
Exploiting Representation Curvature for
Boundary Detection in Time Series

Yooju Shin1, Jaehyun Park1, Hwanjun Song1, Susik Yoon2, Byung Suk Lee3, Jae-Gil Lee1∗
1KAIST, 2Korea University, 3University of Vermont

{yooju.shin, jhpark813, jaegil, songhwanjun}@kaist.ac.kr, susik@korea.ac.kr, bslee@uvm.edu

Abstract

Boundaries are the timestamps at which a class in a time series changes. Recently,
representation-based boundary detection has gained popularity, but its emphasis
on consecutive distance difference backfires, especially when the changes are
gradual. In this paper, we propose a boundary detection method, RECURVE,
based on a novel change metric, the curvature of a representation trajectory, to
accommodate both gradual and abrupt changes. Here, a sequence of representations
in the representation space is interpreted as a trajectory, and a curvature at each
timestamp can be computed. Using the theory of random walk, we formally show
that the mean curvature is lower near boundaries than at other points. Extensive
experiments using diverse real-world time-series datasets confirm the superiority
of RECURVE over state-of-the-art methods.

1 Introduction

In a time series composed of sequential data points (simply points) indexed by timestamps, there
are boundaries (or change points) signifying transitions between different classes or states, such as
a shift from running to walking [1, 2]. Detecting boundaries is a crucial task in preprocessing and
diverse applications of time-series data. As preprocessing, they partition a time series into segments
of coherent points, accelerating annotation of the time-series for further analysis and giving additional
supervision in classification [3, 4, 5, 6, 7]. As primary tasks, they are valuable for identifying changes
that require human attention in a variety of domains, including climate, health care, finance, and
manufacturing; epilepsy detection, stock price tracking, and action segmentation are examples of
possible applications [8, 9, 10, 11].

Representation-based boundary detection methods [12, 13] are prevalent today because they do not
require specific assumptions on time-series properties, such as distribution or temporal shape, and can
handle high dimensionality due to the capability of a self-supervised model that autonomously learns
distinctive features from raw time series without any supervision. In these methods, a self-supervised
model [14, 15, 16] is first used to derive a representation of each point, and then a point is identified as
a boundary if its representation significantly deviates from those of adjacent points. Let’s refer to the
points close to a boundary as inter-segment points and the remaining points as intra-segment points.
In short, these methods operate by assuming that the distance between consecutive representations is
greater between inter-segment points than between intra-segment points.

However, this assumption on the distance difference does not always hold, especially when the
changes are subtle or gradual. Time-series representation learning methods often pursue preserving
the temporal coherence of a time series as their training goal is to make temporally close points
similar in their representations and distant points dissimilar [14]. As demonstrated in Figure 1, the
consecutive distances are not clearly distinguishable between intra- and inter-segment points for
relatively subtle changes with stair up↔ stair down because just the direction of motion differs

∗Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

5974 https://doi.org/10.52202/079017-0194

↔ ↔

Consecutive cosine similarity

Large
overlap

Small
overlap

Figure 1: Consecutive distance (cosine similarity) distribu-
tion from intra- and inter-segment points in the representa-
tions of the HAPT dataset.

High curv.

Inter

Class ball

Intra

Low curv.

Representation Space

Intra

Figure 2: Curvature comparison be-
tween intra- and inter-segment points
in a representation space.

between the two classes, whereas they are for abrupt changes with stand↔ sit. Thus, the inability
to handle subtle changes hinders achieving an overall good performance.

In this work, we take a novel perspective on detecting boundaries by leveraging curvatures instead
of distances in the representation space. As shown in Figure 2, the curvature at a point in a curve
measures the instantaneous rate of direction change, or more precisely, the amount by which the
curve deviates from being a straight line [17]. Suppose that a sequence of point representations from a
time series constitutes a representation trajectory. We observe that, regardless of whether the changes
are gradual or abrupt, the direction of the representation trajectory tends to change more sharply
(showing a higher curvature) at intra-segment points than at inter-segment points. Accordingly, we
contend that the curvature of a representation trajectory should be a very promising indicator for class
boundary detection.

Using Figure 2, we justify the intuition behind curvature-based boundary detection. Because
representation learning tries to learn class-separated features, well-embedded points of a certain class
(or a segment) can be drawn from its class-specific ball [18, 19]. That is, the representation trajectory
of intra-segment points is confined within a class ball, whereas that of inter-segment points is not.
Then, for intra-segment points to reside exclusively within a class ball, their representation trajectory
needs to make sharp turns frequently. In contrast, the transition from one class ball to another does
not necessarily make sharp turns. This observation is formally proven by the relationship between
the mean curvature and the radius of a confining hypersphere, assuming a random walk of a point
representation (see Section 3.4).

Overall, for boundary detection, treating a sequence of representations as a trajectory and measuring
its curvature is an entirely novel approach, which results in RECURVE (Representation trajEctory
CURVaturE). A representation trajectory is derived by a time-series representation learning method,
and the curvature at each point is calculated very efficiently; then, the points whose curvature is
relatively small are identified as boundaries. RECURVE is simple yet powerful, and can be combined
with any time-series representation learning method. We conduct comprehensive evaluations on a
variety of time-series datasets, comparing it against state-of-the-art boundary detection methods. The
results demonstrate that RECURVE consistently enhances the accuracy, achieving improvements
of up to 12.7%. Furthermore, this superiority is shown to exist regardless of the degree of change
between different classes.

2 Related Work

2.1 Boundary Detection

Time-series boundary detection methods assess the dissimilarity between two successive intervals
and apply a threshold to pinpoint the positions of boundaries. There are multiple methods available
for quantifying dissimilarity: (1) conducting statistical tests, (2) quantifying the deviation from
discovered patterns, and (3) calculating distances between the representations learned from a self-
supervised model. We summarize each category here, with additional in-depth details available in
extensive surveys [1, 2].

Statistical tests often rely on the probability density ratio of two consecutive intervals as a key statistic.
CUSUM is a traditional parametric algorithm that adds up the log likelihood ratio when a probability
density function is given [20, 21]. RuLSIF is a non-parametric algorithm that directly estimates the
probability density ratio using Pearson divergence without a probability density function [22, 23, 24].
A kernel-based statistical test maps each interval to a kernel space and then computes the kernel

2

5975https://doi.org/10.52202/079017-0194

Fisher discriminant ratio as a statistic [25]. KL-CPD uses a deep neural network as a generator for
kernel parameters, which solves high sensitivity in selecting parameters [26].

The proactive discovery of frequent temporal patterns is necessary for temporal pattern-based bound-
ary detection. FLOSS stores the locations of similar subsequences in a time series using Matrix
Profile and measures the likelihood of a regime change [27]. Motif-based boundary detection relies
on the identification of short temporal patterns (motifs) determined through the minimum description
length criterion; these motifs are then compared for similarity with other subsequences within a time
series [11, 28]. ESPRESSO, on the other hand, is a hybrid of pattern- and statistic-based approaches,
detecting a wide range of boundaries across different scenarios and data types [29].

Representation-based boundary detection methods are distinguished by the manner in which a
self-supervised model is trained. TIRE exploits an autoencoder to retain time-invariant features
in consecutive timestamps to make representations of boundaries salient [12]; after training, the
output representations undergo a process of smoothing, wherein a moving average is applied prior to
the dissimilarity computation. TS-CP2 leverages contrastive learning techniques to promote close
proximity between representations of two consecutive timestamps and distant proximity between
representations at randomly selected timestamps [13]; it examines the difference between each
consecutive distance and the moving average.

2.2 Time-Series Representation Learning

Time-series representation learning builds a model to create versatile representations capable of
performing diverse downstream tasks such as classification, forecasting, and anomaly detection [30,
31]. Reconstruction-based learning methods train autoencoder-based deep neural networks using
a reconstruction loss. TimeNet is an early example that uses a sequence-to-sequence autoencoder
and uses the hidden embedding extracted from the encoder as a representation [32]. DTCR extends
traditional reconstruction-based learning by incorporating a k-means loss alongside the reconstruction
loss [33]. Input masking is also commonly used for reconstructing data with specific timestamps
intentionally masked or hidden [34, 35, 36].

In contrastive learning, the Info-NCE (Noise Contrastive Estimation) loss plays a pivotal role by
bringing a positive pair closer together and pushing a negative pair apart in the representation space.
An early approach considers a sampled window and a subsequence from the window as a positive
pair [37]. In recent methods such as TNC (Temporal Neighborhood Coding), the temporal distance
serves as a criterion for identifying a positive pair, keeping two neighboring timestamp representations
close [13, 14, 38]. Following the principles of SimCLR [39], a positive pair can be created by pairing
a sampled window with its augmentation which involves data perturbation or context changes [15, 40].
Besides, the Fourier transform of a time series serves as an augmentation technique for generating
positive pairs or providing a new representation space [16, 41, 42].

3 RECURVE: Curvature-based Boundary Detection

3.1 Preliminaries and Problem Setting

Dataset and Model: Let X = (xt)
T
t=1 be a time series, where T is the total number of points,

and xt ∈ Rd is a d-dimensional point at timestamp t. Let C = {tk | k ∈ J1, KK} be a set of the
timestamps for the ground-truth boundaries. Considering class labels annotated at each timestamp,
C is composed of the timestamps where there is a change in the label from the previous one (e.g.,
stand→ walk). A window Xtm = (xt)

tm+I−1
t=tm−I is a sequence of consecutive 2I points centered

at timestamp tm. A representation model fθ, which is a deep neural network parameterized by θ,
converts each window Xtm to its representation ztm ∈ Rd′

, i.e., ztm = fθ(Xtm).

Representation Learning: RECURVE is not bound to a specific representation learning method,
and we summarize the training process using one of the popular methods, the temporal predictive
coding (TPC) proposed in TS-CP2 [13]. Here, two non-overlapping consecutive windows are used
as a positive pair, and two randomly-sampled windows are used as a negative pair. Thus, TS-
CP2 randomly samples b windows as well as their succeeding windows and constructs a batch
B = {Xt1 , Xt2 , . . . , Xtb , Xt1+2I , Xt2+2I , . . . , Xtb+2I}; the method subsequently minimizes the
InfoNCE loss ℓNCE [43],

3

5976 https://doi.org/10.52202/079017-0194

ℓNCE = −1

b

b∑
j=1

log
exp(sim(ztj , ztj+2I)/τ)∑b

k=1,k ̸=j exp(sim(ztj , ztk)/τ)
, (1)

where sim(·, ·) is the cosine similarity function, exp(·) is the exponential function, ztj = fθ(Xtj),
and τ is a scaling parameter. The model parameter θ is updated iteratively by gradient descent, i.e.,
θ ← θ − η∇θℓ(B, θ), where η is a learning rate.

Change Metric and Detection: Using the representations of all windows centered at each point in
X , i.e., {zt | t ∈ J1, T K}, a change metric ŷt is derived for each point xt ∈ X , which represents the
extent that xt is a boundary. For example, the change metric in TS-CP2 employs the distance (i.e.,
cosine similarity) between the embeddings of adjacent points,

ŷdist
t = NORM(|sim(zt, zt+1)− MA(sim(zt, zt+1))|), (2)

where MA calculates a simple central moving average and NORM is min-max normalization over all
timestamps to rescale a value between 0 and 1. Then, similar to binary classification, the points
whose change metric exceeds a certain threshold φ are identified as boundaries,

Ĉ = {t | ŷt ≥ φ where t ∈ J1, T K}. (3)
Goal: Obviously, an effective change metric is crucial to the success of boundary detection. Therefore,
we propose a novel change metric, ŷcurvt , using the curvatures in the representation space instead of
the consecutive distances in the representation space.

3.2 Curvature-Based Change Metric

A trajectory usually refers to the path or track that an object (e.g., human and vehicle) in motion
follows through space and time [44]. Thus, we get to Definition 3.1 if we think of an object as a point
floating in the representation space.

Definition 3.1 (TRAJECTORY). A representation trajectory (simply trajectory) T is a curve specified
by a sequence of representations at consecutive timestamps and denoted as T = (zt)

|T |
t=1.

𝜃𝜃𝑡𝑡
𝒛𝒛𝑡𝑡

𝒛𝒛𝑡𝑡− 𝒛𝒛𝑡𝑡+

Figure 3: Turning angle.

The curvature at a specific point on a curve is the rate at which the
direction of the curve changes instantaneously at the point [17]. It is a
well-defined concept in geometry and quantifies how sharply or gradually
the curve bends or deviates from a straight line. We employ the definition
designed for a trajectory [45]. For three timestamps in order, t−, t, and
t+, where t− < t < t+, consider their representations zt− , zt, and zt+ .
Two difference vectors, zt−zt− and zt+−zt, are naturally derived, and the turning angle θt between
them in Figure 3 is calculated by

θt = arccos
(zt − zt−) · (zt+ − zt)

||zt − zt− || ||zt+ − zt||
. (4)

Each value of θt ranges between 0 and π, where t ∈ J2, |T |−1K. Then, the curvature is the rate of
the direction changes between the two difference vectors, i.e. how much a difference vector rotates
per unit length, as defined in Definition 3.2.

Definition 3.2 (CURVATURE). The curvature at timestamp t in a representation trajectory T is the
turning angle θt divided by the sum of the difference vector lengths,

κt =
θt

||zt − zt− ||+ ||zt+ − zt||
. (5)

According to our observations and intuitions described in Section 1, the curvature of an intra-segment
point is higher than that of an inter-segment point. Thus, the curvature defined in Definition 3.2 can
be used as a change metric. The computational complexity remains O(d′T), consistent with that of
TS-CP2 where cosine similarity is computed instead of curvature. For stability, the timestamps t− and
t+ in Eq. (5) are determined to be w ≥ 1 timestamps before and after timestamp t, i.e., t− = t− w
and t+ = t+w. We set w to 5% of the mean segment length, which is observed to work well in most
situations. Please refer to Section 4.6 about the sensitivity analysis on the value of w. Definition 3.3
concludes our novel curvature-based change metric.

Definition 3.3 (CHANGE METRIC). The curvature-based change metric at timestamp t becomes
ŷcurvt = MA(1− NORM(κt)), (6)

where κt is obtained from Eq. (5) and MA and NORM are the same as Eq. (2).

4

5977https://doi.org/10.52202/079017-0194

In Definition 3.3, we normalize the curvature to a scale of 0 to 1. Subtracting this normalized curvature
from 1 ensures that the change metric increases as the curvature decreases while maintaining the
scale. Finally, a moving average is employed to smooth the curvature and mitigate fluctuations.

3.3 Change Metric Thresholding

Once the change metric ŷcurvt in Eq. (6) is prepared, it is possible to detect boundaries by finding the
points where ŷcurvt ≥ φ, as formulated by Eq. (3). Therefore, it is necessary to develop a heuristic
for determining the threshold φ, and additional information can be utilized for this purpose. Such
additional information includes the mean segment length and the validation dataset. If the mean
segment length, i.e., the average of the lengths of segments distinguished by boundaries, is known,
the estimated number of boundaries can be calculated by dividing the total number of timestamps
by the mean segment length. The threshold φ is then determined to obtain the estimated number of
boundaries. Alternatively, if we have a validation dataset, we select the threshold φ that yields the
best performance based on an evaluation measure. Empirical evaluation in Section 4 employs the
mean segment length in thresholding.

3.4 Theoretical Analysis

Enclosing ball

Class 𝐶𝑗’s

confining ball

𝑂𝐶𝑖
𝑂𝐶𝑗𝑅intra

𝑅inter
𝒛inter

Class 𝐶𝑖’s

confining ball

𝜃inter 𝜃intra

𝒛intra
𝜃intra

𝜃inter

Boundary

Figure 4: Comparison of the curvatures between
intra- and inter-segment points.

Our theoretical analysis is conducted by show-
ing the following properties: (1) the intra-
segment points in the representation space are
confined within a smaller hypersphere than the
inter-segment points, as shown in Figure 4; (2)
the mean curvature of a representation trajectory
increases as the radius of the confining hyper-
sphere decreases, which leads to the rationale
behind Definition 3.3.

Definition 3.4 (CONFINEMENT). Consider a
subsequence of a specific class Ci, XCi =
(xt)

tend
t=tstart

, as well as its representation trajec-
tory, TCi

= (zt)
tend
t=tstart

, in Figure 4. Then, TCi

is confined within a hypersphere SCi
⊂ Rd′

centered at OCi
∈ Rd′

of radius Rintra if and only if
||zt −OCi

|| < Rintra holds for all t ∈ Jtstart, tendK.

Definition 3.4 comes from a widely known fact that representation (contrastive) learning produces
class-separated representations [18, 19]. The augmented positive examples form a connected graph
based on augmentation overlap; thus, the alignment of positive examples by contrastive learning will
cluster the examples of the same class together and lead to class-separated representations [18].

Proposition 3.5 (CONFINEMENT RADIUS). Consider a transition from a class Ci to another class
Cj in Figure 4. Let SCi

, SCj
⊂ Rd′

be the confining hyperspheres for Ci and Cj , respectively, of
radius Rintra. Then, consider a larger hypersphere of radius Rinter that encloses the inter-segment
points (in red) as well as SCi

and SCj
. Thus, Rintra < Rinter holds by definition.

Based on temporal coherence [7, 13, 46] inherent in time series, we make an assumption on the
representation trajectory before proceeding to the second step.

Assumption 3.6 (EQUILATERAL RANDOM WALK). A representation trajectory T = (zt)
|T |
t=1 is a

Markov chain, where zt is sampled over the surface of the unit hypersphere centered at zt−1 and
also contained in a confining hypersphere of radius R. That is, ||zt − zt−1|| = 1 (t ∈ J2, |T |K) and
||zt|| < R (t ∈ J1, |T |K) such that R > 1.

Under Assumption 3.6, the curvature in Eq. (5) becomes the turning angle in Eq. (4) because the
denominator is reduced to a constant when w = 1. Then, when a given representation trajectory T is
confined by a hypersphere of radius R, its mean curvature is defined by

KT (R) =
1

|T |
∑
zt∈T

Ezt|R[θt], (7)

where Ezt|R[θt] is the expectation of the curvature at timestamp t with respect to the distribution of
the representations in the confining hypersphere of radius R.

5

5978 https://doi.org/10.52202/079017-0194

Lemma 3.7 (MEAN CURVATURE). Consider a representation trajectory T confined in a hypersphere
of radius R under Assumption 3.6. Then, the mean curvature KT (R) is a decreasing function of the
radius R, i.e., d

dRKT (R) < 0.

The proof of Lemma 3.7 is provided by Diao et al. [47]. The mean curvature is rigorously formulated
as a complicated integral. By a simulation of random walk with one million steps, the decrease in the
curvature is represented by the linear function 3.53− 1.21R and the function π/2 + 0.65/R1.5 for
two different regimes of R.

Notation. The representation trajectories confined within the hyperspheres of radii Rintra and Rinter

in Figure 4 are called intra-segment and inter-segment trajectories as well as denoted by Tintra and
Tinter, respectively.

Putting Proposition 3.5 and Lemma 3.7 together, the observation on the difference in the curvature is
finally formalized by Theorem 3.8.

Theorem 3.8 (CURVATURE DIFFERENCE). The mean curvature of an intra-segment trajectory is
greater than that of an inter-segment trajectory, i.e., KTintra(Rintra) > KTinter (Rinter).

Proof. Because Rintra < Rinter by Proposition 3.5, KTintra
(Rintra) > KTinter

(Rinter) obviously
holds by the decreasing nature of KT (R) of Lemma 3.7.

Theorem 3.8 can be intuitively explained if we consider the special case in which the next repre-
sentation of zintra or zinter lies on the surface of a hypersphere, as visualized in Figure 4. Since
a smaller radius necessitates a sharper turn, θintra > θinter holds true. In this particular instance,
where zintra or zinter is an orthogonal projection onto the surface, the turning angle can be expressed
as π − arccos 1

2R , a decreasing function of R. Please refer to Appendix A for more details.

3.5 Empirical Validation

The findings in the theoretical analysis also align well with the visualizations of the representations
from a real dataset. Figure 5 displays three representation trajectories in the representation space of
two principal components, which are obtained by the TPC method with d′ = 32 for the mHealth
dataset. Each representation trajectory includes 100 points centered at a boundary, where each point
is sampled every ten points in the original trajectory. Inter-segment points within five sampled
timestamps from the boundary are denoted by “×”, while intra-segment points are denoted by “•”.
The color of each symbol indicates the value of our change metric—i.e., 1−curvature. Obviously,
inter-segment points have higher values of the change metric than intra-segment points. Interestingly,
in Figure 5, the distance between two consecutive representations remains similar regardless of
whether they are intra- or inter-segment points. This result reaffirms the existence of temporal
coherence in the representation space, which could reduce the accuracy of distance-based methods.
Moreover, it is evident that the representation trajectories of intra-segment points exhibit clearer
confinement, resulting in more closed shapes and larger average turning angles. The representation
trajectories of inter-segment points have fewer rotations and produce a relatively straighter shape.

HighLow :Intra :InterChange metric

-6 -4 -3 -2 -1
-4

-1

3

7

11

(a) Boundary at t = 247399.
(Stand−→Sit)

-7 -6 -4 -2 -1
-7

-4

0

3

6

(b) Boundary at t = 321128.
(Walk−→Bend)

2 4 5 7 9
-8

-5

-2

1

4

(c) Boundary at t = 339047.
(Run−→Jump)

Figure 5: Three representation trajectories in the space of two principal components in mHealth.

6

5979https://doi.org/10.52202/079017-0194

4 Evaluation

4.1 Experiment Setting

Table 1: Summary of datasets and hyper-parameters.
Dataset Timestamps Length Class d Rate #Bo Window Epoch

WISDM 343092 697 6 3 20 491 50 10

HAPT 407807 903 6 6 50 450 100 50

mHealth 343195 2932 12 23 50 119 100 50

50salads 496250 551 19 2048 30 898 50 100

Datasets: The profiles of the four
datasets used in our experiments are
summarized in Table 1, which lists the
number of timestamps, mean segment
length, number of classes, data dimen-
sionality, sampling rate in Hz, and
number of boundaries. WISDM [48],
HAPT [49], and mHealth [49] are human action recognition datasets, which are measured by single
or multiple accelerometers and/or gyroscopes. 50salads [50] is a video dataset that captures 25 people
preparing salads; the I3D features of 2048 dimensions are extracted, following Farha and Gall [3].
The set of ground-truth boundaries, C, is defined as the set of the timestamps where the class changes.
The dimensionality of the representation space is set to d′ = 8 for WISDM and HAPT and d′ = 32
for mHealth and 50salads, considering their data dimensionality.

RECURVE Details: To obtain the point representations, we employ two time-series represen-
tation learning methods, TPC proposed in TS-CP2 [13] and TNC [14]. RECURVE+TPC and
RECURVE+TNC indicate the two implementations depending on the representation learning method.
A temporal convolutional network (TCN) is trained in both methods. Note that any representation
learning method can be combined with RECURVE. The window size, 2I , and the number of training
epochs for each dataset are shown in Table 1, where the window size is approximately twice the
sampling rate. The learning rate is set to 0.005 for all datasets. The hyperparameter w, indicating
the length of a representation vector, is set to 5% of the mean segment length. After obtaining a
change metric for each timestamp, in Eq. (6), the same normalization is applied to all windows from
an individual dataset. The moving average in Eq. (6) is computed using the ten timestamps preceding
and following each timestamp. RECURVE is implemented using PyTorch 1.13.0, and its source code
is available at https://github.com/kaist-dmlab/RECURVE.

Compared Methods: RuLSIF [24], KL-CPD [26], and TS-CP2 [13] are chosen as the representative
method from each of the three categories in Section 2.1. The window size in Table 1 is applied
to all compared methods for fair comparison. A multilayer perceptron is used for the regressor of
RulSIF. The hyperparameters of RuLSIF and KL-CPD are favorably determined by a grid search,
as detailed in Appendix B. The public implementations of RuLSIF2 and KL-CPD3 are used for our
experiments. TS-CP2 is the closest to our work, and its main mechanism is briefly described in
Section 3.1. Because representation learning itself is shared between TS-CP2 and RECURVE when
TPC is used, the same hyperparameter setting is applied to both methods whenever possible. TS-CP2

is re-implemented using PyTorch 1.13.0 for direct comparison with RECURVE.

Evaluation Measures: First, the Area Under the ROC Curve (AUC) is measured by considering
boundary detection as binary classification with a binary label vector y ∈ {0, 1}T converted from
C. Following Deldari et al. [13], an error margin is introduced to accommodate some noise from
annotation and detection. A detected boundary is considered to be correct if it lies within p timestamps
from one of the ground-truth boundaries. For this purpose, y is relaxed to

yt =

{
1 if tk − p ≤ t < tk + p where tk ∈ C
0 otherwise.

(8)

Then, for t ∈ J1, T K, whether (ŷt in Eqs. (2) or (6) ≥ φ) is compared against yt in Eq. (8). We use
multiple error margins, p ∈ {5, 10, 20}, since a margin could be different for diverse applications [1].
Second, the mean LOCation distance (LOC) is measured, which is the average distance from a
detected boundary to its closest ground-truth boundary [27, 51]. The LOC measure is useful for
checking the preciseness of the boundaries detected.

Regarding the threshold φ, the AUC measure does not require a specific value because it evaluates
the true positive and false positive rates over a given range. For the LOC measure, two values are
used for each experiment: one is determined to achieve the best F1 score, and the other is determined

2https://github.com/HSE-LAMBDA/roerich
3https://github.com/HolyBayes/klcpd

7

5980 https://doi.org/10.52202/079017-0194

https://github.com/kaist-dmlab/RECURVE
https://github.com/HSE-LAMBDA/roerich
https://github.com/HolyBayes/klcpd

by the heuristic based on the mean segment length in Section 3.3, where the estimated number of
boundaries is multiplied by p = 10, taking the error margin into account.

For each evaluation measure, we conduct every experiment five times with different seeds and report
the average as well as the standard deviation. We use Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
and NVIDIA RTX 3090 for every experiment.

4.2 Comparison with State-of-the-Art Methods

Table 2: Overall detection accuracy in the AUC measure (the
best results in bold).

Methods p
AUC ↑

WISDM HAPT mHealth 50salads

RuLSIF
5 0.559±0.005 0.797±0.001 0.598±0.002 0.606±0.006

10 0.560±0.005 0.797±0.001 0.599±0.002 0.608±0.003
20 0.563±0.005 0.797±0.001 0.600±0.002 0.611±0.004

KL-CPD
5 0.697±0.000 0.868±0.003 0.842±0.117 0.682±0.003

10 0.702±0.000 0.873±0.004 0.849±0.113 0.684±0.003
20 0.710±0.000 0.875±0.005 0.856±0.105 0.689±0.003

TS-CP2
5 0.815±0.012 0.692±0.007 0.560±0.014 0.680±0.010

10 0.820±0.012 0.695±0.006 0.561±0.013 0.682±0.009
20 0.823±0.013 0.697±0.006 0.561±0.010 0.685±0.008

RECURVE
+TPC

5 0.897±0.003 0.909±0.001 0.954±0.003 0.719±0.005
10 0.901±0.004 0.913±0.001 0.954±0.003 0.723±0.006
20 0.902±0.003 0.919±0.001 0.955±0.005 0.729±0.006

RECURVE
+TNC

5 0.880±0.004 0.863±0.017 0.979±0.004 0.594±0.016
10 0.889±0.004 0.867±0.017 0.980±0.004 0.595±0.016
20 0.905±0.004 0.876±0.017 0.980±0.005 0.600±0.015

Tables 2 and 3 display the AUC and
LOC measures for the five methods
across the four datasets. The AUC
measure is presented in Table 2 with
varying the error margin p. RE-
CURVE outperforms the other bound-
ary detection methods, where the opti-
mal representation approach varies for
each dataset. RECURVE wins against
TS-CP2 in all datasets, irrespective
of the evaluation measure. This find-
ing demonstrates that the curvature
is more effective for boundary detec-
tion in temporally coherent time se-
ries where the class changes gradually.
WISDM, HAPT, and mHealth exhibit
periodicity in certain classes, includ-
ing Walk and Run. This periodicity would produce a closed shape for intra-segment trajectories and
increase their curvatures in the representation space, enhancing the performance of RECURVE. In
particular, when p = 20, RECURVE outperforms the second-best method by up to 12.7% in terms of
the AUC measure for the mHealth dataset.

Table 3: Overall detection accuracy in the LOC measure (the best results in bold).

Methods LOC ↓ (thresholding by best F1) LOC ↓ (thresholding by mean segment length)
WISDM HAPT mHealth 50salads WISDM HAPT mHealth 50salads

RuLSIF 420.9±18.54 108.2±0.188 780.0±8.580 184.4±1.463 429.5±9.968 156.0±0.092 802.6±30.18 189.2±1.120

KL-CPD 189.0±12.20 121.5±4.540 306.4±126.5 179.5±3.853 198.3±2.329 113.0±2.545 352.6±119.7 176.6±1.017

TS-CP2 166.6±7.840 386.6±31.04 879.4±62.57 119.0±6.712 183.1±15.13 404.2±32.60 923.8±44.39 129.4±5.091

RECURVE+TPC 114.7±56.07 33.25±1.290 483.6±64.24 79.29±10.52 178.4±36.05 34.28±0.727 341.0±47.93 93.76±7.475
RECURVE+TNC 210.0±112.3 47.92±2.884 224.0±211.2 175.0±26.38 219.8±102.2 50.71±1.589 239.6±212.4 178.8±20.87

4.3 Detailed Investigation on Change Metric Quality

We display the average values of the change metrics separately for each pair of classes using the
HAPT dataset, which was chosen for ease of visualization due to its small number of classes. Figure
6a depicts the inter-class embedding distance, which is determined by the Euclidean distance between
the centroids of point representations of given classes. The values of the change metrics are averaged

Walk Up Down Sit Stand Lie

W
al

k
U

p
D

ow
n

Si
t

St
an

d
Li

e

5

10

15

(a) Inter-class embedding distance.

Walk Up Down Sit Stand Lie

W
al

k
U

p
D

ow
n

Si
t

St
an

d
Li

e

0.90

0.95

1.00

(b) Averaged ŷdist
t (TS-CP2).

Walk Up Down Sit Stand Lie

W
al

k
U

p
D

ow
n

Si
t

St
an

d
Li

e

0.90

0.95

1.00

(c) Averaged ŷcurv
t (RECURVE).

Figure 6: Heatmaps of the inter-class distances and values of the change metrics between the classes
in the HAPT dataset. A gray box indicates no transition between two classes.

8

5981https://doi.org/10.52202/079017-0194

across the inter-segment points for each distinct class transition. Figures 6b and 6c are obtained by
the distance-based change metric ŷdist

t of TS-CP2 and the curvature-based change metric ŷcurv
t of

RECURVE, respectively. Intriguingly, ŷcurv
t generates high values for all class pairs in Figure 6c,

which indeed explains the overall high accuracy in Tables 2 and 3. In contrast, in Figure 6b, ŷdist
t

only generates high values when the inter-class embedding distance is sufficiently large (i.e., abrupt
change), whereas it generates moderate values when the inter-class embedding distance is small
(i.e., gradual change). That is, Figures 6a and 6b show a very high correlation. In summary, ŷcurv

t
is insensitive to the degree of changes whereas ŷdist

t is not. Therefore, this result demonstrates the
superiority of the curvature-based change metric over the distance-based change metric.

RECURVETS-CP2

D
en

si
ty

0

25

0

25

0.8 1 0.8 1 0.8 1 0.8 1 0.8 1 0.8 1
Change metric

Stand
↓
Sit

Lie
↓

Stand

Stand
↓

Walk

Up
↓

Stand

Down
↓
Up

Walk
↓

Down

Figure 7: Distribution of the change metrics for each
class transition in the HAPT dataset.

Figure 7 magnifies six class pairs selected
from all class pairs depicted in Figures 6b
and 6c. For example, Stand−→Sit and
Lie−→Stand are accompanied by rapid body
movement, and both TS-CP2 and RECURVE
capture the boundaries well, as evidenced by
the high density in the interval close to 1. In
contrast, when two action classes are com-
parable, as in Stand−→Walk, Down−→Up, and
Walk−→Down, the values of the change metric
of TS-CP2 disperse to other intervals, result-
ing in a decrease in detection performance.
RECURVE maintains the same shape in all
density plots due to the remarkable effective-
ness of our curvature-based change metric.

4.4 Evaluation Respective to Gradual and Abrupt Changes
Table 4 shows the corresponding AUC scores for gradual and abrupt changes in relation to various
distance-based metrics. If the inter-class embedding distance between two classes is shorter than a
certain threshold, the change between the two classes is categorized as gradual. Here, the threshold
is established such that gradual changes represent 20% of all changes. Abrupt changes are excluded
when measuring the improvement for gradual changes, and vice versa. The distance-based metrics,
denoted by DISTANCE, are further categorized depending on whether the Euclidean distance or the
cosine similarity is used. Note that RECURVE adopts the curvature-based metric.

Overall, RECURVE demonstrates greater improvements for gradual changes (AUC-Gradual) than
for abrupt changes (AUC-Abrupt). For example, in the HAPT dataset with p = 5 and the TPC
representation, the increase in the AUC measure from TS-CP2 to RECURVE for gradual changes is
32%, which is significantly higher than the 21% increase for abrupt changes. This result confirms
that the curvature-based method is particularly effective for detecting gradual changes because it
captures subtle variations in the data that are not readily discernible through distance-based methods.
In conclusion, RECURVE is versatile to support both gradual and abrupt changes.

Table 4: Detection accuracy in the AUC measure respective to gradual and abrupt changes.

Methods Repr. p
AUC-Gradual ↑ AUC-Abrupt ↑

WISDM HAPT mHealth 50salads WISDM HAPT mHealth 50salads

DISTANCE
(Euclidean)

TPC
5 0.690±0.008 0.516±0.029 0.519±0.005 0.596±0.005 0.694±0.009 0.716±0.010 0.696±0.010 0.622±0.027

10 0.690±0.008 0.520±0.029 0.521±0.005 0.599±0.005 0.695±0.009 0.717±0.010 0.699±0.010 0.624±0.027
20 0.691±0.009 0.527±0.028 0.521±0.005 0.603±0.005 0.696±0.008 0.718±0.009 0.700±0.010 0.628±0.027

TNC
5 0.715±0.012 0.692±0.022 0.706±0.017 0.556±0.057 0.720±0.008 0.846±0.007 0.839±0.028 0.630±0.011

10 0.724±0.014 0.698±0.022 0.708±0.017 0.558±0.056 0.735±0.009 0.849±0.007 0.847±0.028 0.632±0.011
20 0.734±0.017 0.708±0.022 0.709±0.017 0.561±0.056 0.754±0.011 0.854±0.007 0.849±0.029 0.636±0.011

DISTANCE
(Cosine)

TPC
(=TS-CP2)

5 0.807±0.014 0.602±0.023 0.546±0.015 0.671±0.010 0.838±0.009 0.746±0.021 0.631±0.011 0.703±0.039
10 0.811±0.014 0.606±0.023 0.548±0.014 0.674±0.010 0.845±0.010 0.747±0.021 0.636±0.011 0.706±0.035
20 0.814±0.015 0.613±0.022 0.550±0.011 0.677±0.009 0.847±0.010 0.747±0.020 0.637±0.010 0.714±0.037

TNC
5 0.779±0.013 0.774±0.013 0.789±0.017 0.594±0.022 0.794±0.012 0.945±0.006 0.892±0.023 0.681±0.010

10 0.787±0.012 0.783±0.012 0.803±0.015 0.594±0.032 0.808±0.011 0.946±0.004 0.901±0.022 0.685±0.010
20 0.814±0.013 0.799±0.014 0.846±0.009 0.601±0.032 0.846±0.011 0.950±0.004 0.928±0.017 0.687±0.010

RECURVE

TPC
5 0.888±0.004 0.886±0.009 0.939±0.003 0.712±0.006 0.923±0.003 0.945±0.002 0.985±0.004 0.729±0.055

10 0.893±0.005 0.891±0.009 0.940±0.003 0.715±0.006 0.927±0.002 0.948±0.002 0.988±0.004 0.731±0.054
20 0.894±0.005 0.896±0.009 0.941±0.003 0.722±0.006 0.927±0.002 0.955±0.002 0.988±0.004 0.734±0.051

TNC
5 0.867±0.007 0.773±0.038 0.975±0.003 0.551±0.034 0.901±0.006 0.931±0.002 0.988±0.006 0.600±0.016

10 0.875±0.007 0.779±0.038 0.977±0.003 0.553±0.034 0.910±0.006 0.933±0.002 0.989±0.006 0.602±0.016
20 0.890±0.008 0.791±0.038 0.977±0.004 0.558±0.033 0.927±0.006 0.939±0.002 0.990±0.006 0.606±0.015

9

5982 https://doi.org/10.52202/079017-0194

4.5 Visual Analysis of the Change Metrics

Figure 8 visualizes the fluctuations of various change metrics obtained from the HAPT dataset using
the TPC representation. TS-CP2 fluctuates rapidly during the changes and seems to have many false
negatives at the rightmost boundary area. However, RECURVE indicates the inter-segment points
much more clearly than TS-CP2, without excessive false positives and false negatives. The reliable
detection is achievable by taking into account both the turning angle (the numerator in Eq. (5)) and
the distance (the denominator in Eq. (5)) in the representation space.

0 1000 2000 3000 4000 5000
0.00

0.25

0.50

0.75

1.00
TS-CP2

RECURVE

Timestamps

Figure 8: Change metric scores from the HAPT dataset with the default configuration. A gray-shaded
area represents the inter-segment points between two class segments.

4.6 Sensitivity Analysis on the Hyperparameter w

Table 5 shows the performance of RECURVE while varying the hyperparameter w (see Definition
3.3) when the error margin p for the AUC measure is fixed at 10. The value of w ranges from 0.25×
to 4.00× of the default value, which is set to 5% of the mean segment length (indicated by 1.00×).
If the value of w were too large, the denominator of Eq. (5) would be too large for any point in a
time series, and the curvature would be unable to distinguish between intra- and inter-segment points.
If the value of w were too small, some noise in point representations would distort the curvature.
Under this trade-off, the default value performs the best in terms of the AUC measure when it is
averaged over the four datasets and the two representation learning methods. On a dataset with
lengthy segments, such as mHealth, the sensitivity tends to decrease, and there is small variation
when varying the value of w.

Table 5: Performance of RECURVE with varying the hyperparameter w (the best results in bold).

Repr. w
AUC ↑ LOC ↓ (thresholding by mean segment length)

WISDM HAPT mHealth 50salads WISDM HAPT mHealth 50salads

TPC

0.25× 0.832±0.015 0.901±0.004 0.911±0.008 0.685±0.007 358.7±89.01 40.41±2.233 654.7±36.04 136.9±2.064
0.50× 0.891±0.006 0.914±0.002 0.953±0.004 0.703±0.005 246.3±139.6 37.42±1.309 538.9±49.69 120.0±2.127
1.00× 0.901±0.004 0.913±0.001 0.954±0.003 0.723±0.006 178.4±36.05 34.28±0.727 341.0±47.93 93.76±7.475
2.00× 0.892±0.003 0.887±0.001 0.927±0.003 0.692±0.004 252.9±97.20 42.74±5.383 821.2±53.60 94.21±6.153
4.00× 0.861±0.002 0.847±0.002 0.893±0.004 0.604±0.004 273.8±119.0 53.00±10.77 628.2±39.36 104.0±3.502

TNC

0.25× 0.824±0.016 0.842±0.011 0.956±0.009 0.580±0.015 249.7±37.59 52.95±3.698 213.7±110.2 222.0±7.443
0.50× 0.869±0.009 0.850±0.012 0.978±0.005 0.587±0.014 231.3±79.25 51.15±2.685 236.4±136.5 218.9±16.16
1.00× 0.889±0.004 0.867±0.017 0.980±0.004 0.595±0.016 219.8±102.2 50.71±1.589 239.6±212.4 178.8±20.87
2.00× 0.897±0.002 0.827±0.019 0.962±0.007 0.583±0.008 196.0±79.98 58.19±1.588 346.6±305.9 179.4±16.22
4.00× 0.871±0.002 0.773±0.016 0.937±0.007 0.568±0.009 265.5±58.16 97.38±6.328 265.6±92.20 183.2±17.64

The sensitivity analysis on the representation dimensionality d′ is available in Appendix C.

5 Conclusion

In this paper, we present RECURVE, a novel boundary detection method that uses the curvature of
a representation trajectory to replace the consecutive distance for a change metric. Theoretically,
the mean curvature of an intra-segment trajectory is greater than that of an inter-segment trajectory
due to the confining nature of the representations of the points within a single class. Unlike the
consecutive distance, this property of the curvature is insensitive to the degree of the changes between
two classes (segments). Our comprehensive experiments confirm that RECURVE achieves up to
12.7% higher detection accuracy than state-of-the-art methods. Overall, we believe that our work
pioneers a new direction for boundary detection in time series.

10

5983https://doi.org/10.52202/079017-0194

Acknowledgments and Disclosure of Funding

This work was supported by Institute of Information & Communications Technology Planning & Eval-
uation (IITP) grant funded by the Korea government (MSIT) (No. 2020-0-00862 / RS-2020-II200862,
DB4DL: High-Usability and Performance In-Memory Distributed DBMS for Deep Learning, 50%
and No. 2022-0-00157 / RS-2022-II220157, Robust, Fair, Extensible Data-Centric Continual Learn-
ing, 50%).

References

[1] Samaneh Aminikhanghahi and Diane J Cook. A survey of methods for time series change point
detection. Knowledge and Information Systems, 51:339–367, 2017.

[2] Charles Truong, Laurent Oudre, and Nicolas Vayatis. Selective review of offline change point
detection methods. Signal Processing, 167:107299, 2020.

[3] Yazan Abu Farha and Jurgen Gall. MS-TCN: Multi-stage temporal convolutional network for
action segmentation. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3575–3584, 2019.

[4] Fan Ma, Linchao Zhu, Yi Yang, Shengxin Zha, Gourab Kundu, Matt Feiszli, and Zheng Shou.
SF-Net: Single-frame supervision for temporal action localization. In Proceedings of European
Conference on Computer Vision (ECCV), pages 420–437, 2020.

[5] Zhe Li, Yazan Abu Farha, and Jurgen Gall. Temporal action segmentation from timestamp super-
vision. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8365–8374, 2021.

[6] Yuchi Ishikawa, Seito Kasai, Yoshimitsu Aoki, and Hirokatsu Kataoka. Alleviating over-
segmentation errors by detecting action boundaries. In Proceedings of IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), pages 2322–2331, 2021.

[7] Yooju Shin, Susik Yoon, Sundong Kim, Hwanjun Song, Jae-Gil Lee, and Byung Suk Lee.
Coherence-based label propagation over time series for accelerated active learning. In Proceed-
ings of International Conference on Learning Representations (ICLR), 2022.

[8] Jaxk Reeves, Jien Chen, Xiaolan L Wang, Robert Lund, and Qi Qi Lu. A review and comparison
of changepoint detection techniques for climate data. Journal of Applied Meteorology and
Climatology, 46(6):900–915, 2007.

[9] Rakesh Malladi, Giridhar P Kalamangalam, and Behnaam Aazhang. Online bayesian change
point detection algorithms for segmentation of epileptic activity. In Proceedings of Asilomar
Conference on Signals, Systems and Computers, pages 1833–1837, 2013.

[10] Andrey Pepelyshev and Aleksey S Polunchenko. Real-time financial surveillance via quickest
change-point detection methods. Statistics and Its Interface, 10:93–106, 2016.

[11] Qingxin Xia, Joseph Korpela, Yasuo Namioka, and Takuya Maekawa. Robust unsupervised
factory activity recognition with body-worn accelerometer using temporal structure of multiple
sensor data motifs. Proceedings of ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies (IMWUT), 4(3):1–30, 2020.

[12] Tim De Ryck, Maarten De Vos, and Alexander Bertrand. Change point detection in time series
data using autoencoders with a time-invariant representation. Signal Processing, 69:3513–3524,
2021.

[13] Shohreh Deldari, Daniel V Smith, Hao Xue, and Flora D Salim. Time series change point detec-
tion with self-supervised contrastive predictive coding. In Proceedings of the Web Conference
(WWW), pages 3124–3135, 2021.

[14] Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning
for time series with temporal neighborhood coding. In Proceedings of International Conference
on Learning Representations (ICLR), 2021.

11

5984 https://doi.org/10.52202/079017-0194

[15] Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of time series. In Proceedings of AAAI
Conference on Artificial Intelligence (AAAI), pages 8980–8987, 2022.

[16] Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. Self-supervised
contrastive pre-training for time series via time-frequency consistency. In Proceedings of
Conference on Neural Information Processing Systems (NeurIPS), pages 3988–4003, 2022.

[17] Thomas Lewiner, João D Gomes Jr, Hélio Lopes, and Marcos Craizer. Curvature and torsion
estimators based on parametric curve fitting. Computers & Graphics, 29(5):641–655, 2005.

[18] Yifei Wang, Qi Zhang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Chaos is a ladder: A
new theoretical understanding of contrastive learning via augmentation overlap. In Proceedings
of International Conference on Learning Representations (ICLR), 2022.

[19] Advait Parulekar, Liam Collins, Karthikeyan Shanmugam, Aryan Mokhtari, and Sanjay
Shakkottai. Infonce loss provably learns cluster-preserving representations. arXiv preprint
arXiv:2302.07920, 2023.

[20] Daniel R Jeske, Veronica Montes De Oca, Wolfgang Bischoff, and Mazda Marvasti. Cusum
techniques for timeslot sequences with applications to network surveillance. Computational
Statistics & Data Analysis, 53(12):4332–4344, 2009.

[21] Haeran Cho and Piotr Fryzlewicz. Multiple-change-point detection for high dimensional time
series via sparsified binary segmentation. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 77(2):475–507, 2015.

[22] Makoto Yamada, Akisato Kimura, Futoshi Naya, and Hiroshi Sawada. Change-point detection
with feature selection in high-dimensional time-series data. In Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI), pages 1827–1833, 2013.

[23] Kyle D Feuz, Diane J Cook, Cody Rosasco, Kayela Robertson, and Maureen Schmitter-
Edgecombe. Automated detection of activity transitions for prompting. IEEE Transactions on
Human-Machine Systems, 45(5):575–585, 2014.

[24] Mikhail Hushchyn and Andrey Ustyuzhanin. Generalization of change-point detection in
time series data based on direct density ratio estimation. Journal of Computational Science,
53:101385, 2021.

[25] Zaid Harchaoui, Eric Moulines, and Francis Bach. Kernel change-point analysis. In Proceedings
of Conference on Neural Information Processing Systems (NeurIPS), pages 609–616, 2008.

[26] Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, and Barnabás Póczos. Kernel change-point
detection with auxiliary deep generative models. arXiv preprint arXiv:1901.06077, 2019.

[27] Shaghayegh Gharghabi, Chin-Chia Michael Yeh, Yifei Ding, Wei Ding, Paul Hibbing, Samuel
LaMunion, Andrew Kaplan, Scott E Crouter, and Eamonn Keogh. Domain agnostic online se-
mantic segmentation for multi-dimensional time series. Data Mining and Knowledge Discovery,
33:96–130, 2019.

[28] Jesin Zakaria, Abdullah Mueen, and Eamonn Keogh. Clustering time series using unsupervised-
shapelets. In Proceedings of International Conference on Data Mining (ICDM), pages 785–794,
2012.

[29] Shohreh Deldari, Daniel V Smith, Amin Sadri, and Flora Salim. Espresso: Entropy and shape
aware time-series segmentation for processing heterogeneous sensor data. Proceedings of ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), 4(3):1–24, 2020.

[30] Kexin Zhang, Qingsong Wen, Chaoli Zhang, Rongyao Cai, Ming Jin, Yong Liu, James Zhang,
Yuxuan Liang, Guansong Pang, Dongjin Song, et al. Self-supervised learning for time series
analysis: Taxonomy, progress, and prospects. arXiv preprint arXiv:2306.10125, 2023.

[31] Qianli Ma, Zhen Liu, Zhenjing Zheng, Ziyang Huang, Siying Zhu, Zhongzhong Yu, and James T
Kwok. A survey on time-series pre-trained models. arXiv preprint arXiv:2305.10716, 2023.

12

5985https://doi.org/10.52202/079017-0194

[32] Pankaj Malhotra, Vishnu TV, Lovekesh Vig, Puneet Agarwal, and Gautam Shroff. Timenet:
Pre-trained deep recurrent neural network for time series classification. arXiv preprint
arXiv:1706.08838, 2017.

[33] Qianli Ma, Jiawei Zheng, Sen Li, and Gary W Cottrell. Learning representations for time series
clustering. In Proceedings of Conference on Neural Information Processing Systems (NeurIPS),
pages 3781–3791, 2019.

[34] Zezhi Shao, Zhao Zhang, Fei Wang, and Yongjun Xu. Pre-training enhanced spatial-temporal
graph neural network for multivariate time series forecasting. In Proceedings of ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD), pages 1567–1577, 2022.

[35] Ranak Roy Chowdhury, Xiyuan Zhang, Jingbo Shang, Rajesh K Gupta, and Dezhi Hong.
TARnet: Task-aware reconstruction for time-series transformer. In Proceedings of ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages 212–220, 2022.

[36] Jatin Chauhan, Aravindan Raghuveer, Rishi Saket, Jay Nandy, and Balaraman Ravindran.
Multi-variate time series forecasting on variable subsets. In Proceedings of ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD), pages 76–86, 2022.

[37] Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable represen-
tation learning for multivariate time series. In Proceedings of Conference on Neural Information
Processing Systems (NeurIPS), 2019.

[38] Minghao Chen, Fangyun Wei, Chong Li, and Deng Cai. Frame-wise action representations for
long videos via sequence contrastive learning. In Proceedings of IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 13801–13810, 2022.

[39] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In Proceedings of International Conference
on Machine Learning (ICML), pages 1597–1607, 2020.

[40] Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li,
and Cuntai Guan. Time-series representation learning via temporal and contextual contrasting.
In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pages
2352–2359, 2021.

[41] Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. CoST: Con-
trastive learning of disentangled seasonal-trend representations for time series forecasting. In
Proceedings of International Conference on Learning Representations (ICLR), 2021.

[42] Ling Yang and Shenda Hong. Unsupervised time-series representation learning with iterative
bilinear temporal-spectral fusion. In Proceedings of International Conference on Machine
Learning (ICML), pages 25038–25054, 2022.

[43] Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with noise-
contrastive estimation. In Proceedings of Conference on Neural Information Processing Systems
(NeurIPS), pages 2265–2273, 2013.

[44] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering: A partition-and-
group framework. In Proceedings of ACM International Conference on Management of Data
(SIGMOD), pages 593–604, 2007.

[45] Maike Buchin, Anne Driemel, Marc J Van Kreveld, and Vera Sacristán. Segmenting trajectories:
A framework and algorithms using spatiotemporal criteria. Journal of Spatial Information
Science, 3:33–63, 2011.

[46] Yooju Shin, Susik Yoon, Hwanjun Song, Dongmin Park, Byunghyun Kim, Jae-Gil Lee, and
Byung Suk Lee. Context consistency regularization for label sparsity in time series. In
Proceedings of International Conference on Machine Learning (ICML), pages 31579–31595,
2023.

13

5986 https://doi.org/10.52202/079017-0194

[47] Y Diao, C Ernst, A Montemayor, and U Ziegler. Curvature of random walks and random
polygons in confinement. Journal of Physics A: Mathematical and Theoretical, 46:285201,
2013.

[48] Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. Activity recognition using cell
phone accelerometers. ACM SIGKDD Explorations Newsletter, 12:74–82, 2011.

[49] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz, et al. A
public domain dataset for human activity recognition using smartphones. In Proceedings of
European Symposium on Artificial Neural Networks (ESANN), pages 437–442, 2013.

[50] Sebastian Stein and Stephen J McKenna. Combining embedded accelerometers with computer
vision for recognizing food preparation activities. In Proceedings of ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp), pages 729–738, 2013.

[51] Patrick Schäfer, Arik Ermshaus, and Ulf Leser. Clasp-time series segmentation. In Proceedings
of ACM International Conference on Information and Knowledge Management (CIKM), pages
1578–1587, 2021.

14

5987https://doi.org/10.52202/079017-0194

A The Proof of Theorem 3.8 in a Special Case

To explain Theorem 3.8 in a more intuitive way, we assume a special case in the 2-dimensional
space as shown in Figure 4. Let we have a random walk composed of three points zt− , zt, and zt+
in a 2-dimensional representation space. In the figure, there are three black dots in a row for the
intra-segment trajectory (gray line) and the inter-segment trajectory (red line) respectively to visualize
these three points in each trajectory. Here, zt is an arbitrary point on the border of a confining circle
SCi or the enclosing circle. zt− is the point on the line between the origin and zt. Finally, we consider
zt+ as a random point distributed uniformly on the unit circle centered at zt while the locations of zt
and zt−1 are fixed. In this case, we compare the average curvature at the single timestamp t of the
intra-segment trajectory and that of the inter-segment trajectory.
Lemma A.1 (AVERAGE CURVATURE). When the two points zt− and zt are fixed, the curvature κ at
zt averaged over the location of zt+ is

κT (R) = π − 1

2
arccos

1

2R
. (9)

Proof. When the confinement radius is R, the range of the turning angle is [π − arccos 1
2R , π] using

the cosine rule on the triangle composed of the points of intersection between SCi
and the unit circle

centered at zt.

Lemma A.2 (CHARACTERISTIC OF AVERAGE CURVATURE). When R > 1, κT (R) decreases as
the radius R increases, i.e., κT (R) is a decreasing function of R.

Proof. The derivative of κ is d
dRκT (R) = − 1

2R
√
4R2−1

and the derivative is always negative when
R > 1. Therefore, κT (R) is a decreasing function of R.

Similar to Theorem 3.8, Proposition 3.5 and Lemma A.2 lead to Theorem A.3.
Theorem A.3 (AVERAGE CURVATURE DIFFERENCE). The average curvature of an intra-segment
trajectory κTintra

(Rintra) is greater than that of an inter-segment trajectory κTinter
(Rinter).

Proof. The radius of the confining circle of an inter-segment trajectory is always bigger than that of
an intra-segment trajectory because an inter-segment trajectory traverses two distinctive class balls.
As κT (R) is a decreasing function, κTintra

(Rintra) > κTinter
(Rinter).

Theorem A.3 concludes that the average curvature at zt is greater if zt is at the border of a smaller
confining circle. This result can be extended to Theorem 3.8 intuitively. As R increases, the
probability of a trajectory hitting the border decreases as a random walk can traverse in a larger space.
Therefore, the mean curvature decreases if a trajectory resides in a smaller confining circle.

B Hyperparameters for Compared Methods

For RuLSIF, we conduct a grid search for the learning rate (LR) = {0.05, 0.1, 0.2}, the weight of L2
normalization λL2 = {0.01, 0.05, 0.1}, and the parameter of the RuLSIF loss α = {0.01, 0.05, 0.1}.
When applying RuLSIF to the four datasets, we use a multilayer perceptron with a single hidden layer
with 100 units and train it with a batch size of 32 for 50 epochs. For KL-CPD, we conduct a grid search
to determine the optimal hidden dimensionality h = {10, 50, 100} of the RNN encoder/decoder, as
well as the values for the hyperparameters λAE = {0.1, 0.01, 0.001} and λReal = {0.1, 0.01, 0.001}
which govern the influence of the reconstruction loss and the MMD2 loss on real datasets. For
training the generator of KL-CPD, the batch size is set to 64, the number of epochs is set to 3, and the
learning rate is set to 0.001. Table 6 provides a summary of the determined hyperparameter values.

C Sensitivity Analysis on Representation Dimensionality

Table 7 shows the performance of RECURVE while varying the representation dimensionality d′

when the error margin p for the AUC measure is fixed at 10. The value of d′ ranges from 0.25×
to 4.00× of the default value, which is 8 for WISDM and HAPT or 32 for mHealth and 50salads

15

5988 https://doi.org/10.52202/079017-0194

Table 6: Hyperparameter values of RuLSIF (left half) and KL-CPD (right half) after a grid search.

Dataset LR λL2 α λAE λReal #hidden

WISDM 0.05 0.1 0.01 0.01 0.001 10

HAPT 0.2 0.01 0.01 0.01 0.1 10

mHealth 0.2 0.1 0.01 0.01 0.01 10

50salads 0.05 0.01 0.05 0.1 0.01 50

(indicated by 1.00×). A trade-off point in the representation dimensionality exists for nearly all
datasets. A representation space with an excessively high dimensionality is susceptible to the curse
of dimensionality. If the value of d′ were too large, the turning angle and distance in Eq. (5) would be
indistinguishable across all timestamps in a time series, as any two points in a high-dimensional space
would become nearly orthogonal and their distance would always be similar. If the value of w were
too small, low-quality features would be extracted from the original time series by representation
learning; thus, the performance degrades with an insufficient dimensionality as shown in the result
of 50salads whose data dimensionality is 2048. Overall, the default setting is suitable for achieving
competitive performance for all datasets.

Table 7: Performance of RECURVE with varying the hyperparameter d′ (the best results in bold).

Repr. d′
AUC ↑ LOC ↓ (thresholding by mean segment length)

WISDM HAPT mHealth 50salads WISDM HAPT mHealth 50salads

TPC

0.25× 0.870±0.007 0.844±0.011 0.942±0.007 0.719±0.006 349.9±32.99 307.0±30.03 553.4±69.70 97.64±6.153
0.50× 0.906±0.003 0.836±0.168 0.949±0.006 0.719±0.007 377.5±443.7 104.4±130.3 586.1±39.86 97.33±5.553
1.00× 0.901±0.004 0.913±0.001 0.954±0.003 0.723±0.006 178.4±36.05 34.28±0.727 341.0±47.93 93.76±7.475
2.00× 0.882±0.017 0.905±0.003 0.942±0.005 0.718±0.005 180.6±59.32 35.62±2.669 600.9±36.82 100.9±3.814
4.00× 0.857±0.015 0.900±0.004 0.937±0.006 0.719±0.007 200.4±55.87 38.27±1.191 592.3±64.23 100.0±6.432

TNC

0.25× 0.838±0.046 0.862±0.006 0.963±0.013 0.561±0.018 168.1±79.54 50.37±4.293 241.0±30.85 198.7±20.14
0.50× 0.882±0.008 0.859±0.011 0.971±0.007 0.570±0.013 149.5±35.37 49.17±1.943 245.0±125.0 198.7±37.32
1.00× 0.889±0.004 0.867±0.017 0.980±0.004 0.595±0.016 219.8±102.2 50.71±1.589 239.6±212.4 178.8±20.87
2.00× 0.877±0.006 0.875±0.009 0.972±0.003 0.581±0.011 290.4±148.8 55.35±1.800 260.7±51.26 215.6±15.55
4.00× 0.880±0.003 0.887±0.004 0.973±0.003 0.607±0.012 257.9±81.69 57.72±1.010 280.5±94.19 179.3±14.75

D Limitations

One notable limitation of RECURVE is the potential occurrence of false positives, particularly when
dealing with short segment lengths that fall below the predefined threshold, denoted as w. For
instance, consider a scenario where there is a rapid transition from one activity class to another, such
as transitioning from walking for an extended period to a brief sprint, followed by resuming walking.
In such cases, if the segment length is shorter than the specified w duration, every timestamp within
the brief sprint segment might erroneously be identified as a boundary, leading to a number of false
positives. To mitigate this issue, we have implemented a strategy where w is determined as 5% of the
mean segment length. However, it is worth noting that this approach may encounter challenges in
rare cases where the segment lengths exhibit significant variance. We will further investigate how
segment length variance impacts the efficacy of RECURVE as future work.

16

5989https://doi.org/10.52202/079017-0194

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Abstract and introduction (4th-6th paragraphs) contain contributions and
problem scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Appendix D contains the rare case where RECURVE does not work well.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

17

5990 https://doi.org/10.52202/079017-0194

Answer: [Yes]
Justification: To the best of our knowledge, Section 3.4 contains all of details for the
theoretical analysis.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 4.1 contains dataset summary and implementation details for repro-
ducing main experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

18

5991https://doi.org/10.52202/079017-0194

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Section 4.1 contains a link for source code and datasets.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4.1 contains the evaluation measures for boundary detection and
hardware specification in representation learning.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All experimental tables have the standard deviation values from five indepen-
dent trials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

19

5992 https://doi.org/10.52202/079017-0194

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The last paragraph in Section 4.1 explains hardware specification to run the
experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper does not have any potential harms or such consequences.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

20

5993https://doi.org/10.52202/079017-0194

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

21

5994 https://doi.org/10.52202/079017-0194

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

22

5995https://doi.org/10.52202/079017-0194

