
Rethinking Fourier Transform from A Basis Functions
Perspective for Long-term Time Series Forecasting

Runze Yang1,2, Longbing Cao2∗, Jianxun Li1, Jie Yang1∗
1Department of Automation, Shanghai Jiao Tong University

2School of Computing, Macquarie University
{runze.y, jieyang, lijx}@sjtu.edu.cn

{runze.yang}@hdr.mq.edu.au, {longbing.cao}@mq.edu.au

Abstract

The interaction between Fourier transform and deep learning opens new avenues
for long-term time series forecasting (LTSF). We propose a new perspective to
reconsider the Fourier transform from a basis functions perspective. Specifically,
the real and imaginary parts of the frequency components can be viewed as the
coefficients of cosine and sine basis functions at tiered frequency levels, respec-
tively. We argue existing Fourier-based methods do not involve basis functions thus
fail to interpret frequency coefficients precisely and consider the time-frequency
relationship sufficiently, leading to inconsistent starting cycles and inconsistent
series length issues. Accordingly, a novel Fourier basis mapping (FBM) method
addresses these issues by mixing time and frequency domain features through
Fourier basis expansion. Differing from existing approaches, FBM (i) embeds the
discrete Fourier transform with basis functions, and then (ii) can enable plug-and-
play in various types of neural networks for better performance. FBM extracts
explicit frequency features while preserving temporal characteristics, enabling
the mapping network to capture the time-frequency relationships. By incorpo-
rating our unique time-frequency features, the FBM variants can enhance any
type of networks like linear, multilayer-perceptron-based, transformer-based, and
Fourier-based networks, achieving state-of-the-art LTSF results on diverse real-
world datasets with just one or three fully connected layers. The code is available
at: https://github.com/runze1223/Fourier-Basis-Mapping.

1 Introduction

Long-term time series forecasting (LTSF) is essential for applications with long-range sequences,
which presents significant challenges including long-range temporal dependencies, and frequency-
oriented global dynamics. Recently, deep neural networks (DNNs) have thrived to tackle LTSF
challenges for the presence of hierarchical effects, varied outliers, and nonlinear dynamics. They
use various DNN architectures including recurrent neural networks (RNNs) [1, 2, 3, 4, 5, 6, 7, 8],
convolution neural networks (CNNs) [9, 10, 11, 12, 13, 14], multi-layer perceptron (MLP) based
networks [15, 16, 17, 18], Transformer-based networks [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33]. However, a recent study NLinear [34] shows that an embarrassingly simple normalized
linear model can outperform most of the DNN-based methods. This raises the question: Would a
complex Transformer-like architecture necessarily lead to better LTSF performance? According to
CrossGNN [35], DNN-based methods like Transformers suffer from the influence of noise signals
and produce high attention scores for unexpected noises.

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

8515 https://doi.org/10.52202/079017-0272

Time Independent Time Dependent

Sin Basis

D
FT

C

 Real part Cos Basis

 Imag part

 Real part

 Imag part

D
FT

A

ID
FT

B

 Real part

 Imag part

Inconsistent Starting
Cycles Issue

Inconsistent Series
Length Issue

GNN Block

CNN Block

MLP Block

RNN Block

Attention Block

Forecast Time Series

Mapping Network

Frequency Space

T

Frequency and Time Space

Mapping Network

T is not divisible by K T is divisible by K

Look-back Window

K

Forecast Time Series

Input Time Series

Existing Methods:
Fourier-based
Mapping

I Input Time Series

O

Frequency Level

I A B O
I A O
I B O

I C O

I O

Our Method:
Fourier Basis Mapping
(FBM)

Existing Methods:
information transform paths

FBM's:
information transform path

(i)
(ii)
(iii)

GNN Block

CNN Block

MLP Block

RNN Block

Attention Block

Figure 1: Comparison of Existing Fourier-based Methods with Our Approach Fourier basis mapping.
Existing methods primarily operate in the frequency domain, with the mapping focusing on frequency
features. Our FBM simultaneously operates in both the time and frequency domains, with the
mapping focusing on time-frequency features.

Thus, Fourier-based time series modeling emerges as a new paradigm to remove noise signals by
considering diverse effects hierarchically at different frequency levels. If we rethink the Fourier
transform from a basis functions perspective, the real and imaginary parts can be interpreted as the
coefficients of cosine and sine basis functions at tiered frequencies, respectively. However, existing
Fourier-based methods do not involve basis functions, thus failing to interpret frequency coefficients
precisely and do not consider the time-frequency relationships sufficiently, as shown in Figure 1.
They face two main issues: inconsistent starting cycles and inconsistent series length issues. For
instance, FEDformer [22], FreTS [18], FiLM [36], FITS [37], FGNet [28], and FL-Net [38] use the
real and imaginary parts of frequency components as the input of the mapping network and conduct
the mapping in the frequency space. From our new perspective, we find that the amplitude and
arctangent of the real and imaginary components carry more explicit meanings than the components
themselves. Furthermore, it is worth noting that the meanings of frequency components are bounded
by the series length, and failing to establish the connections will lead to ambiguity in understanding
the precise frequency in these models, e.g., 2 Hz sine and cosine wave with series lengths 96
and 336 has distinct meaning. More importantly, Figure 1 shows that a Fourier basis function is
time-dependent when the input length is not divisible by a certain frequency level, making it even
more challenging for the model to correctly interpret those frequency components without the basis
functions. Consequently, constructing the mapping in the frequency space is not enough and cannot
capture time-frequency relationships, which has been ignored by all existing Fourier-based methods.
Although some methods like TimesNet [39] introduce time-frequency features, these features are
non-interpretable and complex, as the summation over the frequency dimension does not recover the
original time series. We provide a more detailed discussion of their limitations in Section 2.

Accordingly, we propose the Fourier Basis Mapping (FBM) to address the aforementioned issues,
involving learnable and non-learnable features. In the first stage, we embed the discrete Fourier
transform with basis functions, referred to as Fourier basis expansion, to extract time-frequency
features. In the second stage, we validate its effectiveness using three types of mapping networks
through three FBM variants (FBM-L, FBM-NL, FBM-NP) against four categories of LTSF baseline
methods: (1) Linear method: NLinear; (2) Transformer-based methods: iTransformer [33] and
PatchTST [20]; (3) MLP-based methods: N-BEATS [16], FreTS, and TimeMixer [15]; and (4)
Fourier-based methods: N-BEATS, FITS, FreTS, and CrossGNN. The experimental results reveal

2

8516https://doi.org/10.52202/079017-0272

that Fourier basis expansion can enhance any types of DNNs. With time-frequency features, simple
mapping networks (e.g, L-vanilla linear networks and NL-three-layer MLPs) can achieve the SOTA
of LTSF on eight real-world datasets and of STSF on PEMS datasets.

2 Related work

Recent studies have investigated the effect of the Fourier transform in addressing LTSF challenges.
Consequently, we categorize the relevant studies into two groups: (1) Fourier-based architectures,
and (2) DNN-based architectures. In the first category, we discuss the applications of the Fourier
transform, while the second addresses innovative model architectures.

2.1 Fourier-based architectures

Fourier transform has been integrated into a wide range of network architectures, including CNNs
[39], recurrent networks [36], graph neural networks (GNNs) [35, 40], Transformer [22], and
MLP networks [18, 16, 17]. However, by rethinking the Fourier transform from a basis functions
perspective, we identify the inconsistent starting cycles and series length issues. In path (i) of Figure
1, methods like FEDformer [22], FreTS [18], FiLM [36], FITS [37], FGNet [28], and FL-Net [38]
use real and imaginary parts as inputs to their mapping networks but the networks cannot easily
interpret those coefficients because the crucial information is stored in the amplitude, phase and
length of each cycle. In path (ii) of Figure 1, methods like CrossGNN [35], and TimesNet [39] use the
discrete Fourier transform (DFT) to select the top-k amplitudes for noise filtering. However, a higher
amplitude does not necessarily indicate a useful frequency and a lower amplitude is not necessarily
useless. In addition, CrossGNN only stores the values of the first cycles without considering the
effects of phase shifts and time-dependent basis, while TimesNet introduces the multi-window Fourier
transform, which compromises the integrity of the temporal information. In path (iii) of Figure 1,
methods like N-BEATS [16] and N-Hits [17] can similarly be viewed as forecasting through the
inverse discrete Fourier transform (IDFT) by computing the output frequency spectrum of the time
series, but their networks fail to capture time-dependent effects. In contrast, our method distinguishes
itself from existing approaches by leveraging the Fourier basis expansion to provide a mixture of time
and frequency domain features, thus avoiding the aforementioned issues.

2.2 DNN-based architectures

Firstly, we introduce key techniques for innovative model architectures. In [41], initial normalization
is introduced to enhance the robustness. Autoformer [24] advocates the trend and seasonal decomposi-
tion with the moving average kernel, consistent with other methods like DLinear [34] and TimeMixer
[15]. However, the effectiveness of the decomposition relies on the choice of kernel size, which
is improved by our methods. Methods like VH-NBEATS [42] and BasisFormer [21] involve the
pre-trained basis functions to account for hourly, daily, and weekly effects. In contrast, our method
uses the Fourier basis to capture those effects automatically. Transformer-based methods are one
of the most popular LTSF architectures. Some transformer variants improve efficiency by reducing
computational complexity and memory cost, such as LogTrans [43], Pyraformer [25], Informer [23],
and Autoformer [24]. On the other hand, PatchTST [20] introduces patching to treat a period of
local time steps as a semantic vector, effectively reducing complexity and achieving state-of-the-art
results over Transformer-based methods. In a recent study, iTransformer [33] suggests that employing
attention layers to capture relationships between variables may yield better results. In this paper, we
validate the effectiveness of Fourier basis expansion on linear, MLP, and Transformer-based networks,
proving that it can enhance any types of networks. The Fourier basis expansion can also be viewed as
an enhanced version of trend and seasonal decomposition, as the basis functions, shown in Figure 1,
automatically decompose various effects by frequency levels.

3 Rethinking Fourier transform w.r.t. basis functions

In this section, we offer a new perspective of the Fourier Transform for LTSF. Firstly, we discuss the
mathematical reasoning behind the DFT and IDFT from the perspective of basis functions. From
this new perceptive, we find that the real and imaginary parts of the frequency components can be
viewed as the coefficients of cosine and sine basis functions at tiered frequency levels. Consequently,

3

8517 https://doi.org/10.52202/079017-0272

the effect of the IDFT for frequency-based mapping can be seen as analogous to the design of the
N-BEATS seasonal block. As such, we identify the inconsistent starting cycles and inconsistent series
length issues in existing studies.

Let X and Y be the input and output time series, respectively, and T and L represent the look-back
window and forecast horizon, assuming both of them are even numbers. HX and HY refer to the
frequency spectrum of the input and the output, respectively. Then, DFT and IDFT of the input time
series X can be expressed as follows:

H(k) = DFT (X) =

T−1∑
n=0

X[n] exp

(
−i

2πkn

T

)
, k = 0, 1, . . . , T − 1, (1)

X[n] = IDFT (H) =
1

T

T−1∑
k=0

H[k] exp

(
i
2πkn

T

)
, n = 0, 1, . . . , T − 1. (2)

From the perspective of basis functions, both DFT and IDFT can be expressed by T
2 + 1 orthogonal

cosine basis functions and T
2 − 1 orthogonal sine basis functions. This is because the DFT of a

real-valued signal is Hermitian symmetric. Their proofs and further explanations can be found in
Appendices B.1 and B.2. Subsequently, we can rewrite the IDFT w.r.t. basis functions, and the
connection between X and HX can be expressed as follows:

X[n] =
1

T

T
2∑

k=0

(
ak cos

(
2πkn

T

)
− bk sin

(
2πkn

T

))
, n = 0, 1, . . . T − 1,

ak =

{
HR[k], k = 0, T

2

2 ·HR[k], k = 1, . . . , T
2 − 1

bk =

{
HI[k] = 0, k = 0, T

2

2 ·HI[k], k = 1, . . . , T
2 − 1.

(3)

HR[k] and HI[k] represent the real and imaginary parts of H[k] respectively, where k refers to the
frequency level, and H[k] = HR[k] + iHI[k]. Eq. (4) provides an essential insight that the real and
imaginary parts of the frequency spectrum can be interpreted as the coefficients of cosine and sine
basis functions, respectively. Hence, computing the frequency spectrum of the output time series
is equivalent to computing the coefficients between cosine and sine basis functions, which can be
considered analogous to the N-BEATS-seasonal-block design. Further explanation and proofs can be
found in Appendix B.3.

Consequently, we identify two issues in existing Fourier-based studies: inconsistent starting cycles
and inconsistent series length issues. The inconsistent starting cycles issue arises since the real and
imaginary parts do not carry explicit meanings without the basis functions. This is because that
adding a sine wave and a cosine wave with the same frequency results in a shifted cosine wave with
the same frequency, which can be expressed as follows:

Z(t) = A cos(wt) +B sin(wt) = R cos(wt− ϕ),

R =
√
A2 +B2, ϕ = arctan(B,A).

(4)

Therefore, the key information is embedded in the amplitude and arctangent of the real and imaginary
values rather than the values themselves. The inconsistent series length issue arises since the meaning
of frequency in hertz (Hz) is bound by the series length.

Figure 2 illustrates these two issues as Cases I and II through a manually generated time series with
pure sine and cosine basis functions, assuming using time series X to forecast time series Y. In
Case I, X and Y have the same frequency and series length but different starting cycles. If the real
and imaginary parts of the frequency spectrum of the input are used to compute that of the output
through independent channels, we cannot find such a mapping as there is no mathematical solution.
However, their relationships can be easily identified through the amplitude and arctangent of the real
and imaginary values, which are embedded in basis functions. As shown in Figure 2, a mathematical
solution exists which is achievable through Eq. (4).

In Case II, X and Y have almost the same frequency and starting cycles but different series lengths.
Although the landscapes of the frequency spectrum look similar, their components (in Hz) have

4

8518https://doi.org/10.52202/079017-0272

 Case I: Inconsistent Starting Cycles Issue Case II: Inconsistent Series Length Issue

is equivalent as

No Math Solution

Clear Math Solution With Basis, Explict Frequency

Without Basis, Ambiguous Frequency

Our Perspective

Previous Perspective

Figure 2: Two Issues of Existing Fourier-based LTSF Models: Inconsistent Starting Cycles Issue and
Inconsistent Series Length Issue. In Case I, X and Y have a starting cycle gap of 104 over 336. In
Case II, X and Y have different series lengths of 336 and 192, respectively.

distinct meanings. For instance, an 8Hz cosine function with a series length of 192 is equivalent
to a 14Hz cosine function with a series length of 336. Unfortunately, such a frequency connection
is not provided by existing models. Hence, the precise interpretation of frequency components
is challenging for the model due to varying series lengths. The presence of time-dependent basis
functions makes it even harder for the model to accurately interpret the frequency components.
Instead, these issues can be solved easily by the incorporation of basis functions, which will be
discussed in Section 4.

4 FBM: Fourier basis mapping
To address two aforementioned issues, we introduce the Fourier basis mapping (FBM) . Figure 3
shows the architecture of FBM. The primary strength of FBM lies in constructing time-frequency
features, which capture explicit frequency information while preserving temporal characteristics.
Subsequently, the downstream mapping considers the time-frequency space rather than solely the
time or frequency space for forecasting.

First, we apply data normalization to enhance the robustness of FBM, the same as the implementation
suggested in [41]. Then, we generate the frequency spectrum H using DFT. Next, we multiply the
real part of H (denoted as HR) with the orthogonal cosine basis C and the imaginary part of H
(denoted as HI) with the orthogonal sine basis S to obtain the mixture of frequency and temporal
features. Let N = [0, 1, . . . , T − 1], then C and S can be expressed as follows:

C =
1

T
[1, 2 cos(

2πN

T
), . . . , 2 cos(

(T − 1)πN

T
), cos(πN)],

S = − 1

T
[0, 2 sin(

2πN

T
), . . . , 2 sin(

(T − 1)πN

T
), sin(πN)].

(5)

5

8519 https://doi.org/10.52202/079017-0272

Orthogonal
 Cosine Basis

Orthogonal
 Sine Basis

Decoder

De-Normalizaton

DFT

Normalizaton

Fourier Basis Mapping
L

NL

NP

Multiply Add

Figure 3: Architecture of Fourier Basis Mapping (FBM): with three feature-output mapping methods,
denoted as L - vanilla linear network, NL - nonlinear MLP, and NP - nonlinear PatchTST.

Further, we combine the cosine and sine basis functions to obtain the shifted starting cycles of the
time series, forming G. The scalar 2 is derived in Eq. (4) for Hermitian symmetric. Thus, by
summing over the T

2 + 1 frequency domain, the model can recover the original time series without
compromising the integrity of the temporal information. The process is analogous to decomposing
the original time series into T

2 + 1 components with tiered frequency levels.

Finally, we use a decoder to map the features G to the output time series. Our time-frequency features
automatically decompose hierarchical effects by frequency levels, accounting for their interactive
effects while filtering out associated noise through the mapping network. The Fourier basis expansion
provides more effective and interpretable initial features, facilitating a simpler downstream mapping
process. To this end, we further propose three mapping methods: linear (L), nonlinear three-layer
perception (NL), and nonlinear PatchTST (NP). Consequently, three FBM variants are generated:
FBM-L with linear network, FBM-NL with MLP network, and FBM-NP with transformer-based
network with patching. The first one includes a single vanilla linear layer, the second one consists of
three fully connected layers with activation functions, and the last one follows the same structure
as PatchTST, but we conduct the patching after the Fourier basis expansion. It is worth noting that
FBM-NP employs fewer patches than PacthTST to reduce complexity, making it more efficient while
delivering superior performance. Details of our three mapping networks, including hyperparameters
and layer specifications, are provided in Figure 6 and Table 5 in Appendix C.

5 Experiment results

5.1 Baselines and experiment settings

We compare FBM with eight baseline methods: NLinear, PatchTST, N-BEATS, CrossGNN, FED-
former, FreTS, FiLM, and BasisFormer. These methods are chosen because they represent four
categories of LTSF modeling methods: (1) Linear method: NLinear; (2) Transformer-based methods:
iTransformer and PatchTST; (3) MLP-based methods: N-BEATS, FreTS, and TimeMixer; and (4)
Fourier-based methods: N-BEATS, FITS, FreTS, and CrossGNN. Furthermore, FBM is evaluated
w.r.t. its three variants: FBM-L, FBM-NL, and FBM-NP. The mean squared error (MSE) and mean
absolute error (MAE) are used as evaluation metrics. The look-back window is set to 336, and the
forecasting horizons are set to 96, 192, 336, 720. In Appendix A.3, we also show that a look-back
window of 336 is always associated with better results than that of 96 for most baseline methods.
Eight datasets are used for the evaluation: ETTh1, ETTh2, ETTm1, ETTm2, Electricity, Traffic,
Weather, and Exchange. In addition, we also evaluate the STSF of four PEMS datasets: PEMS03,
PEMS04, PEMS07, PEMS08. More details about these baselines and datasets can be found in
Appendix A.1. We split the ETT dataset into 12/4/4 months and the other datasets into training,
validation, and test sets by the ratio of 6.5/1.5/2. Here, we use a smaller training set and a larger
validation set compared to baseline methods to prevent early stopping and ensure a fairer comparison.
With time-frequency features, the model can achieve state-of-the-art performance for both LTSF and
STSF most of the time using either one linear layer or three non-linear layers.

5.2 Effects of FBM mechanisms for LTSF

We evaluate the forecasting performance of three FBM variants against eight diversified baselines
incorporated by different architectures: Linear, MLP, Transformer, and Fourier-based architectures.
Table 1 shows the quantitative results on eight datasets. While preserving a simple structure, FBM
variants achieve the best performance on most datasets across most prediction horizons.

6

8520https://doi.org/10.52202/079017-0272

Table 1: Performance of FBM-L, FBM-NL, and FBM-NP in Multivariate Long-term Time Series
Forecasting Compared to Eight Baseline Methods on Eight Datasets.

Method FBM-L FBM-NL FBM-NP NLinear PatchTST iTransformer TimeMixer N-BEATS CrossGNN FITS FreTS

Error MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.366 0.390 0.368 0.395 0.367 0.395 0.391 0.416 0.374 0.399 0.399 0.417 0.385 0.408 0.387 0.410 0.376 0.400 0.368 0.392 0.404 0.423

192 0.403 0.411 0.408 0.418 0.407 0.416 0.421 0.426 0.417 0.422 0.436 0.440 0.429 0.432 0.428 0.434 0.419 0.427 0.404 0.412 0.461 0.460

336 0.418 0.420 0.425 0.430 0.433 0.438 0.435 0.435 0.431 0.436 0.446 0.451 0.456 0.450 0.448 0.447 0.439 0.442 0.419 0.435 0.488 0.480

720 0.414 0.438 0.456 0.466 0.439 0.459 0.443 0.457 0.445 0.463 0.502 0.503 0.457 0.462 0.466 0.471 0.447 0.465 0.431 0.458 0.566 0.553

ETTh2

96 0.271 0.331 0.287 0.343 0.280 0.340 0.283 0.342 0.276 0.338 0.303 0.362 0.276 0.339 0.303 0.363 0.283 0.344 0.276 0.338 0.327 0.388

192 0.332 0.373 0.351 0.386 0.342 0.382 0.350 0.387 0.341 0.378 0.372 0.403 0.340 0.381 0.364 0.402 0.342 0.387 0.336 0.377 0.428 0.450

336 0.321 0.376 0.352 0.394 0.354 0.401 0.344 0.395 0.332 0.385 0.401 0.424 0.362 0.404 0.360 0.407 0.361 0.408 0.324 0.379 0.499 0.497

720 0.369 0.412 0.397 0.432 0.386 0.424 0.395 0.436 0.379 0.420 0.420 0.446 0.398 0.433 0.428 0.465 0.423 0.460 0.373 0.416 0.727 0.637

ETTm1

96 0.301 0.343 0.286 0.339 0.293 0.346 0.307 0.349 0.295 0.344 0.309 0.361 0.303 0.350 0.324 0.367 0.300 0.343 0.305 0.347 0.326 0.373

192 0.337 0.364 0.324 0.365 0.334 0.368 0.347 0.374 0.333 0.370 0.345 0.383 0.356 0.385 0.363 0.388 0.335 0.369 0.338 0.366 0.359 0.392

336 0.371 0.384 0.359 0.385 0.371 0.389 0.377 0.390 0.363 0.394 0.380 0.401 0.366 0.392 0.400 0.408 0.375 0.390 0.372 0.386 0.389 0.408

720 0.425 0.415 0.422 0.424 0.426 0.420 0.436 0.425 0.421 0.420 0.448 0.442 0.435 0.434 0.468 0.448 0.429 0.420 0.427 0.416 0.445 0.441

ETTm2

96 0.164 0.252 0.165 0.254 0.167 0.258 0.169 0.259 0.173 0.261 0.180 0.272 0.174 0.258 0.168 0.259 0.164 0.252 0.167 0.256 0.202 0.288

192 0.219 0.290 0.225 0.296 0.224 0.296 0.223 0.294 0.255 0.306 0.239 0.311 0.238 0.300 0.225 0.301 0.220 0.294 0.222 0.293 0.250 0.322

336 0.271 0.325 0.276 0.331 0.277 0.331 0.277 0.331 0.285 0.336 0.389 0.341 0.272 0.327 0.282 0.336 0.276 0.330 0.277 0.329 0.328 0.368

720 0.364 0.381 0.365 0.386 0.367 0.386 0.371 0.387 0.365 0.386 0.374 0.392 0.368 0.389 0.376 0.394 0.372 0.390 0.366 0.382 0.431 0.436

Electricity

96 0.142 0.237 0.132 0.227 0.133 0.227 0.143 0.239 0.133 0.227 0.137 0.232 0.134 0.230 0.144 0.240 0.147 0.246 0.145 0.242 0.145 0.245

192 0.155 0.248 0.149 0.243 0.149 0.242 0.157 0.250 0.151 0.244 0.156 0.249 0.153 0.245 0.158 0.252 0.161 0.258 0.158 0.253 0.158 0.255

336 0.172 0.265 0.167 0.261 0.167 0.261 0.174 0.267 0.167 0.261 0.171 0.266 0.172 0.267 0.175 0.269 0.178 0.274 0.174 0.269 0.178 0.275

720 0.212 0.297 0.207 0.295 0.208 0.295 0.214 0.299 0.210 0.297 0.195 0.288 0.212 0.298 0.217 0.304 0.214 0.299 0.213 0.301 0.220 0.315

Traffic

96 0.421 0.281 0.384 0.264 0.373 0.253 0.425 0.288 0.381 0.257 0.376 0.263 0.381 0.261 0.429 0.295 0.428 0.291 0.421 0.282 0.434 0.313

192 0.434 0.286 0.399 0.269 0.396 0.266 0.438 0.291 0.402 0.270 0.396 0.274 0.408 0.273 0.441 0.299 0.441 0.295 0.435 0.288 0.471 0.311

336 0.447 0.292 0.419 0.282 0.411 0.276 0.452 0.300 0.422 0.283 0.407 0.283 0.434 0.297 0.455 0.307 0.455 0.302 0.448 0.293 0.493 0.321

720 0.477 0.309 0.448 0.297 0.442 0.291 0.482 0.317 0.454 0.296 0.449 0.305 0.469 0.319 0.486 0.326 0.486 0.318 0.478 0.310 0.535 0.339

Weather

96 0.159 0.207 0.152 0.199 0.156 0.204 0.176 0.226 0.156 0.206 0.162 0.211 0.158 0.204 0.186 0.238 0.163 0.227 0.149 0.198 0.159 0.218

192 0.203 0.247 0.194 0.242 0.198 0.245 0.220 0.262 0.200 0.246 0.204 0.249 0.197 0.246 0.227 0.275 0.205 0.261 0.196 0.244 0.207 0.270

336 0.252 0.285 0.244 0.282 0.248 0.285 0.265 0.296 0.252 0.285 0.248 0.285 0.242 0.281 0.274 0.307 0.250 0.295 0.245 0.283 0.252 0.299

720 0.319 0.335 0.317 0.334 0.319 0.337 0.332 0.345 0.321 0.336 0.322 0.335 0.319 0.335 0.342 0.361 0.320 0.347 0.321 0.338 0.319 0.342

Exchange

96 0.093 0.211 0.104 0.226 0.096 0.196 0.098 0.219 0.104 0.227 0.128 0.254 0.119 0.247 0.147 0.274 0.093 0.211 0.109 0.235 0.209 0.350

192 0.195 0.309 0.210 0.326 0.196 0.312 0.203 0.316 0.210 0.325 0.241 0.353 0.238 0.354 0.312 0.406 0.188 0.305 0.229 0.350 0.346 0.437

336 0.347 0.421 0.398 0.460 0.353 0.425 0.356 0.426 0.366 0.435 0.393 0.459 0.417 0.472 0.522 0.532 0.363 0.430 0.400 0.463 0.634 0.583

720 0.965 0.732 1.040 0.762 0.970 0.734 0.965 0.733 1.026 0.757 1.00 0.763 1.074 0.790 1.412 0.907 0.931 0.722 1.095 0.781 2.418 1.233

Average 0.323 0.339 0.325 0.344 0.321 0.340 0.333 0.349 0.326 0.344 0.341 0.353 0.335 0.352 0.366 0.371 0.330 0.350 0.331 0.347 0.431 0.406

FBM-L vs linear network (e.g. NLinear): We compare FBM-L with the NLinear model, revealing
improvement across all datasets and prediction horizons, reducing the average MSE and MAE from
0.333 and 0.349 to 0.323 and 0.339, respectively. This demonstrates the effectiveness of decomposing
the original time series by Fourier basis expansion. The frequency domain features allow the model
to distinguish noises from hierarchical effects. We find that the improvement is more notable on
datasets ETTh1 and ETTh2 due to their richer frequency components and higher prevalence of noise
signals. Furthermore, our experiments reveal that even a simple vanilla linear network FBM-L has
the potential to outperform state-of-the-art DNN-based architectures. More explanation is provided
in Section 5.3.

FBM-NL vs MLP-based network and FBM-NP VS Transformer-based network: FBM-NL
performs better than TimeMixer and FBM-NP performs better than PatchTST at most of the time,
where the former two are both MLP-based networks and the latter two are both Transformer-based
networks with patching. The experimental results further demonstrate the effectiveness of Fourier
basis expansion, suggesting that extracting time-frequency features efficiently is more advantageous
than relying solely on deeper architectures. It is worth noting that TimeMixer also decomposes the
original time series into trend and seasonal effects, but its performance largely depends on the choice
of the moving average kernel size. In contrast, our Fourier basis expansion automatically decomposes
various effects hierarchically within distinct frequency levels. Although FBM-NP uses fewer patches
than PatchTST, it still achieves better performance. Our FBM variants also consistently outperform
other Transformer-based and MLP-based architectures, including iTransformer and N-BEATS.

FBM variants vs. Fourier-based network: We also observe that FBM variants make a significant
improvement over all Fourier-based methods, including N-BEATS, FreTS, CrossGNN, and FITS.
This discrepancy may largely be attributed to the inconsistent starting cycles and series length
issues discussed in Section 3. Notably, FITS and CrossGNN also emphasize the importance of the
amplitude of real and imaginary values, similar to FBM. However, they overlook the fact that Fourier
basis functions are time-dependent when the input length is not divisible by a certain frequency
level. Consequently, mapping in the frequency space cannot capture the time-frequency relationship
effectively. For instance, CrossGNN retains only the values from the first cycle but fails to account
for variations in the subsequent cycles as well as shifts in the phase of the cycles. In contrast, FBM

7

8521 https://doi.org/10.52202/079017-0272

Table 2: Short Term Time Series Forecasting on Dataset PEMS with Forecast Horizon L = 12 .

Method FBM-L FBM-NL FBM-NP NLinear PatchTST TimeMixer iTransformer FiLM TimesNet

Error MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MAPE MAE MSE MAE

PEMS04 0.088 0.195 0.071 0.172 0.071 0.170 0.089 0.196 0.075 0.179 0.071 0.173 0.073 0.176 0.118 0.237 0.091 0.196

PEMS08 0.081 0.189 0.060 0.159 0.061 0.159 0.081 0.190 0.062 0.165 0.060 0.160 0.062 0.165 0.108 0.226 0.094 0.204

PEMS03 0.077 0.183 0.060 0.161 0.061 0.162 0.078 0.184 0.065 0.174 0.062 0.164 0.061 0.163 0.108 0.223 0.089 0.199

PEMS07 0.073 0.180 0.053 0.148 0.054 0.150 0.073 0.180 0.057 0.164 0.053 0.151 0.053 0.148 0.101 0.221 0.079 0.182

variants demonstrate a better representation of time-frequency domain features, as evidenced by
their superior performance. In the following sections, we empirically discuss the reasons for their
effectiveness through visualization.

Although our model primarily focuses on addressing LTSF challenges, we also evaluate the perfor-
mance of STSF on PEMS dataset in Table 2, under the same settings as previous baseline methods.
Our FBM variants consistently achieve the best performance in most cases.

5.3 Effect of weight on time-frequency features

In Figure 4, we visualize the effect of the weights of the one-layer vanilla linear network to show
how FBM-L considers the time-frequency relationship. We decompose the weights W into L time-
specific parts, denoted as W = [W0,W1, . . . ,WL−1], where Wi represents the impact of the
time-frequency features on the i-th time step of Ŷ. We flatten the weights into an array similar to
G in Figure 3, where the horizontal axis represents time, and the vertical axis represents frequency.
Specifically, we visualize the heat maps of W0 for the ETTh1, Electricity, and Traffic datasets,
comparing them with the Fourier basis. Since the datasets Electricity and Traffic are more stable than
ETTh1, the weights of the linear layer for the former datasets are closer to the Fourier basis than
those for the latter datasets. This implies that FBM-L considers more time-frequency relationships
in ETTh1 than in Electricity and Traffic, leading to more significant improvement. The further
visualization of the weights W0, W10, W20, W30, W40, and W50 for Electricity is provided in
Figure 4 in Appendix C. It is not surprising to see that the heatmap shifts over time. In conclusion,
our approach allows the model to eliminate noises across a mixture of time and frequency domains
and consider time-frequency relationships. In contrast, existing studies only eliminate noises in the
frequency domain.

ETTh1 Electricity Traffic Basis

Figure 4: Effect of Weight W0 on Datasets ETTh1, Electricity, and Traffic.
5.4 Linear networks vs non-linear networks

We compare the performance of three FBM-variants on eight datasets, as shown in Table 1. FBP-NL
and FBM-NP perform similarly across the datasets, as both are nonlinear. In contrast, FBM-L and
FBM-NL reveal great performance differences on distinct datasets, which may be attributed to their
varied data characteristics. To further explain such differences, Figure 5 shows the visualization of
the frequency spectrum for a random input on the last seven dimensions across eight datasets. It
shows that trending effects usually appear on high-frequency levels, seasonal effects usually fall on
intermediate frequency levels, and noise signals typically manifest on low-frequency levels. This
explains why the Fourier transform is beneficial for LTSF, as it hierarchically separates various effects,
with specific effects (e.g., hourly, daily, weekly) aligning with their corresponding frequency levels.
For instance, there is consistently high energy at the multiples of 14 on all hourly-level data ETTh1,
ETTh2, Electricity, and Traffic in Figure 5. This is attributed to the day effect falling into these
frequency levels, given the repeating cycle of 24 with a look-back window of 336.

By examining the frequency spectrums of all hourly-level datasets, we also find that ETTh1 and
ETTh2 display a much richer frequency spectrum compared to other datasets. Figures 8 and 9 in

8

8522https://doi.org/10.52202/079017-0272

Appendix C further show that the frequency spectrums of Electricity and Traffic are more stable
than those of ETTh1 and ETTh2. This suggests that there is a larger proportion of noise signals in
datasets ETTh1 and ETTh2, but less in datasets Electricity and Traffic. The model is more likely to
overfit when the data is mixed with a significant amount of noise. This is why FBM-L achieves better
performance on datasets ETTh1 and ETTh2, while FBM-NL performs better on datasets Electricity
and Traffic. On the other hand, the frequency spectrums for ETTm1 and ETTm2 shift to the left,
contrasting with those for ETTh1 and ETTh2. This is because the granularity of ETTh1 and ETTh2
is four times larger than that of ETTm1 and ETTm2. This leads to the actual forecast horizon of the
time being reduced, resulting in less noise in the data. This explains why FBM-NL performs slightly
better than FBM-L on ETTm1 when the granularity changes. This also applies to datasets with other
levels of granularity, such as the Exchange and Weather data. This observation validates our original
hypothesis that providing the frequency spectrum is insufficient, as the real-world frequency can
be ambiguous for the model when changes in granularity or series length alter the meanings of the
spectrum. In conclusion, when a dataset consists of a large proportion of noise signals with a limited
amount of data, a simpler network is preferred, and vice versa.

ETTh1 ETTh2 Electricity Traffic

ETTm1 ETTm2 Weather Exchange

Figure 5: Frequency Spectrum of A Random Input of Last Seven Dimensions on Eight Datasets.

6 Conclusion

We make the first attempt to theoretically and empirically discuss several issues associated with the
existing research on the deep Fourier transform for LTSF from the perspective of basis functions.
Our insights and findings reveal that the real and imaginary parts of the frequency spectrum can be
interpreted as the coefficients of cosine and sine basis functions, disclosing two issues commonly
appearing in existing studies: inconsistent starting cycles and inconsistent series length issues. We
further propose a Fourier basis mapping model Fourier basis mapping (FBM) to address these issues
by extracting more efficient time-frequency features that carry explicit frequency information while
retaining temporal patterns. Extensive experiments empirically verify the effectiveness of the FBM
approach, to enhance various types of mapping networks and achieve state-of-the-art performance
with simple one or three layers. The visualization analysis also reveals that deep neural mapping
can replace the effect of inverse discrete Fourier transform and allow for more flexible consideration
of time-frequency relationships. The ablation study further shows that extracting time-frequency
features is more valuable than simply increasing the depth of the network. The primary focus of
this study is to refine Fourier-based methods in a way that is more reasonable and interpretable. The
time-frequency features hold great potential for future time series analysis tasks by enhancing various
types of mapping networks (e.g., linear, MLP, Transformer networks). For example, Fourier basis
expansion can enhance the performance of Transformer-based networks by only adjusting the initial
projection layer after Fourier basis expansion. In future, we will also consider applying Fourier basis
expansion to CNN- and RNN-based networks, as well as to tasks such as anomaly detection.

9

8523 https://doi.org/10.52202/079017-0272

Acknowledgments and Disclosure of Funding

This research is partly supported by NSFC (No. 62376153), Australian Research Council (ARC)
Linkage Grant LP230201022, the ARC Discovery Grant DP240102050, and the ARC Council
Linkage Infrastructure, Equipment and Facilities (LIEF) Grant LE240100131.

References
[1] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,

9(8):1735–1780, 1997.

[2] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

[3] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang,
and Tim Januschowski. Deep state space models for time series forecasting. Neural Information
Processing Systems Conference, 31, 2018.

[4] Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong Cui, Michael
Witbrock, Mark A Hasegawa-Johnson, and Thomas S Huang. Dilated recurrent neural networks.
Neural Information Processing Systems Conference, 30, 2017.

[5] Xiaolei Liu and Zi Lin. Impact of covid-19 pandemic on electricity demand in the uk based
on multivariate time series forecasting with bidirectional long short term memory. Energy,
227:120455, 2021.

[6] Tryambak Gangopadhyay, Sin Yong Tan, Zhanhong Jiang, Rui Meng, and Soumik Sarkar.
Spatiotemporal attention for multivariate time series prediction and interpretation. In IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 3560–3564. IEEE,
2021.

[7] Yuxin Jia, Youfang Lin, Xinyan Hao, Yan Lin, Shengnan Guo, and Huaiyu Wan. WITRAN:
Water-wave information transmission and recurrent acceleration network for long-range time
series forecasting. In Neural Information Processing Systems Conference, 2023.

[8] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. DeepAR: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting,
36(3):1181–1191, 2020.

[9] Donghao Luo and Xue Wang. ModernTCN: A modern pure convolution structure for general
time series analysis. In International Conference on Learning Representations, 2024.

[10] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

[11] Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu.
SCINet: Time series modeling and forecasting with sample convolution and interaction. Neural
Information Processing Systems Conference, 35:5816–5828, 2022.

[12] Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. MICN:
Multi-scale local and global context modeling for long-term series forecasting. In International
Conference on Learning Representations, 2022.

[13] Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable represen-
tation learning for multivariate time series. Neural Information Processing Systems Conference,
32, 2019.

[14] Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. Think globally, act locally: A deep neural
network approach to high-dimensional time series forecasting. Neural Information Processing
Systems Conference, 32, 2019.

10

8524https://doi.org/10.52202/079017-0272

[15] Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang,
and Jun Zhou. TimeMixer: Decomposable multiscale mixing for time series forecasting. 2024.

[16] Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-BEATS: Neural
basis expansion analysis for interpretable time series forecasting. In International Conference
on Learning Representations, 2019.

[17] Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza Ramirez, Max Mergenthaler
Canseco, and Artur Dubrawski. N-HiTS: Neural hierarchical interpolation for time series
forecasting. In AAAI Conference on Artificial Intelligence, volume 37, pages 6989–6997, 2023.

[18] Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian,
Longbing Cao, and Zhendong Niu. Frequency-domain mlps are more effective learners in time
series forecasting. In Neural Information Processing Systems Conference, 2023.

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Neural Information Processing
Systems Conference, 30, 2017.

[20] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is
worth 64 words: Long-term forecasting with transformers. In International Conference on
Learning Representations, 2022.

[21] Zelin Ni, Hang Yu, Shizhan Liu, Jianguo Li, and Weiyao Lin. BasisFormer: Attention-based
time series forecasting with learnable and interpretable basis. In Neural Information Processing
Systems Conference, 2023.

[22] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer:
Frequency enhanced decomposed transformer for long-term series forecasting. In International
Conference on Machine Learning, pages 27268–27286. PMLR, 2022.

[23] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
AAAI Conference on Artificial Intelligence, volume 35, pages 11106–11115, 2021.

[24] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in Neural Information
Processing Systems, 34:22419–22430, 2021.

[25] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International conference on learning representations, 2021.

[26] Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In International Conference on Learning Representa-
tions, 2022.

[27] Haizhou Cao, Zhenhao Huang, Tiechui Yao, Jue Wang, Hui He, and Yangang Wang. In-
Parformer: evolutionary decomposition transformers with interactive parallel attention for
long-term time series forecasting. In AAAI Conference on Artificial Intelligence, volume 37,
pages 6906–6915, 2023.

[28] Ke Fu, He Li, and Xiaotian Shi. An encoder–decoder architecture with fourier attention for
chaotic time series multi-step prediction. Applied Soft Computing, page 111409, 2024.

[29] Zhen Zhang, Yongming Han, Bo Ma, Min Liu, and Zhiqiang Geng. Temporal chain network
with intuitive attention mechanism for long-term series forecasting. IEEE Transactions on
Instrumentation and Measurement, 2023.

[30] Jin Fan, Zehao Wang, Danfeng Sun, and Huifeng Wu. Sepformer-based models: More efficient
models for long sequence time-series forecasting. IEEE Transactions on Emerging Topics in
Computing, 2022.

11

8525 https://doi.org/10.52202/079017-0272

[31] Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu.
Tempo: Prompt-based generative pre-trained transformer for time series forecasting. arXiv
preprint arXiv:2310.04948, 2023.

[32] Peng Chen, Yingying Zhang, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin
Yang, and Chenjuan Guo. Pathformer: Multi-scale transformers with adaptive pathways for
time series forecasting. 2024.

[33] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
iTransformer: Inverted transformers are effective for time series forecasting. In International
Conference on Learning Representations, 2024.

[34] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In AAAI Conference on Artificial Intelligence, volume 37, pages 11121–11128,
2023.

[35] Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, and
Yang Wang. CrossGNN: Confronting noisy multivariate time series via cross interaction
refinement. In Neural Information Processing Systems Conference, 2023.

[36] Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin, et al. FiLM:
Frequency improved legendre memory model for long-term time series forecasting. Neural
Information Processing Systems Conference, 35:12677–12690, 2022.

[37] Zhijian Xu, Ailing Zeng, and Qiang Xu. FITS: Modeling time series with 10k parameters.
arXiv preprint arXiv:2307.03756, 2023.

[38] Siyuan Huang and Yepeng Liu. FL-Net: A multi-scale cross-decomposition network with
frequency external attention for long-term time series forecasting. Knowledge-Based Systems,
page 111473, 2024.

[39] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. TimesNet:
Temporal 2d-variation modeling for general time series analysis. In International Conference
on Learning Representations, 2022.

[40] Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An, Longbing Cao, and
Zhendong Niu. FourierGNN: Rethinking multivariate time series forecasting from a pure graph
perspective. arXiv preprint arXiv:2311.06190, 2023.

[41] Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo.
Reversible instance normalization for accurate time-series forecasting against distribution shift.
In International Conference on Learning Representations, 2021.

[42] Runze Yang, Jianxun Li, Jie Yang, and Longbing Cao. Variational hierarchical n-beats model
for long-term time-series forecasting, 2023.

[43] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Neural Information Processing Systems Conference, 32, 2019.

[44] Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre memory units: Continuous-time
representation in recurrent neural networks.

12

8526https://doi.org/10.52202/079017-0272

A Supplement materials for experiment results

A.1 Datasets

We conduct our experiments on twelve real-world datasets: ETT2 (ETTh1, ETTh2, ETTm1, ETTm2),
Electricity 3, Traffic4, Weather5, Exchange rate (Exchange)6 and PEMS7 (PEMS04, PEMS08M,
PEMS03, PEMS07). The granularity of ETTh1, ETTh2, Electricity, and Traffic is at an hourly
time scale; the granularity of ETTm1 and ETTm2 is at a fifteen-minute time scale; the granularity
of Weather is at a ten-minute time scale; the granularity of Exchange is at a daily time scale; and
the granularity of PEMS is at a five-minute time scale. The ETTh datasets involve seven oil and
load features of electricity transformers, spanning from July 2016 to July 2018. Traffic comprises
hourly road occupancy rates measured by 862 sensors in the San Francisco Bay area from 2015 to
2016. Electricity records hourly electricity consumption (in kWh) of 321 clients from 2012 to 2014.
Weather includes 21 weather indicators for 2020 in Germany, such as air temperature, humidity,
and so on. Exchange tracks the daily exchange rates of eight countries from 1990 to 2016. PEMS
contains the public traffic network data in California with four public subsets.

A.2 Related work

NLinear [34] is a simple one-layer linear network with data normalization [41]. PatchTST [20]
introduces a Transformer-based model for time series forecasting with two crucial improvements:
patching and channel independence. FEDformer [22] adopts a structure similar to Transformer
but converts time-domain features into frequency-domain features through the Fourier transform.
CrossGNN [35] creates a multi-scale identifier to address noise in time series by applying the Fourier
transform and utilizes graph neural network (GNN) to study cross-variable interactions. FreTS [18]
projects the time series into high dimensions and characterizes the frequency space by utilizing
interaction channels for the real and imaginary parts with a multilayer-perceptron-based network.
TimesNet [39] transforms one-dimensional time domain information into a 2D tensor based on
multiple time scales through Fourier transform, and then utilizes the convolution neural network to
analyze the transformed information. N-BEATS [16] and N-HiTS [17] forecast by computing the
coefficients of sine and cosine basis functions using a multilayer perceptron network. FiLM [36]
combines the power of the Fourier transform with the recursive memory unit (LMU) [44], where
LMU is introduced to provide a robust representation for long time series through the Legendre
projection, a variant version of recurrent neural network. BasisFormer [21] computes basis functions
through adaptive self-supervised contrastive learning and employs a Transformer-based architecture
to study the connection between input time series and its basis functions. Autoformer [24] is a model
based on Transformer that employs a decomposition architecture along with an auto-correlation
mechanism to capture dependencies across time. Informer [23] introduces a probability sparse
self-attention mechanism to study the temporal relationship. LogTrans [43] develops a log sparse
attention mechanism to improve the efficiency of Transformer-based networks. Pyraformer [25] is
a Transformer-based model that learns a multi-resolution representation of time series data using a
pyramidal attention module to capture cross-time dependencies for forecasting. iTransformer [33]
applies attention to study the inverted dimensions of the input sequence, capturing the dependencies
between time series. TimeMixer [15] introduces a multi-scale decomposition using a bottom-up and
top-down MLP network. FITS [37] proposes complex frequency linear interpolation to study the
frequency domain.

A.3 Computational efficiency

In Table 3 and 4, we evaluate the complexity of our method in comparison to other sophisticated
approaches and discuss the influence of the look-back window on the final prediction results. In Table
3, we provide a comparison of the training time for one epoch cycle on the ETTh1 dataset, as well

2https://github.com/zhouhaoyi/ETDataset
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
4http://pems.dot.ca.gov
5https://www.bgc-jena.mpg.de/wetter/
6https://github.com/laiguokun/multivariate-time-series-data
7https://www.kaggle.com/datasets/elmahy/pems-dataset

13

8527 https://doi.org/10.52202/079017-0272

Table 3: Hidden Layer Complexity and Average Training Time per Epoch on the ETTh1 Dataset.
FBM-L FBM-NL FBM-NP NLinear PatchTST N-BEATS CrossGNN iTransformer TimeMixer FreTS FiLM FITS TimesNet

Time 4.86 10.7 34.21 1.36 33.30 5.21 23.50 11.64 12.18 28.69 148.50 1.55 250.21

Complexity O(T
2

2) O(T
2

2) O(T
2

P) O(T) O(T
2

P) O(T) O(TD) O(TD) O(T) O(T) O(T 2) O(T) O(T 2)

Table 4: The Effect of Look-back Window on ETTh1.
Model FBM-L NLinear PatchTST N-BEATS CrossGNN iTransformer FreTS FiLM TimeMixer

Error MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96/96 0.381 0.394 0.389 0.401 0.387 0.401 0.395 0.406 0.397 0.410 0.386 0.405 0.404 0.417 0.389 0.398 0.371 0.399
336/96 0.366 0.390 0.391 0.416 0.374 0.399 0.387 0.410 0.376 0.400 0.399 0.416 0.404 0.423 0.373 0.397 0.385 0.408

96/192 0.434 0.421 0.450 0.437 0.441 0.431 0.447 0.433 0.437 0.429 0.446 0.438 0.469 0.455 0.440 0.425 0.434 0.429
336/192 0.403 0.411 0.432 0.421 0.426 0.422 0.428 0.434 0.419 0.427 0.436 0.442 0.461 0.460 0.405 0.416 0.429 0.432

96/336 0.471 0.438 0.496 0.462 0.487 0.455 0.482 0.447 0.482 0.449 0.494 0.463 0.521 0.486 0.477 0.441 0.496 0.451
336/336 0.418 0.420 0.435 0.435 0.431 0.436 0.448 0.447 0.439 0.442 0.446 0.451 0.488 0.480 0.439 0.422 0.456 0.450

96/720 0.454 0.453 0.490 0.478 0.479 0.471 0.477 0.467 0.490 0.478 0.517 0.500 0.570 0.546 0.485 0.473 0.505 0.486
336/720 0.414 0.438 0.443 0.457 0.445 0.463 0.466 0.471 0.447 0.465 0.502 0.503 0.566 0.553 0.464 0.473 0.457 0.462

as an increase in complexity in the layer. Our FBM model achieves the best prediction results at a
relatively fast training speed. In contrast, attention mechanisms typically suffer from higher memory
costs and slower calculation speeds. All the experiments are conducted on a GeForce GTX 3090
GPU and an Intel(R) Core(TM) i7-6850K CPU. In the past literature, a substantial amount of work
selects a look-back window of 96. In Table 4, we conduct a comparison of prediction results with
look-back windows of 96 and 336 on the ETTh1 dataset. Remarkably, the look-back window of 336
consistently yields better performance for almost every baseline method. While certain methods,
such as iTransformer, and FreTS, exhibit lower sensitivity to the look-back window, the majority
experiences a significant increase in both MSE and MAE when a look-back window of 96 is used
rather than that of 336.

B Supplemental materials for rethinking Fourier transform w.r.t. basis
functions

B.1 Proof of real-valued discrete Fourier transform via basis functions

The discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT) can be expressed
by T

2 + 1 cosine basis functions and T
2 − 1 sine basis functions. We provide the proof that the

real-valued discrete Fourier transform can be represented by sine and cosine functions as follows:

H(k) =

T−1∑
n=0

X[n] exp

(
−i

2πkn

T

)
,

= X[0] + (−1)kX

[
T

2

]
+

T
2 −1∑
n=1

X[n] exp

(
−i

2πkn

T

)
+X [T − n] exp

(
i
2πkn

T

)
,

= X[0] + (−1)kX

[
T

2

]
+

T
2 −1∑
n=1

X[n](cos(
2πkn

T
)− i sin(

2πkn

T
))

+

T
2 −1∑
n=1

X[T − n](cos(
2πkn

T
) + i sin(

2πkn

T
),

= X[0] + cos(πk)X

[
T

2

]
+

T
2 −1∑
n=1

(X[n] +X[T − n]) cos(
2πkn

T
)

− i

T
2 −1∑
n=1

(X[n]−X[T − n]) sin(
2πkn

T
), k = 0, . . . , T − 1.

(6)

14

8528https://doi.org/10.52202/079017-0272

Then, we can deduce that the frequency spectrum is Hermitian symmetric, where H(k) = H(T − k).

B.2 Proof of real-valued inverse discrete Fourier transform via basis functions

The real-valued inverse discrete Fourier transform can be expressed by sine and cosine basis functions
as follows:

X[n] =
1

T

T−1∑
k=0

H[k] exp

(
i
2πkn

T

)
=

T
2∑

k=0

H[k](cos(
2πkn

T
) + i sin(

2πkn

T
))

+

T
2 −1∑
k=1

H[T − k](cos(
−2πkn

T
) + i sin(

−2πkn

T
))),

=
1

T
(HR[0] +HR[

T

2
] cos(πn) +

T
2 −1∑
k=1

(HR[k] + iHI[k])(cos(
2πkn

T
) + i sin(

2πkn

T
))

+

T
2 −1∑
k=1

(HR[k]− iHI[k])(cos(
2πkn

T
)− i sin(

2πkn

T
))),

=
2

T

T
2 −1∑
k=1

(
HR[k] cos

(
2πkn

T

)
−HI[k] sin

(
2πkn

T

))
+

1

T
(HR[0]

+HR[
T

2
] cos(πT)),

=
1

T

T
2∑

k=0

(
ak cos

(
2πkn

T

)
− bk sin

(
2πkn

T

))
, n = 0, . . . , T − 1,

ak =

{
HR[k], k = 0, T

2

2 ·HR[k], k = 1, . . . , T
2 − 1

bk =

{
HI[k] = 0, k = 0, T

2

2 ·HI[k], k = 1, . . . , T
2 − 1.

(7)

B.3 Equivalence between the IDFT and N-BEATS-Seasonal-Block design for frequency side
mapping.

We provide further explanation of why IDFT and N-BEATS-Seasonal-Block are equivalent for the
frequency space mapping. The general structure of a Fourier-based method can be summarized as
follows:

HX = DFT (X),

HY = Encoder(HX),

Ŷ = IDFT (HY).

(8)

The encoder can refer to any deep neural architecture, such as a CNN-based network, RNN-based
network, GNN-based network, Transformer-based network, or MLP-based network. Therefore,
the model aims to make forecasting by mapping HX to HY . However, if we rewrite the IDFT in
Equation (8) by Equation (4) and assume M = [0, . . . , L− 1], we can obtain the following equation:

Ŷ =
1

L

L
2∑

k=0

(
akHR[k]Y cos

(
2πkM

L

)
− akHI[k]

Y sin

(
2πkM

L

))
,

ak =

{
1, k = 0, L

2

2, k = 1, . . . , L
2 − 1.

(9)

This is equivalent to the N-BEATS-Seasonal-Block design, as their structure can be expressed as
follows:

θ = MLP (X),

Ŷ =

L
2∑

i=0

cos

(
2πiM

L

)
θi + sin

(
2πiM

L

)
θi+L

2 +1.
(10)

15

8529 https://doi.org/10.52202/079017-0272

Table 5: The hyperparameter of FBM-NL, FBM-NP and PatchTST
ETTh1 ETTh2 ETTm1 ETTm2 Electricity Traffic Weather Exchange PEMS

FBM-NL H1/H2 1440/1440 1440/1440 1440/1440 1440/1440 1440/1440 1440/1440 1440/1440 1440/1440 720/360
FBM-NP P/K 14/16 14/16 14/128 14/128 14/128 28/128 14/128 14/128 14/128
PatchTST P/K 42/16 42/16 42/128 42/128 42/128 42/128 42/128 42/128 42/128

In the N-BEATS model, they use a multilayer perceptron to compute the coefficients of sine and
cosine waves, denoted as θ. Although the dimension of θ ∈ RL+2 is twice as large as the dimension
of HY ∈ CL/2+1, if we consider the real part and imaginary part of HY separately, then the
dimension is exactly the same. As a result, the objective of the deep Fourier-based method and the
N-BEATS model in Equation (9) and Equation (10) are equivalent: to compute the coefficients of sine
and cosine basis functions with tiered frequency, as the scalar of a basis function doesn’t provide any
difference in deep learning. The only difference is that the former one maps the frequency domain to
the frequency domain, and the latter one maps the time domain to the frequency domain.

C Supplemental results to support experimental analysis

Figure 6 is provided as supplementary material for Section 4. In Figure 6, FBM-L represents a linear
network, FBM-NL is a three-layer MLP network with dropout and ReLU as the activation function,
and FBM-NP has the same structure as PatchTST but differs in the number of patches and initial
projection layer. All the rest hyperparameters for FBM-NP are the same as those for PatchTST. The
key hyperparameters are provided in Table 5. You can always tune them to achieve better results than
us. Since validation set is used to determine when to early stop the training, adjusting hyperparameters
based on the test set can undermine generalization. Additionally, tuning random seeds to achieve
better results may compromise reproducibility across different devices. Therefore, we use fixed
hyperparameters in most cases and maintain the same random seed throughout the entire experiment.

Figure 7 is provided as supplementary material for Section 5.3. In Figure 7, we visualize the weights
W0, W10, W20, W30, W40, and W50 for the Electricity dataset and observe that the heatmaps of
weights shift over time.

Figures 8 and 9 are provided as supplementary material for Section 5.4. In these figures, we provide
the frequency spectrums of three random inputs for each dataset. We observe that the frequency
spectrums of the Electricity and Traffic datasets are quite stable, followed by the ETTm1, ETTm2,
and Weather datasets. In contrast, the frequency spectrums of ETTh1 and ETTh2 are not stable, as
reflected by the changing landscape over time with less similarity at certain levels.

16

8530https://doi.org/10.52202/079017-0272

Dividing into P Patches

Stack of Multi-Head Attention

NP

L

NL

Figure 6: The Layers of FBM-L, FBM-NL, and FBM-NP in Detail. FBM-L represents a vanilla
linear network, FBM-NL denotes a three-layer non-linear network, while FBM-NP shares the same
structure as PatchTST but it differs in the number of patches and applies the patching after the Fourier
basis expansion.

W0 W10 W20

W30 W40 W50

Figure 7: The Visualization of Weights W0, W10, W20, W30, W40, and W50 on the Electricity
Dataset. 17

8531 https://doi.org/10.52202/079017-0272

e.g. 1: ETTh1 e.g. 2: ETTh1 e.g. 3: ETTh1

e.g. 1: ETTh2 e.g. 2: ETTh2 e.g. 3: ETTh2

e.g. 1: Traffic e.g. 2: Traffic e.g. 3: Traffic

e.g. 1: Electricity e.g. 2: Electricity e.g. 3: Electricity

Figure 8: The Frequency Spectrum of Three Extra Random Inputs of the Last Seven Dimensions on
the ETTh1, ETTh2, Traffic and Weather Datasets.

18

8532https://doi.org/10.52202/079017-0272

e.g. 1: ETTm1 e.g. 2: ETTm1 e.g. 3: ETTm1

e.g. 1: ETTm2 e.g. 2: ETTm2 e.g. 3: ETTm2

e.g. 1: Weather e.g. 2: Weather e.g. 3: Weather

e.g. 1: Exchange e.g. 2: Exchange e.g. 3: Exchange

Figure 9: The Frequency Spectrum of Three Extra Random Inputs of the Last Seven Dimensions on
the ETTm1, ETTm2, Electricity and Exchange Datasets.

19

8533 https://doi.org/10.52202/079017-0272

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our proposed model, FBM, is more suitable for time-series datasets that
exhibit seasonality and periodicity, rather than monotonic trends.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

20

8534https://doi.org/10.52202/079017-0272

Answer: [Yes]
Justification: The proofs of the discrete Fourier transform and the inverse discrete Fourier
transform, in terms of the basis functions, are provided in Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The architecture of our proposed model is well presented in the paper. The
code to reproduce the entire experiment is released on GitHub. The data is open-source and
can be found at the relevant link provided in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

21

8535 https://doi.org/10.52202/079017-0272

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the datasets are open access and can be found at the relevant links provided
in the Appendix. The code is released on GitHub.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and test details are provided in the main paper as well as the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experiment results are evaluated based on mean square error and mean
absolute error, which is the same as the related research.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

22

8536https://doi.org/10.52202/079017-0272

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computer resources and efficiency of our approach are discussed in the
Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirm that the research conducted in the paper conform, in every respect,
with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The social impact is discussed in introduction. Time series forecasting plays an
increasingly significant role spanning various industries, from traffic flow estimation, energy
inventory management, weather forecasting to financial investment, critical for businesses
such as risk management, resource optimization, and strategic planning. There is no negative
societal impacts of the work performed.

23

8537 https://doi.org/10.52202/079017-0272

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The data is open access, and no pretrained model is provided. Thus, there is
no risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The code is released on GitHub, with all referenced code properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

24

8538https://doi.org/10.52202/079017-0272

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well-documented and provided.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

25

8539 https://doi.org/10.52202/079017-0272

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

8540https://doi.org/10.52202/079017-0272

