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Abstract

Learning from previously collected data via behavioral cloning or offline reinforce-
ment learning (RL) is a powerful recipe for scaling generalist agents by avoiding the
need for expensive online learning. Despite strong generalization in some respects,
agents are often remarkably brittle to minor visual variations in control-irrelevant
factors such as the background or camera viewpoint. In this paper, we present
the DeepMind Control Vision Benchmark (DMC-VB), a dataset collected in the
DeepMind Control Suite to evaluate the robustness of offline RL agents for solving
continuous control tasks from visual input in the presence of visual distractors.
In contrast to prior works, our dataset (a) combines locomotion and navigation
tasks of varying difficulties, (b) includes static and dynamic visual variations, (c)
considers data generated by policies with different skill levels, (d) systematically
returns pairs of state and pixel observation, (e) is an order of magnitude larger, and
(f) includes tasks with hidden goals. Accompanying our dataset, we propose three
benchmarks to evaluate representation learning methods for pretraining, and carry
out experiments on several recently proposed methods. First, we find that pretrained
representations do not help policy learning on DMC-VB, and we highlight a large
representation gap between policies learned on pixel observations and on states.
Second, we demonstrate when expert data is limited, policy learning can benefit
from representations pretrained on (a) suboptimal data, and (b) tasks with stochastic
hidden goals. Our dataset and benchmark code to train and evaluate agents are avail-
able at https://github.com/google-deepmind/dmc_vision_benchmark.

1 Introduction

Reinforcement learning (RL) [46] provides a framework for learning behaviors for control, rep-
resented by policies, that maximize rewards collected in an environment. Online RL algorithms
iteratively take actions—collecting observations and rewards from the environment—then update
their policy using the latest experience. This online learning process is however fundamentally slow.
Recently it has become clear that learning behaviors from large previously collected datasets, via
behavioral cloning or other forms of offline RL [29], is an effective alternative way to build scalable
generalist agents—see e.g. [40, 38].

Despite these advances, recent research indicates that agents trained on offline visual data often
exhibit poor generalization to novel visual domains, and can fail under minor visual variations in the
background or camera viewpoint [9, 41]. This poor generalization can be understood by formalizing
environments as Markov Decision Processes (MDPs) with a factorized state consisting of control
relevant and irrelevant variables [13]—see Appendix B for further discussion. In such MDPs, in
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Figure 1: DeepMind Control Vision Benchmark.

order to generalize to novel visual domains, an agent must learn latent representations that capture
the information sufficient for control, yet that are minimal and therefore robust to irrelevant variations
in the input—see [27, 44]. We call such representations “control-sufficient”.

Several works derive latent representations for control with generative models of the input [49, 48].
By construction, such representations are not minimal, and may not be robust. Therefore various
non-generative methods have been proposed as alternatives. These methods include contrastive
learning [11, 28], latent forward models [21, 39], and inverse dynamics models [26, 25, 7]. While
there exist several datasets to evaluate the generalization of these (and other) representation learning
techniques to various visual perturbations [9, 41, 30, 50], these datasets do not provide the essential
properties that are needed to thoroughly evaluate these representation learning methods for control.

To fill this gap, we introduce the DeepMind Control Vision Benchmark (DMC-VB)—a dataset col-
lected using the DeepMind Control Suite [47] and various extensions thereof. DMC-VB is carefully
designed to enable systematic and rigorous evaluation of representation learning methods for control
in the presence of visual variations, by satisfying six key desiderata. (a) It contains a diversity of
tasks—including tasks where state-of-the-art algorithms struggle—to drive the development of novel
algorithms. (b) It contains different types of visual distractors (e.g. changing background, moving
camera) to study robustness to various realistic visual variations. (c) It includes demonstrations of
differing quality to investigate whether effective policies can be derived from suboptimal demonstra-
tions. (d) It includes both pixel observations and states, where states are relevant proprioceptive and
exteroceptive measurements. Policies trained on states can then provide an upper bound to quantify
the “representation gap” of policies trained on pixels. (e) It is larger than previous datasets. (f) It
includes tasks where the goal cannot be determined from visual observations, for which recent work
[7] suggests that pretraining representations is critical. As DMC-VB is the first dataset to satisfy these
six desiderata (see Table 1) it is well placed to advance research in representation learning for control.

Accompanying the dataset, we propose three benchmarks that leverage the carefully designed
properties of DMC-VB to evaluate representation learning methods for control. (B1) evaluates the
degradation of policy learning in the presence of visual distractors, and, in doing so, quantifies the
representation gap between agents trained on states and on pixel observations. We find that the simple
behavior cloning (BC) baseline is the best overall method, and that recently proposed representation
learning methods, such as inverse dynamics (ID) [25], do not show benefits on our benchmark. (B2)
investigates a practical setting with access to a large dataset of mixed quality data and a few expert
demonstrations. We find that leveraging mixed data for pretraining a visual representation improves
policy learning. Finally, (B3) studies representation learning on demonstrations with random hidden
goals, as may be the case when an agent collects data in a new environment via goal-free exploration.
We find that representations pretrained on this data help few-shot policy learning on new tasks.
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Table 1: Among existing offline RL datasets for continuous control tasks, DMC-VB is the only one to
satisfy the six desiderata we have identified. We highlight the specific benchmark(s) within Sec.5 that
leverage each of these properties. This table includes five relevant datasets and is not an exhaustive
list. We exclude related environments which do not provide datasets for offline learning.

Dataset Task diversity Distractor diversity Different policies States and obs. Large Hidden goal

D4RL [15] ✓ ✗ (✓) not for each task ✗ ✓ ✓

VD4RL [33] ✗ (✓) not released (✓) not released ✗ ✗ ✗

RL unplugged [20] ✓ ✗ ✗ ✗ ✓ ✗

Libero [31] ✓ ✗ ✗ ✓ ✓ ✗

Colosseum [41] ✓ (✗) only for eval. ✗ ✓ ✓ ✗

DMC-VB (ours) ✓ (B1) ✓ (B1) ✓ (B1-2) ✓ (B1) ✓ (B1-2-3) ✓ (B3)

2 Related work

Environments for control: Many environments have been developed to study the performance of
RL agents. The popular Arcade Learning Environment (ALE) [4] proposes an interface to hundreds
of Atari 2600 games, and has been used in groundbreaking works in deep RL [36, 22]. The OpenAI
Gym [8] extends ALE to board games, robotics, and continuous control tasks; the DM Control suite
[47] also proposes a similar suite of environments. Several works [45, 23, 53, 2] extend these control
environments to visual tasks with various types of distractors, including agent color, background, and
camera pose. However, these environments evaluate the robustness of online RL agents to visual
distractors and do not provide pre-collected trajectories for offline learning.

Offline datasets for control: To foster research in offline RL, D4RL [15] proposed a suite of datasets
collected in the OpenAI Gym which cover diverse tasks with properties such as sparse rewards, partial
observability, multitasking, etc. However, as D4RL only gives access to states, VD4RL [33] extends
D4RL to complex visual scenes. VD4RL considers three locomotion tasks from the DM Control Suite,
and collects datasets containing observations with visual distractors for each task by deploying five
behavioral policies, ranging from random to expert. However, VD4RL does not include states, which
are useful to measure the representation gap between policies trained on images and on states. Second,
the VD4RL datasets released only cover a small fraction of the combinations of embodiments, policies
and distractors. Finally, each dataset only contains 100k steps which, as we show in Appendix I, can
be too small for RL algorithms. The RL unplugged [20] datasets also collect trajectories on different
environments from ALE and the DM Control Suite. Recently, Libero proposes several datasets to
evaluate lifelong learning for robotics manipulation. Finally, Colosseum [41] studies generalization
on 20 manipulation tasks, which can be systematically modified across 14 axes of variation. However,
RL unplugged, Libero, and Colosseum datasets lack visual distractor diversity in the data and do not
include different behavioral policies.

Representation learning for control: Representation learning methods map a high-dimensional
input (an image) into a compact low-dimensional space. Several studies show that pretrained
representations can improve RL policy learning [51, 7]. Early works [49, 48] learn representations
with auto-encoders. As these models reconstruct the observations, they fail to discard visual distractors
and to generalize under visual distribution shifts [9]. To learn control-sufficient representations,
several works have explored non-generative losses. Lamb et al. [26] showed that multi-step inverse
dynamics (ID) can, theoretically and empirically, learn a “minimal” world model, which can be
used for exploration and navigation. ID has also proven to be beneficial to train offline RL agents
in the presence of visual distractors [25], and when the goal is a hidden variable [7]. Another
approach, latent forward models (LFD), predict future latent representations from current ones [21].
Contrastive methods maximize the similarity between augmentations of the same data [11, 28, 23, 34]
or temporally related images [39, 37]. Other works maximize the mutual information between
the latents and control relevant variables such as the reward or actions [6, 14] or use masked auto-
encoding [35, 42]. Our experiments (Sec. 5) benchmark simple variants of many of these methods on
DMC-VB.
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3 DeepMind Control Vision Benchmark

In this section, we describe our dataset, DMC-VB, that enables systematic evaluation of representation
learning methods for control with visual distractors. A visual overview is presented in Fig.1.

3.1 Dataset Characteristics / Desiderata

As highlighted in Table 1, DMC-VB is the first offline RL dataset to satisfy these six desiderata:

Task diversity: DMC-VB contains both simpler locomotion tasks and harder 3D navigation tasks.
We use the same three locomotion tasks as [33]: walker-walk, cheetah-run and humanoid-walk.
The walking humanoid task is significantly harder due to its high degree of freedom action space.
For each task, the maximum reward is attained by reaching a target velocity. In addition, we create a
suite of seven navigation tasks, corresponding to seven maze layouts with three levels of complexity:
empty, single-obstacle (×3) and multi-obstacle (×3). For each task, a quadruped ant is
randomly placed in the maze and has to reach a randomly placed visible goal (a green sphere). We
define a dense reward as the negative normalized shortest path length between the ant and the goal,
respecting the maze layout—see Appendix C.3. This ensures the reward falls in the range [−1, 0].
Distractor diversity: For locomotion tasks, we leverage the Distracting Control Suite [45] to add
visual variation to the agent color, camera viewpoint, and background. We use three different
distractor settings: none has no variations; static has an image background, random static camera
viewpoint and variable agent color; dynamic has a video background, randomly moving camera and
variable agent color. For backgrounds, we use synthetic videos or images of multiple objects falling
from the Kubric dataset [18]. For the navigation tasks, visual distractors consist of different textures
and colors applied to floors and walls of the maze environment.

Demonstration quality diversity: To produce datasets with diversity in demonstration quality,
DMC-VB generates trajectories using behavioral policies of different skill levels, ranging from
random to expert. We select checkpoints for each behavioral policy level as follows: expert is the first
checkpoint that achieves 95% of the reward achieved at convergence, medium is the checkpoint that
achieves 50% of the reward at convergence, mixed uses eight evenly spaced checkpoints that achieve
between 0-50% of the reward at convergence, random samples actions randomly from the action
space. We use the 95% reward checkpoint as the expert policy because we find that behavior diversity
diminishes with more training steps. The reward distributions for our dataset are shown in Fig.2.

State and visual observations: Few works compare agents trained on pixel observations versus on
states. In contrast, DMC-VB systematically collects both states and images which allows training
agents on both to systematically quantify the representation gap.

Large size: Each dataset in DMC-VB contains 1M steps, which is equivalent to 2k episodes for
the locomotion tasks and more than 2k variable-length episodes for the ant maze tasks. This makes
DMC-VB one order of magnitude larger than VD4RL [33], the most similar prior dataset. We motivate
this choice in Appendix I through experiments which find that limiting expert data significantly harms
BC agents, particularly for harder tasks and with visual distractors.

Hidden goal: [7] shows the benefits of inverse dynamics pretraining for tasks in which the goal is
not determinable from the visual observations. Inspired by this finding, we include a variant of our
navigation dataset in which the target sphere is not visible, which we study in Sec. 5.3.

3.2 Dataset Generation

To generate a dataset of DMC-VB, for each task, we first train an online MPO agent [1] using
states for 2M steps. The states and rewards for each task are described in Appendices C.2 and C.3
respectively. Relevant training checkpoints are then selected for the behavioral policies. We generate
demonstrations by rolling out the behavioral policy in the environment, collecting rewards, actions,
states and visual observations. As in [52, 33], we use an action repeat of two in all environments to
increase the change between successive frames and ease learning from pixels.
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Figure 2: Reward distribution for different behavioral policy levels in DMC-VB. Note the log scale
on the vertical axis. Statistics of these distributions are summarized in Appendix C.1.

For navigation tasks, we collect three observations for each timestep: (a) a top-down view of the
maze, (b) an egocentric view, (c) a follow-up view2—which is useful to infer the agent’s state—see
Fig.1. We additionally collect these same observations with the goal sphere hidden.

4 Agents and Visual Representation Learning for Control on DMC-VB

Given a DMC-VB dataset D = { τi } i=1:N of N trajectories pre-collected in an environ-
ment, an agent must learn a policy that maximizes the expected sum of the rewards when de-
ployed in the same environment. Each trajectory contains observations, actions and rewards3:
τ = (o1, r1,a1,o2, r2,a2, ...). Given an observation ot, an agent selects an action ât = π(ϕ(ot)),
where ϕ is a visual encoder network, and π is a policy network.

The agent is trained in a two-stage procedure. The pretraining stage first learns the visual encoder
network ϕ to minimize a representation learning loss:

ϕ∗ ∈ argmin
ϕ

Eτ∼D [ Lpretrain(ϕ, τ) ] . (1)

The second stage learns the policy network π by minimizing a policy learning objective with the
visual encoder network ϕ∗ held constant:

π∗ ∈ argmin
π

Eτ∼D [ Lpolicy(π, ϕ
∗, τ) ] . (2)

Architectures: We standardize ϕ as a convolutional neural network (CNN) followed by a linear
projection, and π as a multi-layer perceptron (MLP)—see Appendix D for details.

Frame stacking: As in [33], we use frame stacking of ℓ = 3 and select actions as ât = π(ϕ(õt))
where õt = (ot−ℓ+1, . . . ,ot). We drop the notation õt in this section for simplicity. Appendix H
verifies, through an ablation study, that frame stacking is crucial for policy learning.

4.1 Policy learning

As the primary focus is to benchmark visual representation learning for control, we limit the study to
two simple objectives for learning our policy π: behavioral cloning (BC) and TD3-BC [16].

Behavioral cloning (BC) learns a policy via supervised learning by minimizing the objective:

LBC(π, ϕ, τ) = E(ot,at)∼τ

∥∥π(ϕ(ot))− at
∥∥2
2
. (3)

TD3-BC is a model-free offline RL algorithm that trains an actor and two critic networks [16]. TD3-
BC uses the same critic objective as TD3 [17], and adds a BC term to the actor (policy) objective, to
regularise the learned policy towards actions in the dataset D (see Appendix D for details):

LTD3-BC, Actor(π, ϕ, τ) = E(ot,at)∼τ

[
λ Q1(ϕ(ot), π(ϕ(ot))−

∥∥π(ϕ(ot))− at
∥∥2
2

]
. (4)

2We also collect an overhead view, as we see in Fig.1, but do not use it for training.
3We also collect states, i.e. τ = (o1, s1, r1,a1...), although they are not used for policies trained on images.
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4.2 Visual representation learning

We explore several representation learning methods to pretrain the encoder ϕ, before policy learning.

Inverse Dynamics (ID): An inverse dynamics model estimates the next action from the current
observation and a future observation k steps ahead via the objective:

LID(ϕ, τ) = E(ot,ot+k,at)∼τ

∥∥at − f(ϕ(ot), ϕ(ot+k), k)
∥∥2
2
. (5)

In practice, we replace ot,ot+k with õt, õt+k to combine ID with frame stacking and set k = 1.

Latent Forward Dynamics (LFD): The latent forward dynamics objective predicts the next latent
observation from the current observation and action:

LLFD(ϕ, τ) = E(ot,at,ot+1)∼τ

∥∥ϕEMA(ot+1)− g(ϕ(ot), at)
∥∥2
2
. (6)

To avoid latent collapse [19], we encode ot+1 using a target network ϕEMA, whose weights are an
exponential moving average of the weights of ϕ, with decay rate 0.99.

AutoEncoder (AE): An autoencoder [52] jointly trains the encoder ϕ with a decoder ψ to minimize
the pixel reconstruction loss: LAE(ϕ, τ) = Eot∼τ ∥ψ(ϕ(ot))− ot∥22.

Pretrained DINO encoder: Lastly, we consider a pretrained DINO encoder [10]. Note that we need
to pad the 64× 64 observations in the DMC-VB dataset to the 224× 224 size required by DINO.

4.3 Baselines using privileged states

The presence of both visual observations and privileged states in DMC-VB enables the evaluation of
realistic upper bounds on representation learning methods. We include two state-based baselines.

BC (state): This BC variant has access to the states at both training and evaluation time. The actions
are predicted as ât = π(ϕ̃(st)), where ϕ̃ is a MLP.

State prediction pretraining: Representations are pretrained to predict states (only accessible during
training) via the objective: Lstate(ϕ, τ) = E(st,ot)∼τ ∥st − h(ϕ(ot)) ∥22, where h is a linear layer.

5 Benchmark Experiments

Accompanying DMC-VB, we propose three benchmark evaluations that examine the utility of
pretrained visual representations for policy learning in the presence of visual variations. Each
benchmark leverages unique properties of DMC-VB—see Table 1—and selects different data subsets
to investigate the following questions on visual representation learning for control:
• (B1) studies whether visual representation learning makes policies robust to distractors. (Sec. 5.1)
• (B2) investigates whether visual representations pretrained on mixed quality data improve policy
learning with limited expert data. (Sec. 5.2)
• (B3) explores whether visual representations pretrained on tasks with stochastic hidden goals
improve policy learning on a new task with fixed hidden goal and limited expert data. (Sec. 5.3)

Notation: Following Sec.4, we denoteM1 +M2 the agent for which the methodM1 is used to
pretrain the encoder ϕ, andM2 is used to learn the policy π. For instance, ID + BC refers to first
pretraining the encoder with ID, followed by learning the policy with BC (with a frozen encoder).
We denote NULL + BC the agent for which ϕ ◦ π is trained end-to-end with BC. In Secs. 5.2 and 5.3,
when we pretrain on a dataset D1, then learn the policy on another dataset D2, we name the agent
M1(D1) +M2(D2). In addition, NULL + BC (states) trains end-to-end ϕ ◦ π on states with BC.
Lastly, Data refers to the average reward on the training dataset.

Preprocessing details: We first normalize actions in [−1, 1] and observations in [−0.5, 0.5]. Second,
as in [25], we pad each 64× 64 image by 4 pixels on each side, and then apply a random cropping to
return a randomly shifted 64× 64 image. Finally, we apply a frame stacking of three consecutive
observations. For models which use state, we center and normalize each state dimension.

Training: For both representation pretraining and policy learning, we use for 400k Adam iterations
on a single NVIDIA A100 GPU with batch size 256 and learning rate 0.001. Appendix D details all
the architectures and hyperparameters used.
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Figure 3: Online evaluation scores on the locomotion tasks [three top rows] and ant maze navigation
tasks [bottom row] of DMC-VB, averaged over 30 trajectories, with standard errors. Higher reward
is better. For locomotion task rows, results are grouped by distractor type and demonstration data
quality. For the ant maze row, results are grouped by maze difficulty and demonstration data quality.
NULL + BC is the best overall method. Pretrained representations offer no advantage with or without
visual distractors. LFD + BC performs poorly, AE + BC and DINO + BC learn moderate policies, and
ID + BC is comparable to NULL + BC. Full scores are in Appendix E.1 and the temporal evolution
of rewards through training is plotted in Appendix E.2.

Online evaluation: Every 20k training steps, we evaluate the agent online over 30 online rollouts in
the evaluation environment. When visual distractors are present, the evaluation environment contains
unseen visual distractors from the training distractor distribution. In the figures displayed in this
section, we report the best (online) evaluation scores obtained through training.

5.1 Policy learning with visual distractors

Benchmark 1 evaluates the reward collected by different agents on the full DMC-VB expert and
medium datasets in Fig.3. For the locomotion tasks, we find that the baseline NULL+BC is the top
performing method. ID+BC matches (but does not exceed) this baseline, and the other pretraining
methods all perform worse. This indicates that pretrained representations do not seem to help,
at least in these benchmark experiments. With distractors, on walker-expert, walker-medium,
and cheetah-medium, NULL+BC and ID+BC are the only methods that maintain high rewards
suggesting that they learn representations that are robust to visual variations. Lastly, offline RL
(NULL+TD3-BC) is outperformed by NULL+BC most of the time, and never exceeds it.

For the DMC-VB navigation tasks, NULL+BC is the best method and pretrained visual representa-
tions only harm performance. We observe similar results when plotting the fraction of successes in
reaching the goal and the average velocity of the agent toward the goal in Appendix E.6. We observe
that for many tasks, performance degrades more strongly with visual distractors for expert than for
medium datasets; we expect this is due to the medium dataset having higher coverage (see Fig. 2),
reducing the chances of failure by entering a highly out of distribution state.

Inspecting the visual representations: To provide insights into the learned visual representations,
we freeze the encoder and train two decoders to reconstruct (a) observations, and (b) states (leveraging
the states in DMC-VB). Fig. 4 shows that representations that achieve low state reconstruction error
capture minimal control-relevant features and lead to better downstream policy performance (ID,
BC). Meanwhile, representations that attain low observation reconstruction error are not robust to
visual distractors and result in worse downstream policies (LFD, AE, DINO). For locomotion tasks

7
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Figure 4: [Left] Least-squared test error for reconstructing the observations [top] and states [bottom],
averaged over the different DMC-VB locomotion tasks and policies. Lower is better. As results
are averaged over 150k samples, the standard errors are too small to be visible. See Appendix E.3,
for a detailed breakdown per task and distractor. [Right] Observation reconstruction examples. See
Appendix E.4, for additional image reconstructions. BC and ID both (a) discard visual distractors
(background object and agent color), and (b) reach the lowest state reconstruction errors.

with visual distractors, both ID and BC achieve the highest observation reconstruction errors and the
lowest state reconstruction errors, also discarding control-irrelevant information such as background
and agent color. As expected the AE achieves the lowest observation reconstruction errors, and
similar to DINO fails to learn good policies due to high state reconstruction errors. Finally, LFD has
the highest state reconstruction errors, which explains its bad performance.

State-based upper bounds: Policies trained on states are unaffected by the presence of visual
distractors, and provide an upper bound for representation learning methods. Fig. 3 shows that the
representation gap between policies trained on states versus on observations is minimal in the absence
of distractors, but widens significantly in the presence of dynamic distractors. Lastly, we found no
advantage in pretraining the encoder to predict the state, which we attribute to the fact that some state
components (e.g. velocities) are hard to predict—see Appendix E.5 for details.

5.2 Pretraining representations on mixed data helps few-shot policy learning

Benchmark 2 leverages DMC-VB datasets collected with different behavioral policy levels to
investigate whether pretraining a representation on sub-optimal (mixed) data helps policy learning
when expert data is scarce. Specifically, for each locomotion task, we first train two vision encoders,
using ID and BC on the full mixed quality DMC-VB datasets. Second, we freeze the encoders and
train the policy networks using only 1% of the expert dataset (20 trajectories). Fig. 5 compares these
two-stage training agents (in green and red) to a BC agent trained on 1% of the expert dataset (blue),
and a BC agent trained on the combined 1% expert dataset and full mixed dataset (orange). The
results suggest that (a) limiting expert data impacts performance, (b) merely combining mixed and
limited expert data leads to a drop in performance for BC, and (c) pretraining a representation on
mixed data provides a performance boost, especially in the presence of visual distractors.

5.3 Pretraining on tasks with stochastic hidden goals helps few-shot policy learning
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Figure 5: Pretraining encoders on mixed data improves performance when a BC policy is trained
on a small expert dataset. BC and ID pretraining perform similarly. For each task, performance is
reported as the proportion of reward obtained by BC on full expert data without distractors (higher is
better). We include full results including cheetah, and LFD/AE pretraining in Appendix F.
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Benchmark 3 considers a variant of the ant
maze datasets of DMC-VB, in which image ob-
servations are rendered without the goal (green
sphere). This setting mimics scenarios in which
data is generated by an agent exploring a new
environment in an open-ended manner without
explicit goals. For each maze, we are given a
large expert dataset of 1M steps. In each tra-
jectory, the agent moves from a random initial
position to a random final position—note the
goal cannot be derived from visual observations.
We denote this pretraining dataset: stochastic
goals in Fig. 6. Additionally, for each maze, we
have access to five small datasets of ten expert
trajectories each. All trajectories in each dataset
go from a fixed start to a fixed goal location,
with noise added to the agent’s body initialization. We denote this dataset: fixed goal. As in (B2),
Fig. 6 compares BC agents trained directly on the small dataset, to those with two-stage training,
for which representations are pre-trained on the large stochastic goals dataset. Our findings indicate
that pretraining a representation on a collection of tasks with stochastic hidden goals aids policy
learning on new tasks with fixed hidden goals. Despite prior findings that ID pretraining on tasks
with stochastic hidden goals performs better than BC [7], we find that BC pretraining outperforms ID
pretraining on this benchmark.

6 Conclusions

We propose DMC-VB, a dataset designed for systematic evaluation of representation learning methods
for control tasks in environments with visual distractors. DMC-VB is the first dataset to satisfy six
key desiderata, enabling detailed and diverse evaluations. Alongside our dataset, we propose three
benchmarks on DMC-VB which compare several established representation methods.

Our results suggest, rather surprisingly, that current pretraining methods (with or without generative
losses) do not help BC policy learning on DMC-VB. We leave a detailed investigation into the reason
for these results to future work. We also expose a large representation gap between the performance
of (a) BC with and without visual distractors, and (b) BC on pixels vs. BC on states, which highlights
the need for better representation learning methods. In addition, our findings reveal the potential of
leveraging suboptimal datasets, and tasks with stochastic hidden goals, to pretrain representations
and learn better policies on DMC-VB with limited expert data.

DMC-VB’s unique features present researchers with the tools to investigate fundamental questions
in representation learning for control; and to systematically benchmark the performance of future
representation learning methods, ultimately contributing to the creation of robust, generalist agents.
Our work has two primary limitations. First, DMC-VB could be extended to a broader range of
environments, including sparse rewards, multiple agents, complex manipulation tasks, or stochastic
dynamics. Second, the synthetic nature of our visual distractors may raise questions about the
generalization of our findings to real-world tasks. While our findings may be applicable to robotics
tasks, incorporating more diverse and realistic distractors would strengthen our findings.
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A Dataset Documentation

The overall characteristics, properties and intended use of the dataset are laid out in the main paper,
predominantly in Section 3. Appendix C also provides further details on the environments and dataset
reward distributions.

License. The DMC-VB dataset is released under the CC-BY license. The software code to reproduce
the benchmark experiments on DMC-VB is released under the Apache 2.0 license.

Hosting and Maintenance. The dataset is hosted in a Google Cloud Storage Bucket at: https://
console.cloud.google.com/storage/browser/dmc_vision_benchmark. The code is hosted
on GitHub at: https://github.com/google-deepmind/dmc_vision_benchmark. The GitHub
page contains instructions to download the dataset using the Google Cloud CLI. Metadata for the
dataset is automatically provided via the Google Cloud Storage Bucket. Examples of the dataset
and an overview of the dataset structure are provided in the GitHub README.md. We, as the dataset
owners, will carry out any necessary maintenance to the dataset and software code in order to ensure
that it is preserved and accessible in the long term.

Reading the data. Detailed instructions for downloading the data are provided in our GitHub page.
The GitHub code contains examples of loading the data for our benchmark experiments. The data
is loaded using Tensorflow Datasets and the code to load the data can easily be re-used for other
experiments.

Reproducibility. We have followed the Machine Learning Reproducibility Checklist in order to
ensure that all results are easily reproducible. For benchmark experiments, we detail all model
architectures and hyperparameters in Appendix D, and the evaluation procedure in the main paper.
Scripts to reproduce all experiments in the main paper are provided in our GitHub page. The code
release contains all relevant models and evaluation procedures, as well as instructions for accessing
the dataset.

Ethics and Responsible Use. In terms of the ethical implications of our dataset, AI agents that can
learn from offline visual data will eventually be capable of interacting with humans in many domains
both physical and virtual, and alignment will be crucial. Our dataset captures simple locomotion and
navigation problems with visual variations. Consequently, AI agents trained on this data will have
limited capabilities and thus currently minimal ethical considerations.

Privacy. Our dataset does not contain any personally identifiable information, and so we do not
consider there to be any privacy concerns with our dataset.

Responsibility Statement. We, as the dataset owners, confirm that we bear responsibility in case of
violation of rights.
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B Deterministic Exogenous Block Markov Decision Process

A Markov decision process (MDP) [5] is the tuple MDP = (S, A, O, T, r, q(o|s)) where S is the
set of states s ∈ S, A is the set of actions a ∈ S, O is the set of observations o ∈ O, T (s′|s,a) is
dynamics function, r(s,a) is the reward function, q(o|s) is the emission function.

Figure 7: EX-BMDP.

DMC-VB is generated in environments that can represented by
Deterministic Exogenous Block MDPs (EX-BMDP) [13]. In this
MDP family, the state is factorized into an endogenous latent and
an exogenous latent, as shown in Fig.7. The endogenous latent (s1)
captures all factors controllable by the agent while the exogenous
latent (s2) captures all other factors that do not affect the agent or the
reward. Additionally, the dynamics are factorized as T (s′ | s,a) =
T1(s

′
1 | s1,a) T2(s′2 | s2), where T1 is deterministic and T2 can be

stochastic. The block assumption preserves the full observability of
the MDP by ensuring that it is possible to recover s1 and s2 from
the observation [12, 13]. As the exogenous latent cannot influence
the reward, the dashed line in Fig.7 indicates that the optimal action
depends only on the endogenous latent.

The EX-BMDP framework represents a realistic family of MDPs
that appear in many scenarios involving control from visual observations. In the DM Control Suite
environments considered in our dataset, the endogenous variables are the agent’s state (including joint
positions, velocities, goal location, etc.), while the exogenous variables are the camera viewpoint,
background and agent color. Note that, in our experiments, we apply a frame stacking of three
consecutive observations to preserve full observability as the agent’s velocity is not computable from
a single frame. This guarantees that the block assumption is satisfied.

In robotic tasks, the endogenous variables capture the robot gripper and objects it can interact
with while the background and other control-irrelevant objects are exogenous variables. Lastly,
in autonomous driving, endogenous variables include all vehicles, agents and obstacles, while
background scenery is an exogenous variable.

Despite their simplicity, EX-BMDPs are quite versatile, and can themselves be sub-divided by further
factorization of the endogenous state [32].
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C Dataset Characteristics

C.1 Reward Distribution

Table 2 presents statistics of the reward distributions for the DMC-VB datasets.

Table 2: Reward statistics for episodes in the DMC-VB dataset. Episodes in the locomotion
environments are all 500 timesteps while ant maze episodes are variable length as they terminate
when the agent reaches the goal. Note rewards are positive in locomotion tasks and negative in ant
maze tasks, with higher rewards being always better.

Task Policy level Steps Mean Std. Dev. Min. P25 Median P75 Max.

Loco-
motion
Tasks

walker

expert 1M 957.8 20.4 831.9 946.8 960.1 970.9 993.0
medium 1M 513.8 108.5 9.7 503.9 534.1 563.5 694.3

mixed 1M 177.5 179.0 10.3 48.8 86.9 255.2 622.2
random 1M 40.1 8.2 26.6 33.7 37.9 44.9 80.9

cheetah

expert 1M 890.5 18.5 688.8 882.3 895.1 903.3 917.8
medium 1M 454.8 26.3 86.6 446.4 457.1 468.0 495.1

mixed 1M 284.3 132.0 33.9 151.9 336.9 391.1 465.3
random 1M 6.8 2.6 1.0 4.9 6.5 8.4 22.5

humanoid

expert 1M 766.0 21.3 651.4 753.7 770.7 782.5 810.8
medium 1M 410.2 15.9 10.2 402.1 410.8 420.0 449.2

mixed 1M 139.9 137.2 0.1 5.0 60.3 272.1 372.6
random 1M 1.1 0.8 0.0 0.5 1.0 1.6 8.2

Ant
Maze
Tasks

empty expert 1M -26.6 20.4 -160.9 -39.7 -22.8 -10.8 -0.9
medium 1M -172.2 138.7 -937.3 -247.8 -131.5 -70.8 -2.1

single-
obstacle

expert 1M -65.5 63.6 -603.4 -98.7 -46.1 -14.3 -0.7
medium 1M -131.1 185.5 -1156.9 -146.3 -61.0 -20.2 -0.7

multi-
obstacle

expert 1M -76.6 68.2 -512.1 -115.6 -60.7 -19.1 -0.9
medium 1M -176.0 181.2 -1036.7 -240.6 -118.7 -46.8 -0.8

C.2 State spaces

Locomotion tasks. The state space is unmodified from the original DM Control Suite environments
and contains only proprioceptive measurements. The state is formed by concatenating the following
measurements for each task.

• walker-walk: orientations, height, joint velocities (total 24 dimensional).
• cheetah-run: joint positions, joint velocities (total 17 dimensional).
• humanoid-walk: center of mass velocity, extremity positions, head height, joint angles,

torso velocity, joint velocities (total 67 dimensional).

Ant maze task. The state space is formed by concatenating the proprioceptive measurements from
the DM Control Suite ant maze environment and additional exteroceptive measurements of the ant
and goal positions. The original proprioceptive states are: appendage positions, body positions, body
quaternions, egocentric target vector, end effector positions, joint positions, joint velocities, sensor
accelerometer, sensor gyroscope, and touch sensor. We added the exteroceptive states: ant position,
goal position, world-frame vector from the ant to the goal, egocentric vector from the ant to the goal,
and shortest path distance from the ant to the goal. The total state space is 167 dimensional.

C.3 Rewards

Locomotion tasks. We use the default reward from the DM Control Suite environment which is 1
when the walker attains a velocity greater than the target velocity and is zero otherwise.

Ant maze. We define our own dense reward as:

r = −d/dmax (7)

where d is the current shortest path distance from the ant to the target, and dmax is the maximum
shortest path distance to the target from any point in the maze. We use the Fast Marching Method
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algorithm [43] to compute the shortest path lengths in the maze. Episodes terminate if and when the
ant makes contact with the target.

C.4 Further details for ant maze dataset

Behavioral policy training: We train one behavioral policy per maze layout (per task) which
learns to navigate from arbitrary start to goal positions. The behavioral policy takes as input the
proprioceptive states, the ant position, the target position, the world-frame vector from ant to target,
and the egocentric vector from ant to target. The maze layout is not part of the state space and the
agent must learn the maze layout from the reward. Ant and target positions are initialized randomly
at the start of each episode.

Observations: During generation, we collect four observations for each timestep: (a) a top-
down view of the maze, (b) an egocentric view, (c) a follow-up view–which is useful to infer
the proprioceptive states—(d) an overhead view. See Fig.1. We additionally collect these same
observations by hiding the goal. Note that we do not use the overhead view for training.
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D Architecture and hyperparameters

Table 3 summarizes all the different architectures and hyperparameters used in our experiments. We
detail some choices below.

D.1 Encoders

We use a simple observation encoder architecture, similar to Brandfonbrener et al. [7]. The only
difference we make is that similar to [33], we use a frame stacking of 3. The stacked RGBs input, of
size 64×64×9 (for locomotion tasks) or 64×64×27 (for ant-maze tasks, since we have three images
at each timestep) go through a convolutional neural network (CNN) with four layers. The CNN layers
use filters of size 3×3, strides of (2, 2, 1, 1), gaussian error linear units (gelu) [24] activations, and an
increasing number of (32, 64, 128, 256) channels. The CNN output, of size 16×16×256 is flattened
into a 65, 536-dimensional vector before being mapped to a low dimensional vector of size 64 via a
linear trunk layer (which is the layer with the largest number of parameters of the model). Finally,
the output goes through a normalization layer [3] and a hyperbolic tangent activation function.

For TD3-BC, we use separate actor trunk layer and critic trunk layers. For good performance, we
found it important to use the actor loss to update (a) the CNN shared by the actor and critic encoder,
(b) the actor trunk layer, and (c) the critic trunk layer.

For the BC agent trained on states, we do not use frame stacking or the CNN. The state encoder
consists of the linear trunk layer, followed by the normalization layer and a tanh activation.

D.2 Default MLP module

The default MLP modules in our experiments consist of a two hidden layers MLP, each of hidden
size 256, with rectified linear unit (relu) activation functions. Since all the actions in DMC-VB are
normalized to be between −1 and 1, we apply a hyperbolic tangent activation to the output.

D.3 Decoders

Our decoder network draws inspiration from [52] and reverts the visual encoder. First, we map the
64-dimensional observation encoding back to a 65, 536-dimensional vector, which is then unflattened
into a 16× 16× 256 tensor. This tensor goes through a deconvolutional neural network (DeCNN),
with filters of size 3 × 3 filters, strides of (1, 1, 2, 2), gaussian error linear units (gelu) [24], and a
decreasing number of channels of (128, 64, 32, 9). We do not use activation for the last layer. This
last output, of dimension 64× 64× 9, is then unflattened into three images (for locomotion tasks) or
nine images (for ant-maze tasks), each image being of size 64× 64× 3.

The state reconstruction module used in (B1) is a default MLP. However, we do not use activation for
the last layer, which predicts the state.

D.4 Agent details

This section details the different agents used.

BC For BC, the action prediction network is the default MLP above.

ID With the notations of Equation 5, f concatenates the embeddings ϕ(ot), ϕ(ot+k), and (if
present) the embedding of k and passes them the inverse dynamics action prediction network, which
is the default MLP above. Our code supports setting the number k of ID steps to a fixed value, or
sampling uniformly in the range {1, . . . , kmax} at each iteration. For the latter, we use a linear layer
to map k to a 64-dimensional embedding.

LFD With the notations of Equation 6, g concatenates ϕ(ot) and an embedding of at, before
passing them through a latent forward predictor network, The inverse dynamics action prediction
network, which is the default MLP above. As detailed in Equation 6, we encode the future observation
using a target network ϕEMA, which has the same architecture as the encoder network ϕ and whose
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Table 3: Hyperparameters and architecture used for the different agents evaluated on DMC-VB

Module Hyperparameter Value

Observation encoder Frame stacking 3
CNN number of channels (32, 64, 128, 256)
CNN kernel sizes (3, 3, 3, 3)
CNN activation gelu
CNN kernel strides (2, 2, 1, 1)
Output activation tanh
Output dimension 64

State encoder Frame stacking 1
Output activation tanh
Output dimension 64

State predictor layer Output dimension Equal to state dimension

Action predictor Hidden layer sizes (256, 256)
ID action predictor Activation function relu

Output activation tanh
Output dimension Equal to action dimension

LFD predictor Hidden layer sizes (256, 256)
Action encoder Activation function relu

Output activation tanh
Output dimension 64
LFD target network decay rate 0.99

ID step embedding Output dimension 64
Number of ID steps 1 (default)
Sample ID steps False (default)

Actor, Critic 1 and Critic 2 Hidden layer sizes (256, 256)
Activation function relu
Last layer activation tanh
Output dimension 64

TD3-BC Trade-off α 2.5
Discount factor 0.99
Policy noise 0.2
Policy noise clipping 0.5
Policy update frequency 2
Target network decay rate 0.99
Loss for shared CNN actor loss
Loss for actor/critic trunks actor loss

Observation decoder Linear layer dimension 16× 16× 256
DeCNN number of channels (128, 64, 32, 9)
DeCNN kernel sizes (3, 3, 3, 3)
DeCNN activation gelu
DeCNN kernel strides (1, 1, 2, 2)
Output activation Not used
Output shape Equal to observation shape

State decoder Hidden layer sizes (256, 256)
Activation function relu
Output activation Not used
Output dimension Equal to state dimension

Learning Number of iterations 400, 000
Batch size 256
Optimizer Adam
Learning rate 0.001
Online evaluation frequency 20, 000

Online evaluation Number of runs 30
Action repeat 2
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weights µEMA are an exponential moving average of the weights of the teacher network µ. At each
gradient update, we set µEMA ← βµEMA + (1− β)µ, where β is the decay rate, which we fix to 0.99.

AE We use the decoder described above.

TD3-BC With the notations of Equation 4, on each mini-batch B, in order to be agnostic to the
scalar of the reward, we set λ = α

1
|B|

∑
o∈B |Q1(ϕ(o),π(ϕ(o))|

with β = 2.5. Here, TD3-BC takes as

input (a stack) of images. The actor and the two critic networks are the default MLP modules above.
We use a decay rate of 0.99 for the target actor and critic networks—which are used to compute the
target for both critics. Note that, as in [16], the actor network and the target networks are updated
twice less frequently than the critics.

For good performance, we found it important to use (a) a separate linear trunk layer for the actor and
the critic, and (b) the actor loss to update the shared CNN and the actor and critic trunk layers. This
guarantees that for α = 0, we recover BC.
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E Additional results for Benchmark 1

E.1 Table of results for Benchmark 1

We first present the table of results accompanying our summary Fig.3.

Table 4: Reward mean and standard error for all methods on each of the locomotion datasets. We
underline all rewards within 5% of BC (state), which represents an upper bound on the learned
representation. Best scores for each dataset are bolded. For random data we do not bold or highlight
any scores as all rewards are comparably low.

No pretraining Pretraining + BC State privileged info

Policy
level Distractor NULL

+ BC
NULL +
TD3-BC

ID
+ BC

LFD
+ BC

DINO
+ BC

AE
+ BC

State
+ BC

BC
(state) Data

w
al

ke
r

expert
none 948 ± 4 950 ± 68 947 ± 3 59 ± 7 594 ± 31 932 ± 8 954 ± 3 960

± 2
958
± 0dynamic 913 ± 10 881 ± 55 883 ± 8 33 ± 2 33 ± 2 294 ± 23 886 ± 8

static 932 ± 4 891 ± 73 924 ± 19 23 ± 1 75 ± 7 529 ± 38 927 ± 6

expert +
medium

none 741 ± 24 797 ± 56 697 ± 25 71 ± 6 445 ± 21 684 ± 24 727 ± 23 784
± 19

736
± 4dynamic 621 ± 24 558 ± 48 638 ± 30 33 ± 2 35 ± 2 410 ± 20 608 ± 27

static 725 ± 29 671 ± 56 634 ± 25 25 ± 1 28 ± 1 422 ± 25 666 ± 23

medium
none 529 ± 8 502 ± 41 517 ± 13 371 ± 29 428 ± 20 529 ± 6 540 ± 7 539

± 6
514
± 2dynamic 524 ± 9 461 ± 40 518 ± 16 41 ± 2 33 ± 3 369 ± 19 492 ± 19

static 513 ± 19 455 ± 41 509 ± 18 24 ± 1 111 ± 14 434 ± 24 512 ± 13

mixed
none 202 ± 32 233 ± 38 239 ± 31 89 ± 7 30 ± 2 230 ± 26 244 ± 31 298

± 27
178
± 4dynamic 205 ± 29 216 ± 32 190 ± 27 46 ± 2 37 ± 2 134 ± 15 218 ± 26

static 178 ± 28 182 ± 31 212 ± 29 37 ± 2 69 ± 8 134 ± 15 214 ± 28

random
none 24 ± 2 23 ± 1 22 ± 2 21 ± 1 30 ± 2 21 ± 1 29 ± 2 38

± 3
40
± 0dynamic 28 ± 2 24 ± 2 22 ± 2 21 ± 1 31 ± 2 22 ± 1 31 ± 2

static 22 ± 2 24 ± 2 27 ± 2 21 ± 1 29 ± 3 21 ± 1 31 ± 2

ch
ee

ta
h

expert
none 861 ± 7 866 ± 54 824 ± 18 155 ± 9 254 ± 18 543 ± 24 888 ± 3 890

± 2
890
± 0dynamic 329 ± 28 288 ± 32 250 ± 27 13 ± 2 120 ± 7 228 ± 14 326 ± 29

static 493 ± 36 445 ± 51 447 ± 46 27 ± 6 3 ± 0 194 ± 15 492 ± 35

expert +
medium

none 692 ± 25 630 ± 37 608 ± 25 130 ± 6 4 ± 0 461 ± 2 697 ± 25 837
± 17

697
± 4dynamic 431 ± 7 401 ± 26 431 ± 4 15 ± 1 76 ± 5 265 ± 13 421 ± 8

static 471 ± 18 441 ± 20 454 ± 3 1 ± 0 3 ± 0 321 ± 13 459 ± 3

medium
none 460 ± 2 462 ± 3 458 ± 2 189 ± 12 4 ± 0 462 ± 2 462 ± 2 460

± 2
455
± 1dynamic 417 ± 10 421 ± 22 420 ± 6 32 ± 2 17 ± 1 278 ± 12 431 ± 4

static 454 ± 3 368 ± 16 455 ± 6 1 ± 0 3 ± 0 303 ± 16 456 ± 3

mixed
none 126 ± 6 1 ± 0 107 ± 5 9 ± 0 4 ± 0 104 ± 6 119 ± 7 409

± 3
303
± 3dynamic 236 ± 16 1 ± 0 143 ± 12 2 ± 0 17 ± 1 188 ± 8 156 ± 13

static 217 ± 18 1 ± 0 235 ± 18 1 ± 0 2 ± 0 222 ± 13 174 ± 13

random
none 2 ± 0 1 ± 0 1 ± 0 0 ± 0 4 ± 0 0 ± 0 1 ± 0 1

± 0
7
± 0dynamic 5 ± 0 2 ± 0 2 ± 0 0 ± 0 18 ± 1 0 ± 0 3 ± 0

static 1 ± 0 0 ± 0 2 ± 0 0 ± 0 2 ± 0 0 ± 0 1 ± 0

hu
m

an
oi

d

expert
none 587 ± 27 364 ± 50 428 ± 35 24 ± 3 36 ± 5 57 ± 6 116 ± 14 780

± 2
766
± 0dynamic 82 ± 9 29 ± 5 61 ± 8 2 ± 0 9 ± 1 13 ± 2 45 ± 5

static 103 ± 14 37 ± 7 74 ± 10 1 ± 0 8 ± 1 14 ± 2 47 ± 6

expert +
medium

none 417 ± 9 274 ± 27 372 ± 12 30 ± 4 83 ± 9 72 ± 9 308 ± 16 585
± 21

588
± 3dynamic 190 ± 17 99 ± 16 184 ± 16 2 ± 0 10 ± 2 35 ± 4 94 ± 10

static 257 ± 19 177 ± 24 245 ± 16 2 ± 0 9 ± 2 39 ± 6 151 ± 17

medium
none 406 ± 3 339 ± 27 388 ± 5 84 ± 12 117 ± 13 205 ± 17 343 ± 10 416

± 1
410
± 0dynamic 238 ± 16 147 ± 19 211 ± 17 2 ± 0 16 ± 2 37 ± 5 132 ± 15

static 288 ± 21 185 ± 27 270 ± 19 2 ± 1 17 ± 3 59 ± 8 172 ± 19

mixed
none 152 ± 16 20 ± 4 145 ± 15 2 ± 0 19 ± 4 58 ± 8 158 ± 14 227

± 10
140
± 3dynamic 46 ± 8 10 ± 2 21 ± 4 2 ± 0 3 ± 1 6 ± 1 20 ± 4

static 97 ± 15 2 ± 1 58 ± 10 2 ± 0 2 ± 0 8 ± 1 55 ± 10

random
none 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1

± 0
1
± 0dynamic 1 ± 0 1 ± 0 1 ± 0 1 ± 0 2 ± 0 1 ± 0 1 ± 0

static 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
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E.2 Time series of rewards

As indicated in the main text, we evaluate each method online every 20k training steps. Fig.8 displays
the temporal evolution of the average rewards, when trained on the full expert datasets for locomotion
tasks. As expected, we find that training on state information converges very fast and that humanoid
training can take a large number of steps due to the difficulty of the task.
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Figure 8: Time-series of rewards scores on the locomotion tasks of DMC-VB, averaged over 30
trajectories, with standard errors represented as the shaded area. These are all trained on expert
trajectories. Higher reward is better.
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E.3 Observations and states reconstruction errors on locomotion datasets

Figures 9 and 10 display the least-squared test errors for respectively reconstructing the observations
and the states learned by a decoder with frozen encoder. Each figure includes plots for both expert
and medium datasets for all locomotion task. These figures breakdown the summarized plots in the
main paper which are averaged over all datasets.
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Figure 9: Observations reconstruction errors for the different representation learning methods. The
observation decoder is trained by freezing the encoder.
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Figure 10: State reconstruction errors for the different representation learning methods. The state
decoder is trained by freezing the encoder.
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E.4 Observations reconstructions examples

Fig. 11 presents some observations reconstructed by the different representation methods, on the
walker-walk tasks, with dynamic distractors.

Original BC ID LFD AE DINO

Figure 11: Observation reconstruction from a decoder with frozen encoder, for the different represen-
tation learning methods.
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E.5 State prediction on locomotion datasets

For the method State + BC, during pretraining, a visual encoder is trained to directly regress the state
from the corresponding observation. In Fig.12, we show the ℓ1 state prediction error on held out
evaluation data for the locomotion tasks. The error is broken down into errors for each part of the
state space. Note that, as we have centered and normalized each state dimension during preprocessing,
the errors for the different parts are comparable.

Despite frame stacking, we find that velocity is the most challenging to predict. Additionally, we see
that the state for humanoid is much harder to predict than for walker and cheetah due to the high
degree of freedom body.
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Figure 12: Absolute error evaluation loss for state prediction on the locomotion datasets, when
regressed directly from the corresponding image observation.

E.6 Additional metrics on ant maze environments

For ant-maze environments in (B1), we use the total reward per episode to compare the different
agents in Sec.5.1. Here we report two additional metrics: (a) the fraction of success in reaching the
goal over the 30 online evaluation rollouts (Fig. 13), and (b) for trajectories reaching the goal, the
average velocity towards the goal (Fig. 14). These are useful measures of an agent’s behavior in the
environment that are independent of the initial distance between the agent and the goal, unlike the
reward.

These metrics highlight the gap between the LFD + BC agent and other agents. The LFD + BC agent
never manages to reach the goal, despite often attaining reasonable scores in the reward.
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Figure 13: Fraction of success in reaching the goal during the online evaluation of different benchmark
models in Ant maze. As in the main paper, NULL+BC achieves the highest fraction of success and
pretrained visual representations only harm performance.
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Figure 14: Average velocity of the agent towards the goal during online evaluation of different
benchmark models in Ant maze. Velocity is zero if the agent does not succeed in reaching the goal.
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F Additional results for Benchmark 2

In addition to the inverse dynamics (ID) and the behavior cloning (BC) methods presented in Fig. 5,
we evaluate latent forward dynamics (LFD) and autoencoder (AE) for representation learning on the
mixed dataset. We present extended results including those additional methods in Fig. 15.
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Figure 15: Pretraining encoders on mixed data using different representation learning objectives
improve performance when BC policy is trained on small expert data. Performance using different
pretraining objectives is shown as the proportion of reward obtained by BC on full expert data without
distractors for each task.

G Additional metrics for Benchmark 3

Similar to Benchmark 1 above, we present the fraction of success and the average velocity metrics for
ant maze for Benchmark 3. Fig. 16 shows the fraction of success and average agent velocity metrics
respectively for Benchmark 3. These metrics are consistent with the reward reported in Fig. 6, in
showing that BC pretraining on stochastic hidden goal tasks helps few-shot policy learning.
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Figure 16: Fraction of success and average velocity of the agent towards the goal during online
evaluation of Benchmark 3. Average velocity is only computed for trajectories that reach the goal
and is zero otherwise.
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H Frame stacking ablation on locomotion datasets

Fig. 17 compares BC with frame stacking of three consecutive frames versus without frame stacking
on DMC-VB expert datasets for locomotion tasks. We see that frame stacking is crucial for learning,
likely due to the fact that the agent’s velocity is not inferable from a single observation. As a
consequence of this result, we use frame stacking in all experiments.
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Figure 17: Frame stacking significantly boosts BC performance on DMC-VB.

I Dataset size study

To validate the choice of making DMC-VB a large dataset with 1M steps per data subset, we evaluate
the performance of behavioral cloning on smaller percentages of the dataset. We see in Fig.18 that for
harder tasks, and in the presence of visual distractors, BC agents benefit from large training datasets.
This suggests that VD4RL [33], which only contains 100k steps per dataset, is not sufficiently large to
evaluate visual representation learning for control, and this motivates our decision to make DMC-VB
10× larger.
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Figure 18: Performance of behavioral cloning without pretraining (NULL+BC) on different percent-
ages of the expert dataset for the DMC-VB locomotion tasks. Rewards are plotted as a proportion of
the reward when using 100% of the distractor-free (none) dataset. Scores significantly drop when
using smaller proportions of the dataset.
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J Multistep Inverse Dynamics Pretraining

In experiments in the main paper, we found that single-step inverse dynamics pretraining is con-
sistently on par or worse than the simple behavioral cloning baseline. Here we evaluate multistep
inverse dynamics pretraining corresponding to different values of k in Equation 5. Figure 19 shows
that as the value of k increases, the performance of ID pretraining converges towards the performance
of behavioural cloning. For larger k the future frame becomes less useful for predicting the current
action and the ID objective becomes equivalent to behavioral cloning. The figure also includes the
BC + BC baseline, in which pretraining and policy learning share the same objective and data. This
is equivalent to NULL + BC and ID + BC as k becomes large.
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Figure 19: k-step inverse dynamics pretraining is denoted ID-k. Performance improves for larger
values of k and tends towards the performance of BC pretraining.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Appendix A.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Our claims in the abstract and introduction are justified
through our experiments.

(b) Did you describe the limitations of your work? [Yes] Limitations are detailed in the
Conclusions (Section 6)

(c) Did you discuss any potential negative societal impacts of your work? [No] We do not
foresee any potential negative societal impacts of our work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] Code
and instructions to reproduce experimental results can be found on our github page
(linked in the abstract): https://github.com/google-deepmind/dmc_vision_
benchmark. This page also includes a link to the data and instructions for downloading
it.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix D.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We reported error bars for the standard error on all plots
where applicable.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix D.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We leverage Deep-

Mind Control Suite environments [47] and Kubric dataset videos [18], both of which
are cited in the main paper.

(b) Did you mention the license of the assets? [Yes] The licences of the code and data that
we release are described in Appendix A.

(c) Did you include any new assets either in the supplemental material or as a URL?
[Yes] The dataset and code are included in the paper via our github url: https:
//github.com/google-deepmind/dmc_vision_benchmark.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No] DeepMind Control Suite environments [47] and Kubric dataset
are released under the Apache 2.0 licence and so we did not need to seek consent to
use their code as part of our data generation process.
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(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] Our data does not contain any personally
identifiable information or offensive content. It contains purely synthetic images.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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