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Abstract

Watermarking generative content serves as a vital tool for authentication, ownership
protection, and mitigation of potential misuse. Existing watermarking methods face
the challenge of balancing robustness and concealment. They empirically inject a
watermark that is both invisible and robust and passively achieve concealment by
limiting the strength of the watermark, thus reducing the robustness. In this paper,
we propose to explicitly introduce a watermark hiding process to actively achieve
concealment, thus allowing the embedding of stronger watermarks. To be specific,
we implant a robust watermark in an intermediate diffusion state and then guide the
model to hide the watermark in the final generated image. We employ an adversarial
optimization algorithm to produce the optimal hiding prompt guiding signal for
each watermark. The prompt embedding is optimized to minimize artifacts in the
generated image, while the watermark is optimized to achieve maximum strength.
The watermark can be verified by reversing the generation process. Experiments
on various diffusion models demonstrate the watermark remains verifiable even
under significant image tampering and shows superior invisibility compared to
other state-of-the-art robust watermarking methods.

1 Introduction

Diffusion models (DMs) are revolutionizing content creation and generating stunningly realistic
imagery across diverse domains [17, 33, 60]. The advent of text-to-image diffusion models [31, 30,
58], coupled with personalized generation techniques [53, 7, 32, 15, 41, 59], enables the creation of
highly specific content by virtually anyone. However, it has raised concerns about authenticity and
ownership, including the risk of plagiarism [34, 22] and the potential misuse of images of public
figures [39, 5]. Consequently, governments and businesses are increasingly advocating for robust
mechanisms to verify the origins of generative content [19, 45].

Watermarking offers a proactive approach to authenticate the source of generated content. This
technique embeds imperceptible secret messages within the generated content. These messages serve
as unique identifiers, confirming the image’s origin while remaining invisible to the human eye. They
also need to be robust enough to withstand potential distortions encountered during online sharing.

Existing watermarking techniques face a significant challenge in striking a balance between conceal-
ment and robustness. Traditional post-processing methods [46, 9] employ an empirical approach to
identify an invisible and robust watermark and embed it within the generated image. They passively
achieve concealment by limiting the watermark strength, consequently compromising robustness.
Conversely, stronger watermarks, while enhancing robustness, can introduce visible artifacts into the
generated image. Recent advancements in in-processing watermarking for diffusion models expect
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the generative model to learn this balance and directly produce watermarked content. However, these
methods often require expensive model retraining [55, 48, 13] or can lead to unintended semantic
alterations within the generated images [44].

Our ROBIN scheme introduces an explicit watermark hiding process to actively achieve concealment.
This approach reduces the invisibility limitation of the watermark itself and thus enables the embed-
ding of more robust watermarks. Specifically, we implant a robust watermark within an intermediate
diffusion state, and then directionally guide the model to gradually conceal the implanted watermark,
thus achieving invisibility in the final generated image. In this way, robust watermarks can be secretly
implanted in the generated content without model retraining.

We focus on the text-to-image diffusion models, which support an additional prompt signal to guide
the generation process. We employ an adversarial optimization algorithm to design an optimal prompt
guidance signal specifically tailored for each watermark. The prompt embedding is optimized to
minimize artifacts in the generated image, and the watermark is optimized to achieve maximum
strength. The optimized watermark and prompt signal are universally applicable to all images.
During the generation process, the watermark is implanted within an intermediate state following
the semantic formation stage. Subsequently, the optimized prompt guidance signal is introduced
throughout the remaining diffusion steps. After image generation, following previous works [44, 49],
we reverse the diffusion process to the watermark embedding point to verify the existence of the
watermark. This innovative approach offers a promising way to overcome the trade-off between
watermark strength and stealth by explicitly introducing an additional watermark hiding process.

In summary, our key contributions are as follows:

• We propose a novel watermarking method for diffusion models that embed a robust water-
mark and subsequently employ an active hiding process to achieve imperceptibility.

• We develop an adversarial optimization algorithm to generate a prompt signal for watermark
hiding and a strong watermark that can be hidden and strategically select the watermarking
point within the diffusion trajectory.

• Evaluations on both latent and image diffusion models demonstrate that our scheme exhibits
superior robustness against various image manipulations while preserving semantic content.

2 Related work

Diffusion generation and inversion. Diffusion models [17, 12, 36, 37] operate by iteratively
transforming pure noise xT ∼ N (0, I) into increasingly realistic images x0 ∼ q(x) through T steps
of denoising. The learning process involves a stochastic Markov chain in two directions. The forward
process diffuses the sample x0 by adding random noise:

q(xt|xt−1) = N (
√

1− βtxt−1, βtI), (1)

where {βt}Tt=1 is the scheduled variance. xt can also be generated from x0 as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (2)

where ᾱt =
∏T

t=1(1− βt) and ϵ ∼ N (0, I). Then a network ϵθ is learned to predict the noise in
each step, following the objective:

min
θ
Ex0,t∼Uniform(1,T ),ϵ∼N (0,I) ∥ϵ− ϵθ(xt, t, ψ(p))∥

2
2 , (3)

where xt is the noise latent at timesteps t and ψ(p) is the embedding of the text prompt p.

DDIM (Denoising Diffusion Implicit Model) [35] introduces the ODE solver for deterministic
sampling by constructing the original one as a non-Markov process. It computes the xt−1 from xt by
predicting the estimation of x0 and the direction pointing to xt:

x′0 =
xt −

√
1− ᾱtϵθ(xt, t, ψ(p))√

ᾱt
, (4)

2
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xt−1 =
√
ᾱt−1x

′
0 +

√
1− ᾱt−1ϵθ(xt, t, ψ(p)). (5)

The deterministic generation properties of DDIM allow it to reconstruct the noise latent x̂t from the
final image x0 as :

x̂t =
√
ᾱtx0 +

√
1− ᾱtϵθ(xt−1, t− 1). (6)

This unique characteristic allows us to selectively mark and recover an inner noise representation
within the diffusion process, which serves as a powerful tool for our watermarking approach.

Watermarking generative models. The content watermark of generative models can be introduced
either after the generation (post-processing) or during the sampling process (in-processing). Post-
processing methods can adopt traditional digital image watermarking technology. Popular methods
include frequency domain watermarking, which modifies the image representation in domains
like Discrete Wavelet Transform (DWT) [47] or Discrete Cosine Transform (DCT) [8]. DwtDct
watermarking [3] is applied in open sourced model Stable Diffusion. Frequency domain watermarks
can be designed to be robust against common image manipulations like cropping, scaling, and even
compression [38]. HiDDeN [57] pioneered the end-to-end approach, utilizing an encoder-decoder
architecture to directly generate watermarked images. RivaGAN [52] leverages adversarial training
to incorporate perturbations and image processing during model training for increased robustness.

In-processing methods make the watermark become part of the generated image by interfering with the
generation process. Early approaches explored adding watermarks to training data [50, 55, 10, 13, 48],
essentially building a watermark encoder into the model. Stable Signature [14] simplified this process
by fine-tuning only the external decoder of latent diffusion models. However, these methods all
treated watermarking as a separate goal from the generation task, limiting their flexibility. The recent
Tree-Ring watermarking [44] shares similarities with our approach, modifying the initial noise to
encode information semantically within the image. However, the semantic modifications induced
by Tree-Ring watermarks are random and may compromise the faithfulness of the original model.
Therefore, we aim to preserve the original semantics exactly to guarantee a similar level of text
alignment compared to the original generation. Our work shows that embedding the watermark within
the intermediate diffusion state and guiding the model to hide it can achieve the secret embedding of
strong watermarks without model retraining.

3 Methodology

3.1 Overview of ROBIN

Task definition. Diffusion model watermarking aims to embed an invisible and verifiable watermark
wi within the generated image x0, using a watermark implantation function I . During Internet
transmission, the generated content may be subjected to various image transformation operations T .
The model owner aims to leverage a watermark extraction algorithm E to verify the presence of wi

within the distorted sample T (x0), thereby establishing image ownership.

Pipeline of ROBIN. Watermark generation. We first generate a hiding prompt guidance signal wp

for each watermark wi using the adversarial optimization algorithm, which is detailed in Section 3.2.

Watermark implantation. ROBIN implants wi into an intermediate generation state xt after the
semantics have been formed as

x∗t = I(xt, wi,M), (7)
where I injects wi into the frequency domain of xt and M is the coverage area of the watermark.
During the remaining DDIM generation, ROBIN incorporates the optimized prompt guidance signal
wp to direct the model towards hiding the watermark wi to maintain the similarity between the
generated image x∗0 and its unwatermarked counterpart x0. Let tinjection be the watermark injection
point, the generation of the watermarked image is as follows:

p
(t)
θ (xt−1|xt) =

{√
ᾱt−1x

′
0 +
√
1− ᾱt−1ϵθ(xt, t, ψ(p)) if T ≥ t > tinjection√

ᾱt−1x
′∗
0 +
√
1− ᾱt−1ϵθ(x

∗
t , t, ψ(p), wp) if tinjection ≥ t

(8)
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Figure 1: The watermark optimization and implantation of ROBIN. A robust watermark is added at
an intermediate state of generation, and an additional prompt guiding signal is optimized to direct the
model towards hiding the embedded watermark in the generated image. The image watermark and
guiding signal are optimized adversarially to improve robustness and invisibility.

After embedding the watermark, the model is guided by both the original input text prompt p and
the optimized prompt embedding wp to achieve reliable generation with the watermark hidden. The
predicted noise then becomes

ϵθ(x
∗
t , t, ψ(p), wp) = η1 · ϵθ(x∗t , t, ψ(p)) + η2 · ϵθ(x∗t , t, wp) (9)

+ (1− η1 − η2) · ϵθ(x∗t , t, ψ(∅)), (10)

where η1, η2 are the guidance scale parameters to weight the guidance of the original text prompt and
the optimized prompt signal.

Watermark verification. To verify the watermark, we reverse the transformed watermarked image
T (x∗0) to step tinjection and retrieve the intermediate state x̂∗t . The watermark information w′ =
E(x̂∗t ,M) is extracted from the frequency space of x̂∗t . L1 distance D is used to measure the
similarity between w and w′. When the distance falls below a threshold as

D(w,w′) =
1

|M|
∑
i∈M
|wi − w′

i| ≤ τ, (11)

the presence of the watermark within the image is confirmed. Figure 1 presents the watermark
generation and implantation process of ROBIN.

3.2 Adversarial optimization algorithm

We employ an adversarial optimization algorithm to generate the watermark and the corresponding
hiding prompt guidance signal. The prompt signal is optimized in the embedding space and guides
the model to conceal the embedded image watermark, while the watermark tries to be as strong as
possible while allowing for its targeted hiding by the prompt signal.

The objective of the prompt guiding signal is to minimize the impact of the watermark on the final
generated image. We define the image retaining loss lret, which penalizes excessive deviations from
the original images:

ℓret = MSE(x′∗0 − x0), (12)

x′∗0 =
x∗t −

√
1− ᾱtϵθ(x

∗
t , t, ψ(p), wp)√

ᾱt
. (13)
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(a) Predicted noise during normal generation.
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(b) Predicted noise changes under perturbations.

Figure 2: The impact of introducing frequency domain disturbances at different diffusion steps on
the predicted noise. Timestep 1000 signifies the Gaussian noise state and step 0 represents the final
generated image. The Uncondition curve (orange) and the Condition curve (gray) nearly overlap in
both figures. Guidance is the amplified difference of Uncondition and Condition. Full is the addition
of Uncondition and Guidance.

x′∗0 is the final image predicted from the watermarked noisy latent x∗t through Equation (4) with an
additional guidance wp. MSE denotes the mean squared error.

Furthermore, as the loss incurred during DDIM inversion increases proportionally with the guidance
strength [25], we introduce a constraint term lcons to prevent excessive prompt guidance:

ℓcons = MSE(ϵθ(x∗t , t, wp)− ϵθ(x∗t , t, ψ(∅))). (14)

To achieve robustness, we embed the watermark in the frequency domain of the image [44]. Frequency
domain signals are more resistant to spatial operations compared to spatial domain signals [43].
Similar to [44], we set the watermark as multiple concentric rings, but we further optimize its value
to the maximum within the aforementioned constraints for greater strength and better robustness. The
optimization losses of wp and wi become

Lwp = αℓret + βℓcons, (15)

Lwi
= αℓret + βℓcons − λ ∥wi∥ . (16)

Since the watermark and the prompt guiding signal are interdependent, we employ an alternating
optimization method, in which we iteratively optimize one while fixing the other. More details about
the watermark design and optimization algorithm are presented in Appendix A.

3.3 Finding keypoints for implantation

The selection of the optimal stage for watermark embedding within the diffusion process is crucial
for achieving both high image fidelity and semantic consistency with the input text prompt. We delve
into the sensitivity of the predicted noise to frequency domain disturbances in different diffusion
steps. According to classifier-free guidance method [27], the predicted noise in each step can be
depicted as Full = Uncondition+ s · (Condition− Uncondition). Condition and Uncondition
are predicted noise with and without text conditions. Parameter s is the scaling factor and the second
term of the addition is called Guidance. Full noise is the final noise to be removed in the current step.

Figure 2(a) shows the evolution of mean values of various predicted noise terms throughout the
generation process. We can find that after step 300, the slowdown in guidance rise indicates the
completion of basic semantic formation and diminishing guidance influence. Additionally, Figure 2(b)
presents how the predicted noise changes when perturbations are added at different timesteps.
When the timestep is greater than 200, the frequency domain noise interferes with the generation
process mainly by disrupting the guidance term. After 200 steps, the intrinsic unconditional term
is more affected. We can conclude that early generation stages establish the foundation for image
semantics and excessive intervention at this point can disrupt the intended image content. Conversely,
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manipulating the final stages, dedicated to refining image details, may impede the model’s capacity
to recover from watermark-induced noise, ultimately compromising the final image quality.

Therefore, we strategically choose the watermark insertion point between steps 300 and 200. This
stage offers the sweet spot: frequency perturbations have minimal impact on the mean of the predicted
noise, allowing for watermark integration without sacrificing image quality and disruption to the core
semantics.

3.4 Watermark validation

In the watermark verification phase, we reverse the diffusion process to get the state x̂∗t at the
watermark injection step. We extract the M region of x̂∗t ’ Fourier space and calculate its L1 distance
from the implanted watermark wi. However, the original prompt used for image generation is
unknown during verification of online images. Similar to [44], we use the null-text prompt as
the condition text embedding and set the guidance scale to 1.0. We also found unexpectedly that
introducing the optimized prompt signal during inversion hinders the watermark recovery, which we
aim to explore in future work. Our watermark verification requires a reversible generation process,
making it compatible with any reversible samplers such as DPM-Solver [23], DPM-Solver++ [24],
PNDM [21], and AMED-Solver [56].

4 Experiments

4.1 Experimental setting

Model and dataset. We conducted experiments on two distinct diffusion models operating in
latent and image domains. For the latent diffusion model, we utilize the widely available Stable
Diffusion-v2 [31] and the stable-diffusion-prompts dataset from Gustavosta [1]. We also test on a
guided diffusion model [2] trained on the ImageNet [12], which operates directly on the pixel domain
and can generate images of size 256× 256 based on the category provided.

Evaluation metrics. To assess the effectiveness of ROBIN, we compute the Area Under the ROC
Curve (AUC-ROC) based on the L1 distance to measure the effectiveness of watermark verification.
Specifically, we compute AUC using 1,000 watermarked and 1,000 clean images. For the quality
of watermarked images, we employ a suite of diverse metrics. We utilize classic measures like
PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity Index), and MSSIM (Multiscale
SSIM) [42] to quantify the pixel-level differences between watermarked and original images. We
employ the Fréchet Inception Distance (FID) [16] to evaluate the fidelity of the watermarked image
distribution. We also leverage the CLIP score [29] to measure the alignment between generated
images and their corresponding text prompts. More details are provided in Appendix B.1.

Implementation details. We utilize 50 steps of deterministic sampling for both models. Stable
Diffusion employs the second-order multistep DPM-Solver algorithm [23] with a default guidance
scale of 7.5. ImageNet diffusion model leverages the DDIM sampling algorithm [35]. We optimize
the watermark and the hiding prompt using 50 generated images. The learning rates for the image
watermark and prompt guidance are 0.8 and 5e-04, respectively, with a total of 1,000 optimization
rounds. The default image watermark covers 70% of the image frequency domain. All experiments
are conducted on an NVIDIA GeForce RTX 3090 GPU.

4.2 Effectiveness and robustness

We compare our method with five baselines: DwtDct [4], DwtDctSvd [26], RivaGAN [52], Stable
Signature [14], and Tree-Ring watermarks [44]. To ensure the watermark’s resilience in real-world
scenarios, we delve into its robustness under various image transformations. These include Gaussian
blur with radius 4, Gaussian noise with intensity 10%, jpeg compression with quality 25, color jitter
with brightness 6, random rotation of 75 degrees, and random cropping of 75% and rescaling. These
settings are strict for watermark verification because the image has been significantly altered. ROBIN
is also evaluated under a combination of attacks where we randomly selected various combination of
the six transformations. The processed samples are shown in Figure 6 in the Appendix.

6
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Table 1: Comparison of AUC under different attacks and verification time for Stable Diffusion [31].
Clean represents the watermark verification on unmanipulated images. Avg is the average AUC
across all attack cases. Time is the time required to validate the watermark for a single image.

Method Clean Blur Noise JPEG Bright Rotation Crop Avg Time

Post-
processing

DwtDct [4] 0.974 0.503 0.293 0.492 0.519 0.596 0.640 0.574 0.056s
DwtDctSvd [26] 1.000 0.979 0.706 0.753 0.517 0.431 0.511 0.702 0.233s
RivaGAN [52] 0.999 0.974 0.888 0.981 0.963 0.173 0.999 0.854 0.437s

In-
processing

StableSig [14] 1.000 0.565 0.731 0.989 0.976 0.658 1.000 0.845 0.112s
Tree-Ring [44] 1.000 0.999 0.944 0.999 0.983 0.935 0.961 0.975 2.599s

ROBIN 1.000 0.999 0.954 0.999 0.975 0.957 0.994 0.983 0.531s

Table 2: Comparison of AUC under different attacks and verification time for Imagenet Diffusion [2].
Stable Signature is specifically designed for latent diffusion models and are incompatible with
pixel-level ImageNet diffusion models

Method Clean Blur Noise JPEG Bright Rotation Crop Avg Time

Post-
processing

DwtDct [4] 0.899 0.512 0.365 0.522 0.538 0.478 0.433 0.536 0.012s
DwtDctSvd [26] 1.000 0.947 0.656 0.568 0.535 0.669 0.614 0.713 0.058s
RivaGAN [52] 1.000 0.988 0.962 0.978 0.924 0.321 0.999 0.882 0.109s

In-
processing

Tree-Ring [44] 0.999 0.975 0.979 0.940 0.861 0.975 0.994 0.966 3.963s
ROBIN 1.000 0.999 0.994 0.969 0.959 0.998 1.000 0.988 0.986s

Table 3: AUC on different number of random attacks applied at the same time.

Method 1 2 3 4 5 6

Tree-Ring 0.969 0.809 0.699 0.520 0.546 0.509
ROBIN 0.973 0.814 0.759 0.579 0.558 0.556

Robustness. The comprehensive results of AUC comparison with baselines are presented in Table 1
and Table 2. While most methods (except DwtDct) perform well for watermark verification in the
absence of attacks, their accuracy degrades with strong image manipulations. Traditional frequency-
domain methods show significant vulnerability. RivaGAN falters with image rotations, and Stable
Signature exhibits sensitivity to blur, noise, and rotation. The Tree-Ring watermark displays better
robustness due to its pattern design but remains less resilient than ROBIN.

The performance of watermark verification for Stable Diffusion under different numbers of simultane-
ous attacks is shown in Table 3. Note that due to the inherent potency of the individual attacks, their
combination leads to significant image quality deterioration. The resulting images are presented in
Figure 7. But ROBIN still demonstrates superior robustness compared to the state-of-the-art method
Tree-Ring in such challenging scenarios.

The robustness of ROBIN on the one hand comes from the introduction of an explicit hiding process,
we can implant a stronger watermark. Furthermore, fewer inversion steps during verification compared
to Tree-Ring watermarks also mitigate the accumulation of DDIM inversion errors, further enhancing
accuracy. The evaluation of ROBIN under more attacks is presented in Appendix C.2.

Time cost. The time cost of watermark verification associated with different watermarking schemes
is presented in the last column of Table 1 and Table 2. The simple DwtDct method demonstrates the
fastest performance, achieving a validation time of less than 0.1s. DwtDctSvd exhibits a 4× slowdown
compared to DwtDct, while RivaGAN is 10× slower. StableSig decodes the watermark directly
from the image, but it requires fine-tuning the model. The verification of Tree-Ring watermarks
necessitates reversing the entire generation process, resulting in significant time costs. ROBIN
requires reversing only a limited number of generation steps, resulting in consumption times of 0.531s
and 0.986s for the two models, which are considerably lower compared to the Tree-Ring watermark.
More experimental results are presented in Appendix C.1.

4.3 Quality of watermarked image

Traditional post-hoc watermarking methods introduce subtle visual distortions into the generated
images. In contrast, the objective of ROBIN aligns with the Tree-Ring in constructing a “content

7
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Table 4: Quality of generated images. PSNR, SSIM and MSSIM measure the similarity between
the watermarked and unwatermarked images. CLIP evaluates how well the watermarked image
aligns with the user-provided textual description. FID measures the distribution similarity between
the watermarked dataset and a random dataset of real images. The subscripts indicate the standard
deviation of five independent experimental runs, each initialized with a different random seed.

Model Method PSNR ↑ SSIM ↑ MSSIM ↑ CLIP ↑ FID ↓

Stable Diffusion [31]
W/o watermark ∞ 1.000 1.000 0.403 25.53
Tree-Ring [44] 15.37.07 0.568.003 0.626.005 0.364.00 25.93.13

ROBIN 24.03.04 0.768.000 0.881.001 0.396.00 26.86.09

ImageNet Diffusion [2]
W/o watermark ∞ 1.000 1.000 0.271 16.25
Tree-Ring [44] 15.68.03 0.663.002 0.607.001 0.267.00 17.68.16

ROBIN 24.98.02 0.875.000 0.872.000 0.275.00 18.26.13

W/o Watermark Tree-Ring ROBIN
“Young, curly haired redhead girl in a dark medieval inn”

“Full body portrait of white haired girl in spider man suit”

“Cloudscape, nebula gasses in the background, fantasy magic angel”

Figure 3: The generated images with Tree-Ring and ROBIN watermarks.

watermark”: seamlessly embedding the watermark within the image content without altering its
semantics. Due to this fundamental shift in watermarking philosophy, we only compare the image
quality with Tree-Ring watermarks.

The Tree-Ring approach aims to find another watermarked image that aligns with the text prompt,
even if it differs from the original image. However, it is more akin to random semantic modifications
and does not guarantee the same level of text alignment as the original generation. Figure 3 shows that
the Tree-Ring approach significantly alters the generated image’s semantics, sometimes even failing
to fulfill the text prompt’s intent. This occurs because it disrupts the essential Gaussian characteristics
of the initial noise, hindering the generation process. In contrast, ROBIN excels at preserving the
overall image content and semantic structure, providing a better lower bound for faithfulness by
preserving the original semantics. Table 4 provides the quantitative results. ROBIN demonstrates
significant improvements in PSNR, SSIM, MSSSIM, and CLIP score, while a slight increase in FID
is observed. This is because the position of the watermark implanted in our scheme is at a later
stage of generation, resulting in a slightly greater influence on the overall generation distribution.
This implies a negligible trade-off for achieving a strong watermark with minimal degradation of the
overall quality of the generated image.

8
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Table 5: Watermark accuracy and image quality under different settings. (1) random watermarks
wi, (2) random watermarks with prompt signal wp for hiding, (3)-(5) different loss functions for
optimizing wi and wp, (6) full loss function for optimizing both wi and wp.

ID Watermark Loss function AUC↑ Image quality
Image wi Prompt wp ℓret ℓcons ∥wi∥ Clean Adversarial PSNR ↑ SSIM↑ CLIP↑ FID↓

(1) Random None 1.00 0.903 20.11 0.68 0.39 29.21
(2) Random Optimized ! ! 1.00 0.901 21.70 0.70 0.39 27.77

(3) Optimized Optimized ! ! 1.00 0.988 18.95 0.48 0.30 32.18
(4) Optimized Optimized ! ! 1.00 0.970 23.91 0.76 0.40 26.68
(5) Optimized Optimized ! ! 1.00 0.966 24.19 0.77 0.40 26.93

(6) Optimized Optimized ! ! ! 1.00 0.983 24.03 0.77 0.40 26.86

4.4 Ablation study

To gain further insights into the effectiveness of ROBIN, we conduct an ablation study, exploring
the influence of different design choices. We additionally introduce the Mean Squared Error of
Watermark (MSE) to represent the verification accuracy in some settings where the AUC is always
equal to 1. It is calculated as the mean of L1 distance between the extracted and original watermark.

Setting variations. To explore the individual contributions of various components in our scheme,
we conduct a series of experiments presented in Table 5. Experiments in Settings 1 and 2 demonstrate
that the introduction of prompt-based watermark hiding signals improves image quality, as evidenced
by a 1.6 increase in PSNR and a 1.44 decrease in FID score compared to Setting 1. Setting 3
emphasizes the importance of the ℓret in controlling watermark strength. Without ℓret, ROBIN
prioritizes creating a highly robust watermark, leading to significant image distortion (PSNR: 18.95,
SSIM: 0.48). Setting 4 presents that removing ℓcons allows for stronger prompt guidance, but this
results in increased DDIM inversion loss and a decrease of 0.13 in adversarial AUC. Setting 5
prioritizes minimal impact on the generated image by weakening the watermark. This approach leads
to poorer watermark robustness and a decrease of 0.017 in adversarial AUC. Experiments under
Settings 2 and 6 demonstrate that in the presence of the hiding prompt signal, the image watermark
can be optimized to achieve stronger robustness while maintaining invisibility.

Point of implantation. We evaluate the impact of implanting the watermark at different stages
in the diffusion process. The results are presented in Figure 4. Watermark verification accuracy
improves with later implantation due to fewer DDIM inversion steps and reduced information loss.
Early implantation, while initially maintaining image quality (low FID), can significantly change the
image content (low SSIM/PSNR) by disrupting semantic formation. Conversely, late implantation
may leave the watermark visible due to insufficient space for hiding, leading to high FID and deviation
from the original image (low SSIM). This empowers us to pinpoint the optimal embedding stage
(steps 15-10) for balancing visual quality and semantic preservation.

Watermark strength. We also verify the influence of different watermarking strengths and the
results are shown in Figure 4. Higher watermark strength (proportional coverage in the frequency
domain) generally benefits verification accuracy, as the watermark becomes more prominent. The
CLIP score and FID remain stable due to strategic embedding and guided hiding. Traditional metrics
(SSIM, PSNR) decrease with stronger watermarks due to increased content modification. The
watermarked images under different strengths are shown in Figure 5. Compared to Tree-Ring, the
quality of generated images with ROBIN watermarks is less sensitive to watermark strength. More
qualitative results are presented in Appendix C.5.

5 Conclusion & Discussion

This paper proposes a novel watermarking method for the diffusion model, which embeds a watermark
in the intermediate diffusion state and guides the model to conceal the watermark. By explicitly
introducing the active hiding process, we can implant stronger watermarks without compromising
image quality. We believe this method holds promise for expanding the possibilities of reliable
watermarking in diffusion models.

9

3945 https://doi.org/10.52202/079017-0129



10
15
20
25
30
35
40
45

0.9984
0.9986
0.9988

0.999
0.9992
0.9994
0.9996
0.9998

1
1.0002

50 40 30 20 10 0

M
SE

A
U

C

Embedding Point

AUC MSE

(a) Watermark Accuracy.

10

15

20

25

30

35

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

50 40 30 20 10 0

FI
D

 &
 P

SN
R

 S
SI

M
 &

 C
LI

P

Embedding Point

SSIM CLIP PSNR FID

(b) Image Quality.

10

15

20

0.9984
0.9986
0.9988

0.999
0.9992
0.9994
0.9996
0.9998

1
1.0002

0.15 0.3 0.45 0.6 0.75 0.9

M
SE

A
U

C
 

Watermark Strength

AUC MSE

(c) Watermark Accuracy.

10

15

20

25

30

35

0

0.2

0.4

0.6

0.8

1

0.15 0.3 0.45 0.6 0.75 0.9

FI
D

 &
 P

SN
R

 S
SI

M
 &

 C
LI

P

Watermark Strength

SSIM CLIP PSNR FID

(d) Image Quality.

Figure 4: Ablation experiments on embedding point and watermark strength.

Figure 5: Generated images under different watermark strengths. The top row is the result of the
Tree-Ring scheme and the bottom row is the result of ROBIN.

Limitations. The verification of ROBIN watermarks relies on the reversible generation process,
future advancements enabling the reversibility of other sampling algorithms would broaden the
application of our method. Additionally, the inherent information loss during DDIM inversion can be
reduced by exploring generative trajectories that can be reversed exactly [28, 18, 40, 51].

Social impact. Our ROBIN scheme, as a watermarking method, can help creators establish
ownership and discourage unauthorized use. Furthermore, ROBIN watermarks can be implanted in a
one-shot manner without retraining the whole model, making it applicable to different diffusion-based
text-to-image models.
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Appendix

A Scheme details

A.1 Image watermark design

To make the watermark less visible and more resistant to alterations, we embed the watermark into
the frequency domain of the selected diffusion latent. Frequency domain watermarks are proven
to be robust against common manipulations like cropping and compression and resilient against
geometric distortions, such as scaling and rotation. Draw inspiration from Tree-Ring watermarks,
we use a radiating watermark pattern, where the watermark information within each frequency
band holds equal values. This design choice enhances the watermark’s robustness against image
rotations. Specifically, after each optimization round of the image watermark, the values within a
specific frequency band are averaged. This averaged pattern is then used for further prompt signal
optimization and another round of adversarial optimization.

A.2 Prompt signal design

Our scheme is based on the classifier-free guidance technique, where the generation relies on both
unconditional and conditional predictions. The predicted noise of xt at step t is defined as:

ϵ̃θ(xt, t, ψ(p)) = η · ϵθ(xt, t, ψ(p)) + (1− η) · ϵθ(xt, t, ψ(∅)), (17)

where η is the guidance scale parameter and p is the input text condition. In this way, the model can
maintain its original ability to remove noise and the new function of generating specific content.

A.3 Optimization algorithm design

The details of the adversarial optimization algorithm are presented in Algorithm 1. Initially, the image
watermark wi is randomly sampled, and guidance wp is set to NULL (representing no text prompt).
In each round, we randomly select a generated sample x0 and obtain the noise representation xt at
the watermark embedding point. Then both wi and wp are optimized alternatively in an adversarial
manner. We experimentally set the hyperparameters α as 1.0, β as 1.0, and λ as 0.005.

Algorithm 1 Adversarial Optimization Algorithm
Input: Dataset X ,P; max epoch N ; hyper-parameters α, β, λ; watermark mask M
Output: Optimized watermark pair wi, wp;

1: Initialization
w0

i ← rand_init(wi) ;
w0

p ← ψ(NULL) ;
k ← 0 ;

2: while not converted yet do
3: // get sample

x0, p ∼ X ,P
4: //get xt from x0

xt ←
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), t ∼ Uniform(200, 300)

5: // image watermark optimization
wk+1

i = argmin
wi

(αℓret + βℓcons − λ
∥∥wk

i

∥∥)
6: // prompt guidance optimization

wk+1
p = argmin

wp

(αℓret + βℓcons)

k ← k + 1
7: end while
8: return (wk

i , w
k
p)
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Table 6: Comparision of time cost (s) of different watermarking methods.

Method Stable Diffusion [31] (512×512) Imagenet Diffusion [2] (256×256)
Generation Validation Generation Validation

W/o Watermark 2.614 - 3.479 -

Post-
processing

DwtDct [4] 2.681 0.056 3.492 0.012
DwtDctSvd [26] 2.749 0.233 3.511 0.058
RivaGAN [52] 3.342 0.437 3.661 0.109

In-
processing

StableSig [14] 2.614 0.112 - -
Tree-Ring [44] 2.617 2.599 3.482 3.963

ROBIN 2.682 0.531 3.592 0.986

B Implementation details

B.1 Details about evaluation metric

Setting for AUC computing. The AUC-ROC (Area Under the ROC Cure) metric is a statistical
measure used to evaluate the performance of a binary classification problem, which is watermarked or
not here. The ROC Curve is created by plotting the fraction of true positive results against the fraction
of false positive results at various threshold settings. The AUC summarizes the overall performance
across all possible thresholds. A higher AUC value means the test is more accurate in making this
distinction. And an AUC of 1.0 represents perfect discrimination. For both our method and Tree-Ring
watermarking, we compare the extracted image watermarks using the L1 distance. For the other three
steganography-based methods, we utilize the Hamming distance between the implanted and decoded
binary sequences, as these methods typically operate on binary data representations.

Setting for FID computing. For Stable Diffusion, we generate 5,000 watermarked images and
calculate FID against the MS-COCO-2017 dataset [20]. For the ImageNet Diffusion model, we
calculate FID using 10,000 watermarked images against the ImageNet-1K training dataset [11].

Setting for CLIP computing. For both models, we test 1,000 images using the OpenCLIP-ViT
model [6]. For Stable Diffusion, we work with the ground-truth text prompts, while for the ImageNet
model, we construct prompts like "a photo of x", where "x" is the category of the generated image.

About pixel-level metrics. The content watermarking scheme of ROBIN doesn’t aim for exact
replication of the original image. Instead, it strives for a visually similar "alternative generation"
that maintains both image quality and semantic integrity. While traditional watermarking schemes
utilized metrics like PSNR/SSIM to assess image distortion introduced by the watermark (treated
as an additional signal), we utilize them in this research as supplementary indicators to reflect the
degree of semantic preservation within the watermarked image. Essentially, the higher the similarity
between the watermarked and original image, the less semantic impact the watermark has introduced.

C More experimental results

C.1 Time overhead

We evaluate the time cost associated with different watermarking schemes. The results are presented
in Table 6. Traditional post-processing methods exhibit similar time requirements for watermark
addition and verification. The simple DwtDct method demonstrates the fastest performance, achieving
both addition and validation times of less than 0.1s. DwtDctSvd exhibits a 3× slowdown compared
to DwtDct, while RivaGAN is 10× slower. Notably, the runtime of these methods is heavily
influenced by the input image size. For in-processing watermarking, StableSig directly fine-tunes the
model, incurring no additional time overhead during the generation process. The Tree-Ring method
introduces minimal impact (0.003s) on generation time by solely modifying the initial random vector.
However, verification necessitates reversing the entire generation process, resulting in significant
time consumption (2.6s for Stable Diffusion and 3.9s for Imagenet Diffusion). ROBIN employs a
one-shot approach for watermark embedding during the intermediate diffusion stage. The impact
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Table 7: Watermark verification (AUC) under reconstruction attack.

Method VAE-Bmshj2018 VAE-Cheng2020 Diffusion model

Tree-Ring 0.992 0.993 0.996
ROBIN 0.998 0.999 0.997

Table 8: Watermark verification (AUC) on noise-to-image generation.

Diffusion Type Clean Blur Noise JPEG Bright Rotation Crop Avg

Noise-to-Image 1.0 0.996 0.997 1.0 0.963 0.999 1.0 0.993

Table 9: Watermark verification (AUC) on different optimization settings.

Alignment Clean Blur Noise JPEG Bright Rotation Crop Avg

Latent-level 1.000 0.999 0.940 0.999 0.974 0.927 0.994 0.972
Pixel-level (ROBIN) 1.000 0.999 0.954 0.999 0.975 0.957 0.994 0.983

on generation time arises from the introduction of additional guidance calculations, resulting in a
minimal overhead of 0.068s and 0.113s, which is negligible compared to the generation time of
2.614s and 3.479s for the two models. Verification of ROBIN watermarks requires reversing only a
limited number of generation steps, resulting in consumption times of 0.531s and 0.986s for the two
models, which are considerably lower compared to the Tree-Ring watermark.

C.2 Reconstruction attacks

We evaluate the performance of ROBIN under different variants of reconstruction attacks [54]. As
shown in Table 7, ROBIN consistently exhibits stronger robustness under these adversarial conditions.

C.3 Application to noise-to-image models

ROBIN can also be applied to noise-to-image generation models, as it does not rely on the original
text prompt input. Given that large-scale pretrained diffusion models are typically conditional
generative models, we chose to use the unconditional capability of Stable Diffusion to simulate the
noise-to-image generation process for this evaluation.

We evaluate ROBIN on the unconditional generation of Stable Diffusion, where the original text is
set to NULL (representing no text prompt). In this setup, the image is generated unconditionally
before the watermark injection point. After that, we still utilize our watermarking hiding prompt
embedding to guide the generation process and actively erase the watermark. The results in Table 8
indicate that ROBIN can still function well in noise-to-image generation.

C.4 Pixel-level optimization

In our scheme, the watermark is embedded in the latent space while the loss function is calculated
at the pixel level. We believe that this approach, which combines pixel-level alignment with latent
space optimization, is beneficial for improving robustness.

This is because different latent representations can map to similar pixel-level expressions, allowing
us to find a latent code that maps to visually the same image but also contains robust watermarks.
This provides more opportunities to embed strong and robust watermark signals without introducing
noticeable visual artifacts. The benefits of this optimization method are evident when we actively aim
for concealment, a feature not supported by other watermarking methods.

To further validate our approach, we also test a variant of the ROBIN scheme where the loss function
is computed at the latent level rather than the pixel level. The results presented in Table 9 demonstrate
that latent-level alignment slightly decreases the robustness of the watermark, thereby underscoring
the effectiveness of our pixel-level alignment strategy.
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Figure 6: Samples under different attacks.

Original

1 2 3

4 5 6

Figure 7: Samples under different number of attacks applied at the same time. The sequence of
attacks performed on the above images is Gaussian blur with radius 4, JEPG compression with quality
25, color jitter with brightness 6, random cropping of 75%, and random rotation of 75 degrees.

C.5 More qualitative results
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W/o Watermark Tree-Ring ROBIN

“Glowing cracks, elven princess, meditating, lotus pose, blossoming”

“Full samurai ninja armor, spiderman, fantastic details full face”

“Anime as Margot Robbie cute-fine-face, surprised realistic shaded face”

“Oil painting portrait of a young black woman with long hair in a white dress”

“A knitted Capybara wearing stylish sunglasses and dressed in a beanie cap”

“Dark fantasy, evil magician portrait, dark surrealist”

Figure 8: More qualitative comparison results with Tree-Ring watermarks for Stable Diffusion.
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W/o Watermark Tree-Ring ROBIN

“Malamute, malemute, Alaskan malamute”

“Hyena, hyaena”

“Lakeside, lakeshore”

“Screen, CRT screen”

“Indri, Indris, Indri indri, Indri brevicaudatus”

“Siamese cat, Siamese”

Figure 9: More qualitative comparison results with Tree-Ring watermarks for the ImageNet Diffusion
model.
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Figure 10: Generated images with the watermark embedded at different diffusion stages. Clean
represents the images that are generated without watermarking. XT means the watermark is embedded
into the initial noise, and X0 means the watermark is implanted in the final generated image.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The codes will be available at https://github.com/Hannah1102/ROBIN.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The codes will be available at https://github.com/Hannah1102/ROBIN
and we use open source model and data, which are cited correctly in the main paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see Section 4.1, Appendix A and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please see Table 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please see Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

25

3961 https://doi.org/10.52202/079017-0129

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets we used are public and cited properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The codes and data will be available at https://github.com/Hannah1102/
ROBIN.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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