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Abstract

Large Language Models (LLMs) have exhibited an impressive ability to perform
In-Context Learning (ICL) from only a few examples. Recent works have indicated
that the functions learned by ICL can be represented through compressed vectors
derived from the transformer. However, the working mechanisms and optimization
of these vectors are yet to be thoroughly explored. In this paper, we address
this gap by presenting a comprehensive analysis of these compressed vectors,
drawing parallels to the parameters trained with gradient descent, and introducing
the concept of state vector. Inspired by the works on model soup and momentum-
based gradient descent, we propose inner and momentum optimization methods
that are applied to refine the state vector progressively as test-time adaptation.
Moreover, we simulate state vector aggregation in the multiple example setting,
where demonstrations comprising numerous examples are usually too lengthy
for regular ICL, and further propose a divide-and-conquer aggregation method
to address this challenge. We conduct extensive experiments using Llama-2 and
GPT-J in both zero-shot setting and few-shot setting. The experimental results show
that our optimization method effectively enhances the state vector and achieves
the state-of-the-art performance on diverse tasks. Code is available at https:
//github.com/HITsz-TMG/ICL-State-Vector

1 Introduction

In-Context Learning (ICL) has emerged as a powerful capability in tandem with the scaling of large
language models (LLMs) [Brown et al., 2020]. By simply conditioning on a few input-label pairs
as demonstrations, LLMs yield a significant improvement and deliver remarkable results in various
downstream Natural Language Processing (NLP) tasks [Wei et al., 2022, Liu et al., 2023a]. For
example, a model prompted with the input “gaot → goat, sakne → snake, brid →” can produce the
output “bird”. Given these successes, it is worthwhile to inquire about the exact internal working
mechanisms of ICL. Considering the opaque operation of ICL within the auto-regressive transformer,
it is plausible that ICL might function as a general mechanism that leverages both demonstrations
and the query to yield the prediction [Dong et al., 2023].

Recently, some studies have found that the ICL mapping function exists in the outputs of the attention
layers or attention heads [Liu et al., 2023b, Dai et al., 2023] when applying causal effects analysis
on a different set of models and tasks, such as the task vector [Hendel et al., 2023] and the function
vector [Todd et al., 2023]. These works show that the functionalities learned through ICL can be
encapsulated in compressed vectors derived from transformers, which then can be used to intervene
in the transformer to handle queries without demonstrations. This revelation suggests the potential
mechanism of ICL that first utilises demonstrations to learn the mapping function from inputs to
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labels in shallow transformer layers, and then uses the ICL function in deeper transformer layers to
make predictions [Hendel et al., 2023]. However, while these compressed vectors encapsulate learned
information in a more condensed form and show significant promise in applying ICL, there still exists
a considerable gap in understanding the operational mechanisms and optimization strategies of these
vectors. This significant gap hinders the further grasping and utilization of ICL.

In this paper, we aim to bridge the existing gap by presenting a comprehensive analysis of compressed
vectors. Specifically, we investigate their similarities with parameters trained via gradient descent and
introduce the formulation of state vector that encapsulates the processing state of ICL stored in the
attention activations. Building on the concept of state vector, and drawing insights from the model
soup [Wortsman et al., 2022] and Polyak momentum-based gradient optimization algorithms [Qian,
1999, Sutskever et al., 2013], we propose inner optimization and momentum optimization strategies
which are progressively applied to enhance the state vector. Moreover, we further exploit the demon-
stration compression capabilities of the state vector to address the practical challenges encountered
when applying ICL in settings with multiple examples, where demonstrations are typically too lengthy
for standard ICL, such as in the 100-shot setting which is prevalent in practice. Specifically, we
introduce a divide-and-conquer aggregation method that effectively aggregates the ICL functions of
these extensive examples. This approach enables us to scale up for processing extended examples
by compressing them into a single state vector. We conduct extensive experiments using Llama-
2 [Touvron et al., 2023] and GPT-J [Wang and Komatsuzaki, 2021] in both zero-shot and few-shot
settings. The experimental results show that our method effectively enhances the state vector and
achieves state-of-the-art performance on diverse tasks. This not only manifests the effectiveness of
our approach but also paves the way for a more comprehensive understanding of ICL.

Our contributions are summarized as follows:

• We delve into the working mechanism of compressed vectors in ICL and highlight their
similarities with parameters trained via gradient descent. Building on this observation, we
propose the formulation of the state vector.

• We propose inner and momentum optimization to progressively refine the state vector as an
efficient test-time adaptation. Additionally, we introduce a divide-and-conquer aggregation
to effectively scale up to large numbers of examples.

• We show the practicality of our proposed methods across a wide range of tasks through
extensive experiments. Our results also offer insights for future research aiming to fully
understand the functionalities of ICL.

2 Related Work

Mechanistic Interpretability. Recent works have focused on the working mechanisms of
ICL [Chan et al., 2022, Xie et al., 2022, Wang et al., 2023]. Olsson et al. [2022] argue that in-
duction heads may be the mechanistic source of general ICL in transformers. Akyürek et al. [2022]
show that transformer-based in-context learners can implicitly implement standard optimization
algorithms on linear models. A mainstream assumption posits that ICL has a similarity with the
gradient descent. von Oswald et al. [2023] demonstrate how a linear attention-only transformer model
can perform a gradient descent-like procedure implicitly. Dai et al. [2023] compare standard gradient
descent based fine-tuning and ICL, and figure out that the transformer attention of ICL exhibits a
dual form of gradient descent-based optimization. Moreover, some works revisit and modify this
theory on the layer causality dependence [Natan et al., 2023] or training batch size [Shen et al., 2023].
In contrast, we focus on the application of the dual form of gradient descent and ICL and present
optimization methods with inspiration from the dual form.

Task Representation. Numerous studies have extensively explored the concept of compressing
various tasks into task representations as a means of effectively manipulating tasks within ICL
ability. Notably, Shao et al. [2023] and Mu et al. [2023] have successfully yielded compositional
task representations by training a composition model. In a slightly different vein, some researchers
have delved into the art of devising methodologies to compose minor parameter adjustments acquired
through task fine-tuning [Ilharco et al., 2022, Panigrahi et al., 2023, Yu et al., 2023, Hu et al., 2024,
Merullo et al., 2023]. An alternative line of research finds that the task representation could be
extracted in ICL [Liu et al., 2023b, Hendel et al., 2023, Todd et al., 2023, Yang et al., 2023]. Different
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from these approaches, our work avoids the need for additional training and focuses more on analysing
why these compressed vectors work and how to improve their performance.

3 Formalization

In this section, we first provide a detailed examination of attention activation which is found to
contain the compressed ICL function by previous works [Hendel et al., 2023, Todd et al., 2023].
Then, we highlight its inherent similarities with parameters trained through gradient descent. Finally,
we introduce the concept of the state vector drawing inspiration from these observations.

A classic template of ICL has the following necessary components: (1) N examples that are used to
form the demonstrations and each example contains an input query X and its corresponding label Y .
(2) Separate tokens S that separate the input query and the label for each example (e.g., →). (3) A
query Xq for prediction. With the above components, the contextual model input of ICL could be
written as follows:

X1,S,Y1,X2,S,Y2, · · · ,XN ,S,YN ,Xq,S.
Here we analyse the attention activation of the last separate token. In the l-th transformer layer, the
output activation al of the attention heads of the last separate token is:

al = WV [X
′;X] softmax

(
(WK [X ′;X])

T
q√

d

)
, (1)

where X ′ denotes the hidden state of demonstrations, X denotes the hidden state of the query and the
last separate token (called zero-shot input), q denotes the attention query vector of the last separate
token, [X ′;X] denotes the matrix concatenation,

√
d is the scaling factor, WK and WV are parameter

weight matrix.

Consistent with previous works [Dai et al., 2023, Natan et al., 2023], we omit the softmax operation
and the scaling factor to approximate standard attention as relaxed linear attention for qualitative
analysis. Consequently, the activation can be simplified as follows:

al ≈ WV [X
′;X] (WK [X ′;X])

T
q

=
(
WV X (WKX)

T
+WV X

′ (WKX ′)
T
)
q

=

(
WZSL +

∑
i

((WV x′i)⊗ (WKx′i))

)
q.

(2)

We define WZSL = WV X (WKX)
T as the initialized parameters since it is the attention result in the

Zero-Shot Learning (ZSL) setting.

To draw a meaningful comparison between attention activation and parameters trained through
gradient descent, we now shift our focus towards analyzing a simple linear transformation represented
by yi = Wxi. Given a loss function L and the learning rate η, the gradient of linear weight is:

∇WL(yi) =
∂L(yi)

∂yi

∂yi

∂W
= ∇yi

L(yi)x
T
i . (3)

Denoting the back-propagated errors as ei = −η∇yi
L, we can get the full batch gradient with

training examples:
∆WGD =

∑
i

ei ⊗ x′
i, (4)

where x′
i is the input training examples. Hence, in the previous Eqn. 2, if we substitute WKx′i as

training examples, and take WV x′i ≈ ei corresponding to some meta gradients [Dai et al., 2023,
Natan et al., 2023]. The activation can be written as:

al =

(
WZSL +

∑
i

ei ⊗WKx′i

)
q = (WZSL +∆WGD)q. (5)

Hence, it can be inferred that the output activation al can be regarded as parameters trained via
gradient descent which utilizes the demonstrations as training instances.
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With the above dual form between activation and trained parameters, and in light of observations that
transformers tend to learn the ICL function primarily in their first L layers [Wang et al., 2023], we
have the following hypothesis: During the process of ICL, the first L layers progressively update the
flow of information using each example in the demonstration through forward computation. The
processing state of ICL is then stored within the activation of the attention head. The subsequent
layers access and utilize the processing state to reinstate the ICL function, which is used implicitly for
predicting the queries. Therefore we concatenate the activation in the initial L layers and introduce
the notation of the state vector:

VL
N =

L∥∥∥
l=1

al, (6)

where L is the number of layers and N is the number of examples in the demonstration. ∥ denotes the
concatenation operation. Note that we have a completely different construction strategy and usage
compared to the function vector [Todd et al., 2023]. Although the task vector [Hendel et al., 2023]
may be functionally equivalent in the forward process, the proposed state vector differs significantly
in its integration into the model, making it easier and more effective to analyse and interpret.

4 Method
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Figure 1: The overall framework of the proposed state vector. The state vectors are extracted from the output
activations of attention heads. These state vectors are progressively optimized by inner optimization and
momentum optimization, or be aggregated through a divide-and-conquer (D&C) aggregation. Finally, the
processed state vector is utilized to intervene the inference forward pass.

4.1 Overview

As illustrated in Figure 1, our approach initially extracts the state vector from the attention head
that corresponds to the final separate token in the first L layers using a demonstration and a dummy
query. Then, with the view of treating the state vector as trained parameters, coupled with drawing
inspiration from the model soup and the momentum-based gradient optimization algorithm, we
introduce two methods that progressively optimize the state vector as test-time adaptation [Liang
et al., 2023]: (1) inner optimization (§4.2) and (2) momentum optimization (§4.3). Moreover, we
propose a divide-and-conquer (D&C) state vector aggregation method for efficiently compressing the
ICL function in the multiple example setting (§4.4).

After the state vector optimization or aggregation, we utilize the processed state vector to intervene
the model during the forward inference pass. In particular, we first input a test query in the zero-shot
setting or with the demonstration in the few-shot setting. During the forward pass in the first L layers,
we replace the attention activation of the last separate token with the corresponding activation in
the state vector. In other words, the state vector is leveraged to intervene in the output of the first
L transformer layers, blocking the attention of the last separate token to the previous context. With
state vector intervention, the transformer learns the ICL function from the processing state stored in
the state vector, and continues to make the prediction on the test query.
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4.2 Inner Optimization

Inspired by the works on the model soup [Wortsman et al., 2022, Chronopoulou et al., 2023] which
show that weight-space averaging not only yields performance improvement but also often enhances
robustness, we thus ask the following research question (RQ1): Is it possible to optimize our state
vector using the model soup approach? To explore this question, we propose an inner optimization
method to improve the effectiveness and robustness of state vector. Specifically, we not only extract
the state vector in each separate token of the dummy query but also extract the state vector from each
example. Formally, with a forward pass in an N shot ICL setting, we extract the N state vector VL

i
(1 ≤ i ≤ N ) from last N separate token. Subsequently, we apply a uniform averaging process to
these state vectors as follows:

VL

N =
1

N

N∑
i=1

VL
i , (7)

where VL

N is the inner optimized state vector, which can be directly utilized for inference intervention
or serves as the initial state vector for later momentum optimization.

4.3 Momentum Optimization

Since we view the state vector as parameters trained gradually through demonstration examples,
the difference between two state vectors with adjacent corresponding separate tokens can also be
regarded as the influence of the middle example, akin to the gradient. Motivated by this understanding,
coupled with extensive studies of the gradient optimization algorithm [Sutskever et al., 2013, Duchi
et al., 2010, Loshchilov and Hutter, 2019], we direct our focus toward a simple momentum-based
gradient optimization algorithm, seeking to answer the following research question (RQ2): Can our
state vector be optimized using momentum-based optimization algorithm? To answer this question,
we propose a momentum optimization. Formally, we first extract the influence of each example by
subtracting two adjacent state vectors:

EL
i = VL

i − VL
i−1, (8)

where EL
i is the influence of i-th (1 < i ≤ N ) example in the early L layer. Then, we apply the

momentum gradient optimization algorithm to obtain optimized influence ẼL
i , and add it to the last

state vector:
V̂L
N = VL

N + ẼL = VL

N + opt([EL
i ]

N
i=1), (9)

where V̂L
N is the momentum optimized state vector and VL

N is the inner optimized state vector. opt(·)
denotes the momentum gradient optimization algorithm. We also explore various other gradient
optimization algorithms in §6.1.

4.4 Divide-and-Conquer Aggregation

In addition to optimizing the state vector to more effectively represent the ICL function from a small
number of examples, we also explore its capacity to encapsulate multiple examples within a single
vector. However, regular ICL can not be directly used on multiple examples due to the context
length limitation of current LLMs. This leads us to investigate the following question (RQ3): Can
we use the state vector to represent multiple examples that are unmanageable for regular ICL? To
address this question, we propose a divide-and-conquer method for state vector aggregation. As
depicted in Figure 1, our approach involves distinct aggregation processes (i.e. the divide stage
and the conquer stage). In the divide stage, examples are randomly divided into groups, termed
grouped demonstrations. Within each group, a random example is selected to serve as a dummy
query, which allows us to extract a group-specific state vector. In the conquer stage, these dummy
queries are paired with their corresponding labels to form input-label pairs. From these input-label
pairs, we form an aggregated demonstration, add an additional dummy query, and subsequently
extract the aggregated state vector. It is worth noting that during the forward pass of aggregated state
vector extraction, we utilise the group-specific state vector to intervene the attention activation of
the separate tokens of their corresponding examples. The divide and conquer approach allows us to
aggregate the ICL function of each grouped demonstration into its respective group-specific state
vector, and subsequently aggregate the ICL function of each group-specific state vector into a single,
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comprehensive aggregated state vector. This aggregated vector is then utilized for interventions
during inference, similarly to the optimized state vector discussed in §4.2 and §4.3. Moreover, in
the few-shot setting, the aggregated demonstrations are treated as inference demonstrations. The
divide-and-conquer approach effectively circumvents the context-length constraints inherent in LLMs,
thereby enabling a more effective and efficient aggregation of information across multiple examples.

5 Experiment

5.1 Setup

We conduct the evaluation across 12 datasets that encompass different domains.

• Linguistics includes Antonym [Nguyen et al., 2017], Capitalize, Present-Past, and Singular-
Plural [Todd et al., 2023], focusing on transformations in the form or meaning of words.

• Translation is represented by the English-French [Lample et al., 2018] dataset, which
involves translating English words into their French counterparts.

• Knowledge comprises Country-Capital [Todd et al., 2023], AG News [Zhang et al., 2015],
Person-Sport, Person-Instrument, Person-Occupation, Product-Company, and Landmark-
Country [Hernandez et al., 2023], which are centred around question-to-answer mappings
for commonsense knowledge queries.

We employ Llama-2-7B and GPT-J-6B as our LLMs, chosen for their moderate model sizes, open-
source and capability for ICL. We also provide the results with larger models (i.e., Llama-2-13B) in
the Appendix H. We use Llama-2-7B as the default model unless otherwise specified. Our method is
orthogonal to the choice of transformer-based decoder-only autoregressive LLMs.

For simplicity evaluation, we restrict to single-token output and use first output token accuracy as the
evaluation metric as in previous work [Hendel et al., 2023, Todd et al., 2023].

5.2 Baseline

In the paper, we compare with the following methods:

• Regular is the baseline for the zero-shot setting that uses only the given query as input,
while ICL baseline [Wei et al., 2022] makes predictions on the label by taking both the
demonstrations and the given query.

• Function vector [Todd et al., 2023] is extracted from attention activation using the causal
mediation method and is then added to the hidden state of certain transformer layers during
inference.

• Task vector [Hendel et al., 2023] is extracted from the hidden state of the separate token
and is leveraged for blocking the layer when inference.

5.3 Inner Optimization(RQ1)

As shown in Table 1, the performance of our inner optimized state vector has a significant improvement
comparing the task vector and function vector in both zero-shot and few-shot settings. Our state
vector with inner optimization. In the zero-shot setting, the inner optimization shows an average
improvement of 10.2% on Llama-2 and 5.9% on GPT-J across six datasets. In the few-shot setting,
the inner optimization also achieves a 1.2% improvement on Llama-2 and 1.7% on GPT-J. The
improvement demonstrates the effectiveness of inner optimization. However, although state vector
(inn.) outperforms task vector, its few-shot performance on some datasets is inferior to the ICL
baseline. We attribute this primarily to the introduction of query information from examples. While
inner optimization enhances task-relevant information for the state vector, it also introduces noise of
other dummy queries, hindering the model’s ability to focus on the current predictive query, thereby
reducing performance. In addition to the performance improvements, our inner optimization approach
also effectively alleviates the phenomenon of high variance in the original task vector in the zero-shot
setting. In practical use, the performance of the task vector is influenced by demonstrations and
dummy queries, leading to weaker robustness. Our proposed inner optimization approach effectively
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Model Method Anym Eng-Fr Pers-Inst Pers-Occ Prod-Comp Land-Cout Average

Llama-2-7B

Zero-shot

Regular 1.0± 0.2 0.1±0.1 0.0±0.0 0.0±0.0 0.4±0.2 0.0±0.0 0.3
Function vector 45.1±2.0 21.6±2.0 11.3±10.7 0.1±0.1 25.6±4.3 32.9±21.6 22.8
Task vector 56.2±2.8 63.2±3.6 61.8±8.4 27.9±15.2 55.5±20.1 57.8±26.3 53.7
State vector (inn.) 61.0±1.0 66.5±2.2 67.4±2.6 42.7±4.2 64.5±10.6 81.0±1.7 63.9
State vector (mom.) 60.4±0.7 67.5±1.8 68.7±1.6 45.6±5.9 71.3±3.6 77.7±1.8 65.2

Few-shot

ICL baseline 64.8±4.8 74.3±0.8 71.7±3.7 56.1±2.7 80.8±0.8 87.0±0.3 72.5
Function vector 54.5±0.9 65.2±1.4 60.8±5.6 54.2±2.2 76.0±1.3 84.2±2.9 65.8
Task vector 65.7±1.8 73.8±0.9 66.6±5.2 56.4±2.3 81.9±1.8 86.7±0.9 71.8
State vector (inn.) 66.2±1.6 74.6±0.9 70.1±4.3 57.0±2.2 82.8±1.6 87.5±0.9 73.0
State vector (mom.) 65.8±3.7 74.3±1.1 74.9±2.9 58.2±0.4 82.0±1.0 87.6±0.3 73.8

GPT-J-6B

Zero-shot

Regular 8.1±0.6 7.2±0.6 0.0±0.0 0.0±0.0 1.9±0.5 0.9±0.2 3.0
Function vector 33.1±1.8 29.1±8.5 4.1±5.8 11.1±2.3 46.3±5.7 22.5±10.2 24.4
Task vector 23.6±3.8 32.2±5.1 44.4±5.0 28.3±18.6 43.8±5.7 41.3±12.3 35.6
State vector (inn.) 33.4±1.9 31.7±3.8 49.3±2.0 30.0±6.2 42.8±4.3 61.9±1.6 41.5
State vector (mom.) 31.1±1.0 35.1±2.4 50.3±3.0 42.4±1.5 44.2±1.5 60.3±0.9 43.9

Few-shot

ICL baseline 59.2±1.4 69.9±2.0 44.7±6.7 29.3±1.0 62.5±1.0 69.3±0.5 55.8
Function vector 56.4±1.9 65.8±1.9 49.1±2.2 30.3±1.9 58.5±3.3 69.2±0.6 54.9
Task vector 58.5±1.6 70.6±1.2 42.3±6.4 27.8±3.3 66.0±2.6 63.1±5.3 54.7
State vector (inn.) 58.7±2.2 70.9±1.3 46.5±4.9 29.4±1.7 66.3±2.1 66.4±2.8 56.4
State vector (mom.) 59.6±1.4 70.1±2.2 51.9±2.4 30.4±1.1 63.8±0.8 68.6±0.3 57.4

Table 1: Performance of state vector optimization. The best results in the zero shot setting are in underline and
the best results in the few shot setting are in bold. The result of basic state vector is mathematically equivalent to
task vector. Note that we only present the results across six tasks here and leave the rest in the Appendix. We
also report standard deviation and the results are passed with significance test (p < .05).
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Figure 2: Performance of aggregation across number of examples. Avg. denotes the average aggregation baseline
and D&C. denotes the divide-and-conquer aggregation. The X axis represents the number of examples, and the
Y axis represents the accuracy.

mitigates this issue, similarly motivated as the model averaging method, thereby enhancing the
robustness of the state vector.

5.4 Momentum Optimization (RQ2)

As depicted in Table 1, building upon the inner optimized state vector, our proposed momentum
optimization algorithm further enhances the effectiveness of the state vector, achieving the best
performance on average in all settings. In the zero-shot setting, the momentum optimization boosts
the performance of the inner-optimized state vector with an average increase of 1.3% on Llama-2 and
2.4% on GPT-J. In the few-shot setting, state vector with momentum optimization achieves a 0.8%
average increase on Llama-2 and 1.0% on GPT-J. This reveals the effectiveness of our momentum
optimization. With the combination of inner optimization and momentum optimization, our state
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Method Zero-shot Few-shot
ICL baseline 0.2± 0.4 71.0± 10.8

Task vector 52.9± 9.4 68.5± 10.5

State vector (mom.) 65.2± 10.2 72.2± 10.6

State vector (adag.) 11.7± 12.0 16.1± 10.2

State vector (rms.) 0.8± 0.9 1.5± 1.0

State vector (adam.) 6.7± 6.1 10.6± 8.5

Table 2: Performance comparison of gradient opti-
mization algorithms. The method means the optimiza-
tion algorithm applied to the opt(·) in Eqn. 9.
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Figure 3: Average zero-shot performance across six
datasets for each choice of the intermediate layer L.
The solid line means the average value, while the
shaded area indicates the standard deviation.

vector (mom.) surpasses the original variant, showcasing a remarkable improvement of 11.5%
for Llama-2 and 8.3% for GPT-J in the zero-shot setting. In the few-shot setting, our state vector
(mom.) still outperforms the task vector with a 2.0% improvement for Llama-2 and 2.7% for GPT-J.
Furthermore, without inputting demonstration during inference, the state vector (mom.) achieves an
impressive 90% ICL performance on Llama-2 and 78% ICL performance on GPT-J. When compared
to ICL with the same examples as the demonstration, state vector (mom.) outperforms ICL in both
Llama-2 and GPT-J. These improvements verify the effectiveness of our progressive optimization
strategy. Note that applying momentum optimization directly to task vectors does not yield average
improvements across tasks in our preliminary experiment. We speculate that this inconsistency stems
from the poor robustness of the task vectors, which hinders the stable optimization by momentum
optimization and leads to poor performance in some tasks.

5.5 Divide-and-Conquer Aggregation (RQ3)

In this experiment, we explore the performance of D&C state vector aggregation across varying
numbers of examples. Besides the regular and ICL baseline mentioned, we introduce average
aggregation as a strong baseline. This approach first extracts state vectors from the example group
and subsequently employs their mathematical average for aggregation. We compare our D&C
aggregation method with the baseline ranging from 10 to 100 examples across two models. Due to
limited computational resources, we were not able to do an exhaustive search over all datasets. Thus,
we only present the results for four tasks.

As illustrated in the Figure 2, both the D&C aggregation and average aggregation exhibit similar
trends in both few-shot and zero-shot settings. The performance of both aggregation methods initially
falls short of the ICL baseline. However, their performance boosts when examples increase. The initial
poor performance can be attributed to the limited number of state vectors. Additionally, although the
performance of the D&C aggregation initially falls behind that of the average aggregation, it exhibits
a more substantial performance improvement when examples increase, ultimately outperforming
average aggregation in the multiple example setting, highlighting the efficiency of D&C aggregation.

6 Analysis

6.1 Ablation with Other Optimization Methods

We present an ablation study to investigate various classical gradient optimization algorithms, aiming
to delve deeper into the inner state vector optimization. We compare the momentum-based gradient
optimization algorithm with following additional first-order gradient optimization algorithms: Ada-
grad (adag.) [Duchi et al., 2010], RMSprop (rms.) [Graves, 2013] and Adam(adam.) [Kingma and
Ba, 2015].
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(a) Antonym (b) English-French (c) Product-Company

Figure 4: The 2D PCA visualization of the state vector in the Antonym, English-French, and Product-Company
tasks, where each color represents the state vector corresponding to examples occupying specific positions in the
demonstration, with the position of each point indicated by the adjacent number.

As shown in Table 2, we observe a significant decrease in state vector performance when using first-
order gradient optimization algorithms, in contrast to the more stable results obtained with momentum-
based optimization. This discrepancy suggests that current first-order gradient optimization algorithms
may not be well-suited for state vector optimization. We believe there are two main reasons for this.
First, first-order gradient optimizers typically rely on adaptive learning rates, which depend on a
significant amount of historical information. This can lead to instability and reduced effectiveness,
especially when the available data is limited. Second, first-order gradient optimizers involve more
complex hyper-parameters compared to the Momentum Optimizer, making it more difficult to
identify optimal settings. Our experimental results confirm that directly applying hyper-parameter
configurations commonly used in gradient descent leads to suboptimal performance in state vector
optimization.

6.2 Layer Selection

We investigate the impact of layer selection on the extraction of state vectors in transformer models.
We evaluate the average performance across different datasets in the zero-shot setting, as illustrated
in Figure 3. Our results reveal a dual-phase trend: initially, increasing the number of layers for state
vector extraction improves performance, but this improvement reverses beyond the 14th layer. We
correlate this with the dynamics of ICL function processing in transformers in line with previous
works [Voita et al., 2019, Wang et al., 2023]. In the initial layers, transformers are primarily engaged
in learning and encapsulating the ICL function within state vector, where additional layers enhance
the richness of the functional information in the state vector. In contrast, the later layers prioritize
applying this learned information for prediction tasks. Here, additional layers tend to introduce noise,
especially from predicted labels of dummy queries, which may negatively impact performance.

6.3 Qualitative Study

We provide the visualization by Principal Component Analysis (PCA) of the original state vector in
the Antonym, English-French and Product-Company task. As depicted in Figure 4, we have three
observations: (1) State vectors corresponding to the examples occupying the same position tend to
form distinct clusters. This clustering pattern suggests a high degree of similarity among state vectors
within each example position, despite different contexts. (2) A notable separation is evident between
the state vectors originating from the first example and other position examples. This demarcation
implies that ICL may begin to effectively function with a few examples. (3) An interesting trend is
observable in the movement of these clusters as the example position increases. This trend may be
indicative of an accumulation of task-specific information, where each additional example contributes
to a more nuanced understanding of the model. These findings suggest a progressive enhancement
in the ability of model to internalize and reflect the subtleties of the task at hand. Moreover, these
observations reflect the efficacy of momentum optimization to leverage the observed clustering trend.
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7 Conclusion

In this paper, we reveal that ICL compressed vector can be viewed as parameters trained through
gradient descent on the demonstrations. Then, we introduce the concept of state vector coupled with
two optimization methods to enhance the capability of ICL and conduct comprehensive experiments
across two popular LLMs and multiple tasks to support our claim. Furthermore, our approach
demonstrates the ability to compress context while maintaining lower variance. In the future, we aim
to extend our methods to more complex ICL scenarios and apply them to larger LLMs and call for
more nuanced and realistic studies of ICL.
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A Implementation Details

In this paper, we use random sampling to create subsets for each dataset. Each subset consists of 10
instances for demonstrations and one instance for a dummy query since we employ a 10-shot as the
default ICL setting. The remaining instances are split into test and development sets with a 7:3 ratio.
For experiments with multiple examples, we sample 100 instances instead of 10. We use “→” as the
separate token similar to previous works. We tried other tokens but no significant difference. All
the experiments are reported over 5 random seeds. The inference mechanism with state vector we
describe in §4.1 has a key hyper-parameter (i.e.the layer L). Previous studies [Hendel et al., 2023]
have shown that the choice of L has an influence on performance. We find the best layer for different
tasks via the accuracy of the development set. For the inner optimization in §4.2, we choose the last
seven state vectors to optimize. This is because the early state vectors yield subpar performance,
primarily due to limitations in the available examples. For the momentum optimization, we choose
0.5 as the retention rate for historical momentum from the options of 0.25, 0.5 and 0.75. We run all
the experiments on a single NVIDIA A100 80G GPUs. Each of our experiments consumes between
10 minutes to 8 hours of GPU time, depending on the dataset.

B More Details about Baseline

In this section, we present an in-depth and comprehensive analysis of two baselines (i.e. task
vector [Hendel et al., 2023] and function vector [Todd et al., 2023]). Furthermore, we offer a
more nuanced comparison with our proposed state vector, highlighting the distinct differences and
advantages of our approach.

The task vector is designed to extract the ICL function from a specific layer’s hidden state within
the transformer model. This is achieved by directly replacing the corresponding hidden state during
inference for intervention. On the other hand, Todd et al. [2023] first extracts the ICL function from
the output activations across all attention heads in all transformer layers. These activations are then
prioritized based on their causal effect, quantified by the variance in the model’s output space with
or without individual activation interventions. The mathematical average of the top 10 causal effect
activations is the function vector, which is subsequently added to the hidden state of a specific layer
during the inference stage.

In contrast to these methods, our approach for state vector extraction focuses on procuring the
ICL procession state from the output activations of the attention heads within the first L layers.
During inference, we replace the corresponding activations with optimized ones. While functionally
equivalent to the forward process of the task vector when disregarding state vector optimization (i.e.,
the vanilla state vector), our approach offers enhanced mechanical explainability. This is attributable
to its motivation from the dual form of in-context learning and gradient descent, as explicated in
previous work [Dai et al., 2023, Natan et al., 2023]. Furthermore, inspired by the dual form, we focus
on the further optimization process. On the other hand, unlike the function vector which extracts
activations based on the causal effects resulting from individual interventions, our method is rooted
in the underlying mechanisms of ICL. This strategy not only improves mechanical explainability but
also demonstrates greater performance as evidenced by extensive experiments. Experiments also
show notably poor performance of the function vector on certain knowledge-based datasets, such as
Person-Occupation.

C More Details about Datasets

Here, we describe in detail the tasks that we use to evaluate the state vectors.

• Antonym [Nguyen et al., 2017] contains 2398 word pairs that are antonyms of each other
(e.g. “massive” → “tiny”). We apply the dataset processed version from the function
vector [Todd et al., 2023]. They filter the word pairs where both words can be tokenized as a
single token.

• Capitalize [Todd et al., 2023] contains 813 word pairs that capitalize the first letter of the
given input word (e.g. “plan” → “Plan”).

• Present-Past [Todd et al., 2023] contains 293 word pairs, where simple past tense verbs are
output when given simple present tense verbs (e.g. “adapt” → “adapted”).
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Figure 5: Time efficiency analysis of Llama-2-7B and GPT-J-6B. Inn denotes our state vector with inner
optimization. Mom denotes our state vector with momentum optimization

• Singular-Plural [Todd et al., 2023] contains 205 word pairs, where the plural form of a
given singular word (e.g., “wallet” → “wallets”).

• English-French [Lample et al., 2018] contains 4698 pairs of words, which consists of a
word in English and its translation into French (e.g., “circle” → “cercle”). We apply the
processed version from the function vector[Todd et al., 2023].

• Country-Capital [Todd et al., 2023] contains 197 instances, which output the name of the
capital city of the given country (e.g. “Luanda” → “Angola”).

• AG News [Zhang et al., 2015] contains 7600 instances. Each instance contains the news
headlines and the first few sentences of an article as input, and output corresponding labels
include Business, Science, Sports, and World.

• Person-Sport [Hernandez et al., 2023] contains 318 instances. Each instance contains
the name of a professional athlete and the sport that they play (e.g. “Hank Aaron” →
“basketball”).

• Person-Instrument [Hernandez et al., 2023] contains 510 instances. Each instance contains
the name of a professional musician and the instrument they play (e.g. “Tom Fletcher” →
“guitar”).

• Person-Occupation [Hernandez et al., 2023] contains 821 instances. Each instance contains
the name of a well-known individual and their occupation (e.g. “Tom Fletcher” → “guitar”).

• Product-Company [Hernandez et al., 2023] contains 522 instances. Each instance contains
the name of a commercial product and the company that sells the product (e.g. “Tom
Fletcher” → “guitar”).

• Landmark-Country [Hernandez et al., 2023] contains 836 instances. Each instance con-
tains the name of a landmark and the country in which it is located.

D Efficiency Analysis

In this section, we present an efficiency analysis of two proposed optimization methods. We evaluate
the average inference time using 1000 test data on a single NVIDIA A100 (80G) GPU, covering six
main datasets and 10 random seeds per dataset. The results are illustrated in Figure 5. In the zero-shot
setting, we compress the ICL function into the state vector which eliminates the need to concatenate
demonstrations during inference. As shown in the Figure 5, the proposed inner optimization and
momentum optimization, which, while tripling the inference speed, achieve 89% of the regular ICL
performance on Llama-2-7B and 78% on GPT-J-6B (see Table 1 in the paper). In the few-shot setting,
the proposed inner optimization and momentum optimization achieve better results than standard
ICL at the cost of a minimal loss in inference speed (e.g., 99% and 96%). Moreover, our method
is orthogonal to attention speedup techniques, such as flash attention [Dao et al., 2022] and page
attention [Kwon et al., 2023]. Therefore, our approach can also benefit from the achievements of
these works and achieve further efficiency improvement. We leave the exploration of alternative
enhancement as future work.
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Prompt Llama-2-7B +SV
What instrument did X play? 8.7± 0.7 67.3± 2.8

Can you tell me which musical instrument was played by X? 25.1± 0.7 69.0± 4.3

What was the primary instrument of X in their music career? 17.3± 1.4 70.3± 2.9

Table 3: Text portability of momentum optimized state vector. The templates are provided with “X” replaced by
a query word. “+SV” denotes adding momentum optimized state vector

English-French
Prompt What is the meaning of biography?
Llama-2-7B A written account of someone’s life.

+ state vector It is biographie.

Antonym
Prompt When I think of upright, I think of
Llama-2-7B I think of a person who is standing up

for what they believe in.
+ state vector I think of down.

Table 4: Natural prompt cases with momentum optimized state vector on Antonym task and English-French task.

E Natural Text Completions

In this study, we evaluate the effectiveness of the momentum optimized state vector on natural text
completions. Given a natural text template, we instruct the model to greedily generate 5 tokens with
or without intervention in the zero-shot setting. We use exact match accuracy as the metric. Table 3
shows the result of natural text completions on Llama-2. The performance boosts observed with
the momentum-optimized state vector on the separate tokens indicate that it can guide the model to
generate answers correctly. We include more examples of natural text completions in the Appendix.

F Case Study

In this section, we present a case study shown in Table 4, to demonstrate the efficacy of the momentum-
optimized state vector in natural text completions. Consider the query: “What is the meaning of
biography?”, The vanilla Llama-2 model would directly answer this question. However, when
influenced by an English-French state vector, Llama-2 changes its response, translating the question
into French instead. Similarly, when presented with the sentence “When I think of upright, I think
of”. Influenced by an Antonym state vector, Llama-2 completes the sentence with an anonymous
pattern. These instances exemplify the model learning the ICL function stored in the momentum
optimized state vector, enabling it to generate context relevant to the specified task.

G Full Result

In this section, we provide the additional result with llama-2-7B GPT-J model. We first present the
main result of optimization on the other six tasks except the main result, and the average performance
across all tasks. As shown in Table 5, our inner optimization and momentum optimization effectively
enhance the state vector.

Moreover, we provide the result of state vector aggregation on two additional datasets. As shown
in Figure 6, the trends of both D$C and average aggregation follow a similar pattern to the main
result shown in Figure 2 as the number of examples increases, illustrating the effectiveness of our
aggregation methods.
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Model Method Capitalize Country-Capital Present-Past Singular-Plural Person-Sport AG News Average (All)

Llama-2-7B

Zero-shot

Regular 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.2
Function vector 98.6± 0.4 67.4± 20.7 80.2± 4.5 94.2± 0.6 1.4± 0.5 57.7± 0.9 44.7
Task vector 92.9±6.5 92.8±2.8 95.2±1.7 95.3±1.9 86.9±4.5 47.8±1.3 69.4
State vector (inn.) 99.6±0.4 94.0±1.3 96.5±1.2 97.1±1.0 89.7±3.2 52.0±5.5 76.0
State vector (mom.) 99.1±0.3 94.5±0.7 96.5±0.7 96.6±1.0 88.1±2.6 50.0±8.3 76.3

Few-shot

ICL baseline 99.9±0.1 95.2±1.0 98.3±0.6 98.5±0.1 94.8±0.2 76.0±5.7 83.1
Function vector 99.7± 0.1 82.2± 3.8 94.6± 1.7 97.3± 0.7 88.4± 1.9 80.7±4.6 78.1
Task vector 98.0±1.0 92.9±3.4 98.2±0.5 98.5±1.3 95.4±0.4 64.3±8.4 81.5
State vector (inn.) 99.7±0.1 94.4±1.3 98.3±0.6 98.5±0.4 95.2±0.2 76.0±8.5 83.3
State vector (mom.) 99.3±0.1 94.9±0.7 98.3±0.6 98.8±0.3 95.7±0.2 76.3±5.9 83.8

GPT-J-6B

Zero-shot

Regular 0.3± 0.1 1.8± 1.7 19.4± 2.1 22.7± 2.9 0.0± 0.0 0.0± 0.0 5.2
Function vector 66.3± 8.4 57.0± 9.9 63.1± 2.1 69.3± 2.1 0.8± 1.1 46.4± 4.5 37.4
Task vector 51.0±4.7 31.6±4.8 37.0±5.3 61.6±1.2 46.4±4.0 55.0±3.7 41.4
State vector (inn.) 58.2±1.3 45.5±8.3 47.3±2.0 61.9±0.7 51.7±1.8 59.7±5.4 47.8
State vector (mom.) 58.6±0.8 52.9±6.1 45.9±0.2 62.5±0.7 51.4±1.4 61.3±4.8 49.7

Few-shot

ICL regular 99.3±0.3 88.2±3.4 96.9±0.9 99.3±0.5 82.4±3.5 76.3±1.7 73.1
Function vector 98.6± 0.6 78.6± 5.1 90.8± 1.3 95.9± 0.9 81.6± 1.4 72.7±3.2 70.6
Task vector 99.3±0.3 89.8±2.8 97.3±1.0 99.3±0.5 83.3±3.6 63.3±8.7 71.7
State vector (inn.) 99.4±0.3 89.2±3.6 97.3±0.8 99.3±0.5 83.8±3.5 75.7±1.2 73.6
State vector (mom.) 99.4±0.2 90.1±3.5 97.6±0.9 99.4±0.3 83.7±3.0 78.0±2.2 74.4

Table 5: Additional performance of state vector optimization across other six tasks and average performance of
all task. The best results in the zero shot setting are in underline and the best results in the few shot setting are in
bold. The result of basic state vector is mathematically equivalent to task vector. Average (ALL) represents the
average performance across all 12 datasets.
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(c) GPT-J-6B Person-Occupation
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Figure 6: Additional performance of aggregation across number of examples. Avg. denotes the average
aggregation baseline and D&C. denotes the divide-and-conquer aggregation. The X axis represents the number
of examples, and the Y axis represents the accuracy.

H Result on Larger Model

In this section, we provide the optimization and aggregation results on the larger model. Here we
choose Llama-2-13B and Llama-2-70B (quantized by GPTQ) as their memory requirements suit
our hardware conditions. We present the result of the optimization method on three representative
datasets shown in Table 6, and the result of the aggregation method on four representative datasets
shown in Figure 7 and Figure 8. The result shows that our inner and momentum optimization and
D&C aggregation method could also benefit the state vector on the larger model setting.

I Qualitative Study

In Figure 9, we present a Principal Component Analysis (PCA) visualization of the original state
vector in GPT-J, applied to both the Antonym task and the English-French translation task. Note
that the cluster distributions observed in GPT-J closely mirror those of Llama-2. This similarity
indicates a consistent and progressive enhancement in the model capacity, as originally identified in
Llama-2 in §6.3, which is also shown on GPT-J. Such findings demonstrate the broad applicability
and generalizability of our momentum optimization approach across different models.

J Robustness Analysis

In this appendix, we examine the robustness of the state vector with inner optimization. Specif-
ically, we evaluate the task vector and the inner optimized state vector on the Llama-2 dataset,
focusing on three tasks. We measure and report the performance standard deviation using 100
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Model Method Antonym English-French Person-Instrument Average

Llama-2-13B

Zero-shot

Regular 1.2± 0.7 0.2± 0.2 0.0± 0.0 0.5
Function vector 47.1± 1.6 23.2±4.3 0.1± 0.1 23.5
Task vector 46.0± 2.4 43.1±7.2 58.2±6.3 49.1
State vector (inn.) 47.0± 1.2 50.5±1.9 66.6±3.1 54.7
State vector (mom.) 47.9± 1.1 55.9±3.4 68.5±2.0 57.4

Few-shot

ICL baseline 67.0± 0.1 74.5±1.3 75.0±0.2 72.2
Function vector 65.7± 1.7 75.2±2.6 72.2±0.4 71.3
Task vector 64.8± 1.2 70.5±3.5 70.6±3.1 68.6
State vector (inn.) 65.5± 0.8 75.8±1.6 77.0±1.3 72.8
State vector (mom.) 65.9± 0.7 75.6±0.4 78.6±1.1 73.4

Llama-2-70B

Zero-shot

Regular 2.4±1.5 0.6±0.5 0.0± 0.0 1.0
Function vector 48.3±9.5 29.9±0.3 5.3±0.3 27.8
Task vector 63.3±2.1 48.8±9.5 63.5±6.9 58.5
State vector (inn.) 65.5±1.0 56.0±6.6 67.3±5.6 62.9
State vector (mom.) 66.7±1.1 57.8±5.3 71.9±4.9 65.5

Few-shot

ICL baseline 68.6±2.8 81.6±1.4 80.6±1.9 76.9
Function vector 64.8±2.3 81.7±2.1 82.8±4.1 76.4
Task vector 67.1±2.8 81.5±1.8 82.2±4.7 76.9
State vector (inn.) 68.0±2.8 82.9±1.9 82.6±2.3 77.8
State vector (mom.) 68.5±2.2 82.5±2.1 83.2±2.6 78.1

Table 6: Performance of state vector optimization across three tasks on Llama-2-13B and Llama-2-70B. The
best results in the zero shot setting are in underline and the best results in the few shot setting are in bold. The
result of basic state vector is mathematically equivalent to task vector.
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(c) English-French
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Figure 7: Performance of aggregation on Llama-2-13B across number of examples. Avg. denotes the average
aggregation baseline and D&C. denotes the divide-and-conquer aggregation. The X axis represents the number
of examples, and the Y axis represents the accuracy.

diverse demonstrations or dummy queries. As illustrated in Figure 10, our analysis yields three key
observations:

• The task vector and state vector exhibit greater sensitivity to dummy queries than to demon-
strations. This finding suggests that dummy queries have a greater impact on performance
compared to demonstrations, underscoring the importance of reducing the noise from dummy
queries to enhance state vector performance.

• In the few-shot setting, both the task vector and the state vector (inn.) indicate significantly
greater robustness compared to their performance in the zero-shot setting. There is a
noticeable reduction in the standard deviation across diverse demonstrations or dummy
queries when applying demonstrations during ICL inference. This improvement may be
attributed to the richer ICL function information provided by demonstrations, which in turn
bolsters performance stability.

• Compared to the task vector, our inner optimized state vector shows markedly enhanced
robustness to the variations in demonstrations and dummy queries, in both zero-shot and
few-shot settings. This highlights the effectiveness of our proposed inner optimization in
improving the robustness of the state vector.
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(c) English-French
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(d) Person-Instrument

Figure 8: Performance of aggregation on Llama-2-70B across number of examples. Avg. denotes the average
aggregation baseline and D&C. denotes the divide-and-conquer aggregation. The X axis represents the number
of examples, and the Y axis represents the accuracy.

(a) Antonym (b) English-French

Figure 9: The 2D PCA visualization of the state vector in the Antonym task and English-French task of GPT-J,
where each color represents the state vector corresponding to examples occupying specific positions in the
demonstration and the outlier is of the first order.
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(a) Demonstration Robustness

Antonym Person-Instrument English-French0

1

2

3

4

5

6

7

St
an

da
rd

 D
ev

ia
tio

n

Zero-shot task vector
Zero-shot state vector (inn.)
Few-shot task vector
Few-shot state vector (inn.)
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Figure 10: Standard deviation of performance on Llama-2 across three datasets.

K Limitation

The definition of state vectors is contingent upon specific assumptions and lacks a rigorous theoretical
foundation, which may impact its generalizability and reliability across different NLP tasks. Addi-
tionally, the experiments were conducted on a limited scale with moderate-sized models and datasets.
These constraints may affect the applicability of the results to larger models or more complex datasets.
Further research will explore these aspects to establish a more robust validation of the proposed
methods.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: we provide our discussion of limitations in the Appendix K.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: the paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: the paper fully disclose all the information and details of main experimental
results in the Section 5.1 and Appendix A
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: we provide the instructions, data, codes and scripts of the main experimental
results in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: we provide all the training and test detailed description of the experimental
setup and details in Section 5.1 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: we provide the standard error of the main results in Table 1, Table 5, Table 6,
Table 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: we provide the information on the computer resources in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: the research conducted in the paper fully conforms to the NeurIPS Code of
Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: there is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: all creators and original owners of assets used in the paper, including code,
data, and models, are properly credited, and the licenses and terms of use are explicitly
mentioned and fully respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: this paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: this paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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