
Incorporating Surrogate Gradient Norm to Improve
Offline Optimization Techniques

Manh Cuong Dao, Phi Le Nguyen
Hanoi University of Science and Technology

Cuong.DM242249M@sis.hust.edu.vn,lenp@soict.hust.edu.vn

Thao Nguyen Truong
National Institute of Advanced Industrial Science and Technology

nguyen.truong@aist.go.jp

Trong Nghia Hoang∗

Washington State University
trongnghia.hoang@wsu.edu

Abstract
Offline optimization has recently emerged as an increasingly popular approach
to mitigate the prohibitively expensive cost of online experimentation. The key
idea is to learn a surrogate of the black-box function that underlines the target
experiment using a static (offline) dataset of its previous input-output queries. Such
an approach is, however, fraught with an out-of-distribution issue where the learned
surrogate becomes inaccurate outside the offline data regimes. To mitigate this,
existing offline optimizers have proposed numerous conditioning techniques to
prevent the learned surrogate from being too erratic. Nonetheless, such conditioning
strategies are often specific to particular surrogate or search models, which might
not generalize to a different model choice. This motivates us to develop a model-
agnostic approach instead, which incorporates a notion of model sharpness into
the training loss of the surrogate as a regularizer. Our approach is supported by a
new theoretical analysis demonstrating that reducing surrogate sharpness on the
offline dataset provably reduces its generalized sharpness on unseen data. Our
analysis extends existing theories from bounding generalized prediction loss (on
unseen data) with loss sharpness to bounding the worst-case generalized surrogate
sharpness with its empirical estimate on training data, providing a new perspective
on sharpness regularization. Our extensive experimentation on a diverse range
of optimization tasks also shows that reducing surrogate sharpness often leads to
significant improvement, marking (up to) a noticeable 9.6% performance boost.
Our code is publicly available at https://github.com/cuong-dm/IGNITE.

1 Introduction

A central task in numerous scientific disciplines is to optimize for some material configuration
that maximizes a certain utility metric. Previously, this would incur an expensive and repetitive
experiment process that requires a huge amount of human-labor. To bypass such inefficiencies, a
data-driven approach [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] has recently been adopted. Instead of laboring on a
new set of expensive on-demand experimentation for each new optimization task, we can leverage
past experimentation data to build a parametric model that predicts the outcome of the experiments
themselves. Its parameters are tuned to fit past experimental data and then fixed while optimizing for
the best input.

∗Corresponding authors: Manh Cuong Dao, Trong Nghia Hoang.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

8014 https://doi.org/10.52202/079017-0258

https://github.com/cuong-dm/IGNITE

However, in most applications, offline data is rarely representative of the entire input space. As
a result, the surrogate model’s prediction is often not accurate outside the offline data regime,
potentially overestimating the outputs at sub-optimal input candidates. To mitigate this, existing
offline optimizers have introduced numerous regularizing strategies for either the surrogate or the
search models. For example, [4, 11, 12, 13] and [3] regularize their surrogate models so that their
predictions at inputs outside the offline data regime are pushed down or pushed towards a constant
value. Alternatively, [1] and [2] restrict their search models to regions having certain domain-specific
properties under which sampled inputs probably have high performance.

These strategies therefore depend on the specifics of either the surrogate- or the search procedures to
characterize the out-of-distribution regions or the desirable domain-specific properties. Consequently,
their regularization might not extend to out-of-distribution regions which are not sufficiently specified.
For example, COMs [13] uses an ad-hoc specification that characterizes the out-of-distribution
region in terms of inputs that are reached during the first few iterations of gradient ascent on an
un-regularized surrogate. This only characterizes a local sub-region of a broader out-of-distribution
data regime.

To mitigate such limitations in the regularizing behaviors of prior work, we instead aim to investigate
a more generic approach that is independent of the specifics of the search or surrogate procedures.
For instance, instead of regularizing the behavior of the model on certain input regions, we could
impose constraints on the geometries of its loss landscape such as requiring it to be in a parameter
regime that uniformly produces low loss values [14]. Such regularizing strategies can, therefore, be
incorporated into existing offline optimizers as an additional regularizer to improve their performance.
To substantiate this idea, we have made the following technical contributions:

1. We develop a model-agnostic regularizer (for surrogate training) based on a notion of model
sharpness2. This is characterized in terms of the surrogate’s maximum output change under low-
energy parameter perturbation (i.e., norm-bound perturbation) (Section 3.1). Intuitively, suppose a
surrogate’s prediction does not change substantially within a perturbation neighborhood (i.e., via
adding perturbation to its parameters) that contains the oracle, its predictions are likely to be close to
those of the oracle (see Fig. 1). As such, minimizing this sharpness measure can help suppress the
erratic behavior of the surrogate model at out-of-distribution input.

2. We adopt a practical approximation that interestingly reduces the above surrogate sharpness
measurement to a function of the surrogate’s gradient norm. The surrogate training can then be
augmented into a constrained optimization task whose constraint imposes a user-specified threshold on
the surrogate’s gradient norm. We can then solve it to acquire the optimally regularized surrogate using
existing constrained optimization solvers. The high-level pseudo-code of our proposed algorithms
which incorporate surrogate gradient norms to improve existing offline optimization techniques
(IGNITE) is detailed in Algorithm 1 (Section 3.2).

3. We develop a detailed theoretical analysis to show that reducing surrogate sharpness on the offline
dataset provably reduces its generalized sharpness on unseen data. Our analysis extends existing
theories [14] from bounding generalized prediction loss (on unseen data) with loss sharpness to
bounding the worst-case generalized surrogate sharpness with its empirical estimate on training data,
providing a new perspective on sharpness regularization (Section 4).

4. We demonstrate empirically that incorporating the proposed model-agnostic regularizer into
existing offline optimizers as an additional conditioning component often results in significant
improvement over existing offline optimizers in most cases. This sets the first step towards a new,
synergistic research direction in offline optimization that can potentially support and complement
both existing and future work (Section 5).

For interested readers, a concise review of existing literature is also provided in Section 2.

2 Problem Definition and Related Works

In this section, we will concisely review the preliminaries of offline optimization. Section 2.1 provides
a mathematical formulation of offline optimization, and Section 2.2 summarizes prior works.

2Our sharpness notion is different from that of [14] which is applied to the training loss. Instead, our sharpness
measure is accessed on the surrogate prediction. Empirically, we also notice that surrogate sharpness often
appears to be more effective than loss sharpness in boosting the offline optimization performance (Section 5.3).

2

8015https://doi.org/10.52202/079017-0258

2.1 Problem Definition

Offline optimization is a computational approach to a variety of material engineering tasks that aim
to find a material construction or design that maximizes certain desirable properties. Mathematically,
we assume that there is an oracle function g(x) that maps from a material design x ∈ X to an overall
utility z = g(x) of its property measurements; and we need to find its maxima:

x∗ ≜ argmax
x∈X

g(x) . (1)

However, the key challenge here is that g(x) is inaccessible. Instead, we only have access to an offline
dataset of observations D = {(xi, zi)}ni=1 where zi = g(xi), which denote the past input-output
queries extracted from g(x) in previous experiments. A direct approach to this problem is to learn a
surrogate g(x;ω∗) of g(x) via fitting its parameter ω∗ to the offline dataset,

ω∗ ≜ argmin
ω

LD(ω) ≜ argmin
ω

n∑
i=1

ℓ
(
g(xi;ω), zi

)
, (2)

where ω denotes a parameter candidate of the surrogate and ℓ(g(x;ω), z) denotes the prediction loss
of g(.;ω) on x if its oracle output is z. The (oracle) maxima of g(x) is then approximated via,

x∗ ≜ argmax
x∈X

g(x;ω∗) . (3)

Suppose the surrogate g(x;ω∗)’s prediction is sufficiently accurate over the entire input space,
solving Eq. (3) is all we need. However, in most cases, g(x;ω∗) often predicts erratically outside
the offline data regime, which in turn misleads the optimization towards sub-optimal candidates. To
mitigate this, numerous surrogate or search regularizers have been proposed, as summarized next.

2.2 Related Works

Most existing offline optimization methods have focused on regularizing either the search or the
(surrogate) training procedures. The main focus is to either (1) avoid exploring input regions where
the surrogate’s prediction is not reliable or (2) regularize the prediction behavior of the surrogate at
out-of-distribution input regimes. For example, to regularize the surrogate’s prediction, [13] uses
input candidates found during the first few iterations of gradient updates on un-regularized models to
characterize the out-of-distribution regime. The surrogate can then be re-trained with an additional
regularizer that penalizes high-value predictions at those sampled input candidates.

Alternatively, [11] maximizes the normalized data likelihood to reduce prediction uncertainty, which
also helps suppress erratic prediction at out-of-distribution regime. Existing techniques in model
pre-training and adaptation [3] or transfer learning via co-teaching [15] can also be leveraged to
enforce criteria of local smoothness that encodes a preference for conservative prediction to avoid
overestimating the oracle output. Otherwise, to regularize the search procedure, [1] and [2] focus
instead on learning a generative model of input candidate conditioned their oracle performance.
Input candidates that likely achieve high performance can then be synthesized via conditioning the
generative procedure on high-value oracle output. [1] characterizes such conditioned distribution via
an adversarial zero-sum game. [12] learns a direct inverse mapping from the performance output to
the input design using conditional generative adversarial network [16].

Despite their reported successes, these approaches are still limited by their ad-hoc characterization of
the out-of-distribution regime. As discussed previously in Section 1, the existing characterization of
out-of-distribution input is often based on the specifics of either the surrogate or the search procedures,
which are not guaranteed to sufficiently characterize the entire out-of-distribution data regime. This
motivates us to develop a more generic out-of-distribution characterization (Section 3) that is external
to both the search and surrogate models. Such an approach can be readily incorporated into most
existing offline optimizers to boost their performance (Section 5).

3 Surrogate Regularization with Sharpness Constraint

This section introduces an additional constraint that transforms the original surrogate optimization
in Eq. (2) (Section 3.1) into a constrained optimization problem (COP). The constraint imposes

3

8016 https://doi.org/10.52202/079017-0258

a user-specified upper-bound on the sharpness of the surrogate. Our proposed formulation draws
inspiration from a prior work [14] that aims to minimize the sharpness of the loss function to improve
generalization. However, unlike the original work in [14], where the sharpness concept is applied to
the loss function, we adapt it for the surrogate’s prediction. We find it more suitable since offline
optimization’s search procedure operates on the surrogate landscape instead of the loss landscape.
Moreover, while minimizing loss sharpness [14] can ensure low error for single predictions in the
OOD regime, errors may accumulate over consecutive predictions in a gradient-based search. Our
insight in Section 3.1 (Fig. 1) suggests that such error accumulation can be mitigated by keeping
the surrogate sharpness small during training. Furthermore, we show that the sharpness can be
practically approximated in terms of the surrogate’s gradient norm, which is more tractable. This
allows for direct adoption of existing constrained optimization algorithms [17] to effectively solve for
the desired optimally regularized surrogate (Section 3.2).

(a) (b)

Figure 1: (a) Illustration of surrogate sharpness; (b) Illustration of surrogate sharpness-based offline
optimization: Consider two surrogate parameters ω1 and ω2 where ω1 has a smaller sharpness than
ω2. This means the predictions of the models in the perturbation neighborhood of ω1 will vary less
than those of the models in the perturbation neighborhood of ω2. As such, if both neighborhoods
contain the oracle, the prediction error d1 of ω1 is potentially smaller than the prediction error d2 of
ω2. Consequently, the optimal value of g(x;ω1) is closer to the oracle optimal value than g(x;ω2)’s.

3.1 Surrogate Sharpness

Suppose the oracle lies within the parametric family of the surrogate, there must exist a perturbation
neighborhood of the surrogate’s parameters that contains the oracle. That is, the oracle can be
obtained by adding to the surrogate’s parameters a noise vector in this neighborhood. Now, suppose
the predictions do not change substantially across the models (including both the oracle and surrogate)
in the perturbation neighborhood; the surrogate’s predictions (and optimizers) must be close to those
of the oracle (see Fig. 1). Motivated by this insight, we consider a potential approach to mitigate the
erratic prediction of the surrogate, which is to ensure that its worst-case prediction change across the
perturbation neighborhood is sufficiently small. This is formalized below:

RX (ω) ≜ max
∥δ∥2 ≤ ρ

∣∣∣∣ E
x∈X

[
g(x;ω + δ)

]
− E

x∈X

[
g(x;ω)

]∣∣∣∣ , (4)

where ∥ · ∥2 denotes the ℓ2-norm, and ρ > 0 bounds the maximum norm of the perturbation, which
defines the perturbation neighborhood and can be selected via hyper-parameter tuning (see Section 5.1
and Appendix G.4). To ease the notation, we will omit the subscript and use ∥.∥ to consistently
denote the ℓ2 norm in the rest of this manuscript. We will also refer to RX (ω) in Eq. (4) as the
generalized surrogate sharpness, which can be used to regularize surrogate training,

ω∗ ≜ argmin
ω

LD(ω) s.t. RX (ω) ≤ ϵ′ , (5)

where ϵ′ is a user-specified threshold. Solving Eq. (5) is non-trivial sinceRX (ω) is neither tractable
nor differentiable. To sidestep this, we leverage a theoretical result that will be established later in
Section 4, which (informally) states that with high confidence, the generalized surrogate sharpness

4

8017https://doi.org/10.52202/079017-0258

RX (ω) can be approximated with its empirical estimateRD(ω) in Eq. (16),

RX (ω) ≤
(
ρG(ω) +

1

2
ρ2λmax

)
·

RD(ω) + O

√dim(ω) log
(
n∥ω∥2

)
n

 , (6)

where G(ω) and λmax denote the norm of the expected (parameter) gradient of the surrogate at ω,
and the largest eigenvalue of the (parameter) Hessian of the surrogate’s expected prediction,

G(ω) ≜

∥∥∥∥ E
x∈X

[
∇ωg(x;ω)

]∥∥∥∥ and λmax ≜ max
ω

λmax

(
∇2
ω E
x∈X

[
g(x;ω)

])
. (7)

When n is sufficiently large, (dim(ω) log(n∥ω∥2)/n) 1
2 will be negligibly small. Then, suppose

within the search region for ω (see Assumption 2), G(ω) is bounded by a constant G, we can enforce
RX (ω) ≤ ϵ′ = (ρG+ (1/2)ρ2λmax)ϵ via constraining insteadRD(ω) ≤ ϵ,

ω∗ ≜ argmin
ω

LD(ω) s.t. RD(ω) ≤ ϵ . (8)

To mitigate the non-differentiability ofRD(ω), we further propose a practical approximation which
reducesRD(ω) to a function of the surrogate’s gradient norm ∥∇ωg(x;ω)∥, which is differentiable,
allowing the above COP to be solved effectively with existing constrained optimization algorithms.
This is discussed in the next section.

Remark. Eq. (4) is similar in spirit to the notion of loss sharpness [14] in which the same perturbation
model is used to characterize the sharpness or sensitivity of the loss function, |LD(ω+ δ)−LD(ω)|,
to small changes ∥δ∥ ≤ ρ in the model weights ω. Our work, however, sets a direct focus on the
sensitivity or sharpness of the surrogate’s prediction – Eq. (4) – which results in a better surrogate
regularizer, leading to better empirical performance (see Section 5.3). It also requires a significant
and non-trivial adaptation of the theories presented in [14], as detailed later in Section 4.

3.2 Practical Algorithms

Let h(ω + δ) ≜ Ex∈D[g(x;ω + δ)] and h(ω) ≜ Ex∈D[g(x;ω)]. The surrogate sharpness can be
approximated via the first-order Taylor expansion of h(ω + δ) at ω:

RD(ω) = max
∥δ∥2≤ρ

∣∣∣∣ E
x∈D

[
g(x;ω + δ)

]
− E

x∈D

[
g(x;ω)

]∣∣∣∣
= max

∥δ∥2≤ρ

∣∣∣h(ω + δ)− h(ω)
∣∣∣ ≃ max

∥δ∥2≤ρ

∣∣∣∇ωh(ω)⊤δ∣∣∣ , (9)

Using the Cauchy-Schwartz inequality on the right-hand side of the above and noting that δ can be
selected to make the equality happens,

RD(ω) ≃ max
∥δ∥2≤ρ

∣∣∣∇ωh(ω)⊤δ∣∣∣ = max
∥δ∥2≤ρ

∥∥∇ωh(ω)∥∥× ∥∥δ∥∥ = ρ×
∥∥∇ωh(ω)∥∥ . (10)

Using the above approximation, the COP in Eq. (8) can be rewritten as

ω∗ ≜ argmin
ω

LD(ω) s.t. ρ · ∥∇ωh(ω)∥ ≤ ϵ . (11)

which can be solved via optimizing the corresponding Lagrangian,

ω∗ = argmin
ω

L(ω, λ) where L(ω, λ) ≜ LD(ω) + λ ·
(
ρ ·
∥∥∇ωh(ω)∥∥− ϵ

)
, (12)

with λ > 0 denotes the Lagrange multiplier. This can be solved via our approach below.

IGNITE. We can optimize for both λ and ω using the basic differential multiplier method
(BDMM) [17], which simultaneously gradient ascent for λ and gradient descent for ω, resulting in
the following update rules:

ωt+1 = ωt − ηω ·
(
∇ωLD

(
ωt
)

+ λt · ρ · ∇ω
∥∥∥∇ωh(ωt

)∥∥∥) , (13)

λt+1 = λt + ηλ ·
(
ρ ·
∥∥∥∇ωh (ωt

) ∥∥∥− ϵ
)
, (14)

5

8018 https://doi.org/10.52202/079017-0258

Algorithm 1 IGNITE
Input: offline data D = {(xi, zi)}ni=1; initial surrogate g(x;ω(0)); no. of iterations T ; batch size m; Lagrange
multiplier λ; perturbation radius ρ and scalar r; step sizes ηω and ηλ; threshold ϵ.

1: Initialize ω(1) ← ω(0) and λ(1) ← λ
2: for t← 1 : T do
3: Sample B = {(xi, zi)}mi=1 ∼ D
4: Compute ẑi = g(xi;ω

(t)) for i ∈ [m]
5: Compute g1 = m−1 ∑m

i=1∇ωℓ(ẑi, zi)

6: Compute g2 = m−1 ∑m
i=1∇ω ẑi

7: Compute ω̂ = ω(t) + r · g2/∥g2∥
8: Compute g3 = m−1 ∑m

i=1∇ωg(xi; ω̂)

9: Compute g(t) = g1 + λ(t)ρr−1(g3 − g2)

10: Update ω(t+1) ← ω(t) − ηωg
(t)

11: Update λ(t+1) ← λ(t) + ηλ(ρ∥g2∥ − ϵ)
12: end for
13: return learned surrogate ω(T+1)

where ωt represents the surrogate’s parameter estimate at iteration t, λt is the Lagrange multiplier
estimate at iteration t, ηω is the step size for updating ω, and ηλ is the step size for updating λ.
We name this method IGNITE. We also conduct grid search to select the optimal value for ρ, as
mentioned in Section 5.1.

Remark. As an alternative approach, we can also treat λ as a hyper-parameter and optimize for ω
using gradient descent; we call this method IGNITE-2 . The detailed algorithms, hyper-parameter
selection, and experimental results of IGNITE-2 are reported in Appendix G.2.

Both of the above methods require differentiating ∥∇ωh(ω)∥ with respect to ω, which involves
computing the expensive Hessian of h(ω). Fortunately, this expensive computation can be avoided
by using the gradient approximation technique detailed in Appendix F. To summarize, we provide a
complete pseudo-code of IGNITE in Algorithm 1 whose steps 3-8 implement the approximation in
Eq. (84) and Eq. (85) of Appendix F.

4 Theoretical Analysis

In this section, we will provide a detailed theoretical analysis to substantiate our earlier (informal)
statement in Eq. (6) that with high confidence, reducing the empirical sharpnessRD(ω) on the offline
data will also reduce its generalized sharpnessRX (ω). We will show that this is true (see Theorem 1)
under certain choices and mild assumptions of the surrogate model (see Assumptions 1 and 2).

Assumption 1. The output of the above surrogate function g(x;ω) is bounded within [0, 1].

Assumption 2. λmin

(
∇2
ωE[g(x;ω)]

)
> 0 for all ∥ω∥ ≤ τ for some τ > 0.

We note that the specific bound within [0, 1] in Assumption 1 is meant to ease the technical presen-
tation of our theoretical analysis. Otherwise, it can be extended straightforwardly to any bounded
functions. Furthermore, we also show below that it is indeed possible to find a non-trivial surrogate
function that is bounded and satisfies Assumption 2.

Theorem 1. There exists τ > 0 and ω+, and a non-linear function r(x;ω) such that,

g(x;ω) ≜ r(x;ω+) +
(
ω − ω+

)⊤∇ωr(x;ω+

)
+

1

2

(
ω − ω+

)⊤∇2
ωr
(
x;ω+

)(
ω − ω+

)
(15)

satisfies Assumption 2 and is bounded on {ω | ∥ω∥ ≤ τ}. Detailed derivation of this theorem is
deferred to Appendix A.

For such surrogate functions, their generalized sharpness can be upper-bound by a function of their
empirical sharpness on the offline data. As detailed below, the bound depends on both the size of the
surrogate dim(ω) and the number n of offline data points.

6

8019https://doi.org/10.52202/079017-0258

Theorem 2. For any ρ > 0, m = dim(ω) and 2/(mλmin) ≥ σ2 > 0 with λmin being defined in
Assumption 2, the following holds simultaneously for all g(.;ω) for which Assumption 2 is met,

RX (ω) ≤ 1

σ2mλmin

(
2G(ω)ρ+ λmaxρ

2

)

×

RD(ω) +
1√
n− 1

m log

1 +
∥ω∥2

mσ2

(
1 +

√
log n

m

)2
+ P (n,m,α)

 1
2

 (16)

with probability at least 1− α over the random choice of the offline dataset, and with P (n,m,α) =
2 log(n/α) + 4 log(8n+ 4m). Detailed derivation of this theorem is deferred to Appendix E.

Proof Sketch. For clarity, we will provide below a proof sketch of Theorem 2, which highlights
the key steps in our derivation. Due to limited space, the specific of each step is deferred to the
Appendix E. First, we note that

RX (ω) = max
∥δ∥≤ρ

{
FX (ω + δ) ≜

∣∣∣EX [g(x;ω + δ)]− EX [g(x;ω)]
∣∣∣} , (17)

RD(ω) = max
∥δ∥≤ρ

{
FD(ω + δ) ≜

∣∣∣ED[g(x;ω + δ)]− ED[g(x;ω)]
∣∣∣} . (18)

A relation betweenRX (ω) andRD(ω) can then be derived in three steps:

1. Upper-bound Eδ∼N(0,σ2I)[FX (ω + δ)] with a function of Eδ∼N(0,σ2I)[FD(ω + δ)]. This can be
achieved via a direct application of the PAC-Bayes bound [18] which views the perturbed model
ω + δ as a random hypothesis sampled from the posterior N(ω, σ2I) – see Appendix B.

2. Upper-bound Eδ∼N(0,σ2I)[FD(ω + δ)] with a function ofRD(ω). This can be achieved using a
similar proving technique adopted from [14] – see Appendix C.

3. Find ξ > 0 such thatRX(ω) can be upper-bounded with ξ · Eδ∼N(0,σ2I)[FX (ω + δ)] where ξ is
a small scaling factor. To achieve this, we will find the lower-bound for Eδ∼N(0,σ2I)[FX (ω + δ)]
using the Taylor remainder theorem to expand it around ω, which can be lower-bounded using the
minimum eigenvalue of its Hessian at ω. Using the same approach, we can upper-bound RX(ω)
with the maximum eigenvalue of the same Hessian – see Appendix D.

Finally, we set ξ so that the upper-bound ofRX(ω) is smaller than the multiplication of ξ with the
lower-bound of E[FX (ω+ δ)]. To tighten the bound, we choose the smallest possible value of ξ such
that the bound still holds. Lining up the results of the above steps then shows thatRX (ω) can then
be bounded with a function of ξ · RD(ω). See Appendix E for a complete derivation.

Remark. Note that Theorem 2 is more general than its informal statement in Eq. (6), which can be
reproduced by choosing σ2 = 2/(mλmin) in Eq. (16) to make the bound tightest.

5 Experiments

This section evaluates the efficacy of our proposed method IGNITE in improving state-of-the-art
offline optimizers. We describe our experiment settings in Section 5.1 and report detailed empirical
results in Section 5.2. We also provide additional ablation studies of our method in Section 5.3.

5.1 Benchmarks, Baselines, and Evaluation

Benchmark Tasks. Our explorations focus on four real-world tasks from Design-Bench3 [4],
covering both discrete (TF-Bind-8 and TF-Bind-10) and continuous domains (Ant Morphology
[19] and D’Kitty Morphology [20]).

Baselines. We meticulously curated a diverse set of 11 widely acknowledged offline optimizers
for comparative analysis. This ensemble comprises BO-qEI [4], CbAS [1], RoMA [3], ICT [15],

3We omit domains marked for their high inaccuracy and noise in oracle functions from prior works (ChEMBL,
Hopper, and Superconductor), as well as those deemed excessively expensive to evaluate (NAS).

7

8020 https://doi.org/10.52202/079017-0258

Table 1: The percentage improvement in performance achieved by IGNITE across all tasks and
baseline algorithms at the 100th percentile level is presented. Gain signifies the percentage gain
over the baseline performance (Base).

Ant Morphology D’Kitty Morphology TF Bind 8 TF Bind 10

Algorithms Performance Gain Performance Gain Performance Gain Performance Gain

D(best) 0.565 0.884 0.565 0.884

REINF-
ORCE

Base 0.255 ± 0.036 0.546 ± 0.208 0.929 ± 0.043 0.635 ± 0.028
IGNITE 0.282 ± 0.021 +2.7% 0.642 ± 0.160 +9.6% 0.944 ± 0.030 +1.5% 0.670 ± 0.060 +3.5%

GA Base 0.303 ± 0.027 0.881 ± 0.016 0.980 ± 0.016 0.651 ± 0.033
IGNITE 0.320 ± 0.044 +1.7% 0.886 ± 0.017 +0.5% 0.985 ± 0.010 +0.5% 0.653 ± 0.043 +0.2%

ENS-
MEAN

Base 0.376 ± 0.060 0.888 ± 0.010 0.985 ± 0.009 0.649 ± 0.036
IGNITE 0.435 ± 0.058 +5.9% 0.896 ± 0.013 +0.8% 0.987 ± 0.007 +0.2% 0.662 ± 0.091 +1.3%

ENS-
MIN

Base 0.385 ± 0.067 0.889 ± 0.014 0.980 ± 0.012 0.681 ± 0.095
IGNITE 0.468 ± 0.062 +8.3% 0.897 ± 0.010 +0.8% 0.986 ± 0.010 +0.6% 0.705 ± 0.118 +2.4%

CbAS Base 0.854 ± 0.042 0.895 ± 0.012 0.919 ± 0.044 0.635 ± 0.041
IGNITE 0.859 ± 0.039 +0.5% 0.900 ± 0.015 +0.5% 0.921 ± 0.042 +0.2% 0.652 ± 0.055 +1.7%

MINs Base 0.905 ± 0.023 0.944 ± 0.008 0.892 ± 0.046 0.643 ± 0.062
IGNITE 0.911 ± 0.024 +0.6% 0.945 ± 0.007 +0.1% 0.930 ± 0.041 +3.8% 0.647 ± 0.058 +0.4%

RoMA Base 0.569 ± 0.086 0.821 ± 0.019 0.665 ± 0.000 0.550 ± 0.008
IGNITE 0.615 ± 0.085 +4.6% 0.834 ± 0.012 +1.3% 0.665 ± 0.000 +0.0% 0.553 ± 0.000 +0.3%

COMs Base 0.897 ± 0.031 0.931 ± 0.013 0.955 ± 0.030 0.645 ± 0.038
IGNITE 0.901 ± 0.030 +0.4% 0.934 ± 0.010 +0.3% 0.952 ± 0.043 -0.3% 0.638 ± 0.053 -0.7%

CMA-ES Base 1.955 ± 1.484 0.724 ± 0.002 0.928 ± 0.040 0.668 ± 0.035
IGNITE 1.957 ± 1.910 +0.2% 0.724 ± 0.001 +0.0% 0.927 ± 0.043 -0.1% 0.673 ± 0.044 +0.5%

BO-qEI Base 0.812 ± 0.000 0.896 ± 0.000 0.787 ± 0.112 0.628 ± 0.000
IGNITE 0.812 ± 0.000 +0.0% 0.896 ± 0.000 +0.0% 0.843 ± 0.109 +5.6% 0.628 ± 0.000 +0.0%

ICT Base 0.937 ± 0.023 0.946 ± 0.014 0.892 ± 0.055 0.647 ± 0.025
IGNITE 0.935 ± 0.032 -0.2% 0.962 ± 0.018 +1.6% 0.923 ± 0.038 +3.1% 0.652 ± 0.074 +0.5%

CMA-ES [21], COMs [13], MINs [12], REINFORCE [22], and three variations of gradient ascent
(GA, ENS-MIN, ENS-MEAN), corresponding to vanilla gradient ascent, the min ensemble of
gradient ascent, and the mean ensemble of gradient ascent, respectively.

Evaluation Protocol. To ensure a comprehensive assessment, we follow the methodology in [4].
Each method generates 128 optimized design candidates evaluated by the oracle function. The
candidates’ performances are ranked, and the 50-th, 75-th, and 100-th percentile levels are recorded.
All results are averaged over 16 independent runs to ensure reliability.

Hyper-parameter Configuration. For each baseline algorithm, we carefully configure optimal
hyper-parameters as outlined in [4]. Our method IGNITE introduces five additional hyper-parameters:
λ, ρ, r, ηλ, and ϵ. The hyper-parameter λ, an initial value for the regularizer coefficient, is set to 0.01
through a grid search within {0.0001, 0.001, 0.01}. The hyper-parameters ρ and r are chosen from
{0.01, 0.05, 0.1, 0.2}, with ρ set to 0.05 and r set to 0.05 for IGNITE. Additionally, IGNITE uses
ηλ = 1e− 3 and ϵ = 0.1, which are determined via the experiments in Section 5.3.

5.2 Results and Discussion

In this section, we presented the percentage improvement over baseline performance attained by
IGNITE when it is applied to existing baselines. We have evaluated this at the 50-th, 80-th, and
100-th percentile levels. However, due to limited space, we only report results of the 100-th percentile
level in the main text. The other results are instead deferred to Appendix G.3.

Results on Continuous Tasks: The first two columns of Table 1 show that out of 22 cases involving
11 baseline algorithms across 2 tasks, the IGNITE regularizer enhances baseline performance in
18 cases, with improvements reaching up to 9.6%. In only 1 out of 22 instances IGNITE slightly
decreases performance by 0.2%, which is negligible. Even in cases where performance is not
improved, IGNITE reduces the variance in results from 0.2% to 0.1% for the CMA-ES baseline on
the D’Kitty Morphology task. Additionally, IGNITE helps establish new state-of-the-art (SOTA)

8

8021https://doi.org/10.52202/079017-0258

Figure 2: The percentage improvement in perfor-
mance achieved by IGNITE across different algorithms
(COMS and GA) and tasks (ANT and TF10) in the
changes of (a) threshold ϵ and (b) step size ηλ.

Table 2: Percentage improvement over the
baseline of IGNITE, SAM [14], and L1,
L2 regularization across all tasks.

Algorithms Ant D’Kitty TF
Bind 8

TF
Bind 10

REINF-
ORCE

IGNITE 2.7% 9.6% 1.5% 3.5%
SAM 1.1% 7.9% 1.1% 0.2%
L1-Reg. 1.0% 5.2% 1.0% 0.3%
L2-Reg. 1.0% 4.2% 0.9% 0.1%

GA

IGNITE 1.7% 0.5% 0.5% 0.2%
SAM 0.7% -1.3% 0.2% 1.1%
L1-Reg. 1.0% 0.0% 0.1% -0.8%
L2-Reg. 1.1% -0.7% 0.2% -0.4%

performances in both tasks. For example, in the Ant Morphology task, it raises the SOTA baseline
CMA-ES from 195.5% to 195.7%. In the D’Kitty Morphology task, IGNITE achieves a new SOTA
of 96.2% with the ICT baseline.

Results on Discrete Tasks: The last two columns of Table 1 show the impact of the IGNITE reg-
ularizer on the performance of baseline algorithms in two discrete domains (TF-BIND-8 and TF-
BIND-10). Similar to the continuous tasks, IGNITE significantly enhances baseline performance
in most cases (17 out of 22), with improvements of up to 5.6%. There are only 3 instances where
integrating IGNITE results in a minor performance decrease of up to 0.7%, which is negligible. Ad-
ditionally, in certain instances, IGNITE not only improves baseline performance but also establishes
new state-of-the-art (SOTA) results. For example, on TF-BIND-8 and TF-BIND-10, the original
SOTA performances of 98.5% and 68.1% achieved by ENS-MEAN and ENS-MIN, respectively, are
elevated to 98.7% and 70.5% with the addition of IGNITE , setting new SOTA records.

In summary, IGNITE consistently maintains a high probability of 91% (40 out of 44) of not degrading
baseline performance. There is a high likelihood (79.55% = 35 out of 44 cases) of improving baseline
performance, with an average improvement of approximately 1.91% and a notable peak improvement
of 9.6%. Conversely, IGNITE also exhibits a relatively low probability (9.09% = 4 out of 44 cases)
of decreasing performance, with an average degradation of approximately 0.3% and a minor peak
degradation of 0.7%.Additionally, there is a minor probability (11.36% = 5 out of 44 cases) of
maintaining baseline performance.

5.3 Ablation Experiments

In this section, we conduct additional experiments to assess the sensitivity of two representative
baselines, COMs and GA, when regularized with IGNITE, to variations in hyper-parameters ϵ and
ηλ. Additionally, we perform experiments to compare the efficacy of IGNITE with other commonly
used regularization methods.

Changing threshold ϵ. We assess the performance enhancement of COMs and GA when regularized
with IGNITE using various values of ϵ from the set {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. A high ϵ
value may result in a surrogate that is overly sharp, potentially hampering the search process and
hindering the discovery of optimal designs. Figure 2(a) demonstrates that excessively high ϵ values
lead to negative improvements. Conversely, excessively low ϵ values may cause the regularizer to
dominate the original loss, resulting in a surrogate that is not well-fitted to the offline data. Negative
improvements are observed with ϵ = 0.01 and 0.05 in Figure 2(a). As a result, we determine ϵ = 0.1
as the optimal value based on these observations.

Changing step size ηλ. The step size ηλ controls the rate at which λ is updated during the optimization
process. It’s essential to choose an appropriate step size, avoiding it being either too large or too
small. Figure 2(b) demonstrates that an ηλ value of 1e− 3 yields optimal results.

9

8022 https://doi.org/10.52202/079017-0258

Table 3: Comparison of the surrogate sharp-
ness — approximately ρ∥∇ωh(ω)∥ in Eq.
10 — with and without IGNITE. These sur-
rogate sharpness values were computed on
unseen data, which are design candidates
found by the GA and REINFORCE before
and after being equipped with IGNITE.

Algorithms Ant TF Bind 10

REINFORCE 0.18 0.24
REINFORCE + IGNITE 0.09 0.14

GA 1.88 1.07
GA + IGNITE 1.69 0.63

Table 4: The percentage improvement in performance
achieved by IGNITE at the 100th percentile level for
Superconductor and Chembl tasks.

Algorithms Performance

Super-
con-
ductor

REINFORCE 0.471 ± 0.011
REINFORCE + IGNITE 0.492 ± 0.015 (+2.1%)

GA 0.514 ± 0.021
GA + IGNITE 0.517 ± 0.011 (+0.3%)

Chembl

REINFORCE 0.634 ± 0.001
REINFORCE + IGNITE 0.636 ± 0.008 (+0.2%)

GA 0.635 ± 0.005
GA + IGNITE 0.640 ± 0.009 (+0.5%)

Comparing IGNITE with other regularization methods. We conduct a comparative experiment
to assess the performance improvement achieved by using the IGNITE regularizer compared to
other regularizers, including L1, L2, and SAM [14] (where SAM is considered as a loss sharpness
regularization with a coefficient equal to 1). Table 2 presents the results obtained on two baseline
algorithms, REINFORCE and GA, across four tasks. Overall, IGNITE outperforms the other
regularizers in most cases, with the largest difference compared to the second best being 3.2% with
REINFORCE on the TF-BIND-10 task. Additionally, IGNITE achieves positive improvements
in all cases. Conversely, while the simple regularizers L1 and L2 help boost performance with
REINFORCE, they lead to performance degradation with GA. SAM outperforms IGNITE with the
GA baseline on the TF-BIND-10 task and shows notable improvement with REINFORCE on the
D’Kitty task, though its integration with GA leads to a performance drop. Furthermore, we show
that IGNITE also outperforms SAM when integrating with CbAS and BO-qEI in Appendix H.

Surrogate sharpness on unseen data before and after using IGNITE. We also conduct an
experiment measuring the sharpness of the surrogate model, approximated by ρ∥∇ωh(ω)∥ as defined
in Eq. (10), with and without IGNITE. This sharpness is computed on unseen data points which
are, specifically, the design candidates generated by the GA and REINFORCE baselines. By
testing on these unseen candidates, we simulate the out-of-distribution (OOD) conditions that are
critical in assessing generalization in optimization tasks. Table 3 reports these surrogate sharpness
measurements for some baselines with and without using the IGNITE regularizer. The results
demonstrate consistently that the IGNITE regularizer helps reduce the surrogate sharpness on unseen
data, as anticipated. This reduction indicates that IGNITE is effective in smoothing the surrogate
model’s landscape, leading to better and more stable generalized performance.

Results on tasks with noisy data. To demonstrate IGNITE’s robust performance in scenarios with
noisy oracle, we conducted additional experiments using the GA and REINFORCE baselines on two
benchmark tasks with particularly noisy oracles: Superconductor and Chembl. For each baseline, we
compared its achieved performance with and without the regularizing effect of IGNITE, as shown in
Table 4. Across both tasks, IGNITE helps improve the baseline performance substantially, achieving
up to a 2.1% increase for REINFORCE on the Superconductor task, highlighting IGNITE’s ability
to enhance performance robustness even in settings with noisy oracles.

6 Conclusion
This paper introduces the concept of generalized surrogate sharpness in offline optimization, resulting
in the development of a new regularization technique, IGNITE. Our theoretical analysis demonstrates
that reducing surrogate sharpness on an offline dataset provably decreases its generalized sharpness on
unseen data. Empirically, IGNITE consistently maintains a high probability (91%) of not degrading
baseline performance and a 79.55% likelihood of improving it, with a peak improvement of 9.6%.
Additionally, we believe that our novel technique can be adapted to related domains such as robust
optimization (RO) and reinforcement learning (RL), suggesting potential future research directions.

Acknowledgments and Disclosure of Funding

This work was funded by Vingroup Joint Stock Company (Vingroup JSC),Vingroup, and supported
by Vingroup Innovation Foundation (VINIF) under project code VINIF.2021.DA00128.

10

8023https://doi.org/10.52202/079017-0258

References
[1] David Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling

for robust design. In International conference on machine learning, pages 773–782. PMLR,
2019.

[2] Clara Fannjiang and Jennifer Listgarten. Autofocused oracles for model-based design. Advances
in Neural Information Processing Systems, 33:12945–12956, 2020.

[3] Sihyun Yu, Sungsoo Ahn, Le Song, and Jinwoo Shin. Roma: Robust model adaptation for offline
model-based optimization. Advances in Neural Information Processing Systems, 34:4619–4631,
2021.

[4] Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Bench-
marks for data-driven offline model-based optimization. In International Conference on Machine
Learning, pages 21658–21676. PMLR, 2022.

[5] Manh Cuong Dao, Phi Le Nguyen, Thao Nguyen Truong, and Trong Nghia Hoang. Boosting
offline optimizers with surrogate sensitivity. In Forty-first International Conference on Machine
Learning, 2024.

[6] Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models for
black-box optimization. arXiv preprint arXiv:2306.07180, 2023.

[7] Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Generative pretraining
for black-box optimization. arXiv preprint arXiv:2206.10786, 2022.

[8] Tung Nguyen, Sudhanshu Agrawal, and Aditya Grover. Expt: Synthetic pretraining for few-shot
experimental design. Advances in Neural Information Processing Systems, 36:45856–45869,
2023.

[9] Yassine Chemingui, Aryan Deshwal, Trong Nghia Hoang, and Janardhan Rao Doppa. Offline
model-based optimization via policy-guided gradient search. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 11230–11239, 2024.

[10] Minh Hoang, Azza Fadhel, Aryan Deshwal, Jana Doppa, and Trong Nghia Hoang. Learning
surrogates for offline black-box optimization via gradient matching. In Forty-first International
Conference on Machine Learning, 2024.

[11] Justin Fu and Sergey Levine. Offline model-based optimization via normalized maximum
likelihood estimation. arXiv preprint arXiv:2102.07970, 2021.

[12] Aviral Kumar and Sergey Levine. Model inversion networks for model-based optimization.
Advances in Neural Information Processing Systems, 33:5126–5137, 2020.

[13] Brandon Trabucco, Aviral Kumar, Xinyang Geng, and Sergey Levine. Conservative objective
models for effective offline model-based optimization. In International Conference on Machine
Learning, pages 10358–10368. PMLR, 2021.

[14] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware mini-
mization for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

[15] Ye Yuan, Can Chen, Zixuan Liu, Willie Neiswanger, and Xue Liu. Importance-aware co-
teaching for offline model-based optimization. arXiv preprint arXiv:2309.11600, 2023.

[16] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

[17] John Platt and Alan Barr. Constrained differential optimization. In Neural Information Process-
ing Systems, 1987.

[18] David A McAllester. Pac-bayesian model averaging. In Proceedings of the twelfth annual
conference on Computational learning theory, pages 164–170, 1999.

11

8024 https://doi.org/10.52202/079017-0258

[19] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[20] Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo Ponte, Abhishek Gupta, Sergey Levine,
and Vikash Kumar. Robel: Robotics benchmarks for learning with low-cost robots. In Confer-
ence on robot learning, pages 1300–1313. PMLR, 2020.

[21] Nikolaus Hansen. The cma evolution strategy: a comparing review. Towards a new evolutionary
computation: Advances in the estimation of distribution algorithms, pages 75–102.

[22] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229–256, 1992.

[23] D. Kingma and M. Welling. Auto-Encoding Variational Bayes. In Proc. ICLR, 2013.

[24] John Langford and Rich Caruana. (not) bounding the true error. Advances in Neural Information
Processing Systems, 14, 2001.

[25] Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model
selection. Annals of statistics, pages 1302–1338, 2000.

[26] Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving
generalization in deep learning. In International Conference on Machine Learning, pages
26982–26992. PMLR, 2022.

[27] Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147–
160, 1994.

12

8025https://doi.org/10.52202/079017-0258

Proofs of Theoretical Results and Additional Experimental Results

A Proof of Theorem 1

Part I. Minimum Eigenvalue of Parameter Hessian is Positive.

First, we re-state the choice of our surrogate in Theorem 1,

g(x;ω) ≜ r(x;ω+) +
(
ω − ω+

)⊤∇ωr(x;ω+

)
+

1

2

(
ω − ω+

)⊤∇2
ωr
(
x;ω+

)(
ω − ω+

)
(19)

Regardless of the choice of r(x;ω), differentiating g(x;ω) with respect to ω yields,

∇2
ωg(x;ω) = ∇2

ωr(x;ω+) . (20)

which implies the parameter Hessian of ∇2
ωg(x;ω) is always a constant matrix depending on the

specific choice of r(x;ω) and a reference point ω+. Hence, it follows trivially that,

λmin

(
∇2
ωg(x;ω)

)
= λmin

(
∇2
ωr(x;ω+)

)
. (21)

Therefore, if we can find r(x;ω) such that its parameter Hessian is strictly positive definite at ω+,
the parameter Hessian of g(x;ω) will always be strictly positive definite regardless of ω. This means
g(x;ω) will be λmin-strongly convex in ω with λmin > 0. As a result, its expectation E[g(x;ω)]
will also be λmin-strongly convex with λmin > 0 or equivalently, Assumption 2 holds.

This can be done by choosing r(x;ω) to be any quantile prediction of a linear regressor with a
(pre-trained) random feature map. For example,

r(x;ω) ≜ Eψ
[
ω⊤ψ(x)

]
+

γ

2
Vψ[ω⊤ψ(x)]

1
2 (22)

where ψ(x) ∼ N
(
m(x),diag[v(x)]

)
, (23)

where V[.] denote the variance function. We can interpret the random feature ψ(x) is sampled from
a pre-trained VAE [23] with two deep neural nets characterizing the mean and variance functions,
m(x) and v(x). These functions can be pre-trained and post-processed in whatever ways we need to
control their value ranges. Their parameters are then frozen when we fit r(x;ω) with respect to ω.

To understand the behavior of r(x;ω), we first note below the closed-form expression of Eq. (23),

r(x;ω) = ω⊤m(x) +
γ

2

(
ω⊤Aω

) 1
2 . (24)

where A ≜ diag[v(x)]. Differentiating twice both sides of Eq. (24) at ω+, we have

∇2
ωr(x;ω+) ≜

γ

2
·
(
ω⊤

+Aω+

)− 3
2 A

((
ω⊤

+Aω+

)
I− ω+ω

⊤
+A

)
. (25)

We can now choose ω+ = (1/m)
∑m

i=1 ei where e1, e2, . . . , em are the eigenvectors of A. Since A
is diagonal, these are also the one-hot vectors and their corresponding eigenvalues are the entries on
the diagonal of A – i.e., λi(A) = [A]ii. With this choice, a closed-form expression of ∇2

ωr(x;ω+)
in terms of the entries of A can be derived as follow,

∇2
ωr(x;ω+) ≜

γ

2
·

(
1

m2

m∑
i=1

[A]ii

)− 3
2

AB , (26)

where B is another diagonal matrix with entries [B]ii = m−2(
∑m

ι=1[A]ιι − [A]ii). As such, it is
trivial to see that if we choose the activation unit (i.e., sigmoid or ReLU) for v(x) such that its output
is positive, then the entries of both A and B are positive.

Finally, note that Eq. (26) is a scaled matrix product of two diagonal matrices, A and B, which
will result in a diagonal matrix. Its entries will be positive if the entries of A and B are positive, as
enforced above. This means the minimum eigenvalue of∇2

ωr(x;ω+) is positive as desired.

Part II. Boundedness on {w : ∥w∥2 ≤ τ}.

13

8026 https://doi.org/10.52202/079017-0258

Rearranging terms in the expression of g(x;ω) in Eq. (19),

g(x;ω) ≜ ω⊤
(
∇ωr(x;ω+)−∇2

ωr(x;ω+)ω+

)
+

1

2
ω⊤∇2

ωr(x;ω+)ω + const (27)

where const absorbs all constant vectors (i.e., not dependent on ω). Hence, taking absolute values
for both sides of Eq. (27), we obtain∣∣∣g(x;ω)∣∣∣ = ∣∣∣ω⊤

(
∇ωr(x;ω+)−∇2

ωr(x;ω+)ω+

)
+

1

2
ω⊤∇2

ωr(x;ω+)ω + const
∣∣∣ (28)

≤
∥∥ω∥∥ · ∥∥∇ωr(x;ω+)−∇2

ωr(x;ω+)ω+

∥∥+ 1

2

∣∣ω⊤∇2
ωr(x;ω+)ω

∣∣+ ∥const∥ (29)

≤ τ · ∥const∥+
(
1

2
λmax

(
∇2
ωr(x;ω+)

))
∥ω∥2 + ∥const∥ (30)

≤ τ · ∥const∥+
(
1

2
λmax

(
∇2
ωr(x;ω+)

))
· τ2 + ∥const∥ = const (31)

where Eq. (30) follows from the fact that∇2
ωr(x;ω+) is positive definite by construction. Eq. (31)

follows because (1/2)λmax(∇2
ωr(x;ω+)) is a fixed value that does not change when ω changes.

Thus, g(x;ω) is bounded as expected.

B Upper-Bound Eδ∈N(0,σ2I)[FX (ω + δ)] with Eδ∈N(0,σ2I)[FD(ω + δ)]

Lemma 3. Let us define

FX (ω + δ) ≜
∣∣∣ E
x∈X

[g(x;ω + δ)]− E
x∈X

[g(x;ω)]
∣∣∣ , (32)

FD(ω + δ) ≜
∣∣∣ E
x∈D

[g(x;ω + δ)]− E
x∈D

[g(x;ω)]
∣∣∣ . (33)

The following holds simultaneously for all ω, σ2 > 0, α ∈ (0, 1) and m = dim(ω),

E
δ∼N (0,σ2I)

[FX (ω + δ)] ≤ E
δ∼N (0,σ2I)

[FD(ω + δ)] (34)

+

√√√√ 1
4m log

(
1 +

∥ω∥2
2)

mσ2

)
+ 1

4 + 1
2 log

n
α + log(8n+ 4m)

n− 1

with probability at least 1− α over the (random) choice of the offline dataset D.

Proof. We can view the random perturbation δ as a random hypothesis sampled from a hypothesis
distribution (such as the zero-mean Gaussian N(0, σ2I)) and FX (ω + δ) as its incurred loss. In
this view, for any hypothesis distribution Q, Eδ∼Q[FX (ω + δ)] and Eδ∼Q[FD(ω + δ)] denote the
corresponding generalized and empirical Gibbs losses whose relationship is characterized via the
following classical PAC-Bayesian [18] bound,

E
δ∼Q

[
FX (ω + δ)

]
≤ E

δ∼Q

[
FD(ω + δ)

]
+

√
KL(Q||P) + log(nα)

2(n− 1)
, (35)

which will hold simultaneously for all choices of ω, P and Q. Historically, in probabilistic learning
context, P is often referred to as prior or reference distribution which, for example, encodes domain-
specific information about certain properties of the solution distribution. Then, Q is the posterior,
which can be selected to tighten the bound (hence, reducing the generalized loss).

In our specific context, we will simply use the choices of P and Q as technical vehicles to tighten
the gap between E[FX (ω + δ)] and E[FD(ω + δ)] which will contribute to the gap between our
generalized and empirical surrogate sharpness.

To derive the optimal choices P and Q, we will leverage part of the proof from [14], which starts
with the following fact:√√√√m log

(
1 +

∥ω∥2
2)

mσ2

)
4n

≤

√√√√ 1
4m log

(
1 +

∥ω∥2
2)

mσ2

)
+ 1

4 + 1
2 log

n
α + log(8n+ 4m)

n− 1
. (36)

14

8027https://doi.org/10.52202/079017-0258

This means if ∥ω∥ > ρ2(exp(4n/m)− 1), then√√√√m log
(
1 +

∥ω∥2
2)

mσ2

)
4n

> 1 , (37)

which means the bound gap in Eq. (34) is larger than 1 and under Assumption 1 that the surrogate’s
output – hence, FX (ω)’s – is bounded in [0, 1], Eq. (34) holds trivially.

Hence, to choose P andQ, we can make the assumption that ∥ω∥ ≤ ρ2(exp(4n/m)−1). Now, let us
choose both prior and posterior distribution to be Gaussians, P = N(µP , σ

2
PI) andQ = N(µQ, σ

2
QI).

Their KL divergence can then be computed in closed-form:

KL(Q||P) =
1

2

[
mσ2

Q + ∥µP − µQ∥22
σ2
P

− m + m log

(
σP

σQ

)2
]

. (38)

Naively, we can minimize the above KL divergence via setting the derivative of KL with respect to
σP to zero, and solving for the optimal σP , which gives σP

2 = σ2
Q +m−1∥µP − µQ∥22.

However, for the PAC-Bayes bound to hold, σP must be chosen independent of the rest, so the above
approach does not work. Instead, we can define in advance a prior set of σP and then choose the best
one in this set, following the proof in [24]. We can choose this set as follow:

Given fixed a, b > 0, let S = {c ·exp((1−i)/m)|i ∈ N} be predefined set for σ2
P . If the above bound

holds for σ2
P = c × exp((1 − i)/m) with probability 1 − αi with αi = 6απ−2i−2 for any i ∈ N,

then all above bounds hold simultaneously with probability at least 1−
∑∞

i=1 6απ
−2i−2 = 1− α.

Now, let σQ = σ,µQ = ω,µP = 0, we have

σ2
Q +

∥∥µP − µQ
∥∥2
2
/m = σ2 + ∥ω∥22/m ≤ σ2(1 + exp(4n/m)) (39)

Choosing i = ⌊1−m log((σ2+∥ω∥22/m)/c)⌋, c = σ2(1+exp(4n/m)) and σ2
P = c·exp((1−i)/m),

−m log((σ2 + ∥ω∥22/m)/c) ≤ i ≤ 1−m log((σ2 + ∥ω∥22/m)/c) (40)

(σ2 + ∥ω∥22/m)/c ≤ exp((1− i)/m) ≤ exp(1/m)× (σ2 + ∥ω∥22/m)/c (41)

σ2 + ∥ω∥22/m ≤ c× exp((1− i)/m) ≤ exp(1/m)× (σ2 + ∥ω∥22/m) (42)

σ2 + ∥ω∥22/m ≤ σ2
P ≤ exp(1/m)× (σ2 + ∥ω∥22/m) (43)

Plugging Eq. (43) and Eq. (39) into Eq. (38),

KL(Q||P) =
1

2

[
mσ2

Q + ∥µP − µQ∥22
σ2
P

−m+m log

(
σP

σQ

)2
]

(44)

≤ 1

2

m (σ2 + ∥ω∥22/m
)

σ2 + ∥ω∥22/m
−m+m log

exp
(

1
m

)
×
(
σ2 +

∥ω∥2
2

m

)
σ2

 (45)

=
1

2

m log

exp
(

1
m

)
×
(
σ2 +

∥ω∥2
2

m

)
σ2

 (46)

=
1

2

[
1 +m log

(
1 +
∥ω∥22)
mσ2

Q

)]
(47)

Thus, Eq. (35) holds for each prior (indexed by i) in the above set with probability 1− αi. Hence,
Eq. (35) holds with all prior choices with probability 1−

∑
i αi = 1− α. This allows us to pick the

prior that leads to the tightest bound gap, which is indexed with i = ⌊1−m log((σ2+ ∥ω∥22/m)/c)⌋.
For this choice, we have

E
δ∼Q

[
FX (ω + δ)

]
≤ E

δ∼Q

[
FD(ω + δ)

]
+

√
KL(Q||P) + log(n

αi
)

2(n− 1)
, (48)

15

8028 https://doi.org/10.52202/079017-0258

Plugging Eq. (47) into Eq. (48),

E
δ∼N (0,σ2I)

[FX (ω + δ)] ≤ E
δ∼N (0,σ2I)

[FD(ω + δ)] (49)

+

√√√√ 1
4m log

(
1 +

∥ω∥2
2)

mσ2

)
+ 1

4 + 1
2 log

n
αi

n− 1

Finally, to remove the dependence on i in the above bound, note that

log
n

αi
= log

n

α
+ log

π2i2

6
(50)

≤ log
n

α
+ log

π2(1−m log((σ2 + ∥ω∥22/m)/c))2

6
(51)

≤ log
n

α
+ log

π2m2 log2(c/(σ2 + ∥ω∥22/m))

3
(52)

≤ log
n

α
+ log

π2m2 log2(c/σ2)

3
(53)

≤ log
n

α
+ log

π2m2 log2(1 + exp(4n/m))

3
(54)

≤ log
n

α
+ log

π2m2(2 + 4n/m)2

3
(55)

≤ log
n

α
+ 2 log

π(2m+ 4n)√
3

(56)

≤ log
n

α
+ 2 log(8n+ 4m) (57)

Plugging Eq. (57) into Eq. (49),

E
δ∼N (0,σ2I)

[FX (ω + δ)] ≤ E
δ∼N (0,σ2I)

[FD(ω + δ)] (58)

+

√√√√ 1
4m log

(
1 +

∥ω∥2
2)

mσ2

)
+ 1

4 + 1
2 log

n
α + log(8n+ 4m)

n− 1

which completes our proof.

C Upper-Bound Eδ∈N(0,σ2I)[FX (ω + δ)] withRD(ω)

Lemma 4. Following the same setup in Lemma 3, the following holds simultaneously for all ω,
σ2 > 0, α ∈ (0, 1) and m = dim(ω),

E
δ∼N (0,σ2I)

[FX (ω + δ)] ≤ max
∥δ∥≤ρ

[FD(ω + δ)] (59)

+

√√√√m log
(
1 +

∥ω∥2
2)

mσ2

)
+ 2 log n

α + 4 log(8n+ 4m)

n− 1

with probability at least 1− α over the (random) choice of the offline dataset D.

Proof. To derive this result, we need to upper-bound E[FX (ω)] with FD(ω). First, we note that
δ ∼ N (0, σ2I) so ∥δ∥22 follows a chi-square distribution. From Lemma 1 in [25],

P
(
∥δ∥22 −mσ2 ≥ 2σ2

√
mt+ 2tσ2

)
≤ exp(−t) ∀t > 0 . (60)

Therefore, with probability 1− 1/
√
n we have:

∥δ∥22 ≤ σ2

(
2 log

(√
n
)
+m+ 2

√
m log

(√
n
))
≤ σ2m

(
1 +

√
log(n)

m

)2

≤ ρ2 . (61)

16

8029https://doi.org/10.52202/079017-0258

This means with probability 1− 1/
√
n, we have E[FD(ω+δ)] ≤ max∥δ∥≤ρ FD(ω+δ). Otherwise,

with the remaining 1/
√
n chance, E[FD(ω + δ)] ≤ 1 under Assumption 1. Putting this together,

E
δ∼N (0,σ2I)

[FD(ω + δ)] ≤
(
1− 1√

n

)
· max
∥δ∥≤ρ

[FD(ω + δ)] +
1√
n
. (62)

Finally, plugging Eq. (62) into Eq. (34),

E
δ∼N (0,σ2I)

[
FX (ω + δ)

]
≤

(
1− 1√

n

)
max

∥δ∥2≤ρ
FD(ω + δ) +

1√
n

+

√√√√√ 1
4m log

(
1 +

∥ω∥2
2)

mσ2

(
1 +

√
log(n)

m

)2)
+ 1

2 log
n
α + log(8n+ 4m)

n− 1

≤ max
∥δ∥2≤ρ

FD(ω + δ)

+

√√√√√m log

(
1 +

∥ω∥2
2)

mσ2

(
1 +

√
log(n)

m

)2)
+ 2 log n

α + 4 log(8n+ 4m)

n− 1

which completes our proof.

D Upper-BoundRX (ω) with a scaled value of Eδ∈N(0,σ2I)[FX (ω + δ)]

Lemma 5. Following the same setup in Lemma 3, the below holds for all σ2 ∈ (0, 2/(mλmin)),

max
∥δ∥≤ρ

FX (ω + δ) ≤ 1

m
· 1

σ2
· 1

λmin
·

(
2G(ω)ρ + λmaxρ

2

)
· E
δ∼N (0,σ2I)

[
FX (ω + δ)

]
, (63)

with G(ω) and λmax defined previously in Eq. (7), m = dim(γ) and λmin defined in Assumption 2.

Proof. Let h(ω) ≜ E[g(x;ω)] where the expectation is over x ∈ X , we have

max
∥δ∥≤ρ

FX (ω + δ) = max
∥δ∥≤ρ

|h(ω + δ)− h(ω)| (64)

= max
∥δ∥≤ρ

∣∣∣∣∇ωh(ω)⊤δ +
1

2
δ⊤∇2

ωh(ω̂)δ

∣∣∣∣ (65)

≤ max
∥δ∥≤ρ

∣∣∇ωh(ω)⊤δ∣∣+ 1

2

∣∣∣δ⊤∇2
ωh(ω̂)δ

∣∣∣ (66)

≤ max
∥δ∥≤ρ

∥∇ωh(ω)∥ · ∥δ∥ +
1

2
∥δ∥2 · λmax (67)

≤ ∥∇ωh(ω)∥ ρ +
1

2
ρ2λmax = G(ω)ρ +

1

2
ρ2λmax (68)

with ω̂ = ω + c · δ with some constant c ∈ [0, 1]. In the above, Eq. (65) follows from the Taylor’s
remainder theorem for multivariate function. Eq. (67) follows from the Cauchy-Schwartz inequality
(for the first term) and the definition of λmax as the upper-bound on the largest eigenvalue of the
parameter Hessian of h(ω). Note that λmax > λmin > 0 under Assumption 2 which stipulates that
the smallest eigenvalue of the parameter Hessian of h(ω) is always positive.

17

8030 https://doi.org/10.52202/079017-0258

On the other hand, we also:

E
δ∼N(0,σ2I)

[
FX (ω + δ)

]
= E
δ∼N(0,σ2I)

∣∣∣h(ω + δ)− h(ω)
∣∣∣ (69)

≥
∣∣∣∣ E
δ∼N(0,σ2I)

[
∇ωh(ω)⊤δ +

1

2
δ⊤∇2

ωh(ω̂)δ

]∣∣∣∣ (70)

=
1

2

∣∣∣∣ E
δ∼N(0,σ2I)

[
δ⊤∇2

ωh(ω̂)δ
]∣∣∣∣ (71)

≥
(
1

2
λmin

)
E

δ∼N(0,σ2I)

[
∥δ∥2

]
(72)

=

(
1

2
λmin

)
Tr
[
σ2I
]

=

(
1

2
λmin

)
·m · σ2 (73)

where m = dim(ω). In the above, Eq. (70) follows from the Taylor’s remainder theorem (similar
to Eq. (65)) and Eq. (72) follows from the definition of λmin in Assumption 2 as the lower-bound
on the smallest eigenvalue of the parameter Hessian. Since λmin > 0, the quadratic term inside the
expectation is always positive which explains why we can remove the absolute operator. Eq. (73)
follows from standard moment calculation of Gaussian random vector.

Finally, we note that:

G(ω)ρ +
1

2
ρ2λmax =

[
1

m
· 1

σ2
· 1

λmin
·

(
2G(ω)ρ+ λmaxρ

2

)](
1

2
λmin

)
·m · σ2 (74)

≤

[
1

m
· 1

σ2
· 1

λmin
·

(
2G(ω)ρ+ λmaxρ

2

)]
· E
δ∼N(0,σ2I)

[
FX (ω + δ)

]
(75)

which means, intuitively,

ξ =

[
1

m
· 1

σ2
· 1

λmin
·

(
2G(ω)ρ+ λmaxρ

2

)]
(76)

is the smallest scaling factor for the lower-bound of Eδ∼N(0,σ2I)[FX (ω + δ)] so that it matches the
upper-bound ofRX (ω) = max∥δ∥≤ρ FX (ω + δ), as outlined in the 3rd step of our proving plan for
Theorem 2. As such, plugging Eq. (68) into the left-hand side of Eq. (75) completes our proof.

Remark. In the above, Eq. (73) suggests that Eδ[FX (ω + δ)] ≥ (1/2)λmin ·m · σ2. But, under
Assumption 1, we know that the surrogate’s output – and hence FX (ω + δ)’s – is bounded within
[0, 1], which means 1 ≥ (1/2)λmin ·m ·σ2 or equivalently, σ2 ≤ 2/(mλmin) as stated in Lemma 5’s
statement. That is, under Assumption 1, Lemma 5 is only correct for σ2 ∈ (0, 2/(mλmin)).

E Proof of Theorem 2

We are now ready to prove our main result. First, we re-state the result of Lemma 4 below,

E
δ∼N (0,σ2I)

[FX (ω + δ)] ≤ max
∥δ∥≤ρ

[FD(ω + δ)]

+

√√√√m log
(
1 +

∥ω∥2
2)

mσ2

)
+ 2 log n

α + 4 log(8n+ 4m)

n− 1
(77)

= RD(ω)

+

√√√√m log
(
1 +

∥ω∥2
2)

mσ2

)
+ 2 log n

α + 4 log(8n+ 4m)

n− 1
(78)

where the last step follows from the definition of RD(ω). Finally, plugging Eq. (78) into Eq. (63)
and replacing max∥δ∥≤ρ FX (ω + δ) withRX (ω) (following its definition) completes our proof.

18

8031https://doi.org/10.52202/079017-0258

F Effective Approximation of∇ω∥∇ωh(ω)∥

Explicitly, the gradient of the augmented loss in Eq. (12) is given below,
∇ωL(ω, λ) = ∇ωLD(ω) + λ · ρ · ∇ω

∥∥∇ωh(ω)∥∥ . (79)
where the computation bottleneck lies with the second gradient term which can be further expressed
below using the chain rule,

∇ω
∥∥∇ωh(ω)∥∥ = ∇2

ωh(ω) ·
(
∇ωh(ω) /

∥∥∇ωh(ω)∥∥) , (80)

It is evident that ∇2
ωh(ω) in Eq. (80) represents a Hessian matrix. Calculating the Hessian matrix

for a deep neural network is impractical due to the extensive dimensions of the model’s weights.
Nevertheless, since Eq. (80) involves the multiplication of a Hessian matrix with a vector, specific
techniques like Hessian-vector products can be employed to approximate this product. In particular,
let the Hessian matrix M = ∇2

ωh(ω), we have Taylor expansion for function∇ωh(ω) as follows:
∇ωh(ω +∆ω) = ∇ωh(ω) + M∆ω + O

(
∥∆ω∥2

)
. (81)

This approximation becomes precise as the value of ∆ω approaches 0. Following [26] and [27], we
choose ∆ω = rv where r is a small scalar and v is a vector, that transforms Eq. (81) into

Mv =
1

r

(
∇ωh(ω +∆ω)−∇ωh(ω)

)
+ O(r). (82)

Then, choosing v = ∇ωh(ω)
∥∇ωh(ω)∥ leads to

∇ω∥∇ωh(ω)∥ = M
∇ωh(ω)
∥∇ωh(ω)∥

≃ 1

r

(
∇ωh

(
ω + r

∇ωh(ω)
∥∇ωh(ω)∥

)
−∇ωh(ω)

)
. (83)

It is noticed that, as pointed out by [27], an inappropriate choice of r can make Eq. (83) vulnerable
to numeric and roundoff issues. The constant r must be sufficiently small so that the O(r) term
becomes negligible. However, when r is too small, precision is compromised because the subtraction
of the original gradient from the perturbed one, i.e., ∇ωh(ω + r∇ωh(ω)/∥∇ωh(ω)∥)−∇ωh(ω),
will obtain a small difference between them. Based on Eq. (83), Eq. (79) would be

∇ωL(ω) = ∇ωLD(ω) +
λρ

r

(
∇ωh

(
ω + r

∇ωh(ω)
∥∇ωh(ω)∥

)
−∇ωh(ω)

)
. (84)

In practical applications, we typically employ an additional approximation to compute the second
term in Eq. (84), thereby avoiding the need for Hessian computation induced by the chain rule.

∇ωh
(
ω + r

∇ωh(ω)
∥∇ωh(ω)∥

)
≃ ∇ωh(ω)

∣∣∣
ω = ω + r

∇ωh(ω)
∥∇ωh(ω)∥

. (85)

G Hyperparameter Tuning and Additional Experimental Results

G.1 Computation Resource

All our experiments were conducted on a system with the following specifications: Ubuntu 18.04,
NVIDIA RTX 3090 GPUs, and CUDA 11.8.

G.2 IGNITE-2

IGNITE-2. To solve the Lagrangian in Eq. (12), we can treat λ as a hyper-parameter and optimize
for ω using stochastic gradient descent (SGD).

ωt+1 ← ωt − ηω ·
(
∇ωLD

(
ωt
)

+ λ · ρ · ∇ω
∥∥∥∇ωh(ωt

)∥∥∥) , (86)

where ωt is the estimation of the surrogate’s parameter at the tth iteration, and ηω is step size to
update ω. We name this method IGNITE-2 and its pseudo-code is in Algorithm 2.

Hyper-parameter Configuration. Our method IGNITE-2 introduces three additional hyper-
parameters: λ, ρ, and r. The penalty coefficient λ controls the gradient magnitude of our regularizer,
set to 0.01 through a grid search within {0.0001, 0.001, 0.01}. The hyper-parameters ρ and r are
chosen from {0.01, 0.05, 0.1, 0.2, 0.5}, with ρ set to 0.2 and r set to 0.2 for IGNITE. These three
hyper-parameters are determined through experiments in Section G.4. These hyper-parameters
are consistently applied across all experiments, except for the ICT baseline (λ = 1e − 4) due to
implementation differences.

19

8032 https://doi.org/10.52202/079017-0258

Table 5: The percentage improvement in performance achieved by IGNITE-2 and IGNITE across
all tasks and baseline algorithms at the 100th percentile level is presented. Gain signifies the
percentage gain over the baseline performance (Base).

Continuous tasks Discrete task
Ant Morphology D’Kitty Morphology TF Bind 8 TF Bind 10

Algorithms Performance Gain Performance Gain Performance Gain Performance Gain
D(best) 0.565 0.884 0.565 0.884

REINF-
ORCE

Base 0.255 ± 0.036 0.546 ± 0.208 0.929 ± 0.043 0.635 ± 0.028
IGNITE-2 0.260 ± 0.037 +0.5% 0.611 ± 0.176 +6.5% 0.954 ± 0.027 +2.5% 0.646 ± 0.028 +1.1%
IGNITE 0.282 ± 0.021 +2.7% 0.642 ± 0.160 +9.6% 0.944 ± 0.030 +1.5% 0.670 ± 0.060 +3.5%

GA
Base 0.303 ± 0.027 0.881 ± 0.016 0.980 ± 0.016 0.651 ± 0.033
IGNITE-2 0.312 ± 0.038 +0.9% 0.885 ± 0.022 +0.4% 0.985 ± 0.007 +0.5% 0.663 ± 0.090 +1.2%
IGNITE 0.320 ± 0.044 +1.7% 0.886 ± 0.017 +0.5% 0.985 ± 0.010 +0.5% 0.653 ± 0.043 +0.2%

ENS-
MEAN

Base 0.376 ± 0.060 0.888 ± 0.010 0.985 ± 0.009 0.649 ± 0.036
IGNITE-2 0.437 ± 0.068 +6.1% 0.890 ± 0.010 +0.2% 0.988 ± 0.005 +0.3% 0.665 ± 0.091 +1.6%
IGNITE 0.435 ± 0.058 +5.9% 0.896 ± 0.013 +0.8% 0.987 ± 0.007 +0.2% 0.662 ± 0.091 +1.3%

ENS-
MIN

Base 0.385 ± 0.067 0.889 ± 0.014 0.980 ± 0.012 0.681 ± 0.095
IGNITE-2 0.441 ± 0.084 +5.6% 0.894 ± 0.011 +0.5% 0.982 ± 0.015 +0.2% 0.686 ± 0.120 +0.5%
IGNITE 0.468 ± 0.062 +8.3% 0.897 ± 0.010 +0.8% 0.986 ± 0.010 +0.6% 0.705 ± 0.118 +2.4%

CbAS
Base 0.854 ± 0.042 0.895 ± 0.012 0.919 ± 0.044 0.635 ± 0.041
IGNITE-2 0.850 ± 0.036 -0.4% 0.903 ± 0.014 +0.8% 0.916 ± 0.043 -0.3% 0.650 ± 0.054 +1.5%
IGNITE 0.859 ± 0.039 +0.5% 0.900 ± 0.015 +0.5% 0.921 ± 0.042 +0.2% 0.652 ± 0.055 +1.7%

MINs
Base 0.905 ± 0.023 0.944 ± 0.008 0.892 ± 0.046 0.643 ± 0.062
IGNITE-2 0.907 ± 0.035 +0.2% 0.940 ± 0.007 -0.4% 0.915 ± 0.040 +2.3% 0.645 ± 0.049 +0.2%
IGNITE 0.911 ± 0.024 +0.6% 0.945 ± 0.007 +0.1% 0.930 ± 0.041 +3.8% 0.647 ± 0.058 +0.4%

RoMA
Base 0.569 ± 0.086 0.821 ± 0.019 0.665 ± 0.000 0.550 ± 0.008
IGNITE-2 0.590 ± 0.063 +2.1% 0.833 ± 0.028 +1.2% 0.665 ± 0.000 +0.0% 0.553 ± 0.000 +0.3%
IGNITE 0.615 ± 0.085 +4.6% 0.834 ± 0.012 +1.3% 0.665 ± 0.000 +0.0% 0.553 ± 0.000 +0.3%

COMs
Base 0.897 ± 0.031 0.931 ± 0.013 0.955 ± 0.030 0.645 ± 0.038
IGNITE-2 0.911 ± 0.030 +1.4% 0.940 ± 0.014 +0.9% 0.948 ± 0.025 -0.7% 0.637 ± 0.033 -0.8%
IGNITE 0.901 ± 0.030 +0.4% 0.934 ± 0.010 +0.3% 0.952 ± 0.043 -0.3% 0.638 ± 0.053 -0.7%

CMA-ES
Base 1.955 ± 1.484 0.724 ± 0.002 0.928 ± 0.040 0.668 ± 0.035
IGNITE-2 1.970 ± 1.971 +1.5% 0.725 ± 0.006 +0.1% 0.938 ± 0.031 +1.0% 0.670 ± 0.033 +0.2%
IGNITE 1.957 ± 1.910 +0.2% 0.724 ± 0.001 +0.0% 0.927 ± 0.043 -0.1% 0.673 ± 0.044 +0.5%

BO-qEI
Base 0.812 ± 0.000 0.896 ± 0.000 0.787 ± 0.112 0.628 ± 0.000
IGNITE-2 0.812 ± 0.000 +0.0% 0.896 ± 0.000 +0.0% 0.855 ± 0.107 +6.8% 0.628 ± 0.000 +0.0%
IGNITE 0.812 ± 0.000 +0.0% 0.896 ± 0.000 +0.0% 0.843 ± 0.109 +5.6% 0.628 ± 0.000 +0.0%

ICT
Base 0.937 ± 0.023 0.946 ± 0.014 0.892 ± 0.055 0.647 ± 0.025
IGNITE-2 0.936 ± 0.017 -0.1% 0.947 ± 0.019 +0.1% 0.920 ± 0.035 +2.8% 0.656 ± 0.029 +0.9%
IGNITE 0.935 ± 0.032 -0.2% 0.962 ± 0.018 +1.6% 0.923 ± 0.038 +3.1% 0.652 ± 0.074 +0.5%

Algorithm 2 IGNITE-2
Input: offline data D = {(xi, zi)}ni=1; initial surrogate g(x;ω(0)); no. of iterations T ; batch size m; Lagrange
multiplier λ; perturbation radius ρ and scalar r; step sizes ηω .

1: Initialize ω(1) ← ω(0)

2: for t← 1 : T do
3: Sample B = {(xi, zi)}mi=1 ∼ D
4: Compute ẑi = g(xi;ω

(t)) for i ∈ [m]
5: Compute g1 = m−1 ∑m

i=1∇ωℓ(ẑi, zi)

6: Compute g2 = m−1 ∑m
i=1∇ω ẑi

7: Compute ω̂ = ω(t) + r · g2/∥g2∥
8: Compute g3 = m−1 ∑m

i=1∇ωg(xi; ω̂)

9: Compute g(t) = g1 + λρr−1(g3 − g2)

10: Update ω(t+1) ← ω(t) − ηωg
(t)

11: end for
12: return learned surrogate ω(T+1)

G.3 Performance Evaluation at 100-th, 80-th and 50-th Percentile Level of IGNITE and
IGNITE-2

In this section, we presented the percentage improvement over baseline performance attained by
IGNITE-2 and IGNITE when it is applied to an existing baseline. We have evaluated this at the
100-th, 80-th, and 50-th percentile levels. The results are reported in Table 5, 6, and 7, respectively.

20

8033https://doi.org/10.52202/079017-0258

Table 6: The percentage improvement in performance achieved by IGNITE-2 and IGNITE across
all tasks and baseline algorithms at the 80th percentile level is presented. Gain signifies the
percentage gain over the baseline performance (Base).

Continuous tasks Discrete task
Ant Morphology D’Kitty Morphology TF Bind 8 TF Bind 10

Algorithms Performance Gain Performance Gain Performance Gain Performance Gain
D(best) 0.565 0.884 0.565 0.884

REINF-
ORCE

Base 0.185 ± 0.035 0.508 ± 0.200 0.613 ± 0.029 0.523 ± 0.008
IGNITE-2 0.191 ± 0.033 +0.6% 0.462 ± 0.199 -4.6% 0.620 ± 0.031 +0.7% 0.520 ± 0.006 -0.3%
IGNITE 0.210 ± 0.039 +2.5% 0.532 ± 0.197 +2.4% 0.616 ± 0.038 +0.3% 0.523 ± 0.007 +0.0%

GA
Base 0.195 ± 0.011 0.784 ± 0.030 0.826 ± 0.032 0.517 ± 0.006
IGNITE-2 0.189 ± 0.019 -0.6% 0.794 ± 0.039 +1.0% 0.832 ± 0.032 +0.6% 0.518 ± 0.007 +0.1%
IGNITE 0.201 ± 0.017 +0.6% 0.810 ± 0.026 +2.6% 0.833 ± 0.021 +0.7% 0.517 ± 0.006 +0.0%

ENS-
MEAN

Base 0.236 ± 0.013 0.823 ± 0.013 0.852 ± 0.023 0.515 ± 0.006
IGNITE-2 0.235 ± 0.010 -0.1% 0.835 ± 0.013 +1.2% 0.855 ± 0.020 +0.3% 0.511 ± 0.006 -0.4%
IGNITE 0.244 ± 0.013 +0.8% 0.841 ± 0.013 +1.8% 0.848 ± 0.016 -0.4% 0.517 ± 0.006 +0.2%

ENS-
MIN

Base 0.229 ± 0.016 0.819 ± 0.017 0.845 ± 0.021 0.512 ± 0.005
IGNITE-2 0.236 ± 0.011 +0.7% 0.835 ± 0.012 +1.6% 0.854 ± 0.026 +0.9% 0.514 ± 0.004 +0.2 %
IGNITE 0.249 ± 0.015 +2.0% 0.845 ± 0.010 +2.6% 0.834 ± 0.015 -1.1% 0.516 ± 0.006 +0.4%

CbAS
Base 0.581 ± 0.037 0.814 ± 0.011 0.576 ± 0.022 0.510 ± 0.009
IGNITE-2 0.571 ± 0.028 -1.0% 0.815 ± 0.009 +0.1% 0.565 ± 0.025 -1.1% 0.512 ± 0.009 +0.2 %
IGNITE 0.550 ± 0.052 -3.1% 0.812 ± 0.013 -0.2% 0.565 ± 0.023 -1.1% 0.512 ± 0.009 +0.2%

MINs
Base 0.754 ± 0.026 0.907 ± 0.003 0.544 ± 0.029 0.518 ± 0.008
IGNITE-2 0.750 ± 0.023 -0.4% 0.909 ± 0.003 +0.2% 0.543 ± 0.028 -0.1% 0.518 ± 0.009 +0.0 %
IGNITE 0.753 ± 0.024 -0.1% 0.909 ± 0.004 +0.2% 0.551 ± 0.030 +0.7% 0.515 ± 0.009 -0.3%

RoMA
Base 0.306 ± 0.036 0.736 ± 0.016 0.644 ± 0.037 0.527 ± 0.008
IGNITE-2 0.305 ± 0.031 -0.1% 0.746 ± 0.022 +1.0% 0.646 ± 0.049 +0.2% 0.526 ± 0.003 -0.1 %
IGNITE 0.312 ± 0.032 +0.6% 0.737 ± 0.019 +0.1% 0.655 ± 0.014 +1.1% 0.527 ± 0.002 +0.0%

COMs
Base 0.629 ± 0.028 0.887 ± 0.005 0.747 ± 0.052 0.517 ± 0.009
IGNITE-2 0.653 ± 0.026 +2.4% 0.889 ± 0.003 +0.2% 0.742 ± 0.061 -0.5% 0.519 ± 0.007 +0.2 %
IGNITE 0.629 ± 0.025 +0.0% 0.891 ± 0.005 +0.4% 0.751 ± 0.063 +0.4% 0.517 ± 0.013 +0.0%

CMA-ES
Base 0.013 ± 0.017 0.718 ± 0.001 0.653 ± 0.020 0.546 ± 0.014
IGNITE-2 0.011 ± 0.018 -0.2% 0.719 ± 0.001 +0.1% 0.649 ± 0.022 -0.4% 0.545 ± 0.010 -0.1 %
IGNITE 0.013 ± 0.024 +0.0% 0.718 ± 0.002 +0.0% 0.652 ± 0.021 -0.1% 0.549 ± 0.014 +0.3%

BO-qEI
Base 0.629 ± 0.000 0.884 ± 0.000 0.439 ± 0.000 0.513 ± 0.001
IGNITE-2 0.629 ± 0.000 +0.0% 0.884 ± 0.000 +0.0% 0.439 ± 0.000 +0.0% 0.513 ± 0.001 +0.0 %
IGNITE 0.629 ± 0.000 +0.0% 0.884 ± 0.000 +0.0% 0.439 ± 0.000 +0.0% 0.513 ± 0.000 +0.0%

ICT
Base 0.710 ± 0.022 0.896 ± 0.005 0.687 ± 0.054 0.549 ± 0.016
IGNITE-2 0.702 ± 0.024 -0.8% 0.897 ± 0.004 +0.0% 0.680 ± 0.037 -0.7% 0.551 ± 0.022 +0.2%
IGNITE 0.668 ± 0.026 -4.2% 0.895 ± 0.005 -0.1% 0.651 ± 0.039 -3.6% 0.503 ± 0.043 -4.6%

G.3.1 Performance Evaluation at 100-th Percentile Level of IGNITE-2

According to the reported results in Table 5, IGNITE-2 consistently maintains a high probability of
86.36% (38 out of 44) of not degrading baseline performance. There is a high likelihood (72.27% = 34
out of 44 cases) of improving baseline performance, with an average improvement of approximately
1.39% and a notable peak improvement of 6.8%. Conversely, IGNITE-2 also exhibits a relatively
low probability (13.64% = 6 out of 44 cases) of decreasing performance, with an average degradation
of approximately 0.45% and a minor peak degradation of 0.8%.Additionally, there is a minor
probability (9.09% = 4 out of 44 cases) of maintaining baseline performance. Furthermore, while
IGNITE-2 demonstrates significant efficiency, the results in Section 5.2 indicate that IGNITE even
outperforms IGNITE-2 .

G.3.2 Performance Evaluation at 80-th Percentile Level of IGNITE and IGNITE-2

As shown in Table 6, IGNITE-2 consistently maintains a high probability high probability of not
degrading baseline performance, with a likelihood of 61.36% (27 out of 44 cases). There is a 47.73%
chance (21 out of 44 cases) of improving baseline performance, with an average improvement of
approximately 0.6% and a peak improvement of 2.4%. On the other hand, IGNITE-2 also indicates
a low likelihood (38.64% = 17 out of 44 cases) of performance decrease, with an average decline of
around 0.68% and a maximum decline of 4.6%. Furthermore, there is a slight chance (13.64% = 6
out of 44 cases) of maintaining the baseline performance.

21

8034 https://doi.org/10.52202/079017-0258

Table 7: The percentage improvement in performance achieved by IGNITE-2 and IGNITE across all
tasks and baseline algorithms at the 50th percentile level is presented. Gain signifies the percentage
gain over the baseline performance (Base).

Continuous tasks Discrete task
Ant Morphology D’Kitty Morphology TF Bind 8 TF Bind 10

Algorithms Performance Gain Performance Gain Performance Gain Performance Gain
D(best) 0.565 0.884 0.565 0.884

REINF-
ORCE

Base 0.142 ± 0.042 0.431 ± 0.183 0.459 ± 0.020 0.469 ± 0.008
IGNITE-2 0.157 ± 0.031 +1.5% 0.432 ± 0.187 +0.1% 0.459 ± 0.020 +0.0% 0.470 ± 0.005 +0.1%
IGNITE 0.167 ± 0.043 +2.5% 0.453 ± 0.188 +2.2% 0.450 ± 0.018 -0.9% 0.472 ± 0.005 +0.3%

GA
Base 0.147 ± 0.011 0.600 ± 0.145 0.613 ± 0.039 0.467 ± 0.004
IGNITE-2 0.142 ± 0.017 -0.5% 0.623 ± 0.181 +2.3% 0.612 ± 0.023 +0.0% 0.467 ± 0.003 +0.0%
IGNITE 0.155 ± 0.013 +0.8% 0.746 ± 0.036 +14.6% 0.611 ± 0.026 -0.2% 0.469 ± 0.005 +0.2%

ENS-
MEAN

Base 0.189 ± 0.011 0.752 ± 0.026 0.643 ± 0.027 0.468 ± 0.002
IGNITE-2 0.186 ± 0.010 -0.3% 0.780 ± 0.025 +2.8% 0.670 ± 0.031 +2.7% 0.466 ± 0.004 -0.2%
IGNITE 0.192 ± 0.008 +0.3% 0.796 ± 0.022 +4.4% 0.644 ± 0.037 +0.1% 0.467 ± 0.001 -0.1%

ENS-
MIN

Base 0.183 ± 0.013 0.741 ± 0.022 0.655 ± 0.031 0.467 ± 0.001
IGNITE-2 0.188 ± 0.010 +0.5% 0.777 ± 0.025 +2.9% 0.658 ± 0.038 +0.3% 0.467 ± 0.002 +0.0%
IGNITE 0.197 ± 0.015 +1.4% 0.805 ± 0.016 +6.4% 0.626 ± 0.035 -2.9% 0.467 ± 0.002 +0.0%

CbAS
Base 0.382 ± 0.028 0.751 ± 0.015 0.433 ± 0.015 0.458 ± 0.006
IGNITE-2 0.374 ± 0.020 -0.8% 0.744 ± 0.018 -0.7% 0.430 ± 0.020 -0.3% 0.459 ± 0.008 +0.1%
IGNITE 0.374 ± 0.026 -0.8% 0.743 ± 0.018 -0.8% 0.427 ± 0.020 -0.6% 0.461 ± 0.007 +0.3%

MINs
Base 0.637 ± 0.035 0.888 ± 0.005 0.417 ± 0.019 0.465 ± 0.007
IGNITE-2 0.628 ± 0.025 -0.9% 0.889 ± 0.004 +0.1% 0.421 ± 0.014 +0.4% 0.469 ± 0.006 +0.4%
IGNITE 0.628 ± 0.027 -0.9% 0.888 ± 0.005 +0.0% 0.422 ± 0.019 +0.5% 0.466 ± 0.008 +0.1%

RoMA
Base 0.233 ± 0.020 0.612 ± 0.146 0.484 ± 0.045 0.513 ± 0.006
IGNITE-2 0.228 ± 0.018 -0.5% 0.584 ± 0.147 -2.8% 0.494 ± 0.044 +1.0% 0.514 ± 0.006 +0.1%
IGNITE 0.228 ± 0.014 -0.5% 0.652 ± 0.094 +4.0% 0.503 ± 0.068 +1.9% 0.517 ± 0.003 +0.4%

COMs
Base 0.487 ± 0.020 0.859 ± 0.007 0.588 ± 0.037 0.473 ± 0.013
IGNITE-2 0.503 ± 0.025 +1.6% 0.862 ± 0.004 +0.3% 0.577 ± 0.040 -1.1% 0.474 ± 0.006 +0.1%
IGNITE 0.482 ± 0.027 -0.5% 0.862 ± 0.008 +0.3% 0.598 ± 0.042 +1.0% 0.471 ± 0.010 -0.2%

CMA-ES
Base -0.043 ± 0.008 0.677 ± 0.014 0.538 ± 0.013 0.492 ± 0.013
IGNITE-2 -0.045 ± 0.008 -0.2% 0.685 ± 0.011 +0.8% 0.532 ± 0.020 -0.6% 0.493 ± 0.012 +0.1%
IGNITE -0.049 ± 0.009 -0.6% 0.681 ± 0.014 +0.4% 0.542 ± 0.020 +0.4% 0.496 ± 0.013 +0.4%

BO-qEI
Base 0.569 ± 0.000 0.883 ± 0.000 0.439 ± 0.000 0.468 ± 0.000
IGNITE-2 0.569 ± 0.000 +0.0% 0.883 ± 0.000 +0.0% 0.439 ± 0.000 +0.0% 0.467 ± 0.000 -0.1%
IGNITE 0.569 ± 0.000 +0.0% 0.883 ± 0.000 +0.0% 0.439 ± 0.000 +0.0% 0.467 ± 0.000 +0.0%

ICT
Base 0.556 ± 0.024 0.872 ± 0.007 0.564 ± 0.046 0.501 ± 0.018
IGNITE-2 0.559 ± 0.025 +0.3% 0.873 ± 0.007 +0.1% 0.554 ± 0.033 -1.0% 0.498 ± 0.022 -0.3%
IGNITE 0.551 ± 0.022 -0.5% 0.878 ± 0.003 +0.6% 0.527 ± 0.030 -3.7% 0.454 ± 0.038 -4.7%

In addition, IGNITE also maintains a high probability of 72.73% (32 out of 44) of not degrading
baseline performance. There is a 47.73% likelihood (21 out of 44 cases) of improving baseline
performance, with an average improvement of approximately 1.0% and a peak improvement of
2.6%. Besides, IGNITE also exhibits a low probability (27.27% = 12 out of 44 cases) of decreasing
performance, with an average degradation of approximately 1.58% and a peak degradation of
4.6%. Additionally, there is a small probability (25% = 11 out of 44 cases) of maintaining baseline
performance.

G.3.3 Performance Evaluation at 50-th Percentile Level of IGNITE and IGNITE-2

Table 7 displays the results of IGNITE-2 and IGNITE at the 50th percentile level. The results
indicate that both IGNITE-2 and IGNITE do not degrade performance compared to the baseline in
65.91% of settings (29 out of 44) for each method. In which, IGNITE-2 outperforms the baseline
in 50% likelihood, with an average improvement of approximately 0.85% and a peak improvement
of 2.9%. For IGNITE , those are 52.27% likelihood, 1.89% average improvement and a peak
improvement of 14.6%. Conversely, there are only 34.09% cases in using our proposed method leads
to the performance reduction. The average degradation of IGNITE-2 and IGNITE are 0.69% and
1.19%, respectively. Overall, we state that our proposed method helps to boost the performance of
almost all algorithms and tasks.

22

8035https://doi.org/10.52202/079017-0258

0.75

0.80

0.85

0.90

0.95

0 10 20 30 40 50

Gradient ascent steps

N
o

rm
a
li
z
e
d

 o
b

je
c
ti

v
e
 v

a
lu

e

ANT

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0 10 20 30 40 50

Gradient ascent steps

B
in

d
in

g
 a

ff
in

it
y

TF−BIND−10

COMs (Base)

COMs (IGNITE)

GA (Base)

GA (IGNITE)

Figure 3: Performance vs. the no. of gradient as-
cent steps during optimization of IGNITE-2 and
Baseline optimized algorithms, e.g, COMs and
GA.

0.75

0.80

0.85

0.90

0.95

0 10 20 30 40 50

Gradient ascent steps

N
o

rm
a
li
z
e
d

 o
b

je
c
ti

v
e
 v

a
lu

e

ANT

0.60

0.62

0.64

0.66

0 10 20 30 40 50

Gradient ascent steps

B
in

d
in

g
 a

ff
in

it
y

TF−BIND−10

COMs 0.001

COMs 0.01

COMs 1e−04

GA 0.001

GA 0.01

GA 1e−04

Figure 4: Performance variation of COMS
and GA (regularized by IGNITE-2) in the
change of the regularization coefficient λ ∈
[0.0001, 0.001, 0.01].

0.75

0.80

0.85

0.90

0.95

0 10 20 30 40 50

Gradient ascent steps

N
o

rm
a
li
z
e
d

 o
b

je
c
ti

v
e
 v

a
lu

e

ANT

0.60

0.62

0.64

0.66

0 10 20 30 40 50

Gradient ascent steps

B
in

d
in

g
 a

ff
in

it
y

TF−BIND−10

COMs 0.01

COMs 0.05

COMs 0.1

COMs 0.2

COMs 0.5

GA 0.01

GA 0.05

GA 0.1

GA 0.2

GA 0.5

Figure 5: Performance variation of
COMS and GA (regularized by IGNITE-
2) in the change of the hyper-parameter
r ∈ [0.01, 0.05, 0.1, 0.2, 0.5].

0.75

0.80

0.85

0.90

0.95

0 10 20 30 40 50

Gradient ascent steps

N
o

rm
a
li
z
e
d

 o
b

je
c
ti

v
e
 v

a
lu

e

ANT

0.60

0.62

0.64

0.66

0 10 20 30 40 50

Gradient ascent steps

B
in

d
in

g
 a

ff
in

it
y

TF−BIND−10

COMs 0.01

COMs 0.05

COMs 0.1

COMs 0.2

COMs 0.5

GA 0.01

GA 0.05

GA 0.1

GA 0.2

GA 0.5

Figure 6: Performance variation of
COMS and GA (regularized by IGNITE-
2) in the change of the hyper-parameter
ρ ∈ [0.01, 0.05, 0.1, 0.2, 0.5].

G.4 Hyper-parameters selection for IGNITE-2

This section provides the specific setup of the hyper-parameter selection experiments for IGNITE-2,
which is also ran separately to determine the hyperparameters for IGNITE(in the main text).

G.4.1 IGNITE-2 enhances stability of COMs and gradient ascent (GA).

Figure 3 provides a step-by-step performance comparison between two baseline algorithms, COMs
and GA, with and without our regularization method, IGNITE-2. IGNITE-2 consistently out-
performs the baseline algorithms at every step in the ANT tasks. However, the trend differs for
TF-BIND-10. Initially, the baseline algorithms perform better without IGNITE-2 . However, as
the number of gradient ascent steps increases, the performance of the baselines without IGNITE-
2 begins to decline. In contrast, the algorithms incorporating our method maintain or improve their
performance over time. This trend suggests that our method becomes increasingly beneficial in the
later stages of the optimization process, ultimately enhancing the overall performance of the baseline
algorithms.

G.4.2 Choosing the regularization coefficient λ.

Figure 4 shows how the performance of baseline models regularized with IGNITE-2 is affected by
different values of λ. The results indicate that using an excessively low or high value for λ will have
a negative impact on performance. In all cases, the results suggest that a universal value of 0.01 for λ
tends to generate consistent and effective performance across all tasks.

G.4.3 Choosing value for parameter r and the perturbation radius ρ.

Figure 5 plot the performance of the GA and COMS baselines regularized with IGNITE-2 with
respect to the change of hyper-parameter r. That is r ∈ {0.01, 0.05, 0.1, 0.2, 0.5}. Figure 6 visualizes
how the performance of baselines regularized with IGNITE-2 is influenced by varying the hyper-
parameter ρ. Based on those result, we choose to set r = 0.2 and ρ = 0.2 in all of the experiments
for IGNITE-2.

23

8036 https://doi.org/10.52202/079017-0258

H Percentage improvement over other baselines of IGNITE, SAM across all
tasks.

Table 8: Percentage improvement over other baselines of IGNITE, SAM across all tasks.

Algorithms Ant D’Kitty TF
Bind 8

TF
Bind 10

REINFORCE 0.255 ± 0.036 0.546 ± 0.208 0.929 ± 0.043 0.635 ± 0.028
REINFORCE + IGNITE 0.282 ± 0.021 (+2.7%) 0.642 ± 0.160 (+9.6%) 0.944 ± 0.030 (+1.5%) 0.670 ± 0.060 (+3.5%)
REINFORCE + SAM 0.266 ± 0.030 (+1.1%) 0.625 ± 0.182 (+7.9%) 0.940 ± 0.035 (+1.1%) 0.637 ± 0.037 (+0.2%)

GA 0.303 ± 0.027 0.881 ± 0.016 0.980 ± 0.016 0.651 ± 0.033
GA + IGNITE 0.320 ± 0.044 (+1.7%) 0.886 ± 0.017 (+0.5%) 0.985 ± 0.010 (+0.5%) 0.653 ± 0.043 (+0.2%)
GA + SAM 0.310 ± 0.044 (+0.7%) 0.868 ± 0.014 (-1.3%) 0.982 ± 0.015 (+0.2%) 0.662 ± 0.041 (+1.1%)

CbAS 0.854 ± 0.042 0.895 ± 0.012 0.919 ± 0.044 0.635 ± 0.041
CbAS + IGNITE 0.859 ± 0.039 (+0.5%) 0.900 ± 0.015 (+0.5%) 0.921 ± 0.042 (+0.2%) 0.652 ± 0.055 (+1.7%)
CbAS + SAM 0.853 ± 0.033 (-0.1%) 0.897 ± 0.013 (+0.2%) 0.905 ± 0.053 (-1.4%) 0.637 ± 0.023 (+0.2%)

BO-qEI 0.812 ± 0.000 0.896 ± 0.000 0.787 ± 0.112 0.628 ± 0.000
BO-qEI + IGNITE 0.812 ± 0.000 (+0.0%) 0.896 ± 0.000 (+0.0%) 0.843 ± 0.109 (+0.3%) 0.628 ± 0.000 (+0.0%)
BO-qEI + SAM 0.812 ± 0.000 (+0.0%) 0.896 ± 0.000 (+0.0%) 0.763 ± 0.098 (-2.4%) 0.619 ± 0.022 (-0.9%)

I Complexity Overhead of IGNITE.

To analyze the computational complexity of IGNITE, we break down the complexity of each step in
Algorithm 1.

1. Initialization (Line 1): Initializing ω(1) ← ω(0) and λ(1) ← λ: O(1) each.

2. Main Loop (Line 2-12): The loop runs for T iterations. Thus, the complexity of the main
loop will be multiplied by T .

3. Sampling (Line 3): Sampling a batch B = {(xi, zi)}mi=1 ∼ D: O(m).

4. Computing ẑi (Line 4): Evaluating the surrogate model g(xi;ω
(t)) for each i ∈ [m].

Assuming the surrogate model evaluation has a computational complexity of Cg = O(d)
per sample where d is the number of surrogate parameters, the total complexity is O(m · d).

5. Computing g1 and g2 (Line 5-6): Computing gradients∇ωℓ(ẑi, zi) and∇ω ẑi have com-
plexities O(Cℓ) and O(Cẑ) respectively per sample where Cℓ = Cẑ = O(d). Therefore,
the total complexities are O(m · d).

6. Computing ω̂ (Line 7): This involves simple vector operations with complexity O(d),
where d is the dimensionality of ω.

7. Computing g3 (Line 8): Similar to lines 4 and 6, involving evaluating the surrogate and
gradient computations, with complexity O(m · Cg +m · Cẑ) = O(m · d).

8. Computing g(t) (Line 9): Vector operations involving addition and scalar multiplication
with complexity O(d).

9. Updating ω (Line 10): Updating ω involves simple subtraction operations with complexity
O(d).

10. Updating λ (Line 11): Updating λ is an O(1) operation

Overall Complexity: Considering the above steps, the most computationally expensive parts are the
gradient computations in lines 5, 6, and 8. Thus, the overall complexity per iteration is:

O(2m · Cg +m · Cℓ + 2m · Cẑ)

Since this loop runs for T iterations, the total complexity is:

O(T · (2m · Cg +m · Cℓ + 2m · Cẑ))

Furthermore, we have the total complexity of the original baseline is:

O(T · (m · Cg +m · Cℓ))

24

8037https://doi.org/10.52202/079017-0258

1

2

3

4

5

0 25 50 75 100
Epochs

V
al

ue

Training loss
Surrogate sharpness

GA ANT

1

2

3

4

5

0 25 50 75 100
Epochs

V
al

ue

Training loss
Surrogate sharpness

GA DKITTY

1

2

3

4

5

0 25 50 75 100
Epochs

V
al

ue

Training loss
Surrogate sharpness

REINFORCE ANT

1

2

3

0 25 50 75 100
Epochs

V
al

ue

Training loss
Surrogate sharpness

REINFORCE DKITTY

Figure 7: The convergence of the proposed optimization algorithm. Figure shows the training
loss and the sharpness value (plotting ∥∇ωh(ω)∥ value) during the surrogate fitting process.

Table 9: The empirical time (seconds) of the participating baselines with and without IGNITE.

Algorithms Ant D’Kitty TF Bind 8 TF Bind 10

REINFORCE 172.08 252.33 477.09 32.95
REINFORCE + IGNITE 194.02 (+12.75%) 275.15 (+9.04%) 582.28 (+22.05%) 437.38 (+17.28%)

GA 69.99 168.81 149.63 364.16
GA + IGNITE 85.15 (+21.66%) 191.83s (+13.64%) 181.71 (+21.44%) 369.29 (+1.41%)

Thereby, IGNITE will include an additional complexity:

O(T · (m · Cg + 2m · Cẑ)) = O(Tmd)

where:

• T is the number of iterations.
• m is the batch size.
• Cg = O(d) is the complexity of evaluating the surrogate model.
• Cℓ = O(d) is the complexity of computing the loss gradient.
• Cẑ = O(d) is the complexity of computing the gradient of the surrogate output with respect

to its parameters.
• d is the no. of surrogate parameters.

The empirical training time of the participating baselines with and without IGNITEis reported in
Table 9. We observe that IGNITE solely consumes an additional negligible GPU memory, while the
training time increases by 14.91% on average.

J Convergence and effectiveness of IGNITE

According to our experiment, despite using a relatively simple BDMM to solve Eq. (12), we have
achieved significant improvement in most cases. To demonstrate the convergence of the optimization
algorithm, we have plotted the training loss and the sharpness value (plotting ∥∇ωh(ω)∥ value)
during the surrogate fitting process. This is based on an experiment using GA and REINFORCE
baselines on Ant and Dkitty tasks. The results are illustrated in Figure 7. These results reveal that
BDMM helps decrease both the training loss and sharpness value of the surrogate model during
the training phase. This indicates that BDMM is effective and the optimization converges well in
practice. Furthermore, our method, IGNITE, can be seamlessly integrated with other, more robust
optimization techniques to solve Eq. (12).

K Limitation

Our paper studies the offline optimization task, which has potential applications in material engi-
neering. Similar to the existing literature, our method is extensively tested on a universal benchmark
set forward by the pioneering work of [4]. However, it is important to note that the benchmark
consists mostly of small- to mid-scale optimization tasks. As such, our method has not considered

25

8038 https://doi.org/10.52202/079017-0258

the challenge of scalability in large-scale domain with extremely high-dimensional input spaces. In
addition, as with all machine learning algorithms, while applications of our work to real data could
result in ethical considerations, this is an indirect and unpredictable side-effect of our work. Our
experimental work uses publicly available datasets to evaluate the performance of our algorithms. No
ethical considerations are raised.

26

8039https://doi.org/10.52202/079017-0258

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our contributions can be found in Section 3 and Section 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss this in Appendix K

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

27

8040 https://doi.org/10.52202/079017-0258

Justification: All our assumptions are detailed in Section 4. All proofs are detailed in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes. All information regarding our experiments are disclosed in Section 5 and
in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

28

8041https://doi.org/10.52202/079017-0258

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our experimental code is also submitted (as extra materials) along with our
manuscript.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Such details can be founded in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We do report error bars in our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

29

8042 https://doi.org/10.52202/079017-0258

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information regarding our compute resource is detailed in Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and do not find our work in violation
of any aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We did discuss this in Appendix K.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

30

8043https://doi.org/10.52202/079017-0258

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not create new datasets. We only use existing, publicly available
datasets. We also do not create any new pre-trained models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the source of all datasets used in our experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

31

8044 https://doi.org/10.52202/079017-0258

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our work does not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

32

8045https://doi.org/10.52202/079017-0258

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

8046 https://doi.org/10.52202/079017-0258

