

Nguyen, L., Nguyen, P. H., Dijk, M., Richtarik, P., Scheinberg, K., and Takac, M. (2018). SGD and
hogwild! convergence without the bounded gradients assumption. In International Conference on
Machine Learning, pages 3750-3758. PMLR.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., and Sutskever, 1. (2021).
Zero-shot text-to-image generation. In International Conference on Machine Learning, pages
8821-8831. PMLR.

Recht, B., Re, C., Wright, S., and Niu, F. (2011). Hogwild!: A lock-free approach to parallelizing
stochastic gradient descent. Advances in Neural Information Processing Systems, 24.

3727 https://doi.org/10.52202/079017-0123

Richtarik, P., Sokolov, 1., and Fatkhullin, I. (2021). EF21: A new, simpler, theoretically better, and
practically faster error feedback. arXiv preprint arXiv:2106.05203.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. (2014). 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech DNNSs. In Fifteenth Annual Conference
of the International Speech Communication Association.

Tyurin, A. and Richtérik, P. (2023a). A computation and communication efficient method for
distributed nonconvex problems in the partial participation setting. Advances in Neural Information
Processing Systems (NeurIPS).

Tyurin, A. and Richtérik, P. (2023b). DASHA: Distributed nonconvex optimization with communica-
tion compression, optimal oracle complexity, and no client synchronization. /1th International
Conference on Learning Representations (ICLR).

Tyurin, A. and Richtarik, P. (2023c). Optimal time complexities of parallel stochastic optimization
methods under a fixed computation model. Advances in Neural Information Processing Systems
(NeurlPS).

Vogels, T., Karimireddy, S. P., and Jaggi, M. (2019). PowerSGD: Practical low-rank gradient
compression for distributed optimization. In Neural Information Processing Systems.

Wang, J., Lu, Y., Yuan, B., Chen, B., Liang, P, De Sa, C., Re, C., and Zhang, C. (2023). Cocktailsgd:
Fine-tuning foundation models over 500mbps networks. In International Conference on Machine
Learning, pages 36058-36076. PMLR.

Xu, H., Ho, C.-Y., Abdelmoniem, A. M., Dutta, A., Bergou, E. H., Karatsenidis, K., Canini, M.,
and Kalnis, P. (2021a). Grace: A compressed communication framework for distributed machine
learning. In 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS),
pages 561-572. IEEE.

Xu, H., Kostopoulou, K., Dutta, A., Li, X., Ntoulas, A., and Kalnis, P. (2021b). Deepreduce: A sparse-
tensor communication framework for federated deep learning. Advances in Neural Information
Processing Systems, 34:21150-21163.

https://doi.org/10.52202/079017-0123 3728

Contents

1 Introduction 1

2 Related Work
2.1 Communication time canbeignored

2.2 Communication timeisafactor.

3 Summary of Contributions 4
4 Development of Shadowheart SGD 4
4.1 Tighter result with per-iteration times A¥ and 7% oL
4.2 On the problem of estimating the times in Algorithms l and4. 6
5 Lower Bound 7
6 Equilibrium Time 7
6.1 Calculation strategy 7
6.2 Intuition behind the equilibrium time ¢* oL 0oL 7
6.3 Properties of the equilibrium time ¢* 8
6.4 Examples L e e e 8
7 Comparison with Baselines 9
7.1 Shadowheart SGD is strictly better in many regimes.
7.2 The fastest worker works locally
A Bidirectional Compression 15
B Frequently Used Notation 16
C Basic Facts 16
D RandK Compressor 17
E Proofs of the Properties of the Equilibrium Time 17
F Derivations of the Examples for the Equilibrium Time 24
G Generic Lemma For Unbiased Gradient Estimators 27
H Proofs for Algorithms 1 and 4 30
I The Classical SGD Theorem 32
J Comparison with Baselines 33

3729 https://doi.org/10.52202/079017-0123

Description of Alg. 5 in the Bidirectional Setting
Proofs for Alg. 5

Development of Adaptive Shadowheart SGD
Proofs for Alg. 7

Construction of the Lower Bound

Proof of Theorem O.5

P.1 The “Worst Case” Function
P1.1 Proofof LemmaP2

P2 Proofof LemmaP3

P3 Another Construction o i e e

Experiments

Q.1 Experiments with Logistic Regression

Q.2 Experiments with quadratic optimization tasks and multiplicative noise
Q.2.1 Discussion of the experiments from Sec. Q.2.2
Q.22 Plots

Q.3 Experiments with quadratic optimization tasks and additive noise

Q3.1 Plots e e e e e e e

https://doi.org/10.52202/079017-0123 3730

35

35

37

38

42

44
44
46
52
54

A Bidirectional Compression

In this section, we discuss a simple way to use the Shadowheart SGD techniques in the setup when
broadcasting is expensive (Line 7 in Alg. 1); i.e., when 7Ty > 0. We will employ the following
family of compressors.

Definition A.1. A mapping C : RY x S, — R% is a biased compressor if there exists a € (0, 1]
such that

E, [lC(iv) - l?] < (1 -) l2]*, ¥z € RY. (19)

We shall use the shortcut C(x;) = C(x), and denote the family of such biased compressors as
B(a).

The family B(«) is more general than U(w) in the sense that if C € U(w), then (w + 1)71C €
B((w + 1)71). It includes the TopK and RankK compressors (Vogels et al., 2019; Beznosikov et al.,
2020), among many others.

Let Cserv € B(a) be the compressor used by the server. We use the primal error-feedback mechanism
EF21-P (Gruntkowska et al., 2023) which requires us to add the following changes to Alg. 1 and
Alg. 2. We add the steps

PEHL = Coory (2L — k), whtl = f 4 phtl
to Alg. 1 and broadcast p**+! instead of z*. This change leads to Bidirectional Shadowheart SGD
(Alg. 5). In Alg. 2, the workers should receive p**!, calculate w***, and use w* instead of z* in the
calculations of stochastic gradients. We provide the pseudo-codes of these algorithms in Sec. K.

Our main results are:

Theorem A.2. Let Assumptions 1.1, 1.2, 1.3, 2.2 hold. Choose v = 1g7. Then as long as K >
%, Bidirectional Shadowheart SGD (Alg. 5) guarantees to find an s—stationary point.

Corollary A.3. If the broadcast time of Csery is not greater than Tser, then Bidirectional Shadowheart
SGD (Alg. 5) converges after at most
T*,serv = T68LA X (Tserv + 2t* (UJ, 02/57 [h'm TZML)) (20)

seconds.
Remark A.4. If the broadcast cost can’t be ignored, the time complexity of Alg. 1 changes from (10)
to

T, = 1628 x (ril) + 24" (w, 7"/, [hi, TilT)), 2D

serv

where 7l

serv

is the time required to broadcast a full/ non-compressed vector.

We should compare (21) obtained by the unidirectional algorithm and (20) obtained by the bidirec-
tional algorithm. Consider that Cy., = TopK with K < d. We can see (20) that depends on Ty,
that is much less than 723 because K < d. At the same time, (20) is /o times larger than (21).
This is a standard price for the fact that we use a biased compressor (e.g. (Richtarik et al., 2021;
Gruntkowska et al., 2023)). However, « is very close 1 in practice (Beznosikov et al., 2020; Vogels
et al., 2019; Xu et al., 2021b). It turns out that we can always choose K in TopK (we take this

compressor as an example) in such a way that Alg. 5 is never worse than Alg. 1.

Comparison A.5. Assume that it takes 7., seconds to send one coordinate from the server to the
workers. If we take K > min {d, t*(w, ?’/, [h;, 7;]) /Fserv } in TopK, then T} gery = O (T%) .

If 7full — df,.., is the bottleneck in (21) with Alg. 1, i.e., d7yery >> t*, then one can take K =

serv

" [1seev < d in TopK with Alg. 5 and improve the time complexity.

3731 https://doi.org/10.52202/079017-0123

B Frequently Used Notation

We thought a table of frequently used notation could be useful. Here it is:

Notation Meaning
B error tolerance
f Function f : R? — R whose e-stationary point we want to find (see (1))
L Smoothness parameter of f (see Assumption 1.1)
f* Lower bound on f (see (1.2))
a2 Stochastic gradients V f(z; £) have variance bounded by % (see Assumption 1.3)
20 Starting point of all algorithms; a vector in R?
¥ Positive stepsize used by all algorithms
A A= f(z°) = f°
n number of workers
h; Maximal time it takes for worker i to compute one stochastic gradient of V f(+; £)
b; Minibatch size associated with worker ¢ (worker ¢ compresses minibatch gradients)
m; Number of compressed messages sent to the server by worker ¢ in a single iteration
U(w) Set of unbiased compressors with variance parameter w > 0 (see Definition 2.1)
Cij Compressors used by worker i; C;; € U(w), j € {1,...,m;}
Ti Maximal time it takes for worker ¢ to communicate vector C;;(+), where C;; € U(w), to the server
T Time it takes to send to worker ¢ one float to the server (equal to 7; of the Rand1 compressor is used)
B(«) Set of biased compressors with contraction parameter 0 < o < 1 (see Definition A.1)
Coerv Compressor used by the server; Cerv € B(cv)
rhull Maximal time it takes for server to broadcast a non-compressed vector from R to the workers
Tserv Maximal time it takes for server to broadcast a vector Cgery (), where Ceery € B(av), to the workers
Tsery Time it takes for server to broadcast one float to the workers
t* Equilibrium time; a function of w, 02/5, hi,T1,..., hy, T, (see Definition 3.1)
T Time complexity of Shadowheart SGD (see Corollary 4.3)
TvB Time complexity of Minibatch SGD (see (16))
TR Time complexity of Rennala SGD (see (17))
g=0(f) Exist C' > O such that g(z) < C' x f(z) forallz € Z
g=Q(f) Exist C' > 0 such that g(z) > C x f(z) forall z € Z
g=o(y) g=0(/) and g = Gi(f)
{a,...,b} Set{i € Z|a <i<b}
] {L....n}

C Basic Facts

Here we collect some basic facts which are used repeatedly in the proofs.

Variance decomposition. Let z € R¢ be a random vector with finite mean and finite variance. Then
for any deterministic vector ¢ € R?, we have the identity

2 2 2
E |z~ E[ll’] =E[llz - el*] - B[] - . (22)
Lemma C.1. Consider a sequence q, . .. ,q, € [0, 1], then
1= gm< [0 —am).
m=1 m=1

1
m=1

Proof. We prove by induction. For n = 1, is it true: 1 — 27171:1 am =11 (1 — ¢mn) . Assume

that that it is true for n — 1. Then

n—1 n—1
m=1 m=1

Multiply both parts by 1 — g,, € [0, 1] to obtain

n n—1 n—1 n—1 n
(1_Qm)2(1_Qn) 1_ZQm ZI_ZQm_Qn+Qn ZQm Zl_ZQm
m=1 m=1 m=1 m=1 m=1
since g, € [0,1] for all m € [n]. O

https://doi.org/10.52202/079017-0123 3732

D RandK Compressor

Definition D.1. Assume that S is a random subset from [d], |S| = K, K € [d]. A stochastic mapping
C: R? xS, - R?is RandK if

d
C(l’,S) = ? ijejv
JES
where {e; }%_, is the standard unit basis.

Theorem D.2. IfC is RandK, then C € U (% — 1) .

One can find the proof in (Beznosikov et al., 2020).

E Proofs of the Properties of the Equilibrium Time

Property 4.1. If all inputs of the equilibrium time are non-negative, then the equilibrium time is well
defined.

Proof.

(Part 1: s*(j) is well-defined)

First, we show that s*(j) is well-defined for all j € [n]. We fix j € [n] and consider the equation
from Def. 3.1:

-1

<] :)

Z = 23)
A7r b, 02w 2hr, 0 v (
i=1 27'7-(iw + SXE + s w(s)

#(s)

w.r.t s. The function ¢(s) is a non-increasing function for all s > 0, and the function v (s) is an
increasing function for all s > 0. Let us consider two cases.

2
1) Exists p < j such that 7 w = 0 and h"%o = 0, then
-1
1 1 -1
¢(S) = Z A7 hy. 02w 2h,, 02 + 6 = (OO) =0.
i#p 2T77iw + 1s><<1€ SL

for all s > 0, then the only solution to the equation is s = 0.
2) Otherwise, we have

-1

J J
1 1
o(s) = (S —) s
; 27’7”(.0 T ATy hy, 02w n 2hy, 0 ; 27_7”0) n 2h7\-81.0'2

sXe 53

-1

for all s > 0. Then ¢(0) > 0 (can be equal to co). Using ¥(0) = 0 and the monotonicity of the
functions, one can show the unique solution (greater zero) exists.

If a permutation 7 is unique, then the formula min ;¢ [,,) max{max{hr;, 7, },s*(j)} is well-defined
and we can finish the proof.

(Part 2: non-unique permutation)

We assume that there exists ¢ € [n] such that max{h;,7;} < oo. Otherwise,
min;cp,) max{max{hx,, 7x, },5*(j)} = oo for any permutation. Next, note that s*(j + 1) < s*(j)
for all j < n because

—1

i1 .
A7 hy. 02w 2h,. 02 - Z A7 hy. 02w 2h .02
i1 2Tr,w + —— + — i=1 2T w + — 7 — + —¢

sXe € sXe €

—1

for all s > 0. We will use this property later.

3733 https://doi.org/10.52202/079017-0123

Consider that there are two non-equal permutations 7 and 7 that sort the pairs (h;, 7;) by max{h;, 7; },
and there are two corresponding solutions s*(j) and 5§*(j). Each permutation divides the pairs (h;, ;)
into the same equivalence classes:

max{fq,, Tr, } = -+ = max{hq, , Tr, } <max{hn, .\ Tn;)= =max{hq 70, } <...,

C1 C2

max{hz,, 7z, } = = max{hz, , 7=, } <max{hz, ., 7, } = =max{hz, 75, } <....

C] C2

The order within each class can be different, but the elements are the same. Next, since s*(j + 1) <
s*(j) for all j < n, we can conclude that the minimum in

jI.I,C_lETILl] max{max{hn~,, 7, },s"(j)}
is attained for j* such that max{h ., 7r. } < max{hq. ,Tr ., } (max{hq, ,,7r, ,} = 00).
Since max{hy ., Tr,. } < max{hn . }, we have max{hr ., 7r,. } = max{hz ., 7z.}.
Therefore, we obtain

10 Tmge g
m%n] max{max{hr,, 7, },s"(j)} = max{max{hr ., 7r. },s"(§°)} = max{max{hz ., 7z . },s"(5)}.
e PR

Also, for all j € [n] such that max{hn,, 7, } < max{hz, ,,7x,,,}, we have

-1

J J
(z : 1
A7r hy, 02w 2hr, 02 - Z A1z hz 02w 2hz, 02
i=1 2T7Tiw + sXe + € i=1 2Tﬁiw + sXe + €

Therefore, we get s*(5*) = 5*(j*) and

—1

m%n] max{max{h,, 7 },5s"(j)} = max{max{hz,.,7=,.},5"(j")} > m%n] max{max{hz,, 7z, }, 5" (j)}-
JjEINn ' ' JjEIN

Using the same reasoning, we can show that

mfn] max{max{hz,, 7z, }, 5 (j)} > m%n] max{max{hr,, 7, }, s"(j)}.
e 30 TR e g0 T

It means that min;¢[,) max{max{hz,, 7z, }, 5" (j)} = min;ep, max{max{hr,, 7, },s*(j)}, thus
the final result of the mapping does not depend on a chosen permutation.

Property 6.1. If0 > w > 0,5/ > /e > 0,hy > hy > 0,7 > 71 >0,...,hy, > h,, >0, and
Tn > Tp > 0, then t*(a),EQ/é, [hiﬂii]?) > t*(w,02/57 [hl,TZ]?)

Proof. Assume that 7 is a permutation that sorts the pairs (h;,7;) by max{h;, 7}, and 7 is a
permutation that sorts the pairs (h;, 7;) by max{h;, 7; }, then
—1

(] 1) - (J :
477 hr, 02w 2hr, 02 — Z _ 477 hz. 620 2hs 52
i=1 2Tmw + Tse +— i=1 2Tz, W + = +—=

SE

for all j € [n]. It means 3*(j) > s*(j), where s*(j) and §*(j) are the solutions of the equation

(7) with the pairs (h;,7;) and (h;,7;) and corresponding permutations 7 and 7. Also, we have
max{hy,, T, } < max{hz;, 7z, } forall j € [n]. Therefore, we have
t*(w, o)y b1y T1y oy By Tn) = m%n] max{max{h,, 7, },s (j)} < m%n] max{max{hz,, 7, }, 5" (j)}
Jj€[n Jj€[n
= t*(a},{’Q/é, Bl,fl, .. .,Bn,f’n).

Property E.1. Forall c € (0,1] and w,o°/e,hy,T1, ..., hn, T > 0, we have

t(exw,e X o e hy, Ty ey By Tn) > € X (W, %)e, R, T1y ooy B,).

https://doi.org/10.52202/079017-0123 3734

Proof. Using the definition of the equilibrium time, we have

t* (wv 02/55 hl; Tlyee ey hn; Tn) = mfn] ma‘X{ma‘X{hﬂjvTﬂj }5 S*(.])}v
JjEN

where s*(j) is the solution of

—1

- 2 (24)
e
and
t (e X w,e X o%fe,hy, 1, By,) = mﬁ max{max{hr,, 7}, 55 (j)},
j€ln

where s () is the solution of
—1

J
Z :
= S.
4c271, hy. 02w 2chy.02
im1 2CTr,w + S + L

s€ S

Using simple algebra, we obtain

. —1 . -1
J J
=c
4c2 77 hy, 02w 2chy, 0 Z Aty hy, 02w 2hy, 02
i=1 ZCTﬁiw + se + = i=1 27_71-1.&) —+ B c
Thus, s%(j) is the solution of
. -1
J 1] 75
9 47, hﬂo’%) 2h o2 - E ()
i=1 2Tm,W + e + —

Comparing (24) and (25), one can see that s%(j) = ¢ x s*(j) for all j € [n]. Using this and ¢ € (0, 1],
we get

(e X w,e X 0 e hy, Ty ey by Tn) = mfn] max{max{hr,, Tr, },c X s*(j)}
JE[n :
> X rnfn] max{max{hx,,x, }, 5" (j)} = ¢ X t* (W, /e, h1, 71, ... hn, T).
JjEn

Property E.2. Forallc > 1and w,o"/e,hy,T1,. .., hp, T > 0, we have

t(exw,e X o e hy, Ty ey By Tn) < € X (W, 0%)e, ha, T1y ooy B,).

Proof. The proof of this property repeats the proof of Property E.1 up to the last inequality. Using
c>1, weget

t*(C X w,c X 02/8,]11,7’17 .. .,hn,Tn> = mfn] max{max{hﬂj77ﬂj}vc X S*(])}
JE[Nn
<cX mfn] max{max{hr,,7x,},s*(j)} = ¢ x t"(w, /e, h1, 71, ..., hyy,).
JE[n

O

Property E.3. Forall c € (0,1) and w,’/e,hy,T1,. .., hp, Tn > 0, we have

t*(c X w,%%/e,[hi,Ti]}) > ¢ x t*(w,7"/e, [hi, 7i|}) and t*(w,c x 9%/ [hi, T]}) > ¢ X
t*(w,UQ/s, [hi,ﬂ']?).

For all ¢ > 1 and w,7’/e,h1,T1,.. ., hn,Tn > 0, we have t*(c X w, /e, [h;, Ti]}) < ¢ X
t*(w, o%/e, [hs, Ti]7) and t* (w, ¢ x o°/e, [hy, Ti]7) < ¢ X t*(w, 7" /e, [hs, Ti]T)

Remark E.4. We can obtain stronger inequalities. See Properties E.1 and E.2.

3735 https://doi.org/10.52202/079017-0123

Proof. For all ¢ € (0, 1], using Properties 6.1 and E.1, we have

t*(C X w,Jz/e,hl,Tl,...,hn,Tn) Z t*(C X w,c X ‘72/6, hl,’rl,...,hn,’rn) Z c X t*(w,ﬂz/a,hl,ﬁ,...,hn,Tn)
and
t*(wye X e, iy 1y oo sy Tn) >t (e X wye X 0 fe i, Ty oo By Tn) > e X (W, 97 e, hay Tay ey By Tn)-

For all ¢ > 1, using Properties 6.1 and E.2, we have

t*(ex w, e, i, 1y ooy B, Tn) St (e X w,e X 0% fe R, Ty, oo B, o) < e X (w, 97 e, b, Tay oy By T

and

t*(w,c X Uz/s,hl,Tl,...,hn,Tn) S t*(C X w,c X Uz/a,hl,’rl,...,hn,’rn) S c X t*(w,“z/s,hl,ﬁ,...,hn,Tn).
O

Property E.5. Forallc > 0and w,"/c,hy,T1,. .., hp, Tn > 0, we have

t* (W, 7% /e, e X M1, e X Ty .oy CX hpye X) = € X (W, 9% fe, hay T1y oo oy By T).
Proof. For ¢ = 0, it it clear. Assume that ¢ > 0. Using the definition of the equilibrium time, we
have

t*(w, 7 e, ha, T1y oo B,) = mfn] max{max{h~,, 7, },s"(j)},
JjEN

where s*(j) is the solution of

-1

J 1
(; T T 2@02) =s, (26)
and
t*(w, o fe,e X by, e X Ty .oy € X By, ¢ X Tp) = Jnelgzl] max{max{c X hr,,c X Tr; },5%(j)},

where s%(3) is the solution of
-1

J
Z :
= S.
427, hy, 02w 2chy, 02
i=1 207'7-”(&] + —t + .

se 153

For both cases, we can take the same permutation 7. Using simple algebra, we obtain

1 . —1
J J
(1 1
=cC
4c2 77 hy, 02w 2chy, 0 ATp g, 02w 2hy, 0
im1 2CTr,Ww + pos +— im1 2Tm,w + E + —
Thus, s%(j) is the solution of
. —1
J
1 s 27
9 4T7Tih7ri0'2cu 2h7r,¢£72 - E ()
=1 T‘n',iw + %E e

Comparing (26) and (27), one can see that s%(j) = ¢ x s*(j) for all j € [n]. Using this, we get

t*(w, o e,e X by, e X T, .o € X By, e X Ty) = Jnelbrll] max{max{c X hy,c X Tr, },c % s°(j)}

=cx m%n] max{max{hr,,7x, }, s (j)} = ¢ X t*(w,"/e, h1, 71, ..., hn, Tn).
JEIn

O

Property E.6. We fix a nonempty subset S = {k1, ..., kn} from the set [n] with a size m > 1. For
all w,7%/e,hy, 71, ... hp, Ty > 0, we have

(W, 7% e, hiy Tay ey iy Tn) < (W, 7% e, Ry s Ty s - - Pk, Th,)

https://doi.org/10.52202/079017-0123 3736

Proof. Using Property 6.1 with 7; = oo and h; = oo for all i ¢ S and 7; = 7; and h; = h; for all
i € S, we have

t*(w, 02/6, hi,71,..., hn,Tn) < LL*(UJ, 02/5, Bl, Tlyene Bn, 77_n)'
Next, using Def. 3.1, we obtain

t*(wv 02/5, El; Tiyeo-) En; 7_-n) = mfn] max{max{ﬁﬂ'j77_—7r]‘}’ S*(])}v
JEN

where s*(j5) is the solution of

-1

J
1
— - =s 28
_ ATr hr, 02w 2hy, 02 ()
i=1 27.7"71“'} + sXe €

w.rt s for all j € [n], and 7 is a permutation that sorts max{h;,7;} in such a way that the set
{m1,...,mm} equals to the set {k1, ..., kn} (the order of elements can be different). Such permuta-
tion exists because max{h;,7;} = oo for all ¢ ¢ S. Using max{h,, 7, } = oo for all i > m, we
have

(W, 7% e, hiy 1y ooy By Tn) = m[in] max{max{ﬁﬂj Tr; 1587 (7)) (29)
JE[M

By the construction of 7, (28) and (29) depend only on the elements from S. Thus, we have
t*(w, ‘72/5, hl, Ty hn, Tn) S t*(w,az/s, B1,7_'1, ey I_'Ln,7_'n) = t*(w, ‘72/57 }_Lkl,flfl, ey }_Lkm,flfm)
= t*(w,UQ/a,hkl,TkU. . .,hkm,Tkm).

O

Property E.7. Forall ©°/e, hy, 1,. .., hp, Ty > 0, we have
12t* (0,‘72/5,h1,d7.'1,...,hn,d’f'n)
> t* (d— 1,‘72/5,/7,1,7"1, .. .,hn,i'n) .

Proof. Ford =1, itis clear. Assume that d > 1. Using the definition of t*, we have
2 o? (&1 B
t* (0,9%/e,hy,dT1, ..., hy, dTy) > mi hz. ,di=. }, — — 30
(0,9%/e, hy,di, ... hn, T,)_Jnelblbl]max max{hz,,d7z,} 5 ;hﬁ'i (30)
where 7 is a permutation that sorts max{h;, d7; }. Assume that j* is the minimal index that minimizes
(30). Then
-1

> . . . o2 [~ 1
t*(0,9%/e, h1,d1, . .., by, diy) > max { max{hz,.,dfz,. }, — ;H 31)
Let us define
Io:=t"(d—1,9"/e,hy, 71, .oy By Tn)-
Using Property E.6, we have
L <t"(d =1,/ hay Fry oo hip Ty).
Using Def. 3.1 of t*, we get
I, < max{max max{hz,, 7z}, 5"}, (32)
JEli*]
where s* is the solution of
i 1 -
; g, (d — 1) 4 L @) | 2hee? [" Gy

3737 https://doi.org/10.52202/079017-0123

" —1
Let us take s = 12max{(d— l)maxje[j*]i-ﬁj,“;(i h1> } Since ' > (d —
1) max;e(j+] 7z, , we have

-1

-k

—1
4 1 - 1
Z . 477, hz,0%(d—1) 2hz, o2 Z 4hz o2 2hz, 02

IN

i=1 277,(d— 1) + + =1 277,(d — 1) + —F— + —

T
s’ xXe €
-1

IA

0-2

J"
=1 7—ﬂ_

—1)+

i

-1

| /\

i 1
Z:: {de 1)’W}

€

If there exists p € [;*] such that — (10171) < 1, then

Zmln ! > 1
gt T (—1)’h o T, (d—1)

-1

and

Sk

J
Z 1

: <12(d —)77, < 12(d — 1) max 7.
P 27,7?1 (d _ 1) + 477, }Lﬁ-io'z(d—l) + Qhﬁ-io-Q () P ()je[J*] j

s'Xe €

Otherwise, we have

i=1 :: i=1 <
and
<% -1 % -1 % -1
j j o [
1 1 o 1
Z . 477, hr,0%(d—1) | 2hz, 02 <12 Z hir, 02 - 12? -
im1 27, (d — 1) + ST XE +— i=1 — & i—1 T

Considering both cases, we have

- %

1 .
J 2 J
1 o 1
- < 12max< (d — 1) max 7., — —_—
; % (d— 1) 4 Frihr o@D | 20,02 el e (Z hr

s'xXe 5

It means that s* < s’ because s* is the solution of (33). Using (32), we get

-1
o? i 1
I, < 12max { max max{hz ,7z. },max ¢ (d — 1) max 7z, — —
T segymaxtha, fa, =1 o o Z

Using d > 1 and d7z;, < max{hz,,d7z,}, we get
J
I, <12max ¢ max max{hz ,d7z }, max ¢ max max{hz,,d7=. } 7 Z
- J€ls*] A F€li*] A

—1

< 12max { max max{hz,,d7z, },
JE€li~]

i M“

https://doi.org/10.52202/079017-0123 3738

Due to max¢(j«) max{hz;, d7z, } = max{hz .,d7z . } and (31), we obtain

j
* . . . o 1
I =t*(d—1,9%/e,hy, 71, . . By,) < 12max max{h;rj*,dn;j*},? E il

< 12t* (O,UZ/E,hl,d’i'l, .. .,hn,d’f'n) .

Property 6.2. For all K € [1,d],o’/e, hi, 71, ,hn,7n > 0, we have 24 x
t* (d/Kf 1702/€,h1,K7.'17...7hn7K7.'n) > t* (d* l,az/s,hl,%l,...,hn,i'n) .

Proof.
. d+1
(Part 1: K < 4H4)

Forall K < %t! we have

d
t* (K —1,9%/e,hy, K7, .. .,hn,K’f'n) = min max{max{h,,, K7 },s"(j)}, (34)

J€[n]

where s*(j) is the solution of
, —1
2 1

] AKr hr o?(L—1) 2h. o2
i=1 QKTM (%7]‘)+ o SIXUE(K)+ 510

:57

and 7 is a permutation that sorts max{h;, K7; }. Also, assume that j* is a minimizer in (34). For all
J € [n], we get
-1

4 1
s"(4) = :
. AK 7 hy o2(L —1 o2
i=1 2K 7, (4 — 1) + = 18*(};(;{)y Q}LE’U
-1
- (3, ;
4+7fz‘ h,riUQ(d—K) 2h,ria'2
=1 TT“ d K) s*(j) xe + €
Since K < %, we have
i -1
1 1
"/
s'(J) 2 2 Z A7p hr 02(d=1) | 2hn 02
i=1 Tﬂ'l (d -]') + s*(j)xe €
and
, -1
: 1
2x5"(j) 2 Z . A P o2 (d=1) 2hy o2 : 35)
im1 27m (d—1) + 5xgi(j)xs -
At the same time, using Property E.6, we have
t* (d—1,02/5,]11,7;1,...,]1”,7"”) <t* (/e ﬂl,%ﬂl,...,hﬂj*,fﬂj*) <max{mfax]max{hm,7m} 5/(,7*)}7
' ‘ JEli*
(36)
where s'(j*) is the solution of
. -1
> :
: e oy 02 (d— Iy, o =5
— 27_7” (d—1)+47—’ ;:E(1) +2 ;U

From (35), we can conclude that 2 x s*(5*) > s'(j*). Using this and (36), we obtain

t* (d —1,0%/e,hy, 71, . . hn,Tn) < max{ m[ax] max{hz,, 7z, },25"(5°)}
JEls

3739 https://doi.org/10.52202/079017-0123

< 2max{ max max{hz,, 7, },s*(j*)}
JEli*]

< 2max{ m[a_X] max{hz,, K7z, },s*(5°)}.
JEL”

Note that max ¢ (;«) max{hz;, K7z, } = max{hz ., K7z .}, thus

d
t* (d — 1,‘72/57111,7"1, .. -7hn77‘-n) < 2max{max{hﬁj*,K7‘ﬁj*}, S*(]*)} = 2t* (K — 1,‘72/57}11,[(7"1, .. .,h7L,K7L7L> .

(Part 2: K > 4£1)
Forall K > %+! using Property 6.1, we get

d > . : ., 1, d, 1, d.
l—=—-1,¢ Kr,... K > t* o — i T — .
t (K 3 /57h17 T1, ahnv Tn) _t (07 /5a2h1727—17 72hn72Tn>

Next, using Property E.5, we have
* d 2 . . 1 * 2 . .
t E—1,U/a,h1,KTl,...7hn7KTn Zﬁt (O,U/E,hl,dTh...,hn,dTn).

It is left to use Property E.7 to get

«f d . . 1, . .
t <K1,02/€,h1,KT1,...,hn,K’Tn) Zﬂt (d*170'2/5,}7,1,7'1,...,}7,”,7'”).

F Derivations of the Examples for the Equilibrium Time

Example 6.3. [Infinitely Fast Worker] If exists j € [n] such that 7; = 0 and h; = 0, then t* = 0.

Proof. Let us take a permutation 7 where 71 = j. Such a permutation exists because max{h;, 7} =
0. By the definition of t*, we have

(W, 7% e, hy T1y e ooy By Tn) = m%n] max{max{hr,, 7, },s"(j)}
JEIN
< max{max{hr,, 7x, }, 57 (1)} @7

= max{0, s*(1)},

where s*(1) is the solution of

—1
1
Z :
= S.
475 hy 02w 2h,. 02
1=1 27—771‘ : ssb &‘1

Since
1 -1 1 -1
1 1 .
2 3 = Py = (OO) =0,
(; 2me T 4Tﬂii:7;ia w + Qh,\;o) (; 0)
we obtain s*(1) = 0. We substitute it to (37) to get t*(w, */, h1, 71, ..., By, Tn) = 0. O

Example 6.4. [Infinitely Slow Workers] If 7, = oo and h; = oo for all i € [n], then t* = oo.

Proof. By the definition of £*, we have

t*(w, /e, h1, 71, ..., hy, 7) = min max{max{h,, 7=, },s*(j)} = min max{oo, s*(j)} = oc.
J€ln] j€ln]

O

https://doi.org/10.52202/079017-0123 3740

Example 6.5. [Equal Performance] If 7, = 7 and h; = h for all i € [n], then'®
t*§6max{h,r,:§“,ff;,\/ﬂ1§‘”}. (14)

Proof. By the definition, we have
t*(w, o)e,h1, 1y e oo B, o) = m%n] max{max{h, 7}, s*(j)} = max{max{h, 7}, m%n] s*(j)} = max{max{h, 7}, s"}
JEn JjEn
(38)
where s* is the solution of

1
I -
27w + 4TZZ2w + QhEcr2 !

i=1
Since

-1 —1
- 1 B n 27w dtho?w 2ho?
Z 27w + 4tho?w + % - 21w + 4tho?w + % - n + sne * ne ’

=1 se se

we have to solve and find the non-negative solution of the quadratic equation
9 < 27w 2ho? > 4dTho?w
S —s| — + - =0.

n ne ne
The solution is

. Tw ho? w ho?\? Adrho?w Tw ho? Tholw
s=(—+—)+ —+—) + <2 —+—+ :
n ne n ne ne n ne ne
Therefore, we have

ho? ho?
(W, 7% e, h1, T1y e oy By Tn) < max{max{h,7},2 (TW + —Ug + o w) }
n n

ne
Tw ho? [Tholw
<6max<{ h, 7, —, —, .
n

ne ne
O

Example 6.6. [Infinitely Fast Communication] If 7, = 0 for all ¢ € [n], then

m -1 m -1
t* < 2 min max hﬂmf(zhl > = 0O [min @Zhl) (1+;;—25) . (15)
men] i=1 i men] i=1 i

where 7 is a permutation that sorts {h; }1_;.

Proof. By the definition, we have t*(w,7’/c,h1,71,... ,hn,7) = minjep, max{hn,,s*(j)},
where s* () is the solution of
-1

J 1 B
Z 2h 02 =5
i=1 —,
Therefore, we have

. —1 .
2 2 J
o o2) o 1 o 1
(W, e, hay Tay ooy By Tn) SQm%nmax hnﬁ? <E h,r> e iz (;1 h,r>

J€ln] i=1

Il
@
E.
=
>
5
+

Using Lemma F.1, we obtain
-1

I

@

&,

B
TN

<

+
o] 9,
N—
VR
-

|
3 —_
N~

2 J
1
t*(w, /e, h1, 1, - oy hy T) < 2 min max hﬂj7% <Zl hm)
i—

j€[n]

1%From the proof, it is clear that the result is tight up to a constant factor.

3741 https://doi.org/10.52202/079017-0123

Lemma F.1. Let us consider the two functions

o) = (i)1, p(j)::<j+a><z,;>l

forall j € [n], where h; > 0 foralli € [n],a > 0,and hy < --- < hy,. Then
1

5 nin g(j) < min p(j) < min g(j)
Jj€[n] J€[n] j€[n]

Proof. 1f hy = 0, then p(1) = h(1) = 0 and min;e[,) p(i) = min;e,) (i) = 0. Assume that
hy > 0. Using the fact that a harmonic mean is less or equal to the maximum, we have

_) -1
J J
1
min —mm +a) <min | h; +a — = min ¢g(j).
je[n]p(]) J€[n Y (Z) J€[n] ! (; hi) je[n]g(j)

Thus, we proved the upper bound. Next, assume that j* is the smallest minimizer of p(j). If j* = 1,
then

min p(j) = p(1) = (1 4+ a) hy = hy +ahy = g(1) > min g(j).
J€ln] j€[n]

Otherwise, if j* > 1, then p(j*) < p(j* — 1). Using simple algebra, we obtain

iy -1 = -1
G ta)| D] <G —1+a)| D]+
i=1"" i=1

J*
oGt +a) Zhi <G -1ra) (34

i
i=1 i=1

J*
1
& hjx < —
(J* +a) ;h
Using the last inequality, we get
i —1 * —1 i —1
. 1 1, 1 1, 1
min p(j) = (" +a) ;hf =50 +a) ;h +50"+a) 2
—1
1 L AN 1 1
> Zh = = = —g(j*) > = mi).
> Shyj+5a g e 590" 2 5 min g(5)

O

Example 6.7. [Ignoring Slow Workers] If h; and 7; are fixed and finite for all ¢ < p, and

max{h;, 7;} = m € R for all i > p, then, for m large enough, we have t*(w, "/e, [h;, 7:]}) =
t* (w7 ‘72/5, [h“ Tl]zl))

Proof. By the definition, we have

t*(w, o e,h1, 1y oo B, o) = mfn] max{max{h;, T, },s"(j)}
JEN

https://doi.org/10.52202/079017-0123 3742

For m > max;¢[, max {h;, 7;}, we have max {h;, 7;} < m for all i < p and the set {1,...,p}
equals to {71, ..., m,}. Thus, we get

t*(w, o)e,hi, 1y oo B, o) = mln{mm max{max{h~,, 7, },s"(j)}, min max{m, s*(])}}
J€l[p] j€{p+1,...,n}

—min{t*(w,UQ/s, hi,71,...,hp,Tp), min max{m, s*(j)}}
Jj€{p+1,...,n}
By taking m > t*(w,*”/e, h1,71,..., hp, 7,), we obtain

min max{m,s*(j)} > m > t*(w, /e, h1,T1, ..., hp, Tp).
je€{p+1,....,n}

Therefore, we have
t*(w,UQ/e, h1,7'1, ey hn,Tn) = t*(w, ‘72/57 hl,Tl, ceey hp, Tp).

O

Example 6.8. [Partial Participation] If max{h;,7;} = oo for all ¢ > p > 1, then
* 2 n * 2
3 (wv 7 /Ea [hivTi]l) =t (w’a /53 [h“Tl]Zl;)
Proof. By the definition, we have
t* (W, 7 e, h1, 1y o oo By) = mfn] max{max{hn~,, 7, },s"(j)},
J€n

where 7 is a permutation such that the set {m41,...,7,} equals to the set {p + 1,...,n}. Sucha

permutation exists because max{h;, 7;} = oo for all ¢ > p. Using this, we have

t*(w, /e, h1, 71, ..., hp, Ty) = min {mm max{max{h~,, 7, },s"(j)}, min max{max{hx;, Tr, }, s*(])}}
J€lp] je{p+1,...,n} '

= min {mln max{max{h,, 7r, }, 5" (j)},OO}
J€(p]

= min max{max{h,, 7, },5*(j)}
j€lp]

=t* (w702/5’h1’7'17...,hp,Tp)-

G Generic Lemma For Unbiased Gradient Estimators

We prove the following generic lemma that estimates the variance of the general family of unbiased
gradient estimators.

Lemma G.1. Consider that Assumptions 1.3 and 2.2 hold. Let us consider the gradient estimator

gk = Z Eml Zzwm ij va)

J 1w”7’]i1] 1

where m; > 0 for all i € [n] bij > 0 foralli € [n]andj € [ml] are ordered batch sizes
(bu < oo < by, forall i € [n]), wy; > 0 are weights for all i € [n| and j € [m;], and
Yoy o1 Wij b” > 0,C;; € U(w;;) are mutually independent compressors from Def. 2.1 for all
i € [n] and j € [m;), and x* € R? is an arbitrary point. Then E [] Vf(x*) and

1 n m; 9

R 7> > wibiwii [V(")

(Zi:l Ejzbl wijbij) =1 j=1

E[lg" - Vi@ <

1 - :
+ . 5 Z wajbijwijUQ + ZZmln{bij,bip}wijwipaz
(S o wighyy) = = j=1p=1

(39)

3743 https://doi.org/10.52202/079017-0123

Proof. First, we show the gradient estimator is unbiased:

n bij
E "] =E S 12 Zwa # ;Vf(a:’“

Zy wigh i i1 =1

no m; bij
1 i

Using Def. 2.1 and Assumption 1.3, we have

1 n
S S wigb jZwabm %) = V().
i= j= 1j%g 1 =1

Next, we estimate the variance

E[s"] =

£ [lg* ~ V6]
=E : \V4 ; -V k
Z’L 12] 1U}’ijzj ;lewz] if Z f 5“ f(.’L')
1 n.ms bij n m; 2
- 5 Zzwijczj ZVf(xk;fikz) - Zzwijbiij(l'k)
(Z Z Wi zJ) i=1j=1 =1 i=1 j=1
Using the independence and (22), we have
E[lo* - Vst
1 n [m; bij m; 2
= 23 E S wiCis | SOViarseh) | = wiby Vit
(Zz 12 —q Wij zg) i=1 i Jj=1 =1 j=1
1 n [my bij m; 2
- 5 Y B> wiiCii | > VSatigh) Zw”ZVf
(Zz 12711 Wi zj) =1 i =1 1=1 =
I
2
1 n m;
+ 7> E Z%ZW el = wighi V(")
(Z?:l Z;n:ll wijbij) i=1 7j=1 j=1
Iy
(40)
Using the independence of the compressors and Def. 2.1, we get
2

n m; bij
1

Il:) 222’“}1’2]’1@ zg ZVf va
(Z?:I > wijbij> i=1 j—1

1 n m;

< Z Z ngwijE Z Vf 7§zl
(Zz 12] 1 Wij zg) i=1 j=1

In the view of (22), the independence of the stochastic gradients, and Assumption 1.3, we obtain

2

2
1 n m; bij b

5 D> whwyE || Y VEakeh) - > V(b
(Z?zl Z;n:li wijbij> i=1 j=1 I=1 =1

I, <

https://doi.org/10.52202/079017-0123 3744

1 n m;

+ 5> > whwib |V)|
(Zz 12] 1 Wij U) i=1j=1

1 n m;

2 ZZ%% ZE [va f(xk)HQ}
(Zz 12 —1 Wij m) i=1j=1

1

no mg
L — 5> > whwb ||V
(Zi=1 ijll wijbij) i=1 j—1

2 2
e E— 7D D> wibiwio + —————
(Zi:1 Zj;l wijbz‘j> i=1j=1 (Z{:l Zj:ll wijbij> i=1 j=1

‘We now consider

2
1 n m;

I2 = 3 ZE ZU}” Z Vf fl) — le”bUVf(itk)
(Z'L 1 Z;nll Wi 5 z]) i=1 j=1 j=1

Let us consider the set S;; := {j € [m;] |l < b;;} forall 4,1 € N. Then we can rewrite the norm in
the following way

2
1 n bi,vni

L= 2 BT D wiy | (ViEeh) - V")
(Z?:1Z?Z1wijbij) i=1 =1 \J€Su

The stochastic vectors are independent, thus

1 L my

f2 = | Y (X) E[Ivsen)]
(Z?:l Z;nél wijbi]) i=1 I=1 \j€Sa

n bi,mi
5 wi; | o°.
(Zi:l 251 wz‘jbij) =1 1=1 \j€Su

IA

Note that
b'iﬂni 2 zml
dowy | =2 > D wyw
=1 JESu =1 j€S; peESi

The number of appearances of the term w; ;w;, in the sum equals to min{b;;, b;, }. Thus

1 mi Mg

I, < 5 ZZZmln{bU,bw}wawU
(Zz 12 Wi m) i=lj=1p=1

‘We now substitute the bounds on I and I5 to (40), and get (39). O

7). Z“’?jb?j%‘ 97|

3745 https://doi.org/10.52202/079017-0123

Algorithm 4 Shadowheart SGD (Alg. 1 is equivalent to Alg. 4 when h¥ = h* and 7F = %)

1: Input: starting point 2°, stepsize -, the ratio o°/e
2: fork=0,1,...,K —1do
3: Find the maximum computation speeds h¥ > 0
and compressors’ communication speeds 7% > 0 of the workers in the current iteration
4: Find the equilibrium time ¢* using Def. 3.1 with h¥ and 7F

5: Setbh; = L’kJ and m; = l:—kJ forall ¢ € [n] (¢*, b; and m; are local and can be different in
every iteration) '

6: Find active workers Sy = {i € [n] : b; Am; > 0}

7: Run Alg. 2 in all active workers S

8: Broadcast ¥, b;, and m; to all active workers S,

9: Tnitgk =0
10: for i € S, in parallel do

-1
11: w; @ (binrw"; eri";)
12: forj=1,...,m; do
13: Receive C;; (gF) from the i™ worker
14: 9" = g" + wiCij (9f)
15: end for
16: end for

17: gF =g/ (30 wimb;)

18: aFtl =gk —Hgk

19: end for

(a) : ffw :0and"?2 =0, then w; =1

H Proofs for Algorithms 1 and 4

In the appendix, we work with Alg. 4 instead of Alg. 1. Alg. 4 is more general and estimates all the
parameters based on local per-iteration times h¥ and 7¥ instead of h; and 7;. All results for Alg. 1
can be easily obtained by taking h¥ = h; and 7% = 7.

Lemma H.1. Consider that Assumptions 1.3 and 2.2 hold. Then the gradient estimator (9) with the
weights w; from Alg. 4 is unbiased and

-1
flo -] = (X) (e) e

i:biAm; >0 T e

Proof. Alg. 4 implements the gradient estimator (9). We can use Lemma G.1 with b;; = b;, w;; = w;
and w;; = w for all ¢ € [n] and j € [m;]. Using (39), we have

n m;

E[o" - Vi)’ < . 2 33wt |V +
(Zz 12 —1 Wij w) i=1j5=1

m; m; m;

1 n
§ : § : 2 2 § : § : : 2
3 wijbijwijo + mln{bij, bip}wijwipo
n m; : - -
(Z¢:1 2 i wijbij> i=1 \j=1 j=1p=1

= e Yo () [T+
i=1 ibi)

1
—_ 3 Z w? (mibiwa2 + bim?o2) .
(Xizy miwibi)” i
We add nonnegative terms to the last inequality to obtain

2
e {ls* - V] < e S (it mbe Tt T [ose +

L 1

https://doi.org/10.52202/079017-0123 3746

M ; w (m;bjwe + mibjwo® 4+ bymio?)
_ lew <mzb2w+mlb W+ bim?) (Ivre*)]* +¢).
Using the choice of the weights w;, we get (41). O
Lemma H.2. Consider two quantities w > 0 and 02/5 > 0, and n € N. Also, consider a sequence
of positive pairs {(h;, 7;)}7_,. We take b; = L%J and m; = U—J forall i € [n], where t* =
t* (w, e by, T1y vy By Tn) is the equilibrium time from Def. 3.1. Then

" —1
> ot)
, biw + wZ —}—ml"s

i:b; Am; >0

Proof. Assume that j* € [n] is the smallest index that minimizes max{max{hr;, 7, },s*(j)}, then
t* = max{max{hn ., 7r. },5"(j")}. 42)

Therefore, we have t* > max{hy ., Tr,. } > max{hr;, 7} forall j < j* since max{hr;, 7x;}

are sorted. It means that bﬂj = {;—J > 1and My, = U—*J > 1forall j < j5*. Using this, we have
" =

-1

I b; ml o < j* bmmm B j* 1
T Z biw + ws — Z o2 - Z + wo? + o2

+m16 bmerw +mms

i:b; Am; >0 i=1 m.,rl by, My, € br, €
Since b, = {;—J > 1and m,, = U J > 1, we can also conclude that b;, > # and
P 5 ™5 h T
M, > # for all 5 < j*. Therefore, we obtain
]
- —1 —1
J
I< 1 1
- Z 2Ty, w 4Tﬂihwiw02 2h,,icr2 Z 2T, w 4T7\-ihﬂ-iw0'2 2h,,l.c72
= R G L o =1 5G9 T G2 T s GE
. -1
J
1 1
s* (7% ¢ ATr By, wo? 2hy, 02
(‘7) i=1 27—7”(-*-}‘" s*(j*)XE <

where the last inequality follows from (42). Recall that s*(j*) is the solution of the equation (7).
Thus

—1

3 1 K[ok
— 2T7T.w+ 47 hp. wo? 2h,ria'2 =3 (])
i *(5%) €
and
[<—r x5 =1
— s ()

O

Theorem H.3. Assume that Assumptions 1.1, 1.2, 1.3, 2.2 hold. Let us take v = ﬁ in Alg. 4. Then
for all iterations
16 LA

K > ; (43)
3

Alg. 4 guarantees that + e k 0 {HVf HQ} <e

3747 https://doi.org/10.52202/079017-0123

Proof. Let us fix any iteration k¥ € N. Consider that G, is a o-algebra generated by ¢°, ..., g"~L.

Then, given G, 2 is a deterministic vector. Using Lemma H.1, we have

-1
(vl < (3 b) v,

i:biAm;>0 ¢

Note that the choice of the parameters in Alg. 4 satisfy the conditions of Lemma H.2. Thus, we have

E[llg" = VsNIP| 6] < [V5GH)] +2

for all £ > 0. It is left to use the standard SGD analysis from Theorem I.1 with B =1 and C = ¢ to
finish the proof. U
Theorem 4.2. Lett Assumptions 1.1, 1.2, 1.3, 2.2 hold. Let us take v = 1/2L in Shadowheart SGD
(Alg. 1). Then as long as K > 16LA /e, we have the guarantee + ZkK:_Ol E [HVf(xk)Hg} <e

Proof. It immediately follows from Theorem H.3 for h; = h¥ and 7; = 7F. O

Theorem 4.4. Alg. 4 converges after

I’l(,'LA
> 2t (w, o e B T By T) (11
k=0

seconds, where h¥ > 0 and TF

iteration k.

> 0 are computation and communication times for worker i in

Proof. Let us fix an iteration index k € [n]. In every iteration, every worker calculates b; stochastic
gradients and sends m; compressed vectors. Thus, the processing time of each iteration is not greater

than . .
max{h b, +; mz} max{hkka—i—T VkJ}
i€[n] i€[n] h T; 44)
< 2% (w, o e, WY T RE TR,

Using the fact that the number of iterations equals to (43), we finally get (11). O

Corollary 4.3. Shadowheart SGD (Alg. 1) converges after at most T, seconds, where
T, = L 5 t*(w, %, hy, 11, .o B,). (10)

Proof. It immediately follows from Theorem 4.4 for h; = h¥ and 7; = 7F. O

I The Classical SGD Theorem

Let us consider a slightly modified classical SGD result from (Ghadimi and Lan, 2013; Khaled and
Richtarik, 2020).

Theorem L.1. Assume that Assumptions 1.1 and 1.2 hold. We consider the SGD method:

ah = 2F — yg(at),

where

. 1 €
7_mm{L(lJrB)’ 2LC}
For all k > 0, the vector g(z) is a random vector such that E [g(xk)‘ Gr] = Vf(z"),

E[llg*) - V£*)|°| 6] < BV £+ C, (45)

https://doi.org/10.52202/079017-0123 3748

where Gy, is a o-algebra generated by g(z°), ..., g(x*~1). The quantities B and C are arbitrary
nonnegative constants. Then

1 1S 1IEJMV]” } €

k=0

ALA(L+ B) | SLAC

K> -

S S

Proof. From Assumption 1.1, we have
L
P < F@h) +(TFF), a4 — 2+ 2 [l = o

2 2
= £ = (V5. @) + 2 o)

We denote G as a sigma-algebra generated by g(z°), ..., g(2*~!). Using unbiasedness and (45),
we obtain

E[f(a*)|64] < f(a*) - (1) 1959 + 228 [o) - V1) ¢
< I = (1 - L”(l;B) ||Vf<x’“>||2 TR

Since 7 < gy, We get
E[£(*)]64] < £ - 2w ah) | + 22E.

We subtract f* and take the full expectation to obtain

B[/ - 5] < B [f6) - 7] - T8 |V seh)] + 225

Next, we sum the inequality for & € {0,..., K — 1}:

= KL»*C
E[f@")-f]<f -3 [V + =
k=0

= . KILy2C
- I; SE|IVFah|] + =5

Finally, we rearrange the terms and use that [E [fa®) — f *] > 0:

1= e2] 24
N S E[|vsEh)] < ke
k=0

The choice of v and K ensures that
K—1

=S B[V <=

k=0

J Comparison with Baselines

In the following proofs, we use assumptions and definitions from Sec. 7.
Comparison1.1. T, = O(Tyg).

3749 https://doi.org/10.52202/079017-0123

Proof. Without loss of generality, we assume that all workers are sorted by max{h;, 7; }. For the

Rand1 compressor, we have w = d — 1. From Corollary 4.3, we know that the time complexity of
Alg. 1is

LA
T, = T x t* (w ‘7/5 hl,Tl,...,hn,j—n)

up to a constant factor. Using Def. 3.1 of t*, we have

T. < max{max{h,, 7,},s*(n)} x % (46)

where s*(n) is the solution of

-1
& 1
(Z Vi + 47;hio?w + 2h,;02) =4 47

sXe

Let us take s’ = 12 mMaX;e[n) Max { h;'b‘; , } . Using simple bounds, we have

s’ Xe g

—1
- 1 n
Z 47;hio%w 2h;02 < 47 oh: o2
27’10.) + e MaX;g[n) (QTZOJ + 7‘” (7w | 2ho)

47;h; 2w 2hi02
MaXie|n] (272“’ e T)

n
Since s' > w max;ep, 75, we get

(n 1)1 max; e (27_1&} + 4h a2 + 2h::a2)

47;hio2w 2h;o2 n
27w TP S

hio? .
12 max;¢[,) max { e }
<s
n
It means that s*(n) < s since s*(n) is the solution of (47). Using the properties of max and (46),

we get
;02 LA
(ax § max{hn, 7n }, maxmax{hlg ,wﬁ}} X)
S ne €

hi0'2 . LA
= max max (hi + (w+ 1)7;), [max + maxwt; | p X —
LA o?LA LA
{max (hi + (w4 1)7;) x —,maxh; X max(w + 1)7; x 6})

<

1€[n] i€[n] NE i€[n] e
max 57
i€[n] € ze[n] ne i€[n]

- <m<’“ w1 (224 ZE2))

2
-0 (max(hi +d#y) (LeA L L2A>) |

i€[n] ne

E

where we use w + 1 = d. O

Comparison1.2. T, = O(TR).

Proof. From Sec. 7, we know that

LA
T* = ? Xt (w J/E hl,Tl,..~7hn77.—’n)

and
LA
TR 7)(?5*(0 /E hl,dTl,...,hn,d’i’n).
€
Using Property E.7, we get T, = O(TR) since w = d — 1 for Rand1. O

https://doi.org/10.52202/079017-0123 3750

K Description of Alg. 5 in the Bidirectional Setting

In this section, we provide the modification of Alg. 4 with the EF21-P mechanism (Gruntkowska
et al., 2023). Almost all steps are the same as in Alg. 4 except for the EF21-P mechanism (we mark
the main changes with the color).

Algorithm 5 Bidirectional Shadowheart SGD

1: Input: starting point 2°, stepsize -, the ratio o°/c

2: fork=0,1,..., K —1do

3: Find the current computation speeds h¥ > 0

and communication speeds 75 > 0 of the workers
Find the equilibrium time ¢* using Def. 3.1

Set b; = L%J and m; = [:TJ for all ¢ € [n]

Find active workers Sy = {i € [n] : b; Am; > 0}
Run Alg. 6 in all workers

Broadcast b;, and m; to all workers

9: Initgh =0

10: for i € Sy in parallel do

A A

-1
11: W; (g) (biw-l—w";—i—mi";)

12: forj=1,...,m;do

13: Receive C;; (gF) from the i™ worker
14: gk = gk + wiCij (gf)

15: end for

16: end for

17: g = g%/ (37, wimibi)

18: k!l =k — gk

19: pFtl = Cope (2P — wh)
20: wFtl = wk + p"”rl

21: Broadcast p**1 to all workers
22: end for

(a) :Ifw:Oand";:O,thenwizl

Algorithm 6 i Worker’s Strategy (init all workers with w? = 29)

1: Receive b;, and m; from the server
2: if b; A m; > 0 then

3: Initghk =0

4. forl=1,...,b;do

5: Calculate V f(w"; €F), ¢k ~ Dg

6 gf=gf +Vf(whigh)

7: end for

8. forj=1,...,m;do

9: Send Ci; (g9f) = C (g5; vf;) to the server,
l/zkj ~D,, Cij € U(UJ)

10: end for

11: end if

12: Receive p*t! from the server
13: whtl = wh 4 pht!

L Proofs for Alg. 5

Theorem A.2. Let Assumptions 1.1, 1.2, 1.3, 2.2 hold. Choose v = —&~. Then as long as K >

16L"
T68LA Bidirectional Shadowheart SGD (Alg. 5) guarantees to find an e—stationary point.

ag

3751 https://doi.org/10.52202/079017-0123

Proof. In the bidirectional setting, the idea of proof is the same as in Theorem H.3. Let us fix any
iteration k € N. The gradient estimator has the same structure as (9) but with w” instead of z*

m;

gkzz 1wm ZwZZC” (ZVf >

lzl j=1

Consider that Gy, is a o-algebra generated by all random variables from the iterations 0, ...,k — 1.
Then, given G, w* is a deterministic vector. Using Lemma H.1 with ¥ = w* and Lemma H.2, we
have

E[llg* - Vi@] < Vs +e

for all £ > 0. It is left to use Theorem E.3 from (Gruntkowska et al., 2023) with B = 2 and C' = ¢ to
ensure that minp<g<x—1 E {HVf(zk) ||2} < ¢ after migA iterations. O

Corollary A.3. If the broadcast time of Csery is not greater than 7er, then Bidirectional Shadowheart

SGD (Alg. 5) converges after at most
T*,serv = % X (Tserv + 2t* (w7 J2/£a [hlv TiML)) (20)

seconds.

Proof. Let us fix an iteration index k € [n]. In every iteration, the server broadcasts one compressed
vector, every worker calculates b; stochastic gradients and sends m,; compressed vectors. Thus, the
processing time of each iteration is not greater than

t* t*
Tserv T {rel?i]({hsz + Tikmi} = Tgerv T Max {hk \‘th + 7 \‘TkJ }

i€[n] i

< Teerv + 2t° (wU/E h’llev" h’fw n)
P6.1
S Tserv + 2t*(w7 UQ/Ea hla Tlyeeey hna Tn)-
Using the converge rate from Theorem A.2, we finally get (20). O

Comparison A.5. Assume that it takes 74, seconds to send one coordinate from the server to the
workers. If we take K > min {d, t*(w, ?’/, [h;, 7;]}) /Fserv } in TopK, then T} gery = O (T%) .

Proof. From the assumption, we have Tyery = K7gery and 78 = diy,,. For TopK, a > K/a.
Therefore, up to a constant factor, we obtain
LA * n
T*,serv = E X (Tserv +1 (wa 02/57 [hla Ti]l))
dLA . . n
< G X (Kvers 4w, e, [hiy i)
dLA dLA
7-qerv + K7t (02/57 [hh T’L]?)
dLA dLA LA .
< ——Tgerv + Max {%serva 775*(‘*)7 02/57 [hl’ Tl]?)}
€ €

dLA LA
<2 (5 Tsery + ?t (w, 7%/, [hZ,TZ]’f)) .

Also, up to a constant factor, we have

LA)
T, = T X (begrllr + t*(w’ 7 /57 [hz, TZ]?))
LA 5
= =5 X iy + 80,7 i, 7))
dLA LA

= serv —t" 7 Je hzv i
LB e+ 220 @0, T).

Therefore, T gerv = O (T%) . O

https://doi.org/10.52202/079017-0123 3752

M Development of Adaptive Shadowheart SGD

Algorithm 7 Adaptive Shadowheart SGD

1: Input: starting point 2°, stepsize -, the ratio o°/c
2: fork=0,1,..., K —1do

Run Alg. 8 in all workers

4: Broadcast z* to the workers

5: Initl; =0foralli € [n]

bl

-1

-1
. L 2 2
6: while Z <Zl (112#” + l?v;)‘:zrije) + Z€> > idO
j=

i:01;>0
7: Receive C; ;. m, , (9:),l; and m;;, from some worker (we indicate this worker with)
8: ifm;;, =1 and lZ > 1 then
9: §1:§Z+m lil)giandgizo
10: end if
11: Gi = Gi + Citym,y, (9i)

12: end while
13: InitgF =0

14: forie[n] :1; >0do
15: Ji —gl+m,ll Ji

. (@) li lo? -1
16: wi = (ZJ 1m” +ZJ 1lm” + g)
17 g* =g" +wigs
18: end for

19: gF=g*/ (Zi:li>0 w; 221:1 j)
20: a2kt =gk — gk

21: end for

(a) : ffw :0and%2 =0, thenw; =1

In this section, we design a new method that, unlike Alg. 1 and 4, does not require the bounds on
computations times. It automatically understands when to stop the collection of compressed vectors

in g*.
Let us consider Alg. 7, which we call Adaptive Shadowheart SGD. It implements the following
gradient estimator:

mij

s N R B

The idea is that each worker calculate and send compressed vectors in parallel: while the next stochas-
tic gradients V f(z*;£F;, |) are calculating, the workers are sending Cy;. (I _ Vf(ak; 5?,)) to

server. The main difficulty is to understand when to stop. It turns out that it is sufficient to wait for
the moment when the condition in Line 6 of Alg. 7 does not hold. For this method, we can prove the
following guarantees.

Theorem M.1. Let Assumptions 1.1, 1.2, 1.3, 2.2 hold Let us take v = i in Alg. 7. Then for all
iterations K > 16LA , Alg. 7 guarantees that - 7 k 0 {HVf Hﬂ <e

Corollar{ 4.6. If the computation and communication times are positive, the time complexity of
Alg. 7 is L2 x t*(w, %/, [max{h;, 7; }, min {7;7;, max{h;, 7;} }]}") up to a constant factor, where
T IS deﬁned in Def. 4.5.

3753 https://doi.org/10.52202/079017-0123

Algorithm 8 ;™ Worker’s Strategy

1: Receive z* from the server

2: Init lz =1

3: Calculate g; = Vf(a*;€k), €& ~De

4: while True do

5: Start calculating V f(x ,le 1) ful_“ ~ D¢,

and go to the next step l

Init m;;, =0

while V f (z¥; £, | ,) is not calculated OR m;;, = 0 do
myg, = my, + 1

9: Send C; 1;,m, (9:) ,1; and m; ;, to the server, Ciliymay, € U(w)

10: end while

1 gi=g¢i+ Vf(ﬂfk;ff,liﬂ)

12: Li=0L+1

13: end while

PR

N Proofs for Alg. 7

Lemma N.1. Consider that Assumptions 1.3 and 2.2 hold. Then the gradient estimator (48) with the
parameters from Alg. 7 is unbiased and

_1\ 1
L

Bl -vrah 4| 3 X p- i

i€[n]: ;>0 \Jj=1

(I s +e).

@C/J

(49)

Proof. Alg. 7 implements the gradient estimator (48). Note that since C;;, € U(w), then
mlij Z;!l Cijp € U(w/mi;). Therefore, we can use Lemma G.1 with w;; = «“/m;, bi; = j, wi; = w;,
and m; = [;, and get

n l; .9
[Hg —Vf(x H } 1 _ ZW?Z & va(xk)HQ
(ZZ 1 Wy Z?:l]) i=1 j=1 mij

1 jwo?
S —— S Z
(Zi:l Wi Zf:lj) =1 Yo ==l

Since Z‘lle Ziﬁ:l min{j,p} <12, we have

1
—Vf(x 5 .
[Hg I } (Z?:l wi 35 13) = =1

https://doi.org/10.52202/079017-0123 3754

We add nonnegative terms to the last inequality to obtain

1 i L j2w L Jjw o2 o2 2
E[|lg* - viah|] < 3D i +2 2o Ve
(Z?:l wi j) i=1 j=1 M = e ©
1 - L 2we s jwo
+ DY —+) T+l
(Z?:1 w; 2?;1]) i=1 j=1 M 53
1 " b2 b jw oo o
- w3 TE 2T (9] <)
(Zn 1 Wi Z;i:1 J) i=1 j=1 Mg = e

; . 2 .
Using Zile ji> %7 we obtain

.2 i

jw o? Jo? x 112
+j§:m76 +2) (IvFah]* +2)-

n l;
eflot - v < o ot (S

In the last two sums, we bound the terms j with [; to get

Mij

l;

PPw i liw o? o?
- Vi < : R (Iv +e).
B [l - 6] £ o vt BRI 195 +¢
It is left to use the choice of the weights w; to obtain (49). O

Theorem M.1. Let Assumptions 1.1, 1.2, 1.3, 2.2 hold Let us take vy = i in Alg. 7. Then for all
iterations K > 16LA , Alg. 7 guarantees that - i k 0 {HVf ||2} <e

Proof. The proof of this theorem is very close to the proof of Theorem H.3. Let us fix any iteration k& €
N. Consider that Gy, is a o-algebra generated by ¢°, ..., g*~!. Then, given Gy, =" is a deterministic
vector. Using Lemma N.1, we have

—1\ !

Mg el ‘Qk} < Z ZlQm” Zl (va(xk)||2+€)'

i€[n]: ;>0 \j=1"*

The algorithm is constructed in such a way that the first bracket in the last inequality is less or equal
to 1 (see Line 6 in Alg. 7). Thus

E[[lg" = V£@)|°| 6] < IV 50" +
for all £ > 0. It is left to use the standard SGD analysis from Theorem 1.1 with B =1 and C' = ¢ to
ensure that the algorithm converges after L2 iterations. O

Corollar{ 4.6. If the computatlon and communication times are positive, the time complexity of
Alg. 7 is 22 x t*(w, o%/e, [max{h;, 7 }, min {7;7;, max{h;, 7, } }J7) up to a constant factor, where
T 1S deﬁned in Def. 4.5.

Proof. Let us fix an iteration and take k € [K]. It is sufficient to find a time required to send enough
compressed vectors such that the inequality

—1\ !

4 Z Z lQmZ Zl m” 7 S 1

i€n]: ;>0 \j=1 *

3755 https://doi.org/10.52202/079017-0123

holds. As soon as this inequality holds, the algorithm stops the loop in Line 6 from Alg. 7. Then the
upper bound on the time complexity equals to the number of iterations x the upper bound on the
time of each iteration. The previous inequality is equivalent to

N Z L > 1. (50)

4wo? 402
11;>0 Z] 1 lzmu + ZJ 1 3myje + lie

Let us show that

=128 x t*(w,?/e, max{hy, 71 }, min {717y, max{hy, 71 }}, ..., max{h,, 7}, min {7,r,, max{h,, 7, }})
is a sufficient time such that (50) holds.

By the definition of the equilibrium time ¢*, in order to apply this mapping, we first have to find a

permutation 7 that sorts the input pairs (max{h;, 7; }, min {7;7;, max{h;, 7;}}) by
max {max{h;, 7; }, min {r;r;, max{h;, 7} } } .

This term equals to max{h;, 7; }. Without loss of generality, we assume that the sequence max{h;, 7; }
is sorted, thus 7; = ¢ for all ¢ € [n]. Therefore, we have

t' =128 m%n] max{max{h;,7;},s"(j)}, (5D
j€ln

where s*(j) is the solution of the equation

—1
4 min {7;7;, max{h;, 7; } } max{h;, 7; o*w N 2max{h;, 7;}o?) -t
=35

SE S
(52)

(Z (2 min {7;7;, max{h;, 7;} } w +

=1

forall j € [n].
Let us define j* as the smallest by index minimizer in (51). Then
t" = 128 max{max{h;, ;- }, s*(5)}.

Assume that /; is the number of iterations (the number of calculated stochastic gradients) that the ith
worker does by the time ¢'. Since ¢’ > 4 max{h;«, ;- } and the workers are sorted by max{h;, 7; },
we have ¢ > 2 (h; + 7;) for all i < j*. Therefore, for all i < j*, the i worker will have time to
calculate and send at least one compressed vector, i.e., [; > 1 for¢ < j*.

Next, the i worker requires at most 7; seconds to send a compressed vector and it waits for at
least one calculated gradient. Consider that the computation time of the j stochastic gradient in
the k™ iteration equals to hJ;. Thus & < S i1 (hfj + 7;) . Indeed, if & > 22;1 (hi; +7:) , then
the i worker will have time to calculate and send at least one more compressed vector because

%/ > 2max{h;, 7} > h; + 7; for all i < j*. It would contradict the definition of /;. Therefore, we
have

l;
t ‘
< thrTZ <lmaxh +l7'7
2 _Z jElls]
Jj=1
and
t/

2 (max hk. + Tl>
et
At the same time, by the definition of /;, we have
t/
hmin
because A, > 0 is the smallest possible calculating time. Therefore, we have

tmax
li <lmax == ’
o ’thin-‘

L >

(53)

2 liv

https://doi.org/10.52202/079017-0123 3756

where t,ax is defined in Def. 4.5 (tnax > t'). Since I; > 1 for all ¢ < j*, we get

-1
li o2

2 e Z Z Z l4w0

i€n]:1;>0 j:1

-1

(54)

Using (53), we obtain

82 (maxh + Tl)
402 < jelly) ¥ < 802 (h; +7;) < 1602 max{hi,ri}.

B :=
el; — et! - et! - et!

. . . . Rk
For every j" stochastic gradient, the i worker sends at least one compressed vector or {T”J

compressed vectors because it is possible that 7; < hfj, then the worker will have time to send more
than one compressed vector. Therefore, we have

hk
I, i et "
m;j > max — ,1 7 > max Q—T,l > max T’l

and

11 2 «— 7 7

- < — min 'T k’l 2 min = 1

l; — my; l; &= min hij min h ’

J=1 J=1 J€ll] €l
Using the last inequality and (53), we get
4 h 5
1on 1 (?e% ”+T> . ;
2 m = t — min AF 1
[3 j=1)]e[l] 7
8 hk
max{mzﬁ ijs T Ti } . -
< min ;1
t’ min hk
jells] v
max{max k¥ 7;} 8max{maxh* 7
. T b jell) {je[m 627
=min{ — ,
t’ min hi. t
jell) v
T

8 max{ max h” \Ti }

. l l
It is clear that T < Jelti] If 1, < min h ,then T = 8%: x st . If 7, > min h¥
! jElls] ¢ ;g;;;]hu il 9
8 max h1 max hf
jetly) M 81; JElly] _ 87
and7'2<1naxh then T = —+ — < &Ti x 3 IfTZZmaxh then 7' = &% <
jell] t t m[ln] h jell] t
JEl
&
87i J'H€1[lri] hij
t’ min hF. "~
jel] Y
Thus, we have
k
L max hf. 8 max{max h¥
1< 1) 8m ey ¥ { clli] i 7i}
) < min§ —- . 7
5~ my; t min h;; 13
J=1 J€E(l]

3757 https://doi.org/10.52202/079017-0123

k
¢ Smax{maxh;, 7}
) 8T SUPjeft. i) jells] v
<min{ — X)

t infje[lmax] hlj t/
S min { 8’7’2'7"7; 7 8max{hi7 Ti} } :
t’ t
where we use the definition of r;. Using the last inequality and ; > m, we have
ooy b o2
A:=4 +4
jz:; m”lf ; mijal?
< 32w min {7;r;, max{h;, 7} } N 32wo? min {7;r;, max{h;, 7;}}
- t/ €t/li
< 32w min {7;r;, max{h;, 7; } } N 128wo? min {7;r;, max{h;, 7; } } max{h;, 7; }
= by B (tl)2 ’

where we use (53) and mzﬁ hfj < h;. One can substitute the bounds on A and B to (54) and obtain
jell;

H

Z 198 5
128 4 e(t) et!

Note that ¢’ > 128s*(j*), thus

” i (w min {7;r;, max{h;, 7;} } n wo? min {7;r;, max{h;, 7; }} max{h;, 7;} n o2 max{hi,n}> -
- s*(5%) e (s*(5*))° es*(j*)
<2w min {7;r;, max{h;, 7;}} n dwo? min {7;r;, max{h;, ;} } max{h;, 7;} n 202 max{hi,n}> o
s*(7%) e (s7(j%))° es*(j*)

% -1
1 i: (w min {7;r;, max{h;, 7;} } N wo? min {7;7;, max{h;, 7; }} max{h;, 7;} n o? max{hi,n}>

vV

K2

vV
-MQ#

i=1
i
= 5" (j*) x Z (2w min {7;r;, max{h;, 7; }} +

i=1

dwo? min {7;r;, max{h;, ; } } max{h;, 7; } N 202 max{h;, 7;} !
es*(J*) € '

It is left to use the definition of s*(5*) (see (52)) to obtain that H > s*(j*) x ﬁlj) =1.

It means that after at most ¢’ seconds, we can ensure that the algorithm will finish the loop in Line 6

from Alg. 7. In the view of Theorem M.1, the time complexity is less or equal to K x t'. O

O Construction of the Lower Bound

We prove the lower bound by generalizing the time multiple oracles protocol from (Tyurin and
Richtarik, 2023c). Note that in the classical approaches (Nemirovskij and Yudin, 1983; Carmon
et al., 2020; Arjevani et al., 2022; Nesterov, 2018), the researchers bound the number of oracle calls
required to find an e—solution. Our approach is based on the idea from (Tyurin and Richtarik, 2023c),
where the authors propose to bound the time required to find an e—solution. We refer to a detailed
explanation to (Tyurin and Richtarik, 2023c)[Sections 3-6].

First, we define an oracle that emulates the process of computing stochastic gradients or the process
of sending a compressed vector (Tyurin and Richtarik, 2023c)[Section 4]:

097 : Rsgx R? x{0,1} x (Rg x R x {0,1}) — (R>o x R? x {0,1}) xR?
20 X 8 > >

point

time control input state output state
((t,z, 1), 0), ¢=1,8=0,
((st, Sx, 1), 0), c=1s,=1t<s+T,
h that 09Dt - =
suc a T (, L, C, (Stas, 5(1)) ((07070), 9(51:75))7 C:17Sq = 17t28t+7_7
((0,0,0), 0), ¢=0,

(55)

https://doi.org/10.52202/079017-0123 3758

where & ~ D, g is an arbitrary mapping such that g : R? x S — R%, and S is the sample space of a
distribution D. Next, we define the time multiple oracles protocol with compression:

Protocol 9 Time Multiple Oracles Protocol with Compression

1: Input: function(s) f € F, computation oracles (Oy, ...,0,) € O(f), communication oracles
(C1,...,Cp) € U, algorithm A = {(B*, Nf,... NF)} € A

2: 5710 = sf’o =0 forall i € [n]
3: fork=0,...,00do
4: (tk+1,;ik+1’ VERFL (CRHL ghy — BR(gl ,g:)7 > thtl > ¢k
. vk+l k+1y _ k+1 .k k+1 Vf.k
500 (,Z‘k]j»l L ghihn) = O (tFFE gk eV IR+ ,sikﬁl)
Vi £ ikt Sjvf,kJrl — svf,k’ gl =0
. kE+1 _ ark 1 k1 k+1
6: gprJer *NikJrl(g yeer g agik+17"'7gik+1)7
C.k+1 5 C.k
7. (Sik+1 7gk+1) = Cik+1 (tk+1’gll)€r<e|»1’cc,k+l7 Sik+1)
8: end for

In this protocol, the server via B returns a new point 2*, and broadcasts it to the * '™ worker.

Then, the worker calls the oracle O;+:1 that calculates stochastic gradients. Next, the oracle returns
the vector gfktll , and the worker processes it with Nﬁcﬂ. Finally, the worker sends g*1! to the oracle

pre
C,r+1 that sends compressed vectors to the server. Using the parameters ¢V/*+1 and ¢¢**1 it can

decide if it wants to start/stop the process of a gradient calculation and the process of communicating
a compressed vector (See Sec. F in (Tyurin and Richtérik, 2023c)). As far as we know, all centralized
distributed optimization methods can be described by Protocol 9, including Minibatch SGD, QSGD,
Asynchronous SGD, Rennala SGD, and Shadowheart SGD.

We consider the standard function class from the optimization literature (Nesterov, 2018; Arjevani
et al., 2022; Carmon et al., 2020):

Definition O.1 (Function Class Fa). We assume that a function f : R? — R is differentiable,
IVf(x) =Vl < Llxz—y| Vr,y € R (L-smooth) and f(0) — inf,cra f(z) < A (A-
bounded). The set of all functions with such properties we denote by Fa ..

Next, we define the class of algorithms that we analyze.

Definition 0.2 (Algorithm Class A,;). Let us consider Protocol 9. We say that the sequence of tuples
of mappings A = {(B*, Nf, ..., NF)}22 , is a zero-respecting algorithm, if

1. BF :R¥x - xR 5 Rsg x Nx Nx N x R?forall k > 1, and B € R~g x N x N x
—_———— = 2

k times

N x R4,

2. Forall k > 1and and ¢',...,¢F € R% tFt1 > ¢k where t**! and t* are defined as
(th+l, ...y = Bk(gl,...,gF)and (t*,...) = B*1(g,... g% 1).

3NF i RYx - xREXRY X - x RY — R forall k > 0 and for all i € [n].

k times k+1 times

k i k . k .
4. supp (%) € Uj_, supp (¢7) , and supp (ght') € UJ_, supp () U2, supp (gfm),
for all & € Ny, where supp(z) := {i € [d] | z; # 0}.

The set of all algorithms with this properties we define as A,;.

The properties 1 and 3 are only required to define the domains of the mappings. The property 4
ensures that these mappings are zero-respecting (Arjevani et al., 2022). The property 2 is explained
in (Tyurin and Richtarik, 2023c)[Section 4, Definition 4.1]. It ensures that our algorithm does not
“travel into the past”.

The following oracle class is the same as in (Tyurin and Richtdrik, 2023c). For any f € Fa r, it
returns n oracles that require hq, ..., h, seconds to calculate a stochastic gradient. These oracles
emulate the real behavior where the workers have different processing times.

3759 https://doi.org/10.52202/079017-0123

Definition O.3 (Computation Oracle Class (’)gf _.n,)- Letus consider an oracle class such that,

vf,Divf
h;

for any f € Fa p, it returns oracles O; = O for all ¢ € [n], where V f(x; £) is an unbiased

v§
o2-variance-bounded mapping (see Assumption 1.3). The oracles O,Zf P are defined in (55). We

The following oracle class emulates the behavior of compressors. It returns n oracles that require
Ty, ..., Tn seconds to send a compressed vector to the server.

Definition 0.4 (Communication Oracle Class Uy .). Let us consider an oracle class such that, it

returns oracles C; = O%D’? for all ¢ € [n], where C is an unbiased compressor with a parameter w,
i.e.,C € U(w) (see Def. 2.1). The oracles Of;D’? are defined in (55). We define such oracle class as
‘Iﬁ,...,m'

Finally, we present our lower bound theorem:

Theorem O.5. Let us consider Protocol 9. We take any h; > 0, 7; > 0 forall i € [n], w >
0,L,A,e,0% > 0suchthate < ciLA andw +1 < T,'! where T = {%J is the dimension of the
construction. For any algorithm A € A, there exists a function f € Fa 1, computation oracles
(O1,...,0,) € Ogi..-,hn (f), and communication oracles (Cy,...,Cp) € Ug " such that

E [infkes,, HVf(xk)HQ} > e, where Sy := {k € No [t* <t} and

STTL

LA
t= cg X — X t*(w,az/a,hl,ﬁ,...,hn,Tn).
13

The quantities c1, ¢z, and cs3 are universal constants. The sequences x* and t* are defined in
Protocol 9.

P Proof of Theorem O.5

P.1 The “Worst Case” Function

Let us consider the “worst case” function, which is a standard function to obtain lower bounds in the
nonconvex world. We define

prog(z) :==max{i > 0|z; #0} (zo=1).

In our proofs, we use the construction from (Carmon et al., 2020; Arjevani et al., 2022). For any
T € N, the authors define

T
FT(Z’) = —\I/(l)‘l)(xl) + [\I/(—I7_1)(I)(—l'z) — \I/(l‘,_l)‘l)(.fm)} y (56)

?

where

\Ij() 0; T S 1/2, d q)() \/» z 7lt2dt
) = an z) =+e e 2 .
eXp(l_ﬁ)7 $21/27 /;oo

The main property of the function F(x) is that its gradients are large unless prog(z) > T.
Lemma P.1 (Carmon et al. (2020); Arjevani et al. (2022)). The function Fr satisfies:

1. Fr(0) —inf cpr Fr(z) < AT, where AY = 12.

""'We can avoid this constraint using a slightly different construction of a compressor. However, the number of
non-zero returned values by the new construction is random. See Sec. P.3.

"2The function f defined on R” with T = © (Z4/c), and the constructed compressor C preserves only
K = [T/w+1] non-zero coordinates.

https://doi.org/10.52202/079017-0123 3760

2. The function Fr is li—smooth, where l{ = 152.

3. Forallz € RT | |[VFr ()| < Voo, where oo = 23.
4. Forall x € RT prog(VFr(z)) < prog(z) + 1.

5. Forall x € RT ifprog(x) < T, then ||V Fr(x)| > 1.
Theorem O.5. Ler us consider Protocol 9. We take any h; > 0, 7, > 0 forall i € [n], w >
0,L,A,e,0% > 0suchthate < c;LA and w +1 < T,"3 where T = {%J is the dimension of the

construction. For any algorithm A € A, there exists a function f € Fa 1, computation oracles
2 A N
(O1,...,0,) € OF 4 (f), and communication oracles (C1,...,Cp) € Uy, M such that

E [infkes,, HVf(xk)HZ} > g, where Sy := {k € Ng|tF < t} and

..... T,

LA
t=c3 X — X t*(w7‘72/€,h1,7'1,...,hn,Tn).
9

The quantities ci, co, and c3 are universal constants. The sequences x* and t* are defined in
Protocol 9.

Proof.

Without loss of generality, we assume that the workers are sorted by max{h;, 7;} : max{hy, 71} <
- < max{hy, T}

(Step 1: f € Fa L)

Let us fix A > 0 and take the function f(z) := LZ—)I‘ZFT (%), where the function Fr is defined in
Sec. P.1. Tyurin and Richtérik (2023c)[Sec. D.2, Proof of Thm. 6.4] show that the function f is
L-smooth and f(0) — inf crr f(z) < Aif

Al
r= {LVAOJ '

(Step 2: Oracle Class) Let us construct a stochastic gradient mapping. For our lower bound, we take

Thus, we have f € Fa r.

: £
Vi€ = Vs (1411 > proga)] (£ - 1)) v e,
and DY/ = Bernoulli(p) for all i € [n], where p € (0, 1]. We denote [z]; as the j™ index of a vector

x € RT. Let us take g o
. [LAy
p = min {02[%"0, 1} .
Then Tyurin and Richtarik (2023c)[Sec. D.2, Proof of Thm. 6.4] show that this mapping is unbiased
and o?-variance-bounded.

(Step 3: Compression Operator) In our construction, we take the Rand K compressor (outputs K
random values of an input vector without replacement, scaled by 7/ (Def. D.1)). From Theorem D.2,

we know that C is unbiased and % — 1—variance bounded, i.e.,

BslCS) = Es[Ic@s) —ol] < (F-1) Il voer”,
where
C(x;8)]; = x5 €5, Vi € [T)
R (R - A

3We can avoid this constraint using a slightly different construction of a compressor. However, the number of
non-zero returned values by the new construction is random. See Sec. P.3.

"“The function f defined on R” with T = © (Z4/c), and the constructed compressor C preserves only
K = [T/w+1] non-zero coordinates.

3761 https://doi.org/10.52202/079017-0123

and S is an uniformly random subset of [T'] without replacement. It is sufficient to take K = LL_H—‘

to ensure that C € U(w). Let us define p,, := % We take mutually independent distributions DS that
generate random subsets S described above.

(Step 4: Analysis of Protocol)

Let us take
\ = vV 26[1
L
to ensure that |V f (z)[|* = £ HVFﬂ%)HQ > 2¢1 [prog(z) < T for all x € RT, where we use
1
Lemma P.1. Thus
AL
T=|——"_ 57
\‘2€llAOJ ()

and

: {28750 }
p = min 3 1.
o
Protocol 9 generates the sequence {z*}2° ;. We have
2
inf F 2 inf 1 My <T]. 58
Jnf |V f(@®)| > ¢ inf [prog(z*) < T (58)
Using Lemma P.2 with § = 1/2 and (58), we obtain

E Liélgt ||Vf(;pk)||2} > 2¢P <kié1£,, 1 [prog(z*) < T] > 1> > e

t< Lt (L o b h AL
T K,max 26’)/20’ y N1y T1y e v o5 My Ty 8511A0 .

By the assumption of the theorem, we have w + 1 < T Therefore, we get the series of inequalities:

for

r_ 7T wtl
K [LW— 2
w+1

T 2
t* (K,max{&;go,l} ,hl,ﬁ,...,hn,Tn)

1 2
> t* (Lu;_amax{;:ygovl} 7h177-1a"'7hn77—n)
1

" 1 o?
Zt (272 vaﬁ X sahlaTla"'ahnaTn>

o0 o0
1 *
2 2720 Xt (W’02/67h1,7—17--~7h»n,7-n)7
Thus, we can take
1 1 R AL
t=— X — x t* e, h ..., h ——1].
48 2,-}/20 (UJ, /Ea 1,71,) ann) (SgllAO)

P.1.1 Proof of Lemma P.2

Lemma P.2. Let us fix T,T' € N such that T < T', consider Protocol 9 with an algorithm A € A,;,
a differentiable function f : RT" — R such that prog(V f(z)) < prog(z)+1 for all # € domain(f).

https://doi.org/10.52202/079017-0123 3762

: vf DY
1. We take stochastic oracles O; = Ohi ‘

€ (0,1], h; > 0, and the mappings

with the distributions D] F= Bernoulli(ps),

V15 6)); = V() (1 £ 105> prog(a)] (§ - 1)) Vo € BT Ve € {0,1},) €

0 (59)

=

~ C
2. We take compression oracles C; = O%’D" with the distributions DS = uniform(K,T") (=
“uniformly random subset of [T'] of the size K without replacement”) and the mappings
T?lxjv] € Sa

[C(2; 9)]; := {o ids vz € RT, VS C [n],Vj € [T7], (60)

7, > 0. We define p, := % We assume that the workers are sorted by max{h,,,Tm}
max{hy, 71} < -+ < max{hy,, 7, }. With probability not less than 1 — 0, the following inequality
holds:

inf 1 M<T]>1
Jnf [prog(z*) < T] >

for
1

T
< —t(d w71 oy) s lln,in o 1)
t < 48t (/p /p hi,71 o, T,) (2 + Og(5>

where S; = {k € Ny |t7’C < t} , the iterates t* and =" are defined in Protocol 9, and t* is the
equilibrium time from Def. 3.1.

Proof.
(Part 1): The Construction of Random Variables. _
Let us fix £ > 0 and define the smallest index k(i) of the sequence when the progress prog(z*(*)
equals ¢ :

k(i) := inf {k € No |i = prog(z*)} € No U {oc}.
If infreg, 1 [prog(z*) < 1] < 1 holds, then exists k € S, such that prog(z¥) = 1, thus, by the
definition of k(1), t*() < #* < ¢ and k(1) < oco. Note that t*() is the smallest time when we make
progress to the 1% (first) coordinate.
Since ° = 0 and A is a zero-respecting algorithm, the algorithm can return a vector x* with a
non-zero first coordinate only if some of returned by the stochastic gradients oracles and compression

oracles have the first coordinate not equal to zero. The oracles O; and éz are constructed in such a
way (see (59) and (60)) that they zero out a coordinate based on i.i.d. bernoulli and uniform trials.
According to Protocol 9, even if a stochastic oracle returns a non-zero coordinate, it would not mean
that the server will get a non-zero coordinate because a subsequent compression oracle also has to
return a non-zero coordinate.

Every time when the oracle (55) evaluates g(s,; &), it draws i.i.d. random variables £ ~ D. Let us
enumerate them:

. . DY f .
1. For the stochastic/computation oracles O; = OZif’ ‘| we consider the sequence
™31 where €7 is a bernoulli random variable drawn in j™ call of g(sy;€) in
j=1 J g

the m™ worker in Line 5 of Protocol 9.

. 5 ¢, D¢ . i
2. For the compression oracles C; = O7; ¢, we consider the sequence {S™7} j=1, Where

5™ is a uniform random variable drawn in 5" call of g(s,; &) in the m'™ worker in Line 7
of Protocol 9.

Let us define the following useful random variables based on previous definitions. We define

) inf{i] ¢m(+0n=0) — 1 and i € N} € NU {00}, by, ; < 00,
Thmog += 00, by, ;= 00,

Vie{l,...,T},

(61)

3763 https://doi.org/10.52202/079017-0123

inf{i|j € §™0tem; " andi € N} e NU{o0}, €' . <oo, .
um,jzz{ tilg s teo} wl viedl,...,T}
(62)

where

1. Forallm € [n],j > 1,b], ; € NU {oc} is the first index of the sequence {£7}52, that
started calculating in (55) in the stochastic oracle O,, in or after the iteration k(j — 1).

2. Forallm € [n], j > 1, b}, ; € NU {oo} is the first index of the sequence {57 }52, that
started calculating in (55) in the compression oracle C,,, in or after the iteration k(j —1).

3. Forallme[],j > 1,ifb), ; = oo, thene), . = oo.Forallm € [n], j > 1,if b)), < o0,

thene;, ; € NU {oc} is the ﬁrst index of the sequence {£™7}52, that started calculatmg
in (55) 1n the stochastic oracle O,,, in or after the iteration k(j] — 1) and the first moment

when ¢t ;=1 = 1 for some i > 1.
4. Forallm € [n], j > 1,if b}, ; = oo, thene), ; = oo. Forallm € [n], j > 1,if b)), ; < oo,

then e}, . € NU {00} is the first index of the sequence {S™7}52 that started calculating
in (55) in the compression oracle CAm in or after the iteration k(j — 1) and the first moment

when ¢™ 0001 = 1 for some i > 1.
It possible that such indexes do not exist, then we take b, ; = 00, b}, ; = o0, €, ; = 00, Or
e, j = 00, accordingly. By the construction, e}, - > b . ande;, . > bﬁ% i

Let us clarify the definitions. At the beginning 2 = 0, thus k(0) = 0. It would mean that the first
index of the sequence {7} 22, when the worker evaluates g(s.; &) in (55), simply equals b)), | = 1

orb! oo (by the definition, it equals to oo if the oracle was never called). Assume that bZLl =1,

then 7,1 = inf{i|£™* = 1andi € N} is the first time when the oracle draws a “successful”
random bernoulli trial. This random variable is distributed according to the geometric distribution.
Then, e"m1 can be equal to 7,,, 1 + 1 or co. At some (random) iteration k(1), the algorithm A can get

the first non-zero coordinate through g*, then b“m2 is the next index of the sequence {£7 }32, that
started calculating in (55)."

'ml_

The server gets a non-zero coordinate if at least one worker draws a successful bernoulli trial, and
this coordinate belongs to a set generated by the uniform distribution. It takes h; seconds to generate
one bernoulli trial and 7; seconds to generate one uniform trial.

Then, if := infzes, 1 [prog(z*) < 1] < 1 holds, then

i = mln {hmnm 1+ Tmbm,} < e,

me(n

because Ay, m,1 + Tmlm,1 18 the time required to generate 1),y 1 bernoulli and pi,y, 1 uniform trials.
In other words, the algorithm can not progress to the next coordinate before the moment when at least
one worker generates “successful” bernoulli and uniform trials.

Using the same reasoning, t*() > t*(—=1) 4 ¢, where

t; = mln {hmnm,J + T bm,j } -

men

151 et us consider an example with the m™ worker. Assume that it starts calculations of stochastic gradients and
with 7,,,,1 = 5 (as an example) it gets a “successful” trial: £ M1 = €m0 = 1 (€™ = ... = g™t =).

And only then, starting with em 1, the compression oracle can get a vector with a non-zero coordinate. Even if
there was a previous “successful” trial: 1 € S™" for some i < e, ;. This trial did not return a vector with a

non-zero coordinate because the stochastic oracle did not return a vector with a non-zero coordinate by that time.
. . .] r _
Assume that ef;, ; = 10, then the server waits for fi,,,1 = inf{i|1 € gme(ten =D Agsume that fim,1 = 7,

. - 1) . .
then the time moment, when 1 € ™ (#m1tem 1= — 1 ¢ gm.(7+10 D is the first possible moment when
the m™ worker can send a vector with a non-zero coordinate to the server.

https://doi.org/10.52202/079017-0123 3764

Combining the observations, if infyeg, 1 [prog(z*) < T < 1 holds, then
Z?:l minje[n] (hﬂ]id + Tz’ﬂi,j) S tk(T) S t. Thus

T T
P|(inf 1 BY<«T]l<1) <P P<t]l=P c (homs s) < > 0.
<k1é13t [prog(x) <] <) < (Z t; < t> (mln] (himij + Tifti,j) < t) Vvt >0

i=1 =1 €l

(Part 2): The Chernoff Method
Letus fix s > 0and £ > 0. Using the Chernoff method, we have

p (Z i< g) _p (_S (Z t> > _sg> _p <exp (_zt> > exp (—sf))
(5]

Let us bound the expected value separately. For all j € [T, let us define G; as the c—algebra
generated by random variables

(63)
< B

bl b!

Lo Pnyg

1,1 ¢1,2 1,67 . —1
§)a£77"~7§ 1. 9

En’la 571’2’ cee 751’b:"j717
b bt

Ljow o ngo
1,68 . —1
gLt gh2 o gbbi;—t

(64)

Sn,l’ Sn,27 o Sn,bﬁlj—l.

The o—algebra G contains all information about the random variables before the moment when

prog(z¥) = T — 1. Then, we have
T T—1

exp (—3 Z fi> E lexp (—s Z t; — 35T> QTH .
i=1 i=1

Note that if the random variables from (64) are “fixed,” then ¢; is deterministic for all 7 € [T —1]

because {; is a deterministic function of (64), and does not depend on other subsequent random
variables.

E =E

Let us show it using a contradiction proof. Without the loss of generality, assume that #_, depends
on¢ Lbir ¢ (64). By the definition of b ., it would mean that the first time when the server can

get a vector ¢* with a non-zero coordinate in the index 7' — 1 is after the moment t*(T—1) We get
a contradiction since t*(T—1) is the first time when the algorithm return an iterate with a non-zero
coordinate in the index 7" — 1.

Thus, #; is Gr—measurable for all 7 € [T — 1] and
T T-1
E lexp (—5272) =E lexp (—8 Z f,») E [exp (—sz)| QT]] . (65)
i=1 i=1

Let us fix ¢’ > 0, then, since tr > 0, we have
gT] =E |:€75£T IgT < t’,QT} P (tAT < t’|QT) + E |:€7sz

<P (ir <t'|Gr) + e (1P (ir < t'|Gr)) .

E [675&

br > t/7gT:| (1=P(ir <t'|G1))

(66)

We now use the result of the following lemma that we prove separately.

3765 https://doi.org/10.52202/079017-0123

Lemma P.3. Using the notations from the proof of Lemma P.2, we have

P(f; <t]g;) <1- ﬁ (1 - (1 ¢ —pw)[’t’”) (1 -(—pa)tff;J)) (67)
forall j € [T). .

Let us temporarily define

pom1- 11 (1= (1-a-ml5)) (1= a - b))

m=1

We substitute (67) to (66) and (65) to obtain

E lexp <—sit}>] < (p’ tet (1 —p’)) E

Next, using (63), we get

L ~ ~ n ’ T Iy 7 ’ T
P <th < t) < 6St (p/ _|_efst (1 _p/)) — estfst T <1 + (est _ 1) p/))

i=1

exp (—s%ﬂ-)] < (p’ +e (1 —p’))T.

Let us take s = /¢, and get

T
: (Z ti < f) </ (Lt (e —1)p)" < /VTTHRT (68)

i=1

Let us recall the definition of p’ :

Je=1-] (1 (1<1pw)HnJ> (1(1pa)WJ>) S | ST

m=1

where we define g, = (1 —(1-p,) UMJ) (1 —(1—ps) [’fmJ) € [0, 1]. Using Lemma C.1,
we have
p/ < Z qm -
m=1

Using the inequality'® 1 — (1 — p)™ < pm for all p € [0, 1] and m € Ny, we can get the following
three inequalities:

+/ !/
qm < 1- (]- _pa)|‘hrmJ < ps {;J)

4m Slf(lfpw)[#/"J <pw V/J,
gm < (1—(1—%)[“) <1_(1_p0)MJ> < P U; Do U;J

Therefore, we get
t t/ t t/
< mi
dm > MIN {pa \‘hmJ y Pw \‘TmJ y PwPo \‘TmJ \‘hm_ }

'®We implicitly assume that 1 — (1 — p)™ = 0if p = 1 and m = 0. See footnote 17 for the details.

and

https://doi.org/10.52202/079017-0123 3766

and

o P LA A

Now, we have to take the right ¢’. Assume that s*(j) is the solution of

-1

(Z T 47’mm+2h7n) =S (70)

m=1 puw PwPo$S Po

and
j* = inf {j € o] 5°(j) < max{hysr, i}k €Ml max{nes, ma} = 00
Then we take t' = is*(j*). If j* = 1, then

-1 -1 .
[k 1 1 1 1
ST = <2n Lk 2h1> = <2n+2h1> = (2’7’1—|—2h1> = 5 masthn, 7).

P PuwPos*(3*) Puw Do

Otherwise, if j* > 1, since s*(j*) < s*(j* — 1), we have

—1

2hm
Po

J"
S*<]*> = Z 2T + 4T7n o
m=

Pw PwDo S

j -1 1 1

m=1 pu PuPos*(§*—1) Po Puw Po

Jjr—1 o
> ! + !

ot T et + e a7}

By the definitions of s*(j* — 1) and j*, we have

ke -1
7j -1

1 .
Z 27 AT hm 2hm =s"(j"—1)> max{h]—*,Tj*}.

m=1 p. PuwPos*(3*—1) + Do

Therefore, we get

1 1 -1 1
* 3k > 1 h*) .
’ (j)7 <max{hj*a7—j*} + max{h]*ﬂ-]*}) Zmax{ J 77—] }
Using s*(j*) > %max{hj*,Tj*}’ we obtain

1 1 1
t = 24max{2max{hj*,7j*},s*(j*)} yr mfn] max{max{h;,7;},s"(4)}. (71)

We use the last inequality later. Let us return to the inequality (69). Using the definition of j*, we
obtain {LJ =0or {%J = (O for all m > j* and

- t t t' t'

p Tnzzl p hm p Tm p p TTYL h'ln
S i o |- o | £ s

1 Do hm s Pw ™ y PwPo ~ hm

I [Pt Put’ pupet”
hn " T Tham |

g

3767 https://doi.org/10.52202/079017-0123

where we use [z] < x forall z > 0. Using max{z,y,2} > % (z +y+ z) forall z,y, 2 > 0, we

have
i: Tm 7_mhrn a i:
pat/’pwt/ PowPo t/2 Tm 4 TmILm =+ hm -~

m=1 =1 Pupot’? pot’

Since ¢’ = 5;5%(j*), we obtain

L3 3 1 o 1
<) 24, | 2ruh, <7 Z S Y PR | P
m=1 pus*(j*) ' pPuPs(s*(1*))? ' pos *(J) m=1 pus*(j*) ' Pups(s*(5%))? ' pos*(5*)

Note that s*(j*) is the solution of (70), thus, we get

/
< —.
P>

Substituting this inequality to (68), we obtain
Fort <t (£ +1logé) , we have

Recall that the definition of ¢’. Using (71), we have

t' > 1 m%n] max{max{h;,7;},s*(j)}.
JEn

The last term equals to the equilibrium time t*(1/p.., Y/ps, b1, T1, - . ., hyn, T) from Def. 3.1 since the
pairs (h;, ;) are sorted by max{h;, 7; }. Thus, we obtain

1
t/ Z @t*(l/pun l/pv7h177-17 .. '7hn77-n)'

Finally, we obtain

T
P(kigtn [prog(az*) < T > (Zt <) <6 (72)

for
T
2

1
t < @t*(l/?’wvl/prmhlaTh"'7hn,7Tn) < +10g5> .

P.2 Proof of Lemma P.3
Lemma P.3. Using the notations from the proof of Lemma P.2, we have

B, <o) <1- [[(1— (1—<1—pw)“3J) (1—(1—p0)[’m>> (67)

m=1

forall j € [T).

Proof. We prove the result for j = T'. The proofs for the cases 1 < j < T' are the same. We consider
the conditional probability
QT)

me n

P (fT < t"QT) =P (mm {hmMm.r + Tppm,r} <t

https://doi.org/10.52202/079017-0123 3768

Let us consider the o—algebra Hr generated by (64) with j = T and

n n
e\ ps €y

s

1,1 1,2 1,e7 .. —1
5’7517"'35 LT)

n

n,l ¢n,2 l,e —1
5 75 3t ag mT)
H H
(317T7 . ’en,T7

1,1 @l,2 1k —1
St ShE L Shn T

(73)

n,l1 @gn,2 n,et . —1
gnl g2 gmein=l

By the construction, efnyT > bfn,T and eﬁth > bﬁ%T. Since Gr C Hr, we have

P (ir <t'|Gr) =E {P (n?éi[ﬂ] {hmm, 1 + T, 1} < t"”?"kf) ’ QT] .

Since Gr C Hp, then bl . is Hp-measurable. By the definition of € 1, 1y, 1 are Hp-measurable.
Let us show it using a contradiction proof. Without the loss of generality, assume that 7,,, + depends

on 51,57” ¢ (73). It would mean that the first time, when ™% = 1 after the iteration k(T — 1),
happens with i > ¢! ;. At the same time, by the definition of e ., there exists ¢ < e, ;. such

that ™% = 1 calculated after the iteration k(7 — 1). We get a contradiction. Given Hr, fim 1
are mutually independent since {S™}2; are mutually independent and e}, ;. are H-measurable.
Therefore, we have

P(ir <t'|Gr) =E []P’ < mi[n] {hm M, + T o, 7} < t/‘HT> ‘ QT]
men

=1-E

n
P (ﬂ {hnbnm,T + Tmbbm, T > t/}‘HT>
m=1

QT] (74)

QT] .
Let us consider the probability P (R Mm, 7 + T tbm, 7 > t'|Hr) :
P (hinfm,r + Tmpem,7 > |/ HT) =1 = P (hn 7 + Tt < t'|Hr)
2 1-— IP)(hmnm,T S t/aTmNJm,T é t/|HT)
=1=E[1[hmmr <1 [Tmpmr <]| Hr)

because the event {hy, 0, < '} (M Timpim, 7 < '} follows from { A, 0 7+ Tonpom, 7 < t'}. Since
Nm, T 18 Hr—measurable, we have

P (hmnm,T + Tm//’/m,T > t/|HT) 2 1-E []l [Tm/j/m,T S t/” HT] 1 [h’mnm,T S t/]
=1- IP)(7_mﬂ7n,T < t/|HT) 1 [hmnm,T < t/] .

Let us consider the probability P (7, ptm, 7 < t'|Hr) . Given Hr, if e“mvT = 00, then fi, 7 = 00
and P (7, ptm, 7 < t'|H7) = 0. Otherwise, if e}, ;. = e < oo, then

n
H P (hmnm,T + T, T > t/|HT)

m=1

=1—-FE

(75)

tm,r =1nf{i|j € Sm(i+e=1) and i € N}.

and it is distributed with the geometric distribution with p,,. Thus, we have!’

IP)(TmNm,T §t’|HT) = {1 - (17pw)[TmJa ezm’T < 00 < 1_(1_pwﬂ%J
’ em,T:oo

"We implicitly assume that 1 — (1 — pw)tﬁj =0ifp, = 1and {%J = 0, because if t' < T,,, then

P (Timpim,r < t') = 0 for the r.v. fim,, 7 from the geometric distribution for all p,, € (0, 1].

3769 https://doi.org/10.52202/079017-0123

because the probability that ;™ coordinate belongs to S™ (i+¢=1) equals to p,,. We substitute this
inequality to (75) and get

PmmmmT+fmmmT>tWHTﬁzl—(1—(1—pu1%J)1wmmmTStm

o]

(1= (1- 0=) Bl prntinr < 211621
(1 _ (1 C(1-p) MJ) P (bt < t'|gT)) .

Using the same reasoning as with ji,,, 7, we get

Next, we substitute this inequality to (74) and obtain

fi(1—(1—af4%ﬂﬁi)nmmmmT<ﬂQ

m=1

P(ir <t'|Gr) <1-E

Given Gr, 0,7 are independent because b"m o are Gp—measurable. Thus

P(tr <t|Gr) <1- ﬁ
mnzl
=1— H

m=1

il <o oyl
b”myT =00

P@wmjsﬂ@»—{é(lpa[

because, given Gr, 7,7 equals co or a random variable distributed according to the geometric
distribution with p,,. Therefore, we obtain

P (ir <t'|Gr) <1]E_[< <1— 1—pw)VJ) (1—(1—190)%J))~

P.3 Another Construction

In the proof of Theorem O.5, we could use the following construction:

(Step 3: Compression Operator) Let us define p,, := %H In our construction, we take a compressor
that outputs random coordinates of an input vector, scaled by 1/p.,, where each coordinate is taken
with the probability p,,. Each worker has access to the independent compressed realizations of a such
compressor. More formally, we assume that

1
[ﬂﬁ&b;{m%’JE&

Vi T
0. jes eI

where S is a random subset of [T'], where each element from [T'] appears with the probability p,,
independently. Then

Es [[C(x; 9)];] = x;

and

L 1 T 5
Es [IC(z: S| =E Z esl 3| =D PGEs) gt =3 ~af=(w+ D]l

Dy j=1

Thus, we have C € U(w). We take mutually independent distributions DS that generate random
subsets S described above.

This construction is also valid and does not require the assumption w + 1 < LA/e. However, unlike
the construction from Theorem O.5, this construction can return a random number of non-zero
coordinates.

https://doi.org/10.52202/079017-0123 3770

Q Experiments

The experiments were prepared in Python. The distributed environment was emulated on machines
with Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz and 64 cores.

Q.1 Experiments with Logistic Regression

3.4x107! 4x1071
=¥~ Asynchronous SGD: Step size: 0015625 =¥~ Asynchronous SGD: Step size: 0.015625
—&— SGD,.: Step size: 0.03125 >\ « —&— 5GDge: Step size: 0.015625
32 x 10} <t Minibatch SGD: Step size: 1.0 <t~ Minibatch SGD: Step size: 1.0
[> QSGD: Step size: 0.5 > QSGD: Step size: 0.25

=@~ Shadowheart SGD: Step size: 1.0, 0%/e: 80

== Shadowheart SGD: Step size: 1.0, 0%/¢: 20

-
3x10 3x10-1

fixt) = fix")

2.8x107!

f(xt) = f(x")

2.6x1071

0 10000 20000 30000 40000 50000 0 100000 200000 300000 400000 500000 600000 700000 800000
times (seconds) times (seconds)

(a) Experiment with computation speeds h; = /i (b) Experiment with computation speeds h; = /i

and high communications speeds 7; = Vi /d and low communications speeds 7; = Vi / dt/?
3.4 %107}
\ —¥— Asynchronous SGD: Step size: 0.015625
3.2x107} <t~ Minibatch SGD: Step size: 1.0
P> QSGD: Step size: 0.25
—_ k\'\ == Shadowheart SGD: Step size: 1.0, 0%/e: 20
* 3x107! v
=
=
CLZ.E x 107
=
=
2.6 x 107

2.4x107%

25000 50000 75000 100000 125000 150000 175000 200000
times (seconds)

(c) Experiment with computation speeds h; = /%
and medium communications speeds 7; = v/i/ a3/

We start our experiments with a practical setup: a logistic regression problem with the MNIST dataset
(LeCun et al., 2010). The optimization steps of algorithms are emulated in Python, where we fix the
number of workers to n = 100, each worker has access to the MNIST dataset and sample 4 samples
when calculating a stochastic gradient. We compare Shadowheart SGD with QSGD, Asynchronous
SGD (we implement the version from (Koloskova et al., 2022)), Minibatch SGD, and SGDene. SGDone
is the method described in Sec. 7, where SGD is run on the fastest worker locally. In Shadowheart
SGD, we fine-tune the parameter o*/= € {1, 5, 10, 20, 30, 40, 80, 120, 150, 200}. In all the methods,
we also finetune the step sizes. The dimension of the problem in the logistic regression problem is
d = 7850. In Shadowheart SGD and QSGD, we take Rand K with K = 700.

We assume that the computations time h; of a stochastic gradient equals to /7 seconds in the
i worker. We consider three communication time setups, where it takes 7; seconds to send one
coordinate from the i™ worker to the server and

1. 7 = Vi /d (High-speed communications),
2. 7 =+/i/d*/* (Medium-speed communications),

3. 7 =+/i/d"/? (Low-speed communications).

In the high-speed regime, the communication between the server and the worker is relatively fast.
At the same time, in low-speed regimes, communication is expensive. We are ready to present the
results of our experiments in Fig. 1a, 1c, and 1b.

In Figure 1a, one can see that Shadowheart SGD, Asynchronous SGD, and Minibatch SGD are the
fastest because it is not expensive to send a non-compressed vector in the “high-speed communications”
regime. SGDone is the slowest since it utilizes only one worker.

3771 https://doi.org/10.52202/079017-0123

Next, we analyze Figure 1b, where Shadowheart SGD and SGDone have the best performance. SGDone
improves the convergence relative to other methods because the communication speed is much slower
than in Figure la, and it is expensive to send a non-compressed vector.

One can see that Shadowheart SGD is very robust to all regimes and has one of the best convergence
rates in all experiments. Notably, in the “medium-speed communications” regime, where it is still
expensive to send a non-compressed vector, our new method converges faster than other baseline
methods.

Q.2 Experiments with quadratic optimization tasks and multiplicative noise

In real machine learning tasks, it is not easy to control noise. Thus, we generated synthetic quadratic
optimization tasks where we can control the noise of stochastic gradients. In particular, we consider

flz) = %ITALE —b'z

for all z € R? and take d = 1000,
2 -1 0

We consider the following stochastic gradients:
Vi€ = Vif) (1410 prop(o] (£ 1)) veemt a0

where ¢ ~ Bernoulli(p) for all i € [n], and p € (0,1]. We denote [z]; as the j™ index of a vector
x € R% In our experiments, we take the starting point z° = [v/d,0,...,0]" and p € {1073,107*};
the smaller p the larger the noise of stochastic gradients.

Q.2.1 Discussion of the experiments from Sec. Q.2.2

Using this setup, in Figures 2, 3, 4, we fix all parameters except one that we vary to understand the
dependencies. In all experiments, we observe that Shadowheart SGD is the most robust to input
changes among other centralized methods (QSGD, Asynchronous SGD, Minibatch SGD) and can
converge significantly faster. At the same time, we observe that SGDone can be faster than our method
in some setups. It happens in the regimes when communication is expensive (see Figure 2a), which is
expected and discussed in Sec. 7. Even if communication is expensive, SGDone starts to slow down
relative to other methods when we increase the noise (compare Figures 2b and 2a). The following
experiments agree with our theoretical discussion in Sec. 7.

Q.2.2 Plots

In these experiments, we take n = 10000, p = 10*3, h; = \ﬁ, T = \ﬁ/d?’/4 as base parameters; in
each plot, we vary one parameter.

= == Asynchronous SGD: Step size: 0.00048828125] ¥ asynchronous SGD: Step size: 0.00048828125
-+ ep size: 2.0 A SGDye: Step size: 20
< Minibatch SGD: Step size: 2.0 < Winibatch SGD: Step size
< I> 0SGD: Step size: 10 I> 0SGD: Step size; 2.0
= Shadowheart SGD: Step sze: 2.0, o%le: 75 == Shadowheart SGD: Step sze: 2.0, o%/e: 200

<

20

<

A

50000 100000 150000 200000 250000 300000 50000 100000 150000 200000 250000 300000
times (seconds) times (seconds)

(@) n = 10000, p = 1073, by = Vi, 7: = Vi/d*/* (b) n = 10000, p = 10™*, h; = Vi, 7: = /i /d>/*

Figure 2: SGDgne starts to slow down relative to Shadowheart SGD and other methods when we
increase the noise.

https://doi.org/10.52202/079017-0123 3772

S Asynchronous SG Step size 0.00045828125 - Asynchronous SGD: Step sie: 0.00043828125
I\ A inibatch SGD: Step size: 2.0 \ A i 0: Step size: 20

<] QSGD: Step size: 1.0 <1 s ize: 1.0

P Shadowheart SGD: Step size: 2.0, 0%/e: 150 P Shadowheart SGD: Step size: 2.0, 0%/e: 75
—_ <
M
S107 | «
‘T 10 A
$-./>< q S
= A

- A
<
<
1073
50000 100000 150000 200000 250000 300000 0 50000 100000 150000 200000 250000 300000
times (seconds) times (seconds)

(@) n = 10000, p = 1073, hy = Vi, 7 = Vi/d (b)n = 10000, p = 1072, h; = /i, 7 = V/i/d*/*

Figure 3: The non-compressed methods Asynchronous SGD and Minibatch SGD slow down relative
to Shadowheart SGD when we increase the communication times.

| =,
>
< adow! ep size: 2.0, 0%/e: 75
<

I

0 50000 100000 150000 200000 250000 300000 0 50000 100000 150000 200000 250000 300000
times (seconds) times (seconds)

(@) n = 10000, p = 1073, hy = Vi, 7s = Vi/d*/* (b)n =10000,p = 1073, h; = 1, 7, = V/i/d>/*

Figure 4: Shadowheart SGD improves when we decrease the computation times from /7 to 1.

Q.3 Experiments with quadratic optimization tasks and additive noise

In this section, we consider the same problem as in Sec. Q.2. However, unlike the multiplicative
noise, we consider the following additive noise:

[Vf(@:);:=V;if(z) +(Ve eR?,

where (~ N (0, 02) is a sample from the normal distribution. Be default, we take n = 100 workers,
the dimension d = 100, and use the Rand1 compressor (w = d/1 — 1 = 99), o = [1,--- ,1] T,
oc=10"1, ¢ = 10’4; thus, the ratio 02/5 = 102. For all methods, we choose the step sizes in such a
way that they converge to the same neighborhood of the stationary point.

In Figure 5, we sample h¥ and 7F from the uniform distribution U (0.1, 1), hence the communication
and computation time vary on each iteration for each client. If we increase the number of clients n,
Shadowheart SGD improves (Fig. 5) compared to other methods, confirming our theory.

In Figure 6, we can see the similar results with different ratios 02/ e: Shadowheart SGD is much better
when the ratio is large (Fig. 6). On the other hand, when 02/5 is small (Fig. 6a) SGD,, can be better
because, intuitively, we only need a few workers to find the minimum with a small noise (see also
Sec. 7).

Next, we perform a series of experiments with different computation time and communication times
ratios. We take 7/n* = cfor all i € [n], where ¢ > 0.

In Figure 7, we take h¥ ~ U(0.1,1) and 7% ~ ¢ - U(0.1, 1). Shadowheart SGD is better in the high
and medium communication speed regimes (Fig. 7b), when the communication times are not too large.
On the other hand, with large ¢ = 10?, Shadowheart SGD spends much time on sending gradients to
the server, whereas SGDone does not spend time on communication and does not compress (Fig. 7c).
Similar to Figure 7, we obtain the results with hf =+/iand 7"f = ¢ - +/1 in Figure 8.

3773 https://doi.org/10.52202/079017-0123

Q.3.1 Plots

=% Asynchronous SGD

—v— Asynchronous SGD =~ Asynchronous SGD
4 SGDye e G0
N <~ Minibatch SGD < Minibatch GO
> QSGD o > 0s6D
1071 < 10 %

~8~ Shadowheart SGD =8~ Shadowheart SGD
<

~& Shadowheart SGD
B 10 E E
10-3
0 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time, t Time, tk Time, tk
2 3
(a)n =10 (byn =10 (c)n =10
: . Kk 4k
Figure 5: hf, 77 ~ U(0.1,1)
3 3)
~¥— Asynchronous SGD ~v— Asynchronous SGD ¥ Asynchronous SGD
— SGDoe —a 56D
<t~ Minibatch SGD <t~ Minibatch SGD
10-1 Qs6D 10-1 > Q56D
~& Shadowheart SGD

0 500 1000 1500 2000 2500 3000 0

- ~=~ Shadowheart SGD

500 1000 1500 2000 2500 3000 0 2000 4000 6000
Time, tk Time, tk

Time, t¢

(a)7*fe =1 (b) o>/ = 10 (©) */e = 102

Figure 6: h¥, 7% ~ U(0.1,1)

8000 1000t

3

% Asynchronous SGD —+— Asynchronous SGD —%— Asynchronous SGD
4 SGDe oo i SGDL
<4~ Minibatch SGD TTT%— <~ Minibatch SGD
> Qs6D - > 56D
107! —8— Shadowheart SGD 10 —a— Shadowheart SGD
g > > & 102
2102 =3
vl
10°3
103
0 200 400 600 800 1000 0 200 400 600 800 1000 0 1000 2000 3000 4000 5000
Time, tk Time, t* Time, tk
1 2
@) c =10 (byc=1 (©) c=10
Figure 7: hf ~ U(0.1,1), 7;* ~ ¢-U(0.1,1)
% Asynchronous SGD —¥— Asynchronous SGD —¥— Asynchronous SGD
4 SGDe —a 5GDe 4 SGDe
< Minibatch SGD - <~ Minibatch SGD < Minibatch SGD
IS > QSGD - > QSGD > b QsGD
10-1 —8- Shadowheart SGD 101 " =8 Shadowheart SGD 107! s 8- Shadowheart SGD
- >
= = <
< <
s)
= S
=3 B 10
102 =
10-3
0 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time, tk Time, t¢

https://doi.org/10.

Time, tk

(@)e=10"2 (b)ec=10""1) c=1

Figure 8: h¥ = \/i,7F = c- /i

K2

52202/079017-0123 3774

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Section 3 and Table 1
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Sections 4.1, 4.2, and 7.2
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

3775 https://doi.org/10.52202/079017-0123

Justification: Section 1 and Appendix

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section Q

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

https://doi.org/10.52202/079017-0123 3776

Answer: [Yes]
Justification: In the supplementary material
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section Q
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: While each particular experiment in every plot from Section Q was run with
one seed, the amount of provided experiments and considered settings can give a high
confidence in our judgments that the experimental part supports the theoretical part, which
is our main contribution.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

3777 https://doi.org/10.52202/079017-0123

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Section Q
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work considers a mathematical problem from the machine learning
domain.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work considers a mathematical problem from the machine learning
domain.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

https://doi.org/10.52202/079017-0123 3778

https://neurips.cc/public/EthicsGuidelines

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work considers a mathematical problem from the machine learning
domain.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Section Q
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

3779 https://doi.org/10.52202/079017-0123

paperswithcode.com/datasets

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The code for the experiments is in the supplementary materials.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

https://doi.org/10.52202/079017-0123 3780

