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Abstract

Graph generation has been dominated by autoregressive models due to their sim-
plicity and effectiveness, despite their sensitivity to node ordering. Diffusion
models, on the other hand, have garnered increasing attention as they offer com-
parable performance while being permutation-invariant. Current graph diffusion
models generate graphs in a one-shot fashion, however they require extra features
and thousands of denoising steps to achieve optimal performance. We introduce
PARD, a Permutation-invariant AutoRegressive Diffusion model that integrates
diffusion models with autoregressive methods. PARD harnesses the effective-
ness and efficiency of the autoregressive model while maintaining permutation
invariance without order sensitivity. Specifically, we show that contrary to sets,
elements in a graph are not entirely unordered and there is a unique partial or-
der for nodes and edges. With this partial order, PARD generates a graph in a
block-by-block, autoregressive fashion, where each block’s probability is condi-
tionally modeled by a shared diffusion model with an equivariant network. To
ensure efficiency while being expressive, we further propose a higher-order graph
transformer, which integrates transformer with PPGN. Like GPT, we extend the
higher-order graph transformer to support parallel training of all blocks. Without
any extra features, PARD achieves state-of-the-art performance on molecular and
non-molecular datasets, and scales to large datasets like MOSES containing 1.9M
molecules. PARD is open-sourced at https://github.com/LingxiaoShawn/Pard

1 Introduction
Graphs provide a powerful abstraction for representing relational information in many domains,
including social networks, biological and molecular structures, recommender systems, and networks
of various infrastructures such as computers, roads, etc. Accordingly, generative models of graphs
that learn the underlying graph distribution from data find applications in network science [7],
drug discovery [26, 42], protein design [1, 43], and various use-cases for Internet of Things [10].
Importantly, they serve as a prerequisite for building a generative foundation model [6] for graphs.

Despite significant progress in generative models for images and language, graph generation is
uniquely challenged by its inherent combinatorial nature. Specifically: 1) Graphs are naturally
high-dimensional and discrete with varying sizes, contrasting with the continuous space and fixed-
size advancements that cannot be directly applied here; 2) Being permutation-invariant objects,
graphs require modeling an exchangeable probability distribution, where permutations of nodes
and edges do not alter a graph’s probability; and 3) The rich substructures in graphs necessitate
an expressive model capable of capturing higher-order motifs and interactions. Several graph
generative models have been proposed to address (part of) these challenges, based on various
techniques like autoregression [48, 28], VAEs [37], GANs [11], flow-based methods [36], and
denoising diffusion [32, 44]. Among these, autoregressive models and diffusion models stand out
with superior performance, thus significant popularity. However, current autoregressive models, while
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efficient, are sensitive to node/edge order with non-exchangeable probabilities; whereas diffusion
models, though promising, are less efficient, requiring thousands of denoising steps and extra
node/edge/graph-level features (structural and/or domain-specific) to achieve high generation quality.

In this paper, we introduce PARD (leopard in Ancient Greek), the first Permutation-invariant
AutoRegressive Diffusion model that combines the efficiency of autoregressive methods and the
quality of diffusion models together, while retaining the property of exchangeable probability. Instead
of generating an entire graph directly, we explore the direction of generating through block-wise
graph enlargement. Graph enlargement offers a fine-grained control over graph generation, which
can be particularly advantageous for real-world applications that require local revisions to generate
graphs. Moreover, it essentially decomposes the joint distribution of the graph into a series of sim-
pler conditional distributions, thereby leveraging the data efficiency characteristic of autoregressive
modeling. We also argue that graphs, unlike sets, inherently exhibit a unique partial order among
nodes, naturally facilitating the decomposition of the joint distribution. Thanks to this unique partial
order, PARD’s block-wise autoregressive sequence is permutation-invariant, unlike any prior graph
autoregressive methods in the literature.

To model the conditional distribution of nodes and edges within a block, we have, for the first
time, identified a fundamental challenge in equivariant models for generation: it is impossible for
any equivariant model, no matter how powerful, to perform general graph transformations without
symmetry breaking. However, through a diffusion process that injects noise, a permutation equivariant
network can progressively denoise to realize targeted graph transformations. This approach is inspired
by the annealing process where energy is initially heightened before achieving a stable state, akin to
the process of tempering iron. Our analytical findings naturally lead to the design of our proposed
PARD that combines autoregressive approach with local block-wise discrete denoising diffusion.
Using a diffusion model with equivariant networks ensures that each block’s conditional distribution
is exchangeable. Coupled with the permutation-invariant block sequence, this renders the entire
process permutation-invariant and the joint distribution exchangeable. What is more, this inevitable
combination of autoregression and diffusion successfully combines the strength of both approaches
while getting rid of their shortcomings: By being permutation-invariant, a key advantage of diffusion,
it generalizes better than autoregressive models while also being much more data-efficient. By
decomposing the challenging joint probability into simpler conditional distributions, an advantage of
autoregression, it requires significantly fewer diffusion steps, outperforming pure diffusion methods by
a large margin. Additionally, each inference step in the diffusion process incurs lower computational
cost by processing only the generated part of the graph, rather than the entire graph. And it can
further leverage caching mechanisms (to be explored in future) to avoid redundant computations.

Within PARD, we further propose several architectural improvements. First, to achieve 2-FWL
expressivity with improved memory efficiency, we propose a higher-order graph transformer that
integrates transformer with PPGN [30], while utilizing a significantly reduced representation size for
edges. Second, to ensure training efficiency without substantial overhead compared to the original
diffusion model, we design a GPT-like causal mechanism to support parallel training of all blocks.
These extensions are generalizable and can lay the groundwork for a higher-order GPT.

PARD achieves new SOTA performance on many molecular and non-molecular datasets without
any extra features, significantly outperforming DiGress [44]. Thanks to efficient architecture and
parallel training, PARD scales to large datasets like MOSES [33] with 1.9M graphs. Finally, not only
PARD can serve as a generative foundation model for graphs in the future, its autoregressive parallel
mechanism can further be combined with language models for language-graph generative pretraining.

2 Related Work
Autoregressive (AR) Models for Graph Generation. AR models create graphs step-by-step, adding
nodes and edges sequentially. This method acknowledges graphs’ discrete nature but faces a key
challenge as there is no inherent order in graph generation. To address this, various strategies
have been proposed to simplify orderings and approximate the marginalization over permutations;
i.e. p(G) =

∑
π∈P(G) p(G, π). Li et al. [27] propose using random or deterministic empirical

orderings. GraphRNN [48] aligns permutations with breadth-first-search (BFS) ordering, with a
many-to-one mapping. GRAN [28] offers marginalization over a family of canonical node orderings,
including node degree descending, DFS/BFS tree rooted at the largest degree node, and k-core
ordering. GraphGEN [16] uses a single canonical node ordering, but does not guarantee the same
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canonical ordering during generation. Chen et al. [9] avoid defining ad-hoc orderings by modeling
the conditional probability of orderings, p(π|G), with a trainable AR model, estimating marginalized
probabilities during training to enhance both the generative model and the ordering probability model.

Diffusion Models for Graph Generation. EDP-GNN [32] is the first work that adapts score
matching [39] to graph generation, by viewing graphs as matrices with continuous values. GDSS [24]
generalizes EDP-GNN by adapting SDE-based diffusion [40] and considers node and edge features.
Yan et al. [46] argues that learning exchangeable probability with equivariant networks is hard, hence
proposes permutation-sensitive SwinGNN with continuous-state score matching. Previous works
apply continuous-state diffusion to graph generation, ignoring the natural discreteness of graphs.
DiGress [44] is the first to apply discrete-state diffusion [3, 20] to graph generation and achieves
significant improvement. However, DiGress relies on many additional structural and domain-specific
features. GraphArm [25] applies Autoregressive Diffusion Model (ADM) [21] to graph generation,
where exactly one node and its adjacent edges decay to the absorbing states at each forward step
based on a random node order. Similar to AR models, GraphArm is permutation sensitive.

We remark that although both are termed “autoregressive diffusion”, it is important to distinguish
that PARD is not ADM. The term “autoregressive diffusion” in our context refers to the integration
of autoregressive methods with diffusion models. In contrast, ADM represents a specific type of
discrete denoising diffusion where exactly one dimension decays to an absorbing state at a time in
the forward diffusion process. See Fan et al. [13] for a survey of recent diffusion models on graphs.

3 Permutation-invariant Autoregressive Denoising Diffusion
We first introduce setting and notations. We focus on graphs with categorical features. Let G = (V, E)
be a labeled graph with the number of distinct node and edge labels denoted Kv and Ke, respectively.
Let vi ∈ {0, 1}Kv ,∀i ∈ V be the one-hot encoding of node i’s label. Let ei,j ∈ {0, 1}Ke ,∀i, j ∈ V
be the one-hot encoding of the label for the edge between node i and j. We also represent “absence of
edge” as a type of edge label, hence |E| = |V|×|V|. Let V ∈ {0, 1}|V|×Kv and E ∈ {0, 1}|V|×|V|×Ke

be the collection of one-hot encodings of all nodes and edges using the default node order, and let
G := (V,E). To describe probability, let x be a random variable with its sampled value x. Similarly,
G is a random graph with its sampled graph G. In diffusion process, noises are injected from t=0 to
t=T with T being the maximum time step. Let x0 ∼ pdata(x0) be the random variable of observed
data with underlying distribution pdata(x0), xt ∼ q(xt) be the random variable at time t, and let
xt|s ∼ q(xt|xs) denote the conditional random variable. Also, we interchangeably use q(xt|xs),
q(xt=xt|xs=xs), and qt|s(xt|xs) when there is no ambiguity. We model the forward diffusion
process independently for each node and edge, while the backward denoising process is modeled
jointly for all nodes and edges. All vectors are column-wise vectors. Let ⟨·, ·⟩ denote inner product.

3.1 Discrete Denoising Diffusion on Graphs

Denoising Diffusion is first developed by Sohl-Dickstein et al. [38] and later improved by Ho et al.
[19]. It is further generalized to discrete-state case by Hoogeboom et al. [20] and Austin et al. [3].
Taking a graph G0 as example, diffusion model defines a forward diffusion process to gradually
inject noise to all nodes and edges independently until all reach a non-informative state GT . Then,
a denoising network is trained to reconstruct G0 from the noisy sample Gt at each time step, by
optimizing a Variational Lower Bound (VLB) for log pθ(G0). Specifically, the forward process is
defined as a Markov chain with q(Gt|Gt−1),∀t ∈ [1, T ], and the backward denoising process is
parameterized with another Markov chain pθ(Gt−1|Gt),∀t ∈ [1, T ]. Note that while the forward
process is independently applied to all elements, the backward process is coupled together with
conditional independence assumption. Formally,

q(Gt|Gt−1) =
∏
i∈V

q(vi
t|vi

t−1)
∏

i,j∈V
q(ei,jt |e

i,j
t−1), pθ(Gt−1|Gt) =

∏
i∈V

pθ(v
i
t−1|Gt)

∏
i,j∈V

pθ(e
i,j
t−1|Gt) .

(1)
Then, the VLB of log pθ(G0) can be written (see Apdx.§A.1) as

log pθ(G0) ≥ Eq(G1|G0)

[
log pθ(G0|G1)

]︸ ︷︷ ︸
−L1(θ)

−DKL

(
q(GT |G0)||pθ(GT )

)︸ ︷︷ ︸
Lprior

−
T∑

t=2

Eq(Gt|G0)

[
DKL

(
q(Gt−1|Gt,G0)||pθ(Gt−1|Gt

)]︸ ︷︷ ︸
Lt(θ)

(2)
where Lprior ≈ 0, since pθ(GT ) ≈ q(GT |G0) is designed as a fixed noise distribution that is easy
to sample from. To compute Eq. (2), we need to formalize the distributions (i) q(Gt|G0) and (ii)
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q(Gt−1|Gt,G0), as well as (iii) the parameterization of pθ(Gt−1|Gt). DiGress [44] applies D3PM
[3] to define these three terms. Different from DiGress, we closely follow the approach in Zhao
et al. [52] to define these three terms, as their formulation is simplified with improved memory
usage and loss computation. For brevity, we refer readers to Appx. §A.2 for the details. Notice that
while a neural network can directly be used to parameterize (iii) pθ(Gt−1|Gt), we follow [52] to
parameterize pθ(G0|Gt) instead, and compute (iii) from pθ(G0|Gt).

With (i ∼ iii) known, one can compute the negative VLB loss in Eq. (2) exactly. In addition, at
each time step t, the cross entropy (CE) loss between (i) q(Gt|G0) and pθ(G0|Gt) that quantifies
reconstruction quality is often employed as an auxiliary loss, which is formulated as

LCE
t (θ) = −Eq(Gt|G0)

[∑
i∈V

log pθ(v
i
0|Gt) +

∑
i,j∈V

log pθ(e
i,j
0 |Gt)

]
.

In fact, DiGress solely uses LCE
t (θ) to train their diffusion model. In this paper, we adopt a hybrid

loss [3], that is Lt(θ)+λLCE
t (θ) with λ = 0.1 at each time t, as we found it to help reduce overfitting.

To generate a graph from pθ(G0), a pure noise graph is first sampled from pθ(GT ) and gradually
denoised using the learned pθ(Gt−1|Gt) from step T to 0.

A significant advantage of diffusion models is their ability to achieve exchangeable probability in
combination with permutation equivariant networks under certain conditions [45]. DiGress is the first
work that applied discrete denoising diffusion to graph generation, achieving significant improvement
over previous continuous-state based diffusion. However, given the inherently high-dimensional
nature of graphs and their complex internal dependencies, modeling the joint distribution of all nodes
and edges directly presents significant challenges. DiGress requires thousands of denoising steps to
accurately capture the original dependencies. Moreover, DiGress relies on many extra supplementary
node and graph-level features, such as cycle counts and eigenvectors, to effectively break symmetries
among structural equivalences to achieve high performance.

3.2 Autoregressive Graph Generation

Order is important for AR models. Unlike diffusion models that aim to capture the joint distribution
directly, AR models decompose the joint probability into a product of simpler conditional probabilities
based on an order. This makes AR models inherently suitable for ordinal data, where a natural order
exists, such as in natural languages and images.

Order Sensitivity. Early works of graph generation contain many AR models like GraphRNN [48]
and GRAN [28] based on non-deterministic heuristic node orders like BFS/DFS and k-core ordering.
Despite being permutation sensitive, AR models achieve SOTA performance on small simulated
structures like grid and lobster graphs. However, permutation invariance is necessary for estimating
an accurate likelihood of a graph, and can benefit large-size datasets for better generalization.

Let π denote an ordering of nodes. To make AR order-insensitive, there are two directions: (1)
Modeling the joint probability p(G, π) and then marginalizing π, (2) Finding a unique canonical order
π∗(G) for any graph G such that p(π|G) = 1 if π = π∗(G) and 0 otherwise. In direction (1), directly
integrating out π is prohibitive as the number of permutations is factorial in the graph size. Several
studies [27, 9, 28] have used subsets of either random or canonical orderings. This approach aims to
simplify the process, but it results in approximated integrals with indeterminate errors. Moreover,
it escalates computational expense due to the need for data augmentation involving these subsets
of orderings. In direction (2), identifying a universal canonical order for all graphs is referred to as
graph canonicalization. There exists no polynomial time solution for this task on general graphs,
which is at least as challenging as the NP-intermediate Graph Isomorphism problem [2]. Goyal et al.
[17] explored using minimum DFS code to construct canonical labels for a specific dataset with
non-polynomial time complexity. However, the canonicalization is specific to each training dataset
with the randomness derived from DFS. This results in a generalization issue, due to the canonical
order being π(G|TrainSet) instead of π(G).

The Existence of Partial Order. While finding a unique order for all nodes of a graph is NP-
intermediate, we argue that finding a unique partial order, where certain nodes and edges are with
the same rank, is easily achievable. For example, a trivial partial order is simply all nodes and edges
having the same rank. Nevertheless, a graph is not the same as a set (a set is just a graph with empty
E), where all elements are essentially unordered with equivalent rank. That is because a non-empty
graph contains edges between nodes, and these edges give different structural properties to nodes.
Notice that some nodes or edges have the same structural property as they are structurally equivalent.
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Algorithm 1 Structural Partial Order ϕ
1: Input: Graph G, maximum hops Kh.
2: Init: G0 = G, i = 0, ϕ with ϕ(v) = 0 ∀v.
3: while Gi is not ∅ do
4: Compute wKh(v), ∀v ∈ V(Gi), using Eq. (4).
5: Find all nodes L with wKh = minv∈V(G) wKh(v).
6: Let ϕ(v) = i ∀v ∈ L.
7: Gi+1 ← Gi[V(G) \ L]; i← i+ 1.
8: end while
9: Output: ϕ← i− ϕ
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Figure 1: Example case where the equiv-
ariant graph transformation from G[B1:i] to
G[B1:i+1] is impossible for any permutation-
equivariant network due to structural equiva-
lence of nodes. See Proposition 3.3.

We can view each structural property as a color, and rank all unique colors within the graph to define
the partial order over nodes, which we call a structural partial order. The structural partial order
defines a sequence of blocks such that all nodes within a block have the same rank (i.e. color).

Let ϕ : V → [1, ...,KB ] be the function that assigns rank to nodes based on their structural properties,
where KB denotes the maximum number of blocks. We use G[S] to denote the induced subgraph on
the subset S ⊆ V . There are many ways to assign rank to structural colors, however we would like
the resulting partial order to satisfy certain constraints. Most importantly, we want

∀r ∈ [1, ...,KB ], G[ϕ(V) ≤ r] is a connected graph. (3)

The connectivity requirement is to ensure a more accurate representation of real-world graph genera-
tion processes, where it is typical of real-world dynamic graphs to enlarge with newcoming nodes
being connected at any time. Then, one can sequentially remove all nodes with the lowest degree
to maintain this connectivity and establish a partial order. However, degree only reflects limited
information of the first-hop neighbors, and many nodes share the same degree—leading to only a few
distinct blocks, not significantly different from a trivial, single-block approach.

To ensure connectivity while reducing rank collision, we consider larger hops to define a weighted
degree. Consider a maximum of Kh hops. For any node v ∈ V , the number of neighbors at each hop
of v can be easily obtained as [d1(v), ..., dKh

(v)]. We then define the weighted degree as

wKh
(v) =

Kh∑
k=1

dk(v)× |V|Kh−k (4)

Equation Eq. (4) may appear as an ad-hoc design, but it fundamentally serves as a hash that maps
the vector [d1(v), d2(v), ..., dK(v)] to a unique scalar value. This mapping ensures a one-to-one
correspondence between the vector and the scalar. Furthermore, it prioritizes lower-hop degrees over
higher-hop degrees, akin to how e.g. the number "123" is represented as 1× 102+2× 101+3× 100.
Eq. (4) is efficient to compute and guarantees: 1) Nodes have the same rank if and only if they have
the same number of neighbors up to Kh hops. 2) Lower-hop degrees are weighted more heavily.
With wKh

defined, we present our structural partial order in Algo. 1.
Proposition 3.1. For any G, its structural partial order ϕ defined by Algo. 1 is permutation
equivariant, such that ϕ(P ⋆ G) = P ⋆ ϕ(G) for any permutation operator P .
It is easy to prove Prop. 3.1. Algo. 1 shows that ϕ(i) for ∀i ∈ V is uniquely determined by node i’s
structural higher-order degree. As nodes’ higher-order degree is permutation equivariant, ϕ is also
permutation equivariant. Notice that ϕ is unique and deterministic for any graph.

Autoregressive Blockwise Generation. ϕ in Algo. 1 with output in range [1,KB ] divides the nodes
V(G) into KB blocks [B1, ...,BKB

] in order, where Bj = {i ∈ V(G)|ϕ(i) = j}. Let B1:i := ∪ij=1Bj
be the union of the first i blocks. PARD decomposes the joint probability of a graph G into

pθ(G) =

KB∏
i=1

pθ

(
G[B1:i] \ G[B1:i−1]

∣∣∣ G[B1:i−1]
)

(5)

where G[B1:0] is defined as the empty graph, and G[B1:i] \ G[B1:i−1] denotes the set of nodes and
edges that are present in G[B1:i] but not in G[B1:i−1]. All of them are represented in natural order
of G. As each conditional probability only contains a subset of edges and nodes, and having access
to all previous blocks, this conditional probability is significantly easier to model than the whole
joint probability. Given the property Prop. 3.1 of Bi, it is easy to verify that pθ(G) is exchangeable
with permutation-invariant probability for any G if and only if all conditional probabilities are
exchangeable. See Appx. §A.6 for details of permutation-invariant probability. Note that while
GRAN [28] also generates graphs block-by-block, all nodes within GRAN have different generation
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ordering, even within the same block (it breaks symmetry for the problem identified later). Essentially,
GRAN is an autoregressive method and, as such, suffers from all the disadvantages inherent to AR.

3.3 Impossibility of Equivariant Graph Transformation
In Eq. (5), we need to parameterize the conditional probability pθ

(
G[B1:i] \ G[B1:i−1]

∣∣∣ G[B1:i−1]
)

to be permutation-invariant. This can be achieved by letting the conditional probability be

pθ

(
|Bi|

∣∣∣ G[B1:i−1]
) ∏

x∈G[B1:i]\G[B1:i−1]

pθ

(
x
∣∣∣ G[B1:i−1] ∪ ∅[B1:i]

)
(6)

where x is any node and edge in G[B1:i] \ G[B1:i−1], ∅ denotes an empty graph, hence G[B1:i−1] ∪
∅[B1:i] depicts augmenting G[B1:i−1] with empty (or virtual) nodes and edges to the same size as
G[B1:i]. With the augmented graph, we can parameterize pθ

(
x
∣∣ G[B1:i−1] ∪ ∅[B1:i]

)
for any node

and edge x with a permutation equivariant network to achieve the required permutation invariance.
For simplicity, let G

[
B1:i−1, |Bi|

]
:= G[B1:i−1] ∪ ∅[B1:i].

The Flaw in Equivariant Modeling. Although the parameterization in Eq. (6) along with an
equivariant network makes the conditional probability in Eq. (5) become permutation-invariant, we
have found that the equivariant graph transformation pθ(x | G

[
B1:i−1, |Bi|

]
) cannot be achieved in

general for any permutation equivariant network, no matter how powerful it is (!) For definition of
graph transformation, see Appx.§A.7. The underlying cause is the symmetry of structural equivalence,
which is also a problem in link prediction [41, 49]. Formally, let A(G) be the adjacency matrix of G
(ignoring labels) based on G’s default node order, then an automorphism σ of G satisfies

A(G) = A(σ ⋆ G) (7)
where σ ⋆ G is a reordering of nodes based on the mapping σ. Then the automorphism group is

Aut(G) = {σ ∈ P|V| |A(G) = A(σ ⋆ G)} (8)
where Pn denotes all permutation mappings for size n. That is, Aut(G) contains all automorphisms
of G. For a node i of G, the orbit that contains node i is defined as

o(i) = {σ(i) | ∀σ ∈ Aut(G)} . (9)
In words, the orbit o(i) contains all nodes that are structurally equivalent to node i in G. Two edges
(i, j) and (u, v) are structurally equivalent if ∃σ ∈ Aut(G), such that σ(i) = u and σ(j) = v.
Theorem 3.2. Any structurally equivalent nodes and edges will have identical representations in any
equivariant network, regardless of its power or expressiveness.

See proof in Apdx.§A.5. Theorem 3.2 indicates that no matter how powerful the equivariant network
is, any structually equivalent elements have the same representation, which implies the following.
Proposition 3.3. General graph transformation is not achievable with any equivariant model.

Proof. To prove it, we only need to show there are many “bottleneck” cases where the transformation
cannot be achieved. Fig. 1 shows a case where G[B1:] is a 4-cycle, and the next target block contains
two additional nodes, each with a single edge connecting to one of the nodes of G[B1:]. It is easy
to see that nodes 1–4 are all structurally equivalent, and so are nodes 5, 6 in the augmented case
(middle). Hence, edges in {(5, i)|∀i ∈ [1, 4]} are structurally equivalent (also {(6, i)|∀i ∈ [1, 4]}).
Similarly, ∀i ∈ [1, 4], edge (5, i) and (6, i) are structurally equivalent. Combining all cases, edges
in {(j, i)|∀i ∈ [1, 4], j ∈ {5, 6}} are structurally equivalent. Theorem 3.2 states that all these edges
would have the same prediction, hence making the target G[B1:i+1] not achievable.

3.4 PARD: Autoregressive Denoising Diffusion

The Magic of Annealing/Randomness. In Fig. 1 we showed that a graph with many automorphisms
cannot be transformed to a target graph with fewer automorphisms. We hypothesize that a graph
with lower “energy” is hard to be transformed to a graph with higher “energy” with equivariant
networks. There exist some definitions and discussion of graph energy [18, 4] based on symmetry
and eigen-information to measure graph complexity, where graphs with more symmetries have lower
energy. The theoretical characterization of the conditions for successful graph transformation is a
valuable direction, which we leave for future work to investigate.

Based on the above hypothesis, to achieve a successful transformation of a graph into a target graph,
it is necessary to increase its energy. Since graphs with fewer symmetries exhibit higher energy levels,
our approach involves adding random noise to nodes and edges. Our approach of elevating the energy
level, followed by its reduction to attain desired target properties, mirrors the annealing process.
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Autoregressive Block-wise Generation

Local Denoising Diffusion 
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Figure 2: PARD integrates the autoregressive method with diffusion modeling. (top) PARD decom-
poses the joint probability into a series of block-wise enlargements, where each block’s conditional
distribution is captured with a shared discrete diffusion (bottom).

Diffusion. This further motivates us to use denoising diffusion to model pθ(x | G
[
B1:i−1, |Bi|

]
): it

naturally injects noise in the forward process, and its backward denoising process is the same as
annealing. As we show below, this yields pθ(G) in Eq. (5) to be permutation-invariant.

Theorem 3.4. PARD is permutation-invariant such that pθ(P ⋆ G) = pθ(G) ∀ permutator P .

The proof is given in Appx. §A.6. With all constituent parts presented, we summarize our proposed
PARD, the first permutation-invariant autoregressive diffusion model that integrates AR with denoising
diffusion. PARD relies on a unique, permutation equivariant structural partial order ϕ (Algo. 1) to
decompose the joint graph probability to the product of simpler conditional probabilities, based on
Eq. (5). Each block’s conditional probability is modeled with the product of a conditional block size
probability and a conditional block enlargement probability as in Eq. (6), where the latter for every
block is a shared discrete denoising diffusion model as described in §3.1. Fig. 2 illustrates PARD’s
two parts : (top) block-wise AR and (bottom) local denoising diffusion at each AR step.

Notice that there are two tasks in Eq. (6); one for predicting the next block’s size, and the other for
predicting the next block’s nodes and edges with diffusion. These two tasks can be trained together
with a single network, although for better performance we use two different networks. For each
block’s diffusion model, we set the maximum time steps to 40 without much tuning.

Training and Inference. We provide the training and inference algorithms for PARD in Apdx.§A.8.
Specifically, Algo. 2 is used to train next block’s size prediction model; Algo. 3 is used to train the
shared diffusion for block conditional probabilities; and Algo. 4 presents the generation steps.

4 Architecture Improvement
PARD is a general framework that can be combined with any equivariant network. Nevertheless,
we would like an equivariant network with enough expressiveness to process symmetries inside
the generated blocks for modeling the next block’s conditional probability. While there are many
expressive GNNs like subgraph GNNs [5, 50] and higher-order GNNs [51, 31], PPGN [30] is still a
natural choice that models edge (2-tuple) representations directly with 3-WL expressivity and O(n3)
complexity in graph size. However, PPGN’s memory cost is relatively high for many datasets.

4.1 Efficient and Expressive Higher-order Transformer

To enhance the memory efficiency of PPGN while maintaining the expressiveness equivalent to the
3-Weisfeiler-Lehman (3-WL) test, we introduce a hybrid approach that integrates Graph Transformers
with PPGN. Graph Transformers operate on nodes as the fundamental units of representation, offering
better scalability and reduced memory consumption (O(n2)) compared to PPGN. PPGN utilizes edges
as their primary representation units and therefore incurs significantly higher memory requirements
(O(n3)). However, the expressiveness of Graph Transformers (without position encoding) is limited
to the 1-WL test [8]. By combining these two models, we can drastically decrease the size of edge
representations while allocating larger hidden sizes to nodes. This synergistic approach not only
substantially lowers the memory footprint but also enhances overall performance, leveraging the
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strengths of both architectures to achieve a balance between expressivity and efficiency. We provide
the detailed design in Appx.§A.9. Note that we use GRIT [29] as the graph transformer block.

4.2 Parallel Training with Causal Transformer

As shown in Eq. (5), for a graph G, there are KB conditional probabilities being modeled by a
shared diffusion model using a θ-parameterized network fθ. By default, these KB number of
inputs {G[B1:i−1]}KB

i=1 are viewed as separate graphs and the representations during network passing
fθ(G[B1:i−1]) for different i ∈ [1,KB ] are not shared. This leads to a scalability issue; in effect
enlarging the dataset by roughly KB times and resulting in KB times longer training.

To minimize computational overhead, it is crucial to enable parallel training of all the KB conditional
probabilities, and allow these processes to share representations, through which we can pass the
full graph G to the network fθ only once and obtain all KB conditional probabilities. This is
also a key advantage of transformers over RNNs. Transformers (GPTs) can train all next-token
predictions simultaneously with representation sharing through causal masking, whereas RNNs must
train sequentially. However, the default causal masking of GPTs is not applicable to our architecture,
as PARD contains both Transformer and PPGN where the PPGN’s causal masking is not designed.

To ensure representation sharing without risking information leakage, we first assign a “block ID” to
every node and edge within graph G. Specifically, for every node and edge in G[B1:i] \G[B1:i−1],
we assign the ID equal to i. To prevent information leakage effectively, it is crucial that any node and
edge labeled with ID i are restricted to communicate only with other nodes and edges whose ID is≤ i.
Let A,B ∈ Rn×n, and x ∈ Rn. There are mainly two non-elementwise operations in Transformer
and PPGN that have the risk of leakage: the attention-vector product operation Ax of Transformer,
and the matrix-matrix product operation AB of PPGN. (We ignore the feature dimension of A and
x as it does not affect the information leakage.) Let M ∈ {0, 1}n×n be a mask matrix, such that
Mi,j = 1 if block_ID(node i) ≥ block_ID(node j) else 0. One can verify that

(A⊙M)x, and (A⊙M)B +A(B ⊙M⊤)− (A⊙M)(B ⊙M⊤) (10)
generalize Ax and AB respectively and safely bypass information leakage. We provide more
details of parallel training and derivation of Eq. (10) in Appx.§A.10. We use these operations in our
network and enable representation sharing, along with parallel training of all KB blocks for denoising
diffusion as well as next block size prediction. In practice, these offer more than 10× speed-up, and
the parallel training allows PARD to scale to large datasets like MOSES [33].

5 Experiments
We evaluate PARD on 8 diverse benchmark datasets with varying sizes and structural properties,
including both molecular (§5.1) and non-molecular/generic (§5.2) graph generation. A summary of
the datasets and details are in Appx. §A.11. Ablations and runtime measures are in Appx. §A.12.

5.1 Molecular Graph Generation

Datasets. We experiment with three different molecular datasets used across the graph generation
literature: (1) QM9 [34] (2) ZINC250K [23], and (3) MOSES [33] that contains more than 1.9
million graphs. We use a 80%-20% train and test split, and among the train data we split additional
20% as validation. For QM9 and ZINC250K, we generate 10,000 molecules for stand-alone
evaluation, and on MOSES we generate 25,000 molecules.

Baselines. The literature has not been consistent in evaluating molecule generation on well-adopted
benchmark datasets and metrics. Among baselines, DiGress [44] stands out as the most competitive.
We also compare to many other baselines shown in tables, such as GDSS [24] and GraphARM [25].

Metrics. The literature has adopted a number of different evaluation metrics that are not consistent
across datasets. Most common ones include Validity (↑) , Uniqueness (↑) (frac. of valid molecules
that are unique), and Novelty (↑) (frac. of valid molecules that are not included in the training set).
For QM9, following earlier work [44], we report additional evaluations w.r.t. Atom Stability (↑) and
Molecule Stability (↑), as defined by [22], whereas Novelty is not reported as explained in [44]. On
ZINC250K and MOSES, we also measure the Fréchet ChemNet Distance (FCD) (↓) between the
generated and the training samples, which is based on the embedding learned by ChemNet [27]. For
MOSES, there are three additional measures: Filter (↑) score is the fraction of molecules passing the
same filters as the test set, SNN (↑) evaluates nearest neighbor similarity using Tanimoto Distance,
and Scaffold similarity (↑) analyzes the occurrence of Bemis-Murcko scaffolds [33].
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Table 1: Generation quality on QM9 with explict
hydrogens.
Model Valid. ↑ Uni. ↑ Atom.↑ Mol. ↑
Dataset (optimal) 97.8 100 98.5 87.0

ConGress 86.7 98.4 97.2 69.5
DiGress (uniform) 89.8 97.8 97.3 70.5
DiGress (marginal) 92.3 97.9 97.3 66.8
DiGress (marg. + feat.) 95.4 97.6 98.1 79.8

PARD (no feat.) 97.5 95.8 98.4 86.1

Table 2: Generation quality on ZINC250K.
Model Validity ↑ FCD ↓ Uni. ↑ Model Size
EDP-GNN 82.97 16.74 99.79 0.09M
GraphEBM 5.29 35.47 98.79 -
SPECTRE 90.20 18.44 67.05 -
GDSS 97.01 14.66 99.64 0.37M
GraphArm 88.23 16.26 99.46 -
DiGress 91.02 23.06 81.23 18.43M
SwinGNN-L 90.68 1.99 99.73 35.91M

PARD 95.23 1.98 99.99 4.1M

Results. Table 1 shows generation evaluation results on QM9, where the baseline results are sourced
from [44]. PARD outperforms DiGress and variants that do not use any auxiliary features, with
slightly lower Uniqueness. What is notable is that PARD, without using any extra features, achieves a
similar performance gap against DiGress that uses specialized extra features. Table 2 shows PARD’s
performance on ZINC250K, with baseline results carried over from [25] and [46]. PARD achieves
the best Uniqueness, stands out in FCD alongside SwinGNN [46], and is the runner-up w.r.t. Validity.

Table 3: Generation quality on MOSES. The top three methods use hard-coded rules (not highlight).
Model Val. ↑ Uni. ↑ Novel. ↑ Filters ↑ FCD ↓ SNN ↑ Scaf. ↑

VAE 97.7 99.8 69.5 99.7 0.57 0.58 5.9
JT-VAE 100 100 99.9 97.8 1.00 0.53 10.0
GraphINVENT 96.4 99.8 - 95.0 1.22 0.54 12.7

ConGress 83.4 99.9 96.4 94.8 1.48 0.50 16.4
DiGress 85.7 100 95.0 97.1 1.19 0.52 14.8

PARD 86.8 100 78.2 99.0 1.00 0.56 2.2

Finally, Table 3 shows generation quality on the largest dataset MOSES. We mainly compare with
DiGress and its variants, which has been the only general-purpose generative model in the literature
that is not based on molecular fragments or SMILES strings. Baselines are sourced from [44]. While
other specialized models, excluding PARD and DiGress, have hard-coded rules to ensure high Validity,
PARD outperforms those on several other metrics including FCD and SNN, and achives competitive
performance on others. Again, it is notable here that PARD, without relying on any auxiliary features,
achieves similarly competitive results as with DiGress which utilizes extra features.

5.2 Generic Graph Generation

Table 4: Generation quality on generic graphs. All metrics are based on generated-to-test set MMD
distances, the lower the better. Top performance is in bold, and Runner-up is underlined.

COMMUNITY-SMALL CAVEMAN CORA BREAST GRID

Model Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit

GraphRNN 0.080 0.120 0.040 0.371 1.035 0.033 1.689 0.608 0.308 0.103 0.138 0.005 0.064 0.043 0.021
GRAN 0.060 0.110 0.050 0.043 0.130 0.018 0.125 0.272 0.127 0.073 0.413 0.010 - - -
EDP-GNN 0.053 0.144 0.026 0.032 0.168 0.030 0.093 0.269 0.062 0.131 0.038 0.019 0.455 0.238 0.328
GDSS 0.045 0.086 0.007 0.019 0.048 0.006 0.160 0.376 0.187 0.113 0.020 0.003 0.111 0.005 0.070
GraphArm 0.034 0.082 0.004 0.039 0.028 0.018 0.273 0.138 0.105 0.036 0.041 0.002 - - -
DiGress 0.047 0.041 0.026 0.019 0.040 0.003 0.044 0.042 0.223 0.152 0.024 0.008 - - -

PARD 0.023 0.071 0.012 0.002 0.047 0.00003 0.0003 0.003 0.0097 0.044 0.024 0.0003 0.028 0.002 0.029

Datasets. We use five generic graph datasets with various structure and semantic: (1) COMMUNITY-
SMALL [48], (2) CAVEMAN [47], (3) CORA [35], (4) BREAST [15], and (5) GRID [48]. We split each
dataset into 80%-20% train-test, and randomly sample 20% of training graphs for validation. We
generate the same number of samples as the test set. Notice that GRID contains graphs with 100∼400
nodes, which is relatively large for diffusion models. There are lots of symmetries inside, hence it is
difficult to capture all dependencies with permutation-equivariant models.

Baselines. We mainly compare against the latest general-purpose GraphArm [25], which reported
DiGress [44] and GDSS [24] as top two most competitive, along with several other baselines.

Metrics. We follow [48] to measure generation quality using the maximum mean discrepancy
(MMD) as a distribution distance between the generated graphs and the test graphs (↓), as pertain to
distributions of (i) Degree, (ii) Clustering coefficient, and (iii) occurrence count of all Orbits.
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Results. Table 4 provides the generation results of PARD against the baselines as sourced from [25].
PARD shows outstanding performance achieving SOTA or close runner-up results, while none of the
baselines shows as consistent performance across datasets and metrics.

5.3 Ablation Study

Q1: do we really need AR in diffusion, given diffusion is already permutation-invariant?

In DiGress [44], we observed that pure diffusion, while being permutation-invariant, requires (1)
many sampling/denoising steps to break symmetries and (2) additional features like eigenvectors to
further break symmetry. This shows that directly capturing the FULL joint distribution and solving
the transformation difficulty (in Sec. 3.3) via diffusion is challenging. Additionally, AR methods still
dominate LLMs, indicating their potential to benefit diffusion models. To quantitatively verify our
analysis, we perform an ablation study on the maximum number of hops, Kh, which controls the
extent of autoregression (AR). When Kh = 0, all nodes have a fixed degree of 1, resulting in a single
block per graph, equivalent to full diffusion without AR. As Kh increases, more blocks are generated
with smaller average block sizes, indicating a greater number of AR steps.

Table 5: Ablation study on QM9 with varying maximum hops while keeping the total diffusion steps
fixed (first two parts). The last part examines the effect of increasing steps for the no AR case.

Setting No AR With AR No AR, ↑ steps
Total diffusion steps 140 140 280 490
Maximum hops 0 1 2 3 0 0
Average number of blocks 1 4.3 5.6 7.75 1 1
Diffusion steps per block 140 32 25 20 280 490

Validity 93.8 97.1 96.7 97.0 94.3 95.2
Uniqueness 96.9 96.5 96.2 96.1 96.5 96.9
Mol stability 76.4 86.1 85.4 86.3 79.3 79.2
Atom Stability 97.7 98.3 98.3 98.4 97.9 98.0

Table 5 shows the result of the controlled experiment with 140 total diffusion steps across all
trials, using the same model architecture, diffusion algorithm, and training settings. The significant
improvement from Kh = 0 to Kh = 1 confirms that our enhancement stems from breaking the full
joint distribution into several conditional distributions. Furthermore, adding more diffusion steps to
full diffusion approach does not close the gap to AR enhanced diffusion, indicates the necessary of
combining AR and diffusion.

Q2: how does model architecture affect performance?

Table 6: Results for QM9 dataset with different model architectures with Kh = 3 and 140 total steps.
Backbone Transformer PPGN PPGNTransformer
Validity 26.3 96.6 97.1
Uniqueness 94.5 96.3 96.0
Mol Stability 17.6 84.67 86.2
Atom Stability 81.4 98.2 98.4

Table 6 this indicates that PPGN component is essential for diffusion with autoregression. The design
of combining PPGN and transformer in Sec. 4 further addresses the efficiency of PPGN.

Other ablations: other ablations and runtime measures are in Appx. §A.12

6 Conclusion
We presented PARD, the first permutation-invariant autoregressive diffusion model for graph genera-
tion. PARD decomposes the joint probability of a graph autoregressively into the product of several
block conditional probabilities, by relying on a unique and permutation equivariant structural partial
order. All conditional probabilities are then modeled with a shared discrete diffusion. PARD can be
trained in parallel on all blocks, and efficiently scales to millions of graphs. PARD achieves SOTA
performance on molecular and non-molecular datasets without using any extra features. Notably, we
expect PARD to serve as a cornerstone toward generative foundation modeling for graphs.
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A Appendix
A.1 Variational Lower Bound Derivation

log

∫
q(G1:T |G0)

pθ(G0:T )

q(G1:T |G0)
dG1:T ≥ Eq(G1:T |G0)

[
log pθ(G0:T )− log q(G1:T |G0)

]
= Eq(G1:T |G0)

[
log pθ(G0:T ) +

T∑
t=1

log
pθ(Gt−1|Gt)

q(Gt|Gt−1)

]
= Eq(G1:T |x0)

[
log pθ(GT ) + log
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q(G1|G0)
+

T∑
t=2

log
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q(Gt|Gt−1,G0)

]
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+
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q(Gt−1|Gt,G0)
· q(Gt−1|G0)

q(Gt|G0)

)]
= Eq(G1:T |G0)

[
log pθ(GT ) + log

pθ(G0|G1)

q(G1|G0)
+ log

q(G1|G0)

q(GT |G0)
+

T∑
t=2

log
pθ(Gt−1|Gt)

q(Gt−1|Gt,G0)

]
= Eq(G1:T |G0)

[
log pθ(G0|G1) + log

pθ(GT )

q(GT |G0)
−

T∑
t=2

log
q(Gt−1|Gt,G0)

pθ(Gt−1|Gt)

]
= Eq(G1|G0)

[
log pθ(G0|G1)

]︸ ︷︷ ︸
−L1(θ)

−
T∑

t=2

Eq(Gt|G0)

[
DKL

(
q(Gt−1|Gt,G0)||pθ(Gt−1|Gt

)]︸ ︷︷ ︸
Lt(θ)

−const.

(11)

Using Eq. (1), the first term can simplified as

Eq(G1|G0)[
∑
i

log pθ(v
i
0|G1) +

∑
i,j

log pθ(e
i,j
0 |G1)] , (12)

and similarly, the t-th step loss Lt(θ) is

Eq(Gt|G0)

[∑
i

KL
(
q(vi

t−1|vi
t,v

i
0) || pθ(vi

t−1|Gt

)
+∑

i,j

KL
(
q(ei,jt−1|e

i,j
t , ei,j0 ) || pθ(ei,jt−1|Gt

)]
(13)

A.2 Details of Discrete Diffusion Used in Paper

We closely follow the approach in Zhao et al. [52] to define forward and backward process in discrete
diffusion, and get the formulation of three important distributions, (i) q(Gt|G0) (ii) q(Gt−1|Gt,G0),
and (iii) pθ(Gt−1|Gt), needed for computing negative VLB based loss. In here, we explain the
detailed constructions. Notice that we only use the most basic discrete-time discrete diffusion
formulation in Zhao et al. [52], mainly for improved memory efficiency over other old approaches
like D3PM [3]. Other enhanced techniques in [52] like approximated loss and continuous-time
formulation are not used, to keep the discrete diffusion part simple.

DiGress [44] applies D3PM [3] to define these three terms, our approach is similar. Since all elements
in the forward process are independent as shown in Eq. (1), one can verify that the two terms q(Gt|G0)
and q(Gt−1|Gt,G0) are in the form of a product of independent distributions on each element. For
simplicity, we introduce the formulation for a single element x, with x being vi or ei,j . We assume
each discrete random variable xt has a categorical distribution, i.e. xt ∼ Cat(xt;p) with p ∈ [0, 1]K

and 1⊤p = 1 . One can verify that p(xt = xt) = x⊤
t p, or simply p(xt) = x⊤

t p. As shown in
Hoogeboom et al. [20], Austin et al. [3], the forward process with discrete variables q(xt|xt−1) can
be represented as a transition matrix Qt ∈ [0, 1]K×K such that [Qt]ij = q(xt = ej |xt−1 = ei).
Then,

q(xt|xt−1) = Cat(xt;Q
⊤
t xt−1) . (14)
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Given transition matrices Q1, ..., QT , the forward conditional marginal distribution is

(i) q(xt|x0) = Cat(xt;Q
⊤
t x0),with Qt = Q1...Qt , (15)

and the (t−1)-step posterior distribution can be written as

(ii) q(xt−1|xt,x0) = Cat(xt−1;
Qtxt ⊙Q

⊤
t−1x0

x⊤
t Q

⊤
t x0

) . (16)

See Apdx.§A.3 for the derivation. We have the option to specify node- or edge-specific quantities,
Qv,i

t and Qe,i,j
t , respectively, or allow all nodes and edges to share a common Qv

t and Qe
t . Leveraging

Eq. (15) and Eq. (16), we can precisely determine q(vi
t|vi

0) and q(vi
t−1|vi

t,v
i
0) for every node, and a

similar approach can be applied for the edges. To ensure simplicity and a non-informative q(GT |G0)
(see Apdx.§A.4), we choose

Qt = αtI + (1− αt)1m
⊤ (17)

for all nodes and edges, where αt ∈ [0, 1], and m is a uniform distribution (1/Kv for nodes and
1/Ke for edges). Note that DiGress [44] chooses m as the marginal distribution of nodes and edges.
As p(xt−1|xt) =

∑
x0

q(xt−1|xt,x0)p(x0|xt) , the parameterization of pθ(Gt−1|Gt) can use the
relationship, with

(iii) pθ(xt−1|Gt) =
∑
x0

q(xt−1|xt,x0)pθ(x0|Gt) (18)

where x can be any vi or ei,j . With Eq. (18), we can parameterize pθ(x0|G) directly with a neural
network, and compute the negative VLB loss in Eq. (2) exactly, using Eq.s (15), (16) and (18).

A.3 Derivation of q(xt−1|xt, x0)

First, define Qt|s = Qs+1...Qt. Note that Qt|0 = Qt and Qt|t−1 = Qt. Accordingly, we can derive
the following two equalities.

q(xt|xt−1) = Cat(xt;Q
⊤
t xt−1) (19)

q(xt−1|xt,x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
=

Cat(xt;Q
⊤
t xt−1)Cat(xt−1;Q

⊤
t−1x0)

Cat(xt;Q
⊤
t x0)

=
x⊤
t−1Qtxt · x⊤

t−1Q
⊤
t−1x0

x⊤
t Q

⊤
t x0

= x⊤
t−1

Qtxt ⊙Q
⊤
t−1x0

x⊤
t Q

⊤
t x0

= Cat(xt−1;
Qtxt ⊙Q

⊤
t−1x0

x⊤
t Q

⊤
t x0

)

(20)

A.4 Simplification of Transition Matrix

For any transition matrices Q1, ..., QT , which however should be chosen such that every row of
Qt = Qt|0 converge to the same known stationary distribution when t becomes large (i.e. at T ), let
the known stationary distribution be m0 ∼ Cat(m0;m). Then, the constraint can be stated as

lim
t→T

Qt = 1m⊤ . (21)

To achieve the desired convergence on nominal data (which is typical data type in edges and
nodes of graphs), while keeping the flexibility of choosing any categorical stationary distribution
m0 ∼ Cat(m0;m), we define Qt as

Qt = αtI + (1− αt)1m
⊤ , (22)

where αt ∈ [0, 1]. This results in the accumulated transition matrix Qt|s being equal to

Qt|s = αt|sI + (1− αt|s)1m
⊤ ∀t > s , (23)

where αt|s =
∏t

i=s+1 αi. Note that αt = αt|0 = αt|sαs. We achieve Eq. (21) by picking αt such
that limt→T αt = 0.
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A.5 Proof of Theorem 3.2

We prove this for node case. For structurally equivalent edges, the analysis is the same. Assume node
i and node j are structually equivalent, then we can find an automorphism σ ∈ Aut(G) such that
σ(i) = j. For any permutation P ∈ P|G| and an equivariant network f , we have

f(P ⋆ G) = P ⋆ f(G) (24)

Replace P with σ, and using the fact that σ ⋆ G = G. We can get
f(G) = f(σ ⋆ G) = σ ⋆ f(G) (25)

Hence, we get f(G)i = f(G)j , that is two nodes i and j have the same representation.

A.6 Proof of Exchangeable Probability

To prove that pθ(G) is an exchangeable probability, we need to show that for any permutation operator
P with P ⋆ G = (PV,PEP⊤), the probability satisfies pθ(P ⋆ G) = pθ(G). While P is defined
as a group acting on all nodes (|V |) in the graph G, this operator can also be applied directly to
sub-components of G, in such a manner that it permutes only the elements within these components.
We use P to these sub-components directly in the following proof.

Recall that PARD define pθ(G) as

pθ(G) =

KB∏
i=1

pθ

(
G[B1:i] \ G[B1:i−1]

∣∣∣ G[B1:i−1]
)
. (26)

Observe that for a graph G, Bi represents a subset containing certain nodes from G. When G
is represented in its default order G, the subset Bi can be represented as a binary vector mask
∈ {0, 1}|V|, where a value of 1 at the j-th position indicates that the j-th node in G is included in the
subset. Then G[Bi] can be view as indexing nodes and edges from G using mask Bi. As indexing
operation is permutation equivariant, we have P ⋆ (G[B1:i]) = (P ⋆ G)[P ⋆ B1:i]. What is more, Bi
is actually a function of G and can be represented as B1:i(G). This function is actually permutation
equivariant, such that Bi(P ⋆G) = P ⋆Bi(G), as Bi(G) is determined by algorithm 1 solely based on
structural degree information (up to K hops) of each node, where the structural feature is permutation
equivariant.

Then we have
pθ(P ⋆ G)

=

KB∏
i=1

pθ

(
(P ⋆ G)[B1:i(P ⋆ G)] \ (P ⋆ G)[B1:i−1(P ⋆ G)]

∣∣∣ (P ⋆ G)[B1:i−1(P ⋆ G)]
)

=

KB∏
i=1

pθ

(
(P ⋆ G)[P ⋆ B1:i] \ (P ⋆ G)[P ⋆ B1:i−1]

∣∣∣ (P ⋆ G)[P ⋆ B1:i−1]
)

(Prop. 3.1)

=

KB∏
i=1

pθ

(
P ⋆ (G[B1:i]) \ P ⋆ G[B1:i−1]

∣∣∣ P ⋆ (G[B1:i−1])
)

(Indexing’s equivariance)

=

KB∏
i=1

pθ

(
P ⋆ (G[B1:i] \ G[B1:i−1])

∣∣∣ P ⋆ (G[B1:i−1])
)

=

KB∏
i=1

pθ

(
|Bi|

∣∣∣ P ⋆ G[B1:i−1]
)
pθ

(
P ⋆ (G[B1:i] \ G[B1:i−1])

∣∣∣ P ⋆ (G[B1:i−1] ∪ ∅[B1:i])
)

(27)

Notice that we are using a permutation invariant function to approximate pθ

(
|Bi|

∣∣∣ P ⋆ G[B1:i−1]
)

,
hence we have

pθ

(
|Bi|

∣∣∣ P ⋆ G[B1:i−1]
)
= pθ

(
|Bi|

∣∣∣ G[B1:i−1]
)
. (28)
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For the second part, notice that

pθ

(
G[B1:i] \ G[B1:i−1]

∣∣∣ G[B1:i−1] ∪ ∅[B1:i]
)
=∫

pθ

(
H[B1:i−1] ∪

(
G[B1:i] \ G[B1:i−1]

)∣∣∣ G[B1:i−1] ∪ ∅[B1:i]
)
dH[B1:i−1] (29)

Then we have

pθ

(
P ⋆ (G[B1:i] \ G[B1:i−1])

∣∣∣ P ⋆ (G[B1:i−1] ∪ ∅[B1:i])
)

=

∫
pθ

(
H[B1:i−1] ∪ P ⋆

(
G[B1:i] \ G[B1:i−1]

)∣∣∣ P ⋆ (G[B1:i−1] ∪ ∅[B1:i])
)
dH[B1:i−1]

=

∫
pθ

(
P ⋆ H[B1:i−1] ∪ P ⋆

(
G[B1:i] \ G[B1:i−1]

)∣∣∣ P ⋆ (G[B1:i−1] ∪ ∅[B1:i])
)
dP ⋆ H[B1:i−1]

=

∫
pθ

(
P ⋆

(
H[B1:i−1] ∪

(
G[B1:i] \ G[B1:i−1]

))∣∣∣ P ⋆ (G[B1:i−1] ∪ ∅[B1:i])
)
dH[B1:i−1] (30)

Now notice that the probability pθ

(
P ⋆
(
H[B1:i−1]∪

(
G[B1:i]\G[B1:i−1]

))∣∣∣P ⋆(G[B1:i−1]∪∅[B1:i])
)

is actually a conditional distribution from one graph to another graph (with same size), and we can
simplify it as pθ(H|G). As this part is modeled by diffusion model, we prove that this function is
permutation equivariant. That is, for any permutation P ,

pθ(H|G) = pθ(P ⋆ H|P ⋆ G) (31)

Proof. Our diffusion process is using an equivariant model through a markov chain that from G to HT ,
and then from HT to HT−1, ..., Ht to Ht−1, until H1 to H0 = H. Then we have

pθ(H|G) = pθ(H0|G) =

∫
pθ(HT |G)

T∏
t=1

pθ(Ht|Ht−1)dH1:T (32)

Because we are using an shared permutation equivariant model to model all pθ(Ht|Ht−1), we
have pθ(Ht|Ht−1) = pθ(P ⋆ Ht|P ⋆ Ht−1)∀t,P . Also, because we have chosen the distribution
pθ(HT |G), such that all conditioned part from B1:i are the same with input G, and all other left
elements are sampled from isotrophic noise, the distribution pθ(HT |G) is also equivariant with
pθ(HT |G) = pθ(P ⋆ HT |P ⋆ G). Take these properties back we have

pθ(P ⋆ H|P ⋆ G) =

∫
pθ(HT |P ⋆ G)pθ(H1|P ⋆ H0)

T∏
t=2

pθ(Ht|Ht−1)dH1:T

=

∫
pθ(P ⋆ HT |P ⋆ G)pθ(P ⋆ H1|P ⋆ H0)

T∏
t=2

pθ(P ⋆ Ht|P ⋆ Ht−1)dH1:T

=

∫
pθ(HT |G)

T∏
t=1

pθ(Ht|Ht−1)dH1:T

= pθ(H|G) (33)

With the conclusion from Eq. (31), we can apply it to Eq. (30)

pθ

(
P ⋆ (G[B1:i] \ G[B1:i−1])

∣∣∣ P ⋆ (G[B1:i−1] ∪ ∅[B1:i])
)

=

∫
pθ

(
P ⋆

(
H[B1:i−1] ∪

(
G[B1:i] \ G[B1:i−1]

))∣∣∣ P ⋆ (G[B1:i−1] ∪ ∅[B1:i])
)
dH[B1:i−1]

=

∫
pθ

(
H[B1:i−1] ∪

(
G[B1:i] \ G[B1:i−1]

)∣∣∣ G[B1:i−1] ∪ ∅[B1:i]
)
dH[B1:i−1]

= pθ

(
G[B1:i] \ G[B1:i−1]

∣∣∣ G[B1:i−1] ∪ ∅[B1:i]
)

(34)
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Apply Eq. (28) and Eq. (34) to Eq. (27), we can finalize our proof that

pθ(P ⋆ G) =

KB∏
i=1

pθ

(
|Bi|

∣∣∣ P ⋆ G[B1:i−1]
)
pθ

(
P ⋆ (G[B1:i] \ G[B1:i−1])

∣∣∣ P ⋆ (G[B1:i−1] ∪ ∅[B1:i])
)

=

KB∏
i=1

pθ

(
|Bi|

∣∣∣ G[B1:i−1]
)
pθ

(
G[B1:i] \ G[B1:i−1]

∣∣∣ G[B1:i−1] ∪ ∅[B1:i]
)

=

KB∏
i=1

pθ

(
G[B1:i] \ G[B1:i−1]

∣∣∣ G[B1:i−1]
)
= pθ(G)

Hence, our method PARD is a permutation-invariant probability model.

A.7 Definition of Graph Transformation

Definition A.1 (Graph Transformation). Given a labeled graph G = (VG,EG) and a labeled target
graph H = (VH ,EH) that have the same number of nodes, the graph transformation function
f : G→ H is defined such that f(G) = H.

Notice that while the graph transformation function requires input and output graph have the same
graph size, this function is general enough to accommodate any changing of size operation. Specif-
ically, if G has more nodes than H, the function must assign an ’empty’ token to nodes and edges
within G that do not correspond to those in H. Conversely, if G has fewer nodes than H, the function
will augment G with ’empty’ nodes and edges until it matches the size of H. Subsequently, it
transforms this augmented version of G to match H.
Definition A.2 (Equivariant Graph Transformation). An equivariant graph transformation f is a
graph transformation that satisfies f(P ⋆ G) = f(P ⋆ H) for any permutation operation P .

A.8 Algorithms of Training and Generation

We present blocksize prediction algorithm in Algo. 2 and denoising diffusion algorithm in Algo. 3.
Notice while the blocksize network gθ in Algo. 2 and denoising diffusion network fθ in Algo. 3 use
the same subscript parameter θ, the θ essentially represents concatenation of g and f ’s parameters.

Algorithm 2 Train blocksize distribution pθ
(
|Bi|

∣∣ G[B1:i−1]
)

1: Input: G, maximum hop Kh, a network gθ that takes a graph as input and output graph wise
prediction.

2: Get structural partial order function ϕ of G from Algo.1.
3: Using ϕ to get the sequence of node blocks [B1, ...,BKB

] for G.
4: Minimize

∑KB

i=1 CrossEntropy(gθ(G[Bi]), |Bi+1|), with |BKB+1| = 0

Algorithm 3 Train denoising diffusion for distribution pθ

(
G[B1:i] \G[B1:i−1]

∣∣∣ G[B1:i−1]∪ ∅[B1:i]
)

1: Input: G, max time T, maximum hop Kh, a network fθ that inputs a graph and outputs nodes
and edges predictions.

2: Get structural partial order function ϕ of G from Algo.1.
3: Using ϕ to get the sequence of node blocks [B1, ...,BKB

] for G.
4: Sample t ∼ U(1, ..., T )
5: for i = 1, ...,KB do
6: M ← indice mask of G[B1:i] \ G[B1:i−1]

7: Sample a noise graph G̃[B1:i] from qt|0(G[B1:i]) according to Eq. (15)
8: G̃[B1:i]←M ⊙ G̃[B1:i] + (1−M)⊙ G[B1:i]
9: X ← fθ(G̃[B1:i])⊙M

10: Y ← G[B1:i]⊙M
11: li ← Lt(X,Y ) + 0.1 ∗ LCE

t (X,Y ), using Lt in Eq. (2) and LCE
t in Eq. (3).

12: end for
13: Minimize

∑KB

i=1 li. (The for loop can be parallelized. )
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Algorithm 4 Generation

1: Input: blocksize model gθ, diffusion model fθ; first blocksize distribution from TrainSet.
2: G← ∅; i← 1
3: Sample n from the first block’s size distribution.
4: while n > 0 do
5: Add a new block Bi with n nodes into G
6: M ← indice mask of G[B1:i] \ G[B1:i−1]

7: G̃← For nodes and edges within M , sample from noise mn and me.
8: for j = 1 : T do
9: p← fθ(G̃)

10: S ← Sample according to p
11: G̃←M ⊙ S + (1−M)⊙ G̃
12: end for
13: G← G̃
14: n← Sample from gθ(G)
15: i← i+ 1
16: end while
17: Return: G

A.9 Visualization of the PPGN-Transformer Block
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Figure 3: The Architecture of the PPGN-Transformer Block. In (b) and (c) we provide illustrations
of how edge and node features are processed through Transformer and PPGN blocks.

A.10 Details and Derivations of Causal Matrix-Matrix Product

A.10.1 Derivation of causal version matrix product

For any matrix X , let Xi denotes the i-th row of X , and X:,i denotes i-th column of X . Let ⟨·, ·⟩
denotes vector inner product. For normal matrix product AB, we know that

(AB)ij = ⟨Ai,B:,j⟩ (35)
In our causal setting with block ID introduced in main context, the (i, j) position will have its
block ID being max(block_ID(i), block_ID(j)). Hence, the product in Eq. (35) should not use any
information outside of block whose ID is larger than max(block_ID(i), block_ID(j)). Let Oij be
the needed safe output at position (i, j) of the matrix-matrix product, one can verify that the following
uses all information within useable blocks without any information leakage.

Oij = ⟨Ai ⊙ (Mi or Mj),B:,j⟩ (where or denotes elementwise or operation)
= ⟨Ai ⊙ (Mi +Mj −Mi ⊙Mj),B:,j⟩
= ⟨Ai ⊙Mi,Bj⟩+ ⟨Ai,B:,j ⊙Mj⟩ − ⟨Ai ⊙Ai,B:,j ⊙Mj⟩
= ⟨Ai ⊙Mi,Bj⟩+ ⟨Ai,B:,j ⊙M⊤

:,j⟩ − ⟨Ai ⊙Ai,B:,j ⊙M⊤
:,j⟩ (36)

Where mask matrix M satisfies Mi,j = 1 if block_ID(node i) ≥ block_ID(node j) else 0.

Based on Eq. (36), we can rewrite it to matrix operation such that

O = (A⊙M)B +A(B ⊙M⊤)− (A⊙M)(B ⊙M⊤) (37)
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Where the matrix O’s (i, j) position value is just Oij in Eq. (36). Hence we have derived the equation
in Eq. (10).

A.10.2 Discussion of expressivity

While the causal matrix-matrix product makes the training more efficient with parallel support, we
have to acknowledge that it is highly possible that its expressiveness in graph distinguishing ability is
reduced. Hence the causal PPGN should have less expressiveness than the normal PPGN. In fact, we
have found that for symmetry-rich datasets like GRID, sequential training of PARD’s loss is easier to
minimize than parallel training of PARD.

A.10.3 Additional details of parallel training

The previous discussion mainly focuses on preventing information leakage, which is the most critical
aspect of causal parallel training. Another essential component of parallel training is the ability to
output all predictions for subsequent blocks simultaneously. For GPT, no modifications are necessary
for predicting all next tokens, as the next token can simply use the position from the previous token.
However, when predicting the next block given all previous blocks, it’s not feasible to use any
positions within previous blocks to hold the prediction for the next block due to differences in size
and lack of alignment. Therefore, as shown in Eq. (6), a virtual block needs to be augmented to
serve as a prediction placeholder for the next block. For parallel prediction, a virtual block will be
augmented for each block in the graph, with each virtual block having the same block ID as the
corresponding original block. To summarize, for a graph with N nodes, it needs to be expanded to
2N nodes by adding N virtual nodes for parallel training.

A.11 Experiment Details

Table 7: Dataset summary
Name #Graphs |V |avg |E|avg

QM9 133,885 9 19
ZINC250K 249,455 23 50
MOSES 1,936,963 22 47
COMMUNITY-S 200 15.8 75.5
CAVEMAN 200 13.9 68.8
CORA 18,850 51.9 121.2
BREAST 100 55.7 117.0
GRID 100 210 783.0

We use a single RTX-A6000 GPU for all experiments. For discrete diffusion, we follow [52]’s basic
discrete diffusion implementation, where exponential moving average is not enabled. For model
implementation, we use Pytorch Geometric [14], and we implement our combination of PPGN and
Transformer by referencing the code in Maron et al. [30] and Ma et al. [29]. Additionally, we use
Pytorch Lightning [12] for training and keeping the code clean. We use Adam optimizer with cosine
decay learning rate scheduler to train. For diffusion and blocksize prediction, we also input the
embedding of block id and node degree as additional feature, as we have block id computed in
preprocessing. Additionally, it is important to observe that nodes within the same block all have the
same degree. At diffusion stage, we conditional on the predicted degree for the next block to train
diffusion model, where the degree is predicted along with the block size using the same network. We
provide source code and all configuration files at https://github.com/LingxiaoShawn/Pard.

A.12 Ablations and Runtime Measure

How does the sampling steps for diffusion models in PARD impact the performance of graph
generation? To answer it, we conducted a detailed ablation on number of diffusion steps in QM9,
with results in Table. 8. To summarize, too small a number of steps hurt the performance, while too
large doesn’t help improve the performance further. See the table below. Within the table, we have
emphasized a configuration that employs just 140 total diffusion steps. This amount is considerably
less than the steps used by DiGress, yet it dramatically outperforms DiGress.

While graphs are trained with a single, fixed generation path based on ϕ, is the same path being
used in generation? We acknowledge that although each graph undergoes a single decomposition
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Table 8: Comparison of different models on QM9 dataset
Ablation on QM9 PARD DiGress

Average number of blocks 7 7 7 7 7 1
Number of Diffusion Steps Per Block 10 20 40 70 100 500
Total Number of Diffusion Steps 70 140 280 490 700 500
Validity 0.9419 0.9708 0.971 0.973 0.9755 95.4
Uniqueness 0.9676 0.9605 0.9579 0.9544 0.9609 97.6
Mol stability 0.8094 0.8627 0.8625 0.8589 0.8561 79.8
Atom Stability 0.9767 0.9847 0.9844 0.9839 0.9837 98.1

block sequence during training, it is possible for the generation path to differ from the training path.
This discrepancy is attributed to a phenomenon known as exposure bias, a challenge encountered
in autoregressive methods and imitation learning alike. Despite this, we have conducted empirical
analysis to estimate the likelihood of divergence between the generation and training paths. By
sampling 2,000 graphs generated by the model trained on the QM9 dataset, we tracked the generation
path for each graph and compared it to the training path defined by the decomposition block sequence
algorithm. Our findings indicate that 94.7% of the generated samples followed the exact same path
as their corresponding training path.

Runtime comparison. To show that our method doesn’t introduce much runtime overhead, we
report the training time in Table 9 used to achieve the number reported on two datasets: QW9 and
Moses. The training time for DiGress is mentioned in their github. Notice that the training time is
also affected by the machine, we use GPU A6000 in all experiments.

Table 9: Training time comparison on QM9 and Moses datasets
Training Time QM9 Moses

DiGress ∼6h ∼7 days
PARD ∼12h ∼4 days

A.13 Visualization of Generation

A.13.1 QM9

Figure 4: Non curated QM9 (with explicit hydrogens) graphs generated from the PARD trained with
20 steps per block.
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GRID Deg. Clus. Orbit
EDP-GNN 0.455 0.238 0.328

GDSS 0.111 0.005 0.070
PARD 0.028 0.002 0.029

PARD with EigenVec. 0.053 0 0.008
Table 10: Performance comparison of diffusion methods on GRID.

A.13.2 Grid

Figure 5: Non curated grid graphs generated from the PARD trained with 50 steps per block.

Figure 6: Non curated grid graphs generated from the PARD (with eigenvector) trained with 50 steps
per block.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose a new graph diffusion method that integrates autoregressive graph
generation with diffusion. We showcase our method in the main paper with thorough
experiments.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We briefly discuss the limitations of PARD with respect to long training and
sampling times, but we have pointed out potential improvements with for parallel training in
causal transformers.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All our theorems, formulas and proofs in the paper are numbered and ref-
erenced. The assumptions are clearly stated. The proofs are shown in main paper and
appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We introduce a new algorithm and architecture for graph generation tasks. The
detailed explanations on the algorithm, and the experiment details are clearly shown in the
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have publicized our training repository with an anonymous link referenced
in the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We use the same test bed as our benchmarking methods, so the dataset split and
evaluation codes are publicly available. The hyperparameter configurations are discussed in
the appendix as well as in our code library.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide experiment results and evaluations over 10,000-25,000 sampled
graphs, so the numbers are of high confidence.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the memory, running time, sampling time discussions in the main
paper and in appendix. All experiments are running on A6000 GPUs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed the code of ethics.The paper and the code base
preserve anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:[NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All our datasets and benchmarking methods are from publicly available
libraries under proper licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide anonymous code base.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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