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Abstract

We consider the problem of high-dimensional heavy-tailed statistical estimation in
the streaming setting, which is much harder than the traditional batch setting due
to memory constraints. We cast this problem as stochastic convex optimization
with heavy tailed stochastic gradients, and prove that the widely used Clipped-
SGD algorithm attains near-optimal sub-Gaussian statistical rates whenever the
second moment of the stochastic gradient noise is finite. More precisely, with 7’
samples, we show that Clipped-SGD, for smooth and strongly convex objectives,
Tr(S)++/Tr( z)HzHZ In(n(T)/5)

achieves an error of \/ with probability 1 — J, where
3 is the covariance of the clipped gradlent Note that the fluctuations (depending
on 1/5) are of lower order than the term Tr(X). This improves upon the current

best rate of 4/ w for Clipped-SGD, known only for smooth and strongly

convex objectives. Our results also extend to smooth convex and lipschitz convex
objectives. Key to our result is a novel iterative refinement strategy for martingale
concentration, improving upon the PAC-Bayes approach of Catoni and Giulini [8]].

1 Introduction

A fundamental problem in machine learning and statistics is the estimation of an unknown parameter
of a probability distribution, given samples from that distribution. This can be expressed as the
minimization of the expected loss: miny F'(x) := E¢.p[f(x; )], where x represents the parameter
to be estimated, P is the underlying probability distribution which can only be accessed through
samples, and f(x;¢) is a function which quantifies the loss incurred at a point £ by parameter x.
In this paper, we focus on the setting where P is a heavy-tailed distribution for which the extreme
values are more likely than in distributions like the Gaussian, f(+; -) is convex and the learner only
has access to O(d) memory.

The heavy-tailed statistical estimation problem has received increased attention of late because of
the prevalence of heavy-tailed distributions in many statistical applications dealing with real world
data [19} 149,157, 123]]. The presence of such heavy-tailed distributions can significantly degrade the per-
formance of statistical estimation and testing procedures designed under Gaussian (or sub-Gaussian)
tail assumptions [30} 24} 53| [24]. This has spurred recent research efforts towards developing estima-
tors specifically tailored for heavy-tailed settings (e.g., [10} 144,116, [36]; see Section@for a more
detailed literature review). Despite substantial progress on this problem in recent years, much of the
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existing work has concentrated on batch learning, where the entire dataset is available upfront, and the
learner can revisit data points multiple times, without memory constraints. However, the streaming
setting, where data arrives sequentially and must be processed with limited memory, is increasingly
pertinent in the era of large-scale models. Consequently, in this work, we focus on understanding
estimators for statistical estimation under heavy-tailed distributions, in the streaming setting.

A popular approach to study heavy-tailed streaming statistical estimation casts it as a stochastic
convex optimization (SCO) problem with heavy-tailed gradients [17, 44|52} 48] - with Clipped-SGD
as the favored solution due to its simplicity [42]]. Indeed, clipping has become a standard component
in the training of modern deep neural networks and thus, the properties of Clipped-SGD have been
studied widely in the literature [, 56} 38} 148, 52] in various contexts. Specifically, several works
have shown that Clipped-SGD has sub-Exponential or sub-Gaussian tails despite the presence of
heavy tailed noise in the gradient [45) 21} 152} 149]]. Despite this progress, the best known rates for
Clipped-SGD with smooth and strongly convex losses, under a bounded 2" moment assumption on

gradient distribution, are of the order w, where § is the failure probability [52]. Note that

this is still far from the optimal sub-Gaussian rates of w In this work, we bridge

this gap with a sharper analysis of Clipped-SGD for SCO problems, achieving nearly sub-Gaussian
rates (see Section [[.T)). Our approach leverages a novel technique obtained by bootstrapping the
Donsker-Varadhan Variational Principle to Freedman’s inequality, yielding tighter concentration
inequalities for vector martingales compared to those in [8]]. This enables us to derive more refined
rates for a variety of settings than a direct application of Freedman’s inequality as in [52].

1.1 Sub-Gaussian Error Guarantees for Statistical Estimation

Mean Estimation = We motivate our style of results with the case of mean estimation. The Central
Limit Theorem (CLT) posits that that the empirical mean of 7" independent and identically distributed
(i.i.d) random variables with a finite covariance, behaves roughly like the empirical mean of Gaussian
random variables with the same covariance, as T" — oo. That is, the empirical mean /i, the true mean

1 and the covariance X are such that limy_, P (ﬁ\|ﬂ — pll > \/Tr(E) + 122 log(%)) <.

However, these asymptotic rates need not hold with a practical number of samples. Therefore, recent
works on heavy-tailed high dimensional mean estimation consider algorithms and non-asymptotic
guarantees which move beyond the empirical mean (see 136} 110, (9,127, 128| [15]). Estimators such as
the clipped mean estimator [8} 53], trimmed mean estimator [45], and the geometric median-of-means

estimator [39} 29] achieve an error of at-most 4/ Tr(X) 10%(%)/7’ with probability 1 — § with a finite
covariance assumption. Recent ground breaking works [37, 28} I8 36] further improve upon these re-

. . . 1
sults to construct estimators which can achieve the CLT convergence rates of C' \/ Tr(2)+1Zl2 los(5) /T

for every T" and §. Some of these estimators work under just the assumption that the second moment
is bounded [37, 128} 9] and some even provide a nearly linear time algorithm [[15].

General Statistical Estimation In this work, we are interested in the general statistical estimation
problem. Among the various approaches, framing this problem as SCO with heavy-tailed gradients
has gained traction recently (see [52] and references there in). While one obvious candidate is to use
SGD with state-of-the-art optimal mean estimators for robust gradient estimation, such methods can
face significant challenges. First, most optimal mean estimators aren’t designed for the streaming
data setting with batch-size being 1. Second, these estimators can be complex, frequently relying on
semi-definite programming or other demanding techniques. Third, and perhaps most importantly,
they don’t typically provide guarantees on the bias of their estimates. This lack of bias control is
problematic because SGD-style algorithms, even when equipped with accurate gradient estimates,
can perform poorly if those estimates are systematically biased (See [3, Theorem 4], where bias
does not cancel across iterations). Given these challenges, the clipped mean estimator of [8] has
emerged as a popular choice for gradient estimation in SCO, due mainly to is simplicity. Several
recent works analyze the performance of SGD with clipped mean estimator for the gradients (i.e,
Clipped SGD). However, as previously mentioned, the best known analysis for clipped SGD achieves
a sub-optimal rate of 1/ Tr(X) In(1/s)/T, under bounded 2" moment assumption. In this work, we
improve upon these rates and show that with 7" samples, clipped-SGD obtains a sharper rate of

Tr(2)+y/Tr (D) [ [ In( 262
T

with probability 1 — ¢, which is closer to the truly sub-Gaussian rates.
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Table 1: Sample complexity bounds (for converging to an e approximate solution) of various
algorithms for SCO under heavy tailed stochastic gradients. Results are instantiated for smooth and
strongly convex losses, and for the case where the gradient noise has bounded covariance equal to
the Identity matrix. D1 is the distance of the initial iterate from the optimal solution. For readability,
we ignore the dependence of rates on the condition number. Observe all prior works have dlog § !
dependence in the sample complexity.

H Method Sample Complexity Batchsize Domain H
Clipped SGD [21] g(log % (1og 7! + loglog %) @] (g log (%) log (% log %)) Unbounded
R-Clipped SGD [21] (g + log D?f) (log 071 +loglog %) (0] (g log (% log %)) Unbounded
R-Clipped SSTM 211 (4 +1og 21) (log ! + loglog 21 O(21og (1105 2)) Unbounded
RobustGD [45] 0“2 10g %) with @ = log 2+ 0210 %) Unbounded
proxBoost [14] (g + log %) log 61 (0] (g log %) Unbounded
restarted-RSMD [40] (g + log L;) (log 071 +loglog DTf> 0] (g <log ! +loglog %)) Bounded
Clipped SGD [32] (g ¥ D—fl) log 5~ 1 Unbounded
Clipped SGD (Ours) dvdlogd T | Dilog™(® TlogT) 1 Unbounded

1.2 Related Work

Clipped SGD Clipped SGD and it’s variants have been studied under a variety of settings including
convex, strongly-convex, non-convex losses, with various assumptions on the moments of stochastic
gradients. The estimators of [21} 45| [14] 40] work under the assumption of bounded 274 moments,
but require O(1/¢) batch size, to converge to an e-approximate solution. Consequently, they are
not suitable for streaming setting. The recent work of [52], which is closest to our work, addresses
this issue by analysing Clipped-SGD for batch size 1 for smooth, strongly convex losses. But the
achieve a sub-optimal rate of \/ Tr(X) In(1/s)/T. These rates are improved in our work (see Table
for a detailed comparison). Additionally, our work provides convergence rates for convex objectives
that are not strongly convex. Recent works [48| 46| 41} 134, |13] have studied Clipped-SGD with the
assumption that the stochastic gradient has a finite p-th moment for some p € (1, 2]. They derive
fine-grained near optimal results in terms of dependence of T" and p (but their dependence on log §—*
is sub-optimal). In contrast, our work specifically the case considers p = 2 with a focus on improving
the sub-Gaussian dependence in the high probability bounds in these works from Tr(X) log(1/d) and
approaching the truly sub-Gaussian rates for estimation

Heavy-tailed Estimation Heavy-tailed estimation has a rich history in statistics and we only review
some of the recent advances. Several recent works have studied the problem of heavy-tailed mean
estimation, and have derived estimators that achieve sub-Gaussian rates under the bounded 2"
moment assumption [36} 10,9} 27 28| [15] 45]]. Among these, the works of [[15}32]] are particularly
relevant to our work. The algorithm of [15] runs in linear time while requiring O(dlog 6 1) memory.
But it is not immediately clear how to use their estimator in the framework of SGD. [32] study the
trimmed mean estimator (an estimator that is closely related to clipped mean estimator, where outliers
are removed instead of being clipped) and show that when T’ = w(log® 6 !),d = w(log®(6~ 1)), the
estimator achieves the optimal rates. We not that our analysis of clipped SGD, when instantiated
for mean estimation, leads to similar rates. But unlike [32] which is primarily focused on mean
estimation, we focus on the more general SCO problem.

Heavy-tailed linear regression has been widely studied, with classical estimators based on Huber
regression [30, 150, 33]] known to provide optimal rates when the response variables are heavy-tailed,
but the covariates are light-tailed. Recently, there has been a surge of interest in developing estimators
when both covariates and response variables are heavy tailed [5] 144} [17} 43]. However, most of these
works are in the batch setting. Another line of work has considered streaming algorithms in the
Huber-contamination model, which is a much harder contamination model than heavy-tails [18].
However, these algorithms when adapted to heavy-tailed setting, do not provide optimal rates.
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1.3 Contributions

Iteratively Refined Martingale Concentration via PAC Bayes Our key technical result obtains
fine-grained concentration guarantees for vector-valued martingales by using the Donsker-Varadhan
Variational Principle to iteratively refine baseline concentration inequalities. This allows us to sharpen
the PAC Bayes bounds of Catoni and Giulini [8]] (and its martingale based extensions like [[11]), which
were used to analyze the clipped mean estimator. We believe these iterative refinement arguments
could be of independent interest for developing fine-grained concentration bounds.

Sharp Analysis of Clipped SGD Leveraging these fine-grained concentration results, We perform a
fine-grained analysis of clipped SGD for heavy-tailed SCO problem obtain nearly subgaussian perfor-
mance guarantees in the streaming setting with a batchsize of 1 and O(d) space complexity. In particu-

lar, we demonstrate that the sub-optimality gap after T" steps scales as Tr(X) ++/||2]|2 Tr(X) log(1/s),
improving upon the best known scaling of Tr(X) log(1/s) obtained by prior works [52]] only for
smooth strongly convex problems. To the best of our knowledge, we derive the first such guarantees
for smooth convex and lipschitz convex problems in the streaming setting.

Streaming Heavy Tailed Statistical Estimation We use the above results to develop streaming
estimators for various heavy-tailed statistical estimation problems including heavy-tailed mean
estimation as well as linear, logistic and Least Absolute Deviation (LAD) regression with heavy
tailed covariates, all of which exhibit nearly subgaussian performance. Our mean estimation results
improve upon the previous best known guarantees for trimmed mean based estimators [8 52} 132]
(either in performance or in generality) For heavy-tailed linear regression under the assumption
of bounded 4" moments for the covariates and bounded 2"¢ moments for the response, our rates
significantly improve upon that of the previous best known streaming estimator [S2]. To the best of
our knowledge, we develop the first known streaming estimators for heavy-tailed logistic regression
and LAD regression which attain nearly subgaussian rates

2 Notation and Organization

We work with Euclidean spaces R equipped with the standard inner product (-, -) and the induced
¢5 norm || - ||. For any matrix A € R™*™, we use ||A]|2 to denote its Euclidean operator norm
Al = sup,.o 1Axl/jx|. For A € R¥%, we denote its trace as Tr(A). For any random vector x, we
denote its covariance matrix as Cov[x]. We use <, 2 and < to denote <, > and = respectively, upto
universal multiplicative constants. We use V f(x) to denote the gradient of a differentiable function
For any convex function f, we use df(x) to denote an arbitrary subgradient of f at x.

3 Background and Problem Formulation

Our work studies the Stochastic Convex Optimization (SCO) problem, described as follows: Let C
denote a closed convex subset of R? and let F' : C — R be a convex function. We aim to solve:

min F(x), (SCO)

assuming access to a convex projection oracle II and a stochastic gradient oracle, which we define
as follows: Let P denote a probability measure supported on an arbitrary domain = from which we can
draw samples. A stochastic gradient oracle for F is a function g : C x C, which, given a point x € C
and a sample £ ~ P returns an unbiased estimate g(x; ) of VF(x) i.e., Ecop [g(x;§)] = VF(x).
If F is nondifferentiable, E¢..p [g(x; )] = OF(x). Note that we do not assume direct access to
V F(x), which may be expensive or intractable to compute. Our objective is to (approximately) solve
[SCO]subject to a constraint on the number of samples we can draw from P.

This is an alternative formulation of the statistical estimation problem by recognizing P as the data
distribution, C as the parameter space and defining the population risk F'(x) := E¢. p[f(x; £)], where
f denotes the sample-level loss function. The associated stochastic gradient oracle is g(x;&) =
Vf(x;€), & ~ P, which is usually easy to compute. As we shall discuss in Section several
statistical estimation problems such as mean estimation, linear regression, logistic regression and
least absolute deviation regression naturally fit into the framework.
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We use n(x; &) = g(x;£) — VF(x) to denote the stochastic gradient noise and assume it has finite
second moment, i.e., $(x) = E¢p[n(x; &)n(x; €)7] exists for every x € C. Our results make use
of either of the following assumptions on X(x).

Assumption 1 (Bounded Second Moment). The exists a positive semidefinite matrix 3 such that:

Y(x)<X¥Y Vxecl (Bdd. 2"Y Moment)

Similar assumption has been made by several prior works [21} 40, [14) |45]. We also consider the
following generalized assumption, which is as a refinement of the one made in Tsai et al. [52]].

Assumption 2 (Second Moment with Quadratic Growth). There exist constants o, 3 > 0 and
1 < dessd such that the following holds for every x € C

160l < ol —x7 2+ B Tr(S(x) < der (allx — x*[*+5)  (QG 2" Momen)
where xX* denotes any arbitrary minimizer of F.

Since we consider streaming statistical estimators that are robust to heavy tailed data, we only assume
the existence of the second moment of the stochastic gradient noise and allow its higher moments to be
infinite. That is, our results hold even when E¢..p[| (n(x; €), v) |2*¢] = oo for every € > 0,v € R?

Our work analyzes [SCOJunder either of the following structural assumptions assumptions on F'

Assumption 3 (Convexity). F : R? — R is a convex function if the following holds for any t € [0,1]
Fltx+ (1 —t)y) <tF(x)+(1—t)F(y) VYx,yecR (Convexity)

Assumption 4 (;-Strong Convexity). F : R? — R is a p-strongly convex function for ji > 0 if the
following holds for every t € [0, 1]

Fltx+(1-t)y) <tF(x)+ (1 —-t)F(y) —t(1—1t)- §lx— ylI? Vx,yeR? (u-Strong Convexity)

In addition, we also consider either of the two regularity assumptions on F’

Assumption 5 (L-smoothness). F : R? — R is L-smooth for some L > 0 if F is continuously
differentiable and satisfies the following:

IVF(x) - VF(y)| < LIlx —y|| Vx,yecR (L-smoothness)

Assumption 6 (G-Lipschitzness). F : R? — R is G-Lipschitz for some G > 0, i.e., F is continuous
and satisfies the following:

|F(x) - F(y)| <Gllx—y| VYxy€ecR? (G-Lipschitzness)

4 Results

Under the [Bdd. 2"¢ Moment{and|QG 2"¢ Moment|assumptions, streaming algorithms for such as
Stochastic Gradient Descent (SGD) typically convergence bounds guarantees that hold in expectation
[56, 126l 22]]. However, high probability guarantees require strong assumptions on the tail behavior
of the stochastic gradients (e.g. boundedness or subgaussianity) [25} 47, 31]. Our work analyzes
[SCO]under heavy tailed stochastic gradients, which typically exhibit large fluctuations from their
expected value due to its higher order moments being potentially infinite. Clipped SGD mitigates the
large fluctuations typically observed in the heavy tailed stochastic gradient g(x; £) by thresholding
its norm as follows. The full algorithm is described in Algorithm|[I}

clipp(9(x; ) = % - min{T, [lg(x; )}

We now present our performance guarantees for clipped SGD for streaming heavy tailed
wherein Algorithmis subject to an O(d) memory constraint and can access only one stochastic
gradient sample per iteration. For the remainder, of this section, we use x* € C to denote an arbitrary
minimizer of F', which is assumed to always exist, and guaranteed to be unique if F’ satisfies[u-Strong]
We use x; to denote the initialization of Algorithm|[I]and let Dy = ||x — x*||.
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Algorithm 1 Clipped Stochastic Gradient Descent

Input: Initialization x;, Horizon T', Step Sizes (1 ).c[7]. Clipping Level I
1: fort € [T] do
20 g g(xi56), &~ P
3 xpq1 ¢ He(xe — e - clipp(ge))
4: end for
5: Last Iterate : Output X741
6: Average Iterate : Output X7 = £ Zthl Xt

4.1 Smooth Strongly Convex Objectives

Theorems|[TJand 2] proved in, Appendix [B]and [C|respectively, derive high probability convergence
bounds for smooth and strongly convex objectives with second moment assumption.

Theorem 1 (Smooth Strongly Convex Objectives). Let the |L-smoothness| |i1-Strong Convexity)
and [Bdd. 2"° Moment| assumptions be satisfied. Then, for any § € (0,1/2), the last iterate
of Algorithm H run for T 2 In(In(d)) iterations with stepsize 1, = and clipping level

p(t+y)
r = m\/@H 1)2D2 + T2 (Te() + /Tr()[[Sle In(n(1)/s))satisfies the following with
probability at least 1 — §

beps < 22 1 \/Tr(z)+,/Tr(2)||2||21n(1n<T>/5) "

~T+y T+~

where y < max{w7 K2 In(In(7)/5), k In(In(T)/5)%}

We use Theorem [I]to derive sharp rates for streaming heavy tailed mean estimation in Section %d
the following result to derive sharp rates for streaming heavy tailed linear regression in section

Theorem 2 (Smooth Strongly Convex Objectives with Quadratic Growth Noise Model). Let Assump-
tions |u-Strong Convexity| |L-smoothness|and|0G 2" Moment|be satisfied and let k = L/u. For any
§ € (0,1/2), the last iterate ofAlgorithmrunfor T 2 In(In(d)) iterations with step-size 1, =

4
w(t+)
and clipping level T = m\/(’y +1)2D? + % (T + ¥)(defr + V/degs In(I0(T)/5)) satisfies the
following with probability at least 1 — §

In(T)
x| < D1 Jr1\/ﬁ(defr-l-\/defrlrl( /5))

@)

%741 ST44 Tty

adeff a eff In(n(T)/s), Rfln(er(T )fs), YEO 11 ),
n

where v < max{

K23 1/sd1/3 5 2
fol Q7 Gef In(in(T)/s), k /2 In(In(T)/s), K In(1n(T)/5)?, T In(In(1)/5)}
eff

I
Comparison to Prior Works To the best of our knowledge, the result closest to Theorem is [52]

{Dl + 1 Bdeff ln(l/é)
T+¢ T+¢

for ( < %5(1/5)' We note that Theorem [2| obtains a significantly better conﬁdence bound which
is closer to the optimal subgaussian rate compared [52, Theorem 1].

Theorem 1] which analyzes streaming strongly convex [SCO|and obtains a rate

Extra log log T term: Our bounds for the statistical error is of the form 1 . B (de“J”/T‘f::(l"(T)/ 5))

which has an extra log log 7" factor in the lower order term. This is still sharper than prior works with

bounds of the form 1 2\ M as long as loglog T' < /deft log( ).

4.2 Beyond Strongly Convex Objectives

Moving beyond strong convexity, we present Theorems [3] for smooth convex functions and [ for
Lipschitz convex function, proved in Appendix [D]and [E]respectively. To the best of our knowledge,

https://doi.org/10.52202/079017-0282 8839



these are the first results for streaming heavy-tailed convex SCO that exhibits near-subgaussian
concentration without strong convexity.

Theorem 3 (Smooth Convex Objectives). Let|Convexity| |L-smoothness|and|Bdd. 2"° Moment|be
satisfied. Then, for any 6 € (0,Y/2) and T > In(In(d)), there exists an n € (0,1/2L] such that
the average iterate of Algorithm [I| run for T iterations with step-size 1, = n and clipping level

- \/T\/|E|2(\/Tr(2)+LD1)

Tn(nCTY/5) satisfies the following with probability at least 1 — J:

F(xr) - F(x") < +or(L, D1, %)

T T

Lot \j Tr(=) + /I8l (VTA(E) + LD: ) In(n0/s)

where op (L, D1, X)) represents terms that are of lower order in T (explicated in Appendixll:)])

Theorem 4 (Lipschitz Convex Objectives). Let Assumptions|[Convexity] [G-Lipschitzness|and|[Bdd]

be satisfied. Then, for any § € (0,1/2) and T > In(In(d)), there exists ann € (0, G/vVT)
such that the average iterate of Algorithm|l|run for T iterations with step-size n. = n and clipping

level T' = \/T ”Elﬂil(n(g/rgHG) satisfies the following with probability at least 1 — §

F(xr) - F(x") S N

where or (G, D1, X.) represents terms that are lower order in T (explicated in Appendix@)

+ Dy

Tr(S Sl (VTr(E) + G) In(n(D)
o J () + VIS (¢T+ Y

Remark: We use Theorem 3]to design the first known streaming estimator for logistic regression with
heavy-tailed covariates in Section [5.3]and Theorem [4]to design the first known streaming estimator
for LAD regression with heavy-tailed covariates in Section [5.4]

Remark: In Theorems [3] and [ the leading order term in the error is of the form:

Tr(X)++/ |2 A/ Tr(X)+C¢ ) In(In(T) /5
Dl\/ CHFVII Hz( T( ) C) ( /d),wherec € {G,LD1}. Assuming G, D1,/ Tr(%) < Vd,

we note that the term dependent on the confidence level log(1/d) is lower order compared to Tr(X).
To the best of our knowledge, this is the first work which establishes strong confidence bounds in
the setting of SCO without strong convexity. Interestingly, our results also improve the best known
rates for sub-Gaussian gradient noise. To be precise, [35, Theorem 3.1] shows a weaker bound of

\/ D¥(G*+Tr(%) log(%))/T in the setting of Theorem 4] but when the noise is sub-Gaussian.

S Applications to Streaming Heavy Tailed Statistical Estimation

5.1 Streaming Heavy-Tailed Mean Estimation

Consider streaming heavy tailed mean estimation with clipped SGD with access to NV i.i.d samples
from the distribution P. Let = = C, E¢p[{] = m € C. We further assume Cov[¢] < ¥ and allow
the higher moments to be infinite. As described in Appendix this is an problem with the
sample loss f(x;&) = %”X — £]|. The population loss and the stochastic gradient are given by:
1
F(x) = 5 lx —m|” + Tr(Cove~rlé]);  g(x;6) =x—¢
The following result, proved in Appendix[G.I| via an application of Theorem [T} shows that the last
iterate of clipped SGD attains near-subgaussian rates for the heavy tailed mean estimation problem

Corollary 1 (Heavy Tailed Mean Estimation). Under the stochastic gradient oracle described above,
implemented using N 2 In(In(d)) i.i.d samples &1, ... ,En ~ P, the last iterate ofAlgorithmwhen
run under the parameter settings of Theorem|[I| satisfies the following with probability at least 1 — §

1 —ml] \/Tr(E) + /E[Tr(E) In(n(¥)/s)

N+~ N+~

In4s — i < 2

where v < In(In(N)/5)?
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Comparison to Prior Works The clipped mean estimator of 8] and the clipped-SGD based estimator

in [52]] come with a guarantee of the form || — m|| < /(%) 108‘(%)/N with probability 1 — 4.
Our result in Corollary [T) obtains a sharper rate of convergence. In a recent work, Lee and Valiant
[32]] showed that the trimmed mean estimator achieves the optimal rate of 1/ Tr(X)/N when N =

w(log®6~1),d = w(log?(6~1)). Our result matches this optimal rate in those settings, but is
considerably more general, as it holds for any NV, d.

5.2 Streaming Heavy Tailed Linear Regression

In the current and subsequent sections, we use € € C to denote the parameter of F'. Let = = R? x R.
Given a target parameter 8* € C, P defines the following linear model:

x~Q, Ex] =0, Exx'] =% > 0; y=(x,0") +¢ E[e|x] =0, E[’|x] < o°
In addition, we make the following bounded 4" moment asumption on the covariates x
E[(x,v)*] < C4(E[(x,v)?])? vVveR?

for some numerical constant C; > 1. Note that we allow both the covariate x and the target y to be
heavy tailed, assuming only finite moments of upto order 4 for x and order 2 for y. The assumption
E[x] = 0 is only made for ease of presentation and our arguments easily adapt to E[x] # 0. Our
task is to estimate 6* in a streaming fashion with access to N i.i.d samples from P. As described in
Append1x | we reframe this problem as SCO under the sample loss f(6;x,y) = ((x,0) — y)2.

The assomated population loss F'(#) and the stochastic gradient oracle g(; x, y) are given by:
1 * *
F(0)=50-0)"20-0);  g(0ixy) = ((x,0) —y)x
Corollary 2 (Heavy Tailed Linear Regression). Under the stochastic gradient oracle described

above, implemented using N 2, In(In(d)) i.i.d samples from P, the last iterate of Algorithm|[I|when
run under the parameter settmgs of Theorem 2] satisfies the following with probability at least 1 — §:

9*”<7\|91— I, o \/Tr(Z)+\/7|Z|2Tr(2)ln(1n(N>/5)

10n+1 —

(s
where v < max { C“ﬂzur( ) Cyk?

1 (In(N)/s), k In(In(N)/5)2 } and k = "‘”n‘(z)
To the best of our knowledge, [52, Corollary 4] is the only other streaming estimator for this problem
with subgaussian-style concentration. Our result above significantly improves upon their rates of

HO;\;HC*H R s RV ”2”3\‘,112(1/5) with ¢ = Cydk? In(1/s). Furthermore, our result is much closer to

min

the optimal subgaussian rate and gracefully adapts to the stable rank or effective dimension [32], i.e.,
dess = Tr(®)/|2|, therefore implying significant speedups over [52] in settings where des < d.

5.3 Streaming Heavy Tailed Logistic Regression

Let = = R? x {0,1} and given a target parameter §* € C, P denote the following linear-logistic
model:

x~Q, Ex] =0, Exx"] < %; y ~ Bernoulli(p((6,x)))

where ¢(t) = (1 + e~*)~L. The covariates x are heavy tailed, with only bounded second moments.
The negative log likelihood of y|x is given by f(6;x,y) = In(1 4+ exp({x,0))) — y (x,0). The
objective of the logistic regression problem is to estimate #* by minimizing the population-level
negative log likelihood:

F(0) = Exy~p [In(1 + exp((x,0))) — y (x,0)]

which is minimized at #*. Here, the stochastic gradient oracle is g(0;x,y) = ¢({x, 8))x — yx. The
following result applies Theorem [3]to show that the output of clipped SGD attains near-subgaussian
rates for heavy tailed logistic regression. We refer to Appendix for the proof.
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Corollary 3 (Heavy Tailed Logistic Regression). Under the stochastic subgradient oracle described
above, realized using N 2 In(In(d)) i.i.d samples from P, the average iterate of Algorithm[I} when
run under the parameter settings of Theorem{|satisfies the following with probability at least 1 — §:

X . J Tr(®) + /ISl (VTAE) + IZ]2D1 ) In(n)/5)
F(fn) = F(0") S Ds =

+ON(E7D1)

where on (X, D1) represents terms that are lower order in N (explicated in Appendix

Note that the standard analysis of SGD, with the assumption that ||x|| < R almost surely leads to a

. flog (X
bound of the form [4, Proposition 5]: F(6y) — F(6*) < RD%}W

5.4 Streaming Heavy Tailed LAD Regression

Let Z = R? x R. Given a target parameter §* € C, P defines the following linear model:
x~Q, E[x] =0, Exx"] < %; y = (x,0") + ¢, Median(e|x) =0

We allow both the covariate x and target y to be heavy tailed, assuming only bounded second moments
for x. We do not assume any moment bounds on ¢|x. The assumption E[x] = 0 is made for the sake
of clarity and can be straightforwardly relaxed. The Least Absolute Deviation (LAD) Regression
problem involves estimating 6 by solving[SCO| with the sample loss f(6;x,y) = | (x,60) — y|. The
stochastic subgradient oracle and population risk is given by:

9(0;x,y) =sgn((0,x) —y)x,  F(0) =E[| {0 —0",x) — €]

where sgn(t) = H%H for ¢t # 0 and sgn(0) = 0. The following result, whose full statement and proof
is presented in Appendix [G.4] applies Theorem 4] to show that the average iterate of clipped SGD
attains near-subgaussian rates for heavy tailed LAD regression. To the best of our knowledge, this is
the first known streaming estimator for this problem.

Corollary 4 (Heavy Tailed LAD Regression). Under the stochastic subgradient oracle described

above, realized using N 2 In(In(d)) i.i.d samples from P, the average iterate of Algorithm when
run under the parameter settings of Theoremd] satisfies the following with probability at least 1 — 0:

F(éw) _F0Y) < Dl\/Tr(E) + \/HZHQ];:—I’(E)IH(IH(N)/é) +on (S, D)

where oy denotes terms that are lower order in N (explicated in Appendix[G.4)

6 Improved Martingale Concentration via Iterative Refinement

Our results are based on the following concentration result for R? valued martingales. The proof
appears in Appendix@ Suppose M, fort = 0,...,T is an R? valued martingale such that My = 0
almost surely, the difference sequence v, := M; — M;_1 is such that || v;|| < T and E[v,v] | F;—1] =
>; almost surely for every ¢ = 1,...,T for some I' > 0. Assume that there exist deterministic
sequences p1, . .., pr and q1, . . ., g7 such that Tr(X;) < ¢; and ||Z;|| < p; almost surely.

Theorem 5. Let § := % Zthl gy and p = % Zle pt. Then, for any 0 € (0, %)
P(sup || M| > g(T,5)VT) < 6
t<T

Where g(T,5) = Cpy [\/5—}— ﬁ\F/T + % log(%)| and K = In ln((@ +1)log(d + 1)) + Chs for
some universal constant Cpy

To prove this result, we first use Freedman’s inequality [20,51]] to obtain a coarse-grained g such that
P(sup, || M;|| > gov/'T) < 6. We then iteratively refine this inequality via a PAC Bayesian [8} 1} 12]
argument to show that P(sup, || M;|| > gx1VT | Bx) < 6, where By, = {sup, | M;|| < gxv/T} and
Gri1 S Te(E) + ge /|32 log(1/s). This iterative refinement strategy, proved in Theoremis one
of the main technical contributions of our work, which could be of independent interest. We arrive at
Theorem after K =~ loglog(T log d) refinement steps.
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Remark Theorem [3]is used to control the influence of the fluctuations introduced by clipped SGD.
To this end, let v; be the centered version of clipy(g:), ensuring ||v;|| < 2I" almost surely. Suppose

% = X for some fixed © and let I' = /=17 /10g(4-). Then, with probability 1 — 6 sup,< || M¢|| <

\/TTr(E) + T||%|| log(%). This is sharper than the sup,<r | Me]] < /T Tr(2) 1og(%) guarantee
implied by the Matrix Freedman inequality [S1, Corollary 1.6].

7 Proof Sketch

We sketch our proof technique for the case of smooth convex functions considered in[3} We consider
the SGD iterations X7, ..., xr with clipped stochastic gradient at time ¢ denoted by clip(g;) =
VF(x;) + vi + b;. Here, v, is the zero mean ‘variance’ such that E[v,|x,] = 0 and ||v;|| < 2T
almost surely. by is the non-zero mean ‘bias’ which arises due to clipping. Using the usual analysis
of SGD for convex functions (see for instance [31]]), we consider:

1 =% |2 < [lxe —x*||* =20 [F(x¢) = F(x*)] = 20e (Ve + by, X —=x*) +07 [ VF (%) + v+ by |2

Considering constant step-sizes, we sum the inequalities for each ¢ to conclude:

T T
1 . 1 , 1 .
T ;F(xt) — F(x*) < —277T\|x1 —x P+ tg(vt + bs,x; — x*)
3n
+ o5 2 IVEG)|? + [[vel® + [[be?] 3)
t

The random’ terms to bound compared to gradient descent here are ), (v; + by, x; — x*) and
>, [Ivell? + ||be]|* Lemma 13| shows that ||x; — x*|| < 2[|x; — x*|| with high probability. Under
this event, we bound Y, (v, x; — x*) using the standard Freeman’s inequality and ||V F(x;)||* by
using smoothness and the fact that VF'(x*) = 0. The bias of the estimator ||b;| is bound using
arguments similar to [§]] (see Lemma ). The main improvement of our method is given by our
method of bounding 7 Y~ ||v¢||?. We show by an application of Theorem [S|that 1. >, [|v¢[|? <

Tr(2)[|%[|2 log(*°2T) with probability at-least 1 — & whenever the clipping factor I is
appropriately chosen. Choosing the step size 1) appropriately gives us the result in Theorem 3]

8 Conclusion and Limitations

Our work obtained nearly subgaussian rates for heavy-tailed SCO using clipped SGD by devel-
oping a fine-grained iterative refinement strategy for martingale concentration. As corollaries, we
obtained state-of-the-art streaming estimators for various heavy tailed statistical problems. We note
Clipped-SGD is widely used to optimize neural networks with highly nonconvex landscapes, which is
currently outside the scope of our work. Nevertheless, we believe our techniques could be useful for
providing sharp high-probability guarantees for non-convex losses. Our bounds are currently of the

form 1/ w, which is suboptimal compared to the tight subgaussian rate of 4/ %(1/5).

Further research is required to understand if it is possible to obtain truly subgaussian rates with clipped
mean type estimators. Another notable suboptimality of our result is the In(In(7)/s) dependence on
the confidence level (as opposed to the typical In(1/s) scaling). However, this is not a major drawback

as our results continue to significantly outperform prior works unless 7' > eexp(vVd—1)In(1/3) (which
is an impractical regime). This drawback arises due to the In(In(7")) iterations of our iterative
refinement technique and we believe it can be removed via more sophisticated martingale concen-
tration arguments. Our work lays the foundation for several interesting avenues for future work
including the analysis of heavy tailed statistical estimation under bounded pt" moment assumptions
(for p < 2) and the development of parameter free statistical estimators that do not require knowledge
of problem-dependent parameter such as ||X]|, d etc. (or their respective upper bounds). Deriving
anytime valid guarantees for clipped SGD using our techniques is also an interesting future direction.
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A Preliminaries

In this section, we collect some preliminary concentration results which will be used in the future
sections. For the following lemma, we refer to Exercise 2.8.5 in [54]].

Lemma 1. Suppose X is a real valued random varzable such that | X| < T almost surely, EX = 0
and EX? = v. Then, for any A € R such that |\| < 2F’ the following holds:

Eexp(AX) < exp(A\?v)

Consider a R? valued martingale (M;)L_, with respect to the filtration (F;)Z_, such that My = 0
almost surely. We consider the martingale difference sequence v; := M; — M;_; fort > 1. Clearly,

we must have:
t
=D v

Definition 1. We say that the martingale M, satisfies (g, T, 0) uniform concentration if:
P( sup || My]| > gVT) <&
0<t<T

Assume that for fixed I' > 0 and & € R4 that ||v,| < T almost surely and E[v,v] |F;_1] =: ;.
Suppose Tr(X;) < ¢; and ||X¢]|s < p; almost surely for some non-random constants p;, ;. We
state a high dimensional version of Freedman’s inequality [20, 51] below which follows from From
Corollary 1.3 of [51], we have

Theorem 6. Suppose M; satisfies the assumptions above. Let q := = Zg 1 Q¢ the following is true:

2
2
B( sup | M > a) < (d+ 1) exp(— 7

0<t<T ql + %")

That is, for any ¢ > 0, the martingale (My).<T obeys (go(0), T, ) uniform concentration, where
90(0) = 37z log(451) + \/2q1og(F5H)

The following inequality is a corollary of Theorem [6]
Lemma 2. Let g; € R¢ be F;_1 measurable. Then for some constant ¢; > 0, we have:
t
POUL{I D {96 va)l 2 ) Moz {llgs | < AY) < 2exp(—ppmparer ) @
t=1 - sy Vs/| Z s<t s|| > {1s ~ FAOH-ClZ,T:le,A%
o=
Where A = sup; << At

In addition, we also use the following scalar version of Freedman’s inequality

Lemma 3 (Freedman’s Inequality). Let hy, ho, ..., hr be a F, adapted martingale difference
sequence such that E[hy|Fy_1] = 0, E[hZ|F;_1] = o7 and ||h¢|| < 7. Then, for any § € (0,1), the
following holds with probability at least 1 — §:

> he<2

s=1

In(Y/s) Y 02 + 27 1In(1/s)

The following lemma, which bounds the moments of a clipped random vector, is crucial to our
analysis of the bias and variance of the clipped stochastic gradient.

Lemma 4 (Moments of a Clipped Random Vector). Let z € R be a random vector sampled from the
distribution P with mean m and covariance matrix S. For anyT' > 0, let z = clipp(2z), and let v and

S denote the mean and covariance of  respectively, i.e., th = E[z] and S = E [(z—m)(z—m)T].
Then, the following hold:

il < VIS (g 7789) o L2204 7o)

R 2
181 < 180 + P2 (jan? 1 7e(s))
Tr(S) < Tr(S)
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Proof. The proof of this lemma uses arguments similar to that of Catoni and Giulini [8]. We first
note that for any x € R?

. min{1, T~ ||}
cipp(x) =x —————=
; =]
Following the proof of Proposition 2.1 of Catoni and Giulini [8], we observe that for any ¢ > 0:
min{1,t} < pPtP
il Sut A NP SOV Y AN
p=1 (p+1)Ptt

Define 0(x) = %W’ vx € R%. Note that clipp(x) = 0(x) - x. From the above inequality,

0<1—

we note that:

N 1 i
<1-— <
0s1-00) s il o o

)
Consider any unit vector e € R<. Then,
(e,m — m) —E[(e z — Z)]
E((e,z - (2)z)]
BI(1—0) (o2 —m)] + (o, m) B[(1 - 0(2)
E[(1 - 6(2))] (e,z — m) || + [m[[E[(1 - 0(z))]
» — » P
B P N Y X2 R ) ) PRV U ]
p>1 (p+ 1)P+1 re p>1 (p+ 1)ptL  Tp
where the second step uses the definition of #(z) and the last step uses equation (3). Now, substituting
p = 1 and p = 2 in the first and second terms of the RHS respectively, we obtain the following:

””[nm

(e,m — ) < LE |z (e, — m)] +

<1 \/W\/T E{liz|*
< VISL. /T ) + ””m 2+ Ti(s))

“Wi( anll /7)) + 0 (4 7i(5)

where the second step uses the Cauchy Schwarz inequality and the last step uses the subadditivity of
the square root. It follows that:

|m —m| = sup (e,m — 1)
lell=1

_VEE( m| + /Tr )+ umW+ﬂ@»
0(x

) < 1. As before, let e € R? denote
EK m)’] + E[(e,m — m)’] >

To bound |[S]|, we first note that for any x € R%, 0 <
an arbitrary unit vector. We note that E[(e, z — m)?]
E[(e, z — 1n)?]. Hence, it follows that,

E[(e.z - m)’] <E[(e,s~ m)’]
<E[(0(2) (e,7) — (e, m))’]
—E[(0(2) (e,2 — m) — (1 - 0(2)) (e, m))’]
<E[0(z) (e, 2~ m)*| + (e, m)* E[(1 - 0(2))]

- i
sElfez-m W+WM%L§@+UH1W

< sl L
P2 el + 7))
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where the fourth step uses Jensen’s inequality by noting that 0 < 6(z) < 1 and the fifth step uses
equation (@).

Finally, To upper bound Tr(S), we note that clipp is a contractive mapping as it is the projection
operator onto a convex set (namely the ball of radius I" in R? centered at the origin). To this end,

- o 1 . _
Tr(S) =E [||z — m[]*] = §Ez1,zzi'i~'d'P [lclipr(z1) — clipp(z2)||°]
1 2
<LB il nlf] =TS

O

The following result, which is a corollary of Theorem 3] is vital for controlling the error introduced
due to the variance of the stochastic gradients, and is one of the major components of our analysis.
The proof of this result is presented in Appendix

Corollary 5 (PAC Bayesian Inequality for Quadratic Variation). Let vi,...,vr be an R? val-
ued martingale difference sequence adapted to the filtration Fi, ..., Fr satisfying E[vs|Fs] =
0,E[vevl|F,] = =, and ||vs|| < 7 almost surely. Let UP(t) := min(T,2M°82*1). Suppose
1252 < ps and Tr(E5) < g5 for some fixed sequences p1, ...,pr and qi,. . .,qp. Then, there exists
a universal constant Ciower such that whenever T' > Clower log((1 + @) log(d + 1)) such that the
Sollowing inequality holds with probability at least 1 — 6, for any ¢ € (0, %)

UP(t) c tUP(t)
Z||vs|| <Cu Y g+ Cyr?In(20)2 5 > b Vel
s=1 s=1 s=1

where Cyy > 0 is an absolute numerical constant.

B Analysis for Smooth Strongly Convex Functions

Let dep = T and let K = dmax{8,Cy/,In(T)}. For t > 1, define the filtration F; =

2
o (x1,8s]1 <s<t)and Fy = o(x;1). Furthermore, let VF(x;) = clipp(g:) + bt + v; where
b; = VF(X) - [cllpp(gt)|]-'t_1] and v; = E[clipp(g)|Fi—1] — clipr(g:). We note that
E[thj:t 1] =0ai

[vell < liclipr(go)ll — [IE[clipr (&) | Fi-ll
< |Iclipr(ge) [l = Efl[clipr (g)[[[F—1] < 2T

where the first step follows from the triangle inequality, the second step uses Jensen’s inequality and
the last step uses the definition of clipp-. Hence v; is an F adapted almost surely bounded martingale
difference sequence. Now, let Dt = ||x¢ — x*|| where x* is the unique minimizer of F' (guaranteed
by strong convexity).Let 7, = where A > 1is anumerical constantand y > Ak + A — lisa

constant depending on &, d and 111(1/6) which we shall specify later. Note that our choice of - ensures
that n; < %ﬂ fort € [1 : T] We prove the following recurrence for D; by using the smoothness and

strong convexity properties of F' and by exploiting the choice of the step-size.

Lemma 5 (Recurrence for D). The following holds for every t € [1 : T

1 24 A924A+1 t _1)24-1
Dijy < (’H—> Di+ Z iy (b, xs —x")

t+’y s=1 t+’y 2A
t t
A24A+IZ” ”2 SJF,Y) —2 A22A+IZ 5+'Y 2A 1 V N 7X*>
S Sy S
IS t+7) = (t+)*A
A24A+1 t -2

Y )
ZH sl
t+v)
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Now define R s as follows:

Res = (v+ 1202+ L +Z)| I (d + /de In(%/s) )
Itis easy to see that I" = l;n(i@' In our proof of Theorem we shall establish that the following
holds with probability at least 1 — 4:

CRr s
(t+y -1
where C' > 0 is an absolute numerical constant to be chosen later. To this end, we define the event E,
and the random variables d;, b, V; as follows for t € [1: T + 1]:

CRr ;s
by = {D? < _2}
(t+~—-1)
dt = (Xt — X*)]]. {Et}
b, = b1 {E,}
{’t = Vt]].{Et}

D? < Vte[l:T+1]

We note that since x; is F;_; measurable, so are 1{FE;}, D, ds,b; and f)t. Furthermore,
E[{ft|./—"t_1] = E[Vt|]:t_1]]]. {Et} = O

We use the following Lemma to control the bias vector b,
Lemma 6 (Bias Control). The following holds almost surely for every t € [1 : T):

Hbt” < Mm( Kln(l/&)\/a n K302 ln(1/6)2 N Ii\/éln(l/é)Q )

THy " t+y =D /dT+~) (E+y=1°  ({E+r=D)(T+7)

We use the following lemma to control the variance vector v;. The proof of this lemma, which uses
Freedman’s inequality and the PAC Bayesian martingale concentration inequality of Corollary [6]
Lemma 7 (Variance Control). The following holds with probability at least 1 — & uniformly for every
t € [T] whenever A > 3 and v > 4max{x"*C** In(In(T)/s), k\/C In(In(1)/5)*/?}:

¢ )24-1
(s+7)
Z t-’-"/ QA 2 Vsads> S 27/LRT75\/5

t 24—
s+ B )
Z(HD 19:1* < Carp®Res (643 - 24471 4 3. 204717)
s=1

where C\yy is the absolute numerical constant defined in Corollary[5]

Equipped with this bound on the bias and the variance, we now present the complete proof as follows:

B.1 Proof of Theorem[Il
Proof. Let A > 3, v > 4max{x"/>*C**In(n(7)/s5), k/C In(In(T)/5)*/>}. Now, let E denote the
following event

(s + 7)1
E= {Z t+72A 2 (Vs,ds) < 2TuRp sV C Y t € [T]

t 24-2
3 <‘; i 7) 6] < Carp® R (6 4+ 3- 244713 13 24417) iy ¢ [T}
Y
s=1
Note that by Lemma P(E) > 1 — 0. We now claim that P (ﬂTH Et|E) = 1, i.e., conditioned on
the event E, the following holds almost surely for every ¢t € [1 : T' + 1]
p2 < _CRrs

7‘7256 1:T+1
=t +y—1)2 [ +1]
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We prove the above claim by induction. Note that the claim is trivially true for ¢ = 1 as Rp s >
(v + 1)2D%. Now, consider any ¢ € [1 : T and suppose the claim holds for some 1 < s < ¢.

Recall that by Lemma 3]

t
(,Y+1)2A ) A22A+1 (s—!—’y— 1)2A—1
t+7)2D2,, < (bs,xs —x")
( t+1 (t+,y)2A—2 ; (t+,y)2A72
A24A +1 t 24-2 A924+1 t 2A—1
Sl (o + i O g (e =)
( ) s=1
A24A+1 2(8+7)2A 2
ZH 5” (t—|—fy)2A 2

Under the induction hypothesis, 1 {E,} = 1Vs € [t]. Hence, Under the induction hypothesis,

H{Dg_ﬁﬁ} = 1 and thus, dy = x, — x*,b, = b,,vy, = v, V1 < s < £

Substituting this transformation into the above inequality, we obtain the following:

(y+D* A22A+1is+v> !

(t+7) Dt2+1 =t +4)2A—2 2 (t+7)2A2 (Vs,dg)
D )
¢ _
A24A+1 ZHVSH )2: 22+Z 8+,Z))2A ; <Bs’ds>
©) @
2,A4+1 1 242
TR S g ©
®

‘We now bound each of the terms in the RHS as follows.

Bounding @ Since A > landt > 1,

(y+1)*4

2 2
W‘D (’Y"' 1) Dl S RT’é

o=

Bounding @ Since v and A satisfy the conditions of Lemma[7]and we have conditioned on the
event F, it follows that:

A924+1 zt: SJF,Y -1

Az (Ve ds) < 27A2*"* Ry 5V C

s=1

Bounding ® Since y and A satisfy the conditions of Lemma([7]and we have conditioned on the
event I, it follows that:

A24A+1 (s—i—'y

2A-2
5 t+ > ||‘75||2 S OM22A+2 (6 4 3 . 2414713 4 3 . 24A717) RT,6
7 v

Before controlling terms @) and ), we note that the following holds for every s € [t] by Lemma@

|bs]| < pn/Rr,5 (B1 + By + Bz + By)
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where Bq, ..., By are defined as:
1
B, = T+
B rIn(X/5)\/C
(s - DVAT +7)
K3C/2 In(K/s)?
IRNCEEEE
_ kIn(K/s)2/C
(s =1)(T+7)

Bounding @ Since 1{E,} =1

. < VORrs _2/CRrs

s+y—17 s+~

Hence,

A924+1 L s 4 ~)24-1 s+ 2A-2
; Z<bs,ds>it+7§mg _A22A+QRT5\FCZ< 7) (By + By + B3 + By)
s=1

‘We now control the first term

Zt: sy 2A72B 1 Z s\ 2472
L+ YT Ty t+y
t

s=1 s=1

<
T+~

where the first inequality follows from the fact that A > 1 and s < t. We now bound the second term

zt:<5+fy>2A_2B2< kv C In(K/s) Zt:(s+'y>2A_2 1 ]

prt t+y - d(T+7~) |5 \t+ s+vy—1
Setting A > 3/2 and using the fact that s + v > 2, it follows that
5 ( + 7) 7 gy < YOI § (o4 )
iUl T OVAT+y) )R

< 2k C'In(K/s) <9
d(T +7)

where the last inequality follows by setting v > CT“Q -In(K/s)?

1

IN

To control the third term, we set A > 5/2 and proceed as follows:

t 2A-2 t 2A-5
s+7 3 3/2 2 (s +7)
B3 < k°C7?In(K/s —
;(tﬂ) = () ;(tﬂ)?““?
< K3C%? In(K/s)?
(t+7)?
313/2 K/5)2
< h C"7? In(K/s) <
(y+1)?
where the last inequality follows by setting v > x*/2C*/* In(X/s).
To bound the last term,
L s\ 242 kC'? 1In(K/5)? i 7)?4-3
Z Ba< T Z 2A72
s=1 t+ v + v s=1
Y2 1p(1
< kC?1n(1/s5)? <1

v+1
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where the second inequality uses the fact that A > 3/2 and the last inequality follows by setting
v > kC'/?In(¥/s5)2. Putting it all together, it follows that

@ < 544 Ry 5V C

by setting y as follows
2

~ > max {’f In(K/s)2, 6720V In(1)s), kC'2 ln(K/é)Z}
Bounding @ By Lemmalfland Jensen’s inequality
Ibsl* < 4R s (BE + B3 + B + BY)
It follows that

A222A+2 t s+ 2A—-2 t s+ 2A—-2
a3 (HD §A24A+2RT,52( 7) (B2 + B2 + B2 + B?)

The first term is controlled as follows using the fact that A > 1

t s+ 2A-2 t
Z(Hv) Z T+v

s=1

The second term is controlled as

s\, 4k20In(K)s)? & y)2A—4
Z By = d(T Z 2A72
s=1 t+ v + ’Y s=1

4k2C In(K/5)? <1
T dt+)(T+) T

where the last inequality follows because v > 4/ % In(X/s)
For controlling the third term, we set A > 4 to obtain

t s+ 2A-2 t
B3 = k°C% In(K/s)*
(i) ey e
< KSC3 In(K/s)*
(y+1)°

where the last inequality uses the fact that v > £%°C”* In(X/s)*/* To control the fourth term, we use
the fact that A > 2 to obtain

2A8

1

| /\

zt: (S-‘—’Y)QA_Q BQ B QCln K/§ 4 zt: 2A—4
—\t+y T+ & 2A*2
2 K
k2C In(K/5)4 <1
(y+1)? ~

where the last inequality uses the fact that v > x%°C"/* In(¥/5)*/* From the obtained bounds, we
conclude that G) < A244+3 Ry 5.

Hence, setting A = 4 and v = 4C max{w, £ In(In(T)/5), k In(In(T)/5)%}, we ob-
tain the following

t+)' D <O+Q+B+B+06
< Rrs {1 + On 22472 (643244718 4 3. 44717 4 A24ATS 4 /O (2742247 + 5A4A+1)}

< Rr (262145 + 524288C) + 75776@)
< CRrs
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where the last inequality is obtained by setting C' = (\/ 262145 + 524288C) + 75776)2. It follows
that

CRrs
D2 )
H1S G
Thus, we have proved by induction that conditioned on E, D? < gfg)‘; foreveryt € [T +1]. 1

particular, the following holds with probability at least 1 — 4:

1 ’ & p> deff + Vdeir In(K/5
D;ch(;f) p2 4 CIZle (der + Vi In(5)

(T +7)
- (W +1 )2 D2y Tr(2)+ VIERTA(E) In(n(1)/s)
“\T+y) p2(T +7)

B.2 Proof of Lemmalf3
Lete; = by + vy
D7,y = | (xe — e VF(xq) + mpee) — x*||?
< |lxe = e VF(x¢) 4 meee|?
< D7 =20 (VF(x¢), % — X*) + 2 (€4, % — X*) + 207 [ VF (x¢) [|* 4 207 || e¢|?
By the coercivity lemma in Bubeck [6]] ,
IVE(x)|I> < (L + p) (VF(x¢),x; — x*) — LuD;
It follows that,
D7,y < (L=207Lp) D} — 2ng[1 — me(L + p)] (VF(x¢), x¢ — X*) + 21 (€, ¢ — X*) + 207 e ||
< (1 =207 Lp) DF = 2ne[1 = ne(L + )] pDF + 21 (er, x¢ — x*) + 20 |||
< (1 —2nep — 207 1%) D7 + 2n (€, % — X*) + 207 |||
< (1= 2nep) D7 4 2n (€0, %¢ — X*) + 207 ||e¢||?

where the second inequality follows from the strong monotonicity property of VF'(x) and the fact

that n; < =— smce v > Ak + A — 1. Now, substituting 7, = T t’iw),
2A 2A 2A42e;))?
Di, < <1 - > P (e X — XT) + % (N
+7 p(t +7) p2(t+ )

Since 1 —t < e 'Vt € R, we note that Vs < t:

(

< exp

+1 du)
s+1 Ut
t+1
<exp( 2A1In ( + +PY))
+1+7
_(st+14~
t+1+7

24
< 924 s+
- t+4y
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Using the above bound to unroll the recurence , we obtain:

t

t A t o Xs — * A
pra= |TL(- 75 ) | e S o (-5

j=1 s=1 j=s+1 I+

2A2t lles]|2 ! 24
u2§: (s+7)° 1 (1_' >

s=1 j=s+1 I+
y+1 24 , A924A+1 1 (s +W)2A—1 A222A+1 t L(s+7) 2A—2
< |-— Dl 24 <ES7XS_X Z” S” 72,4
t+y poo = t+) (t+7)

Expanding €; = b, + v and using Young’s inequality, we conclude that the followmg holds for
everyt € [1: T

2A 24+1 _t 241
v+ 1) 5 A2 (s+~v—-1) .
D2 < L== D? + b, Xs — X
Hl_(t+7 ' 1 Z; ETE >
A24A+1 t SJF -2 A22A+1 t s+ 2A 1 .
T S i S ek - x)
[ @+7) — (t+7)
A24A+1 t -2

Zn 3 e i
t+w

B.3 Proof of Lemmal@

Note that by definition of E,
IVF(x¢)||1{E:} < LD 1{E;}

I VCRr 5

(t+v-1)
Recall that I' = ln” 7 /7;)6 ie. \/Rps =" ln( /%) . Substituting this into the above inequality gives us:
x[In(K/s)\/C
VF H{E} < ———— 8
| (xo)[[L{E:} < try—1 (®)

We recall that b, = VF(x;) — Elclipp(g:)|Fi—1] = E[g:|Fi—1] — E|clipp(g:)|Fi—1]. Since
Cov[g:|F:—1] = ¥ by Assumption [Bdd. 2" Moment, we obtain the following bound on ||b||
by an application of Lemma 4]
thvef A HVWH2 IVEG)N® | [Ell2detl|VF (x0)l|

T2 I2

by || <

Since b; = b;1 {Et} it follows that
IEll2 Ve HVF@fW{E&vWiE HVFXtWR{E}+Hmb%MVF@HWHE&
T 12 2
6 @ ) O
Bounding @ By definition of T,
[Ell2Vderi _ [|Z]l2v/defr In(%/5)
r /Ry s
< (LA DZ]l2vdee In(%/5)
- HT\/Rrs
Rrs
- (T+9)

by ]| <
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. . JR
Bounding B) Since Ry > ”ZHQdZZE(TJW) > HEMHQQT, VIZ]2 < \l}i Substituting this into
equation (g),

[V E(x¢) ||]1{Et} ||E|2 £/ C In( (%/5)  p/Rrs
STt amE )

_kIn(1/5)VC
Hence, ® < pu+/Rrs (s+7)\/d(T7+~/

Bounding © From equation (8],
IVEG)|® _ 5°CY T (o)’
2 - (t+y—1)3
K3C*2 n(1/5)?

< py/Rrs —1)

3 /zn 2
Hence, O < u+/Rrs - %11/5)

Bounding @ Recall that,

2
<M Rr s
[3][2der < Tt
IVE(x)[T{E:} rIn(K/5)v/C
r - (t+y-1)
_ pn/Rrys

~ In(K/s)

It follows that

[[Elloderr || VF (x2) |1 { By } < u/Frs - K In(K/5)*V/C

0= 2 t+~—1)(T+7)
Hence,
#1n(1/5)V/C K3C°? In(1/5)? #V/C In(1/s)?
”bt'<“VR”<T+v (T O)VaT Ty | GFa-1p +(t+71)(T+7)>

B.4 Proof of Lemmalf7

For any s € [T], we recall that vy = E [clipp(gs)|Fs—1] — clipp(gs). Since E[gq|Fs—1] = VF(xs)
and Cov[g,|Fs—1] < X, we obtain the following from Lemma

. VEF(x)||* VF(x)|?Tr(Z

I [vav 1Faca] s = [Cov elpp () Foc] | < 5 + 1 ey VTG )

Tr (E [VSVZU:S_l]) = Tr (Cov [clipp(gs)|Fs—1]) < Tr(X)

Fors e [1:T] d~eﬁne EvvT|F, 1] = ¥,. Since 1 {E;} is Fs_1-measurable and vy = v 1 {E,},
it follows that £, = E [v,vT|F,] 1{E,}. Hence, we conclude the following from the above
inequality

IVEGe)IML B} | IVE () [PTr(E)L (B}

126l < [1Z]|2 + 2 T2
Tr(%) < Tr(%) )
Now, for s € [t], we define h; as follows:
. (5 +v)24-1
hfs = ED) ds 7. . _N9A_o
o o) (s
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Note that E[h|Fs_1] = (E[Vs|Fs—1],ds) Esv)i 0. Furthermore, since || V|| < ||v¢|| < 2T

t+’y)2A 2
and ||d,| < Y CRrg

— s+v—1
CR 2A-1
\h3|§2F~ m ( i )QA 2
s+y—1 (t+7)°4
2A-2
<A4I'\/CRr; < sty >
4B 5'C o
In(K/s)
For s € [t], define 02 = E[h2|F,_1]. It follows that,
2 _ (s+71)" 2 1<
s (t—|—7)4 TV YV
G -
( T )iA- 4“"8”2“25”2
4A—4
s+ -
<4CRy;s- (HZ) DNE
4A—4 4
s+ VF (x4 VF(x, MNod.
g4CRT,5<H3) <”2”2+ VG | IV Fex)RI )

where the last inequality follows from equation (E) and the fact that desr = Tr(Z)/||5).. We now use
the above inequality to control 3"'_, 02 In(%/s) as follows:

t t 34—7 4A—-4
2In(K/s) < 4 In(X, by
S ot <4CRnam (993 (F7) ISl

s=1
s\ IVE&)
t+ry I?

t
+4C Ry sIn(K/5) Y

s=1

(8+7>4A_4||VF(Xs)||2||22deff )

t
+4C Ry sIn(K/5) ) = 2

s=1
‘We now control each of the three terms in the above inequality as follows

t 4A—-4

s+

4C Ry 5 In(K/s5) g =]l < 4C Ry, 5 In(5/5)[|S ot
s=1 t*iv

W2 R s

<A4CtRrs ———
- e (T 4+ v)Vdes

< 4)>CR%;
Before controlling the remaining two terms, we recall from (8) in the proof of Lemma ?? that
K
IVFG I (5, < TV
< 26T In(K/5)/C
- s+

where I' = ﬁ% It follows that
| VF(xs)|* < 16k*C?I2 In(K/s)*
2 - (s+7)*
16k*C? In(K/s)?
(s+)*

:ARRTﬁ'
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Thus, we can control the second term in equation (TT)) as follows

t 4A—4 t —
F(x5)||* )48
AC Ry In(%/5) ) <m> w < 64p*CRY. 5 - k*C? In(K/s)? Z 4,4 .
s=1 s=1
1C?1n(K/s)3
< 64p2CR2 B MU0
=S T )

< 64p°CR7 5
where the second inequality follows by setting A > 2 and the last inequality follows by setting
v > K3C3 In(K/s).

To control the third term in (TI), we note that by equation (8)) and the definition of Ry s

2 2 K/s\2
HVF(XS)HQHE”QdefF < 2Ry Cln(K/s) !
r T (T H)(s+7)
It follows that
1CRr (/) 3" (22T IV EC ISt _ 20 mcan/af”i 7)HAe
o —\t+y 2 = R T pet 4A*4
2 In(K
SlGuQCR%é-M
2 (T +y)(E+7)

< 16p*°CR7 5
where the second inequality follows by setting A > 3/2 and the last inequality follows by setting
v > kV/C'1In(X/5)*>. Substituting the above bounds into equation (TT), we note that

t
> oln(K/s) < 84p>C Ry,
s=1
Thus, by Freedman’s inequality (Lemma[3), we conclude that the following holds with probability at
least 1 — ¢/2 uniformly for every ¢ € [T1:

t 24—1

t
Z 2A 7 (Ve ds) =D hs <2

s=1 s=1

02 In(K/s) + 8uRy sVC < 2TRpsV/C  (12)

A-1
To prove the second inequality of this lemma, we define z; = v, - (fi,?) for s € [t]. Note

that E[zs|Fs_1] = 0 and ||z;|| < ||Vs|| < 2T. Define the PSD matrices G = E[z,z]|F;_1] =
24-2

(ij_‘g) .. Recalling that Tr(2,) < Tr(X) and the bound obtained on ||X,], in equation (9},

we infer the following:

T™G,) < (””)wzmm

t+y
A- .
1Gl2 < S+ 2 2” S+ s+ 2A-2 ||VF(X5)||4I[ (B}
e\t t+7y r2
A—
(5T VRGP (B
t+y 2

Substituting (8) into the bound for |G

2, we obtain the following

S+ 2A—2
TH(Gy) < gs = (t-l-’Z) Tr(D)

2A-2 246
s + s+
1GLlo < po = ( ”) 19l + B 6kt 2 In (/)2 R

t+y (t+ y)24-2
s+ 2A—4
+ w - 4k2C I (K/5)?|| S| 2defr (13)
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By Cauchy Schwarz Inequality,

4A—4 4A—-12
<3 (”) 1913+ 3 EE T asgs et (i) ut B2

° t+n (t+y)ra
(s + 7)4A78
+3- =N 1662C% In(K/s)*||2||2d2% (14)

Since T 2 In(In(d)), K = In(In(7)) and ¢; < Tr(X) Vs € [T, our choice of I" ensures that the
conditions of Corollary [5]are satisfied. Hence, by Corollary 5] we conclude that the following holds
with probability 1 — ¢/2 uniformly for all ¢ € [T

UP(t) Cut UP(t)
Sl < 4Cw T n(Ks) + Cig 2 4t g 27

s=1 s=1

Simplifying the above using equations (I3), (I4) and the deﬁmtlon of I', we obtain the following
inequality which holds with probability at least 1 — 9/2 uniformly for every ¢ € [T7]:

t UP(t) 24A—2 UP(¢) 4A—4 9 9
Ty 30 T (5 42\ (/e8]
2.||? < ACw 12 Ry s+ C (3 ) Tr(®) + ( i WAL e |
S llsl® < CusRrs +On 3 (] 0+ 2 7 Rrs
UP(t) _
3C (s+y)*A12 8 ~vd 6 2
- 256t°C* In(K/s R
Y e (K/5)0 R
UP(t) 4A-8 4,2 6 2
N 3Cu Z (s+7) 16tx*C? In(K/5)°Tr(X) (15)
T 2 (i W2 R,

We now simplify each term in the above inequality by using the fact that UP(¢) < min{T 2¢}. To
this end, the second term is simplified as follows by using the fact that A > 1

UP(t) s+ 4A—4
3 (7) Tr(X) < UP(6)Tr(X) < p2Rrs
pt t+y

We now control the third term as follows using the definition of Ry s and the fact that A > 1:

“i” ( +v>4A4 (/% |S)? o, tUP()
=\ttt 2Ry T AT 1)
< Ry
To control the fourth term, we use the fact that A > 3 and note that for s < 2¢, (s + ) < 2(t + )
UP() 4A-12 2t e
(s+7) 8 4 6 2 8,84 (s+7)
e W 256tk°C IH(K/J) RT§<’UJ RT§2 C ln K/§ g t—|—'y4A 1
< PRy 122443804 In(K/s)6
B ’ (t+7)*
4A—3 841, (K /)6
§/¢2RT5-2 K2C* In(K/s)
SNt
S ,U'2RT7524A715
where the last inequality follows by setting v > 4x°C*/* In(X/s)
We control the last term by a similar argument
UP() 4A-8 472 6 2 2t 1A-8
16tk*C= In(¥/5)°Tr(X% t
Z (s+ ’7)41474 K 121( /5)°Tr(2) < 1?Rys - 24 C2 In(K/5)0 Z (s+ 7)41474
— (t+7) PP Rr.s (T +7) — (t+7)

t2
(T +7)2(t+)*
24A711,LL2RT75

IN

. 24A_3K,402 IH(K/tS)G

IN
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where the last inequality follows by setting v > 4#+/C In(¥/5)*/>. Substituting the obtained bounds
into equation (I3), we conclude that the following holds with probability at least 1 — /2 uniformly
forevery t € [T:

t 2A—-2 t
S+ ~ _ _
> (tﬂ> 19017 = llzall® < Crrp®Rs (6 4 3 - 244718 4 3. 244717)
s=1 s=1

The proof is completed via a union bound.

C Analysis for Smooth Strongly Convex Functions Under Quadratic Growth
Noise Model

Following a convention similar to that of Section [B] let K = 4max{8,Cys,In(T)}. For ¢t > 1,
define the filtration F; = o (x1,8s|1 < s <t) and Fy = o(x1). Furthermore, let VF(x;) =
clipr(gt)+bi+v: where by = VF(x¢)—E[clipp(gt)|Fe—1] and vi = E[clipp(g:)|Fr—1]—clipp(g:).
As beforem, we note that E[v;|F;_1] = 0 and ||v;|| < 2I'. Hence vy is an F adapted almost surely
bounded martingale difference sequence. Now, let D; = ||x; —x*|| where x* is the unique minimizer
of F' (guaranteed by strong convexity). We also define ¥; = Y(x;) and note that ||| < aD? + 3
and Tr(3;) < degr (aD? + 3). Furthermore % is F;_1 measurable. Let 1, = A where A > 1is
a numerical constant and v > Ax + A — 1 is a constant depending on &, d and ln(l/é) which we
shall specify later. Note that our choice of ~ ensures that 7, < L%ru fort € [1 : T| An application of

Lemma [5|shows that D; satisfies the following for every ¢ € [1 : T

2A t _
1 A22A+1 -1 2A—1
D2, < (w ) 2 (s+y-1)

try) T L G,

t t
A24A+1 || ”2 S 'Y) 2 22A+1 S 'Y 2A 1 *>
g s § Vsaxs X
) t ’Y 2A

s=1

(bs, x5 — x*)

t

A24A+1 Z” ”2 S+,_y) -2

(t+7)*4

We now define R ;5 as follows:
T+
Rrs=(y+1)°D} + (Mv ( eff + /desr In(K/5) )

It is easy to see that I" = miv(K/a) In our proof of Theoreml we shall establish that the following
holds with probability at least 1 — §:
CR
t2 < T,5 -
(t+v-1)

where C' > 0 is an absolute numerical constant to be chosen later. To this end, we define the event E,
and the F; measurable random variables d;, b, v; as follows for ¢t € [1: T + 1]:

CRr s
Ef:{Dfﬁ_z}
t+y-1)
dt = (Xt — X*)]]. {Et}
b, = b, 1{E,}
{’t = Vt]].{Et}

Vte[l:T+1]

We use the following Lemma to control the bias vector Bt
Lemma 8 (Bias Control). The following holds almost surely for every t € [1 : T):

7
Ibe|| < p/Rrs Y B;
j=1

8862 https://doi.org/10.52202/079017-0282



where By, ..., By are defined as follows:

1
=7
4aC/dIn(In(T)/s)
By = 2 2
p* (s +7)
_ 26V/C'In(n(T)/s)
(s + VAT +7)’
_ ARC In(I(T)/5)\/ax
s +)?
_ 8Kk3CY2In(In(T)/5)?
; (s+7)?
_ 2k/C'In(In(1)/5)?
(T +)
8akd In(In(T)/5)2C*/>
2 (s +7)°

By

)

B,

b

5

)

By =

We use the following lemma to control the variance vector v;. The proof of this lemma, which uses
Freedman’s inequality and the PAC Bayesian martingale concentration inequality of Corollary [6]

Lemma 9 (Variance Control). The following holds with probability at least 1 — & uniformly for every
0 1233V
t [T] for A > 3 and y > AC max{ 2%, XL s in(Kf5), i In(K/s)"/2, U E n(K/5)}

t 24—-1
> (Gl i (Ve,ds) <34 pRpsVC

24-2
25
Z (S + 7) ||‘~sz2 < COwr <24A—34 459811 5 944216 4 5 24A—13) MQRT,é

where C\yy is the absolute numerical constant defined in Corollary[5

Equipped with this bound on the bias and the variance, we now present the complete proof as follows:

C.1 Proof of Theorem

d, aln(K/s) a4 3 n2/3d1/3o¢1/3
roof. Le = 0,7 = max 5, 5, K n §),kIn 1) , S5 1In §)y.
Proof Let A > 3,y > 4C max{ " 7 In(K/s), & In(¥/5)"/%, =—4ta=— In(¥/s)}

PEEERY

Now, let E denote the following event

(s + )47

W <\~757d5> S 34 - /,I/RT’(S\/th S [T]

M~

E={

@
I
—

M~

24-2
(S—i_y) [Vell* <53 - Cryrp® Ry s Vit € [T}

4+

s=1

Note that by Lemma@ P(E) > 1 — 0. We now claim that P (ﬂtT:ll E, |E) =1, i.e., conditioned on
the event E, the following holds almost surely for every ¢ € [1: T+ 1]

CRro SVte[l:T+1]

D 70
ET(t+-1)

We prove the above claim by induction. Note that the claim is trivially true for t = 1 as Ry s >
(v + 1)2D?%. Now, consider any ¢ € [1 : T] and suppose the claim holds for some 1 < s < .
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Recall that by Lemma 3]

(y+ 124, A2 Z (54— 1)

212 *
(t+7) D, < W 2 ()42 (bs, x5 —x")
A24A+1 ( )2,4—2 A92A+1 t (s+,7)2A—1 i}
Vg, Xs — X
ZH ( )2A72 L ; (t+7)2A 2 ( >
A24A+1 t 2(8+7)2A 2
Z” S” (t—|—7)2A 2

Under the induction hypothesis, 1 {F;} = 1Vs € [t]. Hence, Under the induction hypothesis,

1{D37%} — 1 and thus, d;, = X, — X*,by = by, v, = v, V1 < s < t.

Substituting this transformation into the above inequality, we obtain the following:

t -1
212 (v+1)%4 D2+ A4+ (s +7)?
(t+7)"Diyq < (t + 7)2A- 5D Z (t+7)2A-2 (Vs ds)
s=1
@ @
A24A+1 t 24-1 ,
Zuvan Z 2A 7 (bed)
©) ©)
A24A+1 t )2A72
ZHbs\PigA_z (16)

©)

‘We now bound each of the terms in the RHS as follows.

Bounding @ Since A > 1landt > 1,

(v+ 14

tz ('y+1) D2<RT5

D=

Bounding @) Since v and A satisfy the conditions of Lemma([7]and we have conditioned on the
event I, it follows that:

A924+1 ¢ 2A-1
Z t+’Y2A 5 (Vo ds) < 1744 Ry 5V/C

s=1

Bounding ® Since v and A satisfy the conditions of Lemma([7]and we have conditioned on the
event I, it follows that:
A2 4A+1

2
K s=1

t s+ 2A-2 25
Z (t + :;) ||{’,SH2 S A222A+20M (24A—34 + 5 . 24A—11 + 5 . 24A—16 + 5 . 24A—13) RT’[S

Bounding @ Since 1{F,} =1

1. < VCRrs _ 2/CRr;

-17 s+79

Hence, by Lemmalg]

2A-2 7

A22A+L L (34—7)2‘4 24 s+
U« p924+2 .
B g s (:22) f

t+7
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We now control the first term
i(8+7)2A23 o Z<S+7>2A2
S \t+y 1_T+7321 t+

< t

“THy
where the first inequality follows from the fact that A > 1 and s < ¢.

1

IN

‘We now control the second term
t

t 242 K 2A—4
Z (s—i—’y) B, < 4aCV/dIn(X/s) Z )
s=1

t+y I =
K
< 4aCV/dIn(X/s) <
p2(t+7)
where the first inequality follows from the fact that A > 2 and s < t and the second inequality

follows by setting v > W'

‘We now bound the third term as follows:

i(5+7>2A23 B 2;<;\Fln (K/s) i 2A 3
3 S AT + )
s=1 t—|—’}/ T—F’)/ s=1
K
< 2kv/C'1n(K/s) <
d(T + )
4K2 In(K/s)2
—_—

where we use the fact that A > 2 and set y >

‘We now bound the fourth term as follows:

i<s+’y>2A2B4§4/<;Cln K/s) \/ai y)2A—4
t—f-’)/ s=1

. 4kC In(K/5) /o
p(t +7)

<1

where A > 2 and v > M

We now bound the fifth term as follows

t t )24-5
Z(Sﬂ) By < 8K3C* In( K/ézzsﬂ—
—\t+~v —(t+7) )24 — 2]

30°%/2 1n(K
S
(t+7)?
where A > 3 and v > 4k”>C%/* In(K/s).
We now bound the sixth term as follows
L s\ 2/ In(K)0)? s (s +7)A 0
2 Be Z QH
S \tty T+~ ~

< 2k7/C In(K/5)? <1

IN

T+
where A > 3 and y > 2xk+/C In(K/s5)?
Finally, we control the seventh term as follows
Zt: (s+'y>2A_2 B, < Sakd In( K/é c°? Zt: 24-5
iU s=1 2A ?
SCmd ln(K/é) c* <1

pAt+y)?2
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where A > 3 and vy > VardIn(K/s)C4
- - Iz

. Putting it all together, it follows that

@ < TA4M Ry 5V C
by setting v as follows

+ > 4C max { Waif;(}(/ o) WU wa LD, e ), a7,

Vrad 1n<K/a>}

"

Bounding @ By Lemma8|and Jensen’s inequality

7
(12 2 2
15| < 702 Rrs Y B2
j=1

It follows that
A222A+2 t s+ v 2A-2 oA t s+ v 2A-2 7
+2 2
e O L Ml G D O
s=1 j=1
The first term is controlled as follows using the fact that A > 1

i(iiz) _ i (T +7)?

s=1

The second term is controlled as

t 2A—-2 t
Z (S‘i"‘}/) B% S 160[202dln K/5 Z 2A 6
s=1 t+’y s=1
22 K
16a°C dln( /5)? <1
u4(t+v)3 -

2Y3023C%/33"3 1n(x/5)%
4

where A > 3 and v > 7

The third term is controlled as

i <s +’y>2A2 B2 45%C In(K/s5)? i y)2A—4
3
s=1 t+'7 T+,Y s=1
4Kk%2C 1In(K /s5)? <1
T AT +) T

where the last inequality follows because v > x4/ < In(%/s)

The fourth term is controlled as

4 2A-2 20210 (K /52 _t 2A-6
Z(s—i—v) Bzgl&éCln( /5)042((34—7)

2 2A-2
s=1 ¢ + v H s=1 t + ’Y)

23730 I (x/5) B0/

where A > 3 and vy > ! For controlling the fifth term, we set A > 4 to obtain

e
t 2A—-2 t 2A—8
s+v 6,3 4
B2 = k%C®In(¥/s) —_—
6,3 K
KSC3 In(K/s)% <1
(v+1)°

where the last inequality uses the fact that v > x>C*/> In(k/s)"/*
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To control the sixth term, we use the fact that A > 2 to obtain

zt: S+’}/ 2A—-2 BQ QCln K/§ 4 zt: 2A—4
s=1 t+,y - T-’-’V s=1 2A72
2 K
k2C In(K/5)4 <1
(y+1?* ~

where the last inequality uses the fact that v > x7/3C"/* In(¥/s)"/*
To control the seventh term, we set A > 4 to obtain the following:

zt: (s + 7)2’4 QB 64a’k2dIn(K/5)4C3 zt: (s+7)2478

6 pd +7)24-2

64a’k2dIn(K/5)4C3
ph(t+7)°

s=1 s=1

—_

<

2%/50,%/5%/5 4*/5 ln(K/é)4/503/5
'l

where v >
49A242H R 5.
Now, we set A = 4 and +y as follows:

ad aVdIn(K/s) wy/aln(K/s) Veadln(K/s) k*°d/*a/? ln(K/é)
Y = max ﬁa M2 ) /J/2 ) L ) /1/2/3

From the obtained bounds, we conclude that Q) <

K72 In(K/s), k In(K/s)2, ’”nd(%)}

Under this setting of A and -, we obtain the following
t+7) D5 SO+Q+Q+@+0O
< Ryl + A%224+20, (24,43245 45. 9811 4 5 94416 | 5 24A13>
+ 49A24AHT 1 24 A4V O]
< Rrs (802817 + 6946816C s + 98304@)
<CRrs

where the second inequality holds due to our choice of A and - and the last inequality is obtained by
setting C' = (\/802817 + 6946816C' s + 98304)2. It follows that

2 CRr s
T ()
Thus, we have proved by induction that conditioned on E, D7 < % forevery t € [T+ 1]. In

particular, the following holds with probability at least 1 — 4:

2
CB (de defr In(K
D2, <C v+1 D2+ B (dess + v/deft In(K/5))
+ T+~ w2 (T + )

C.2 Proof of Lemmal§|

Following the same steps as in that of the proof of Lemma[6] we use Lemma [ and the fact that
Cov[g|Fi—1] = Xt to obtain:

|Z:llVder L{Es} | [IVE)IVIENT{ES} | NVEG)IPL{E} | [|Ss]lder | VE(xs)IIT{Es }
r r T2 T2
® B © O

b | <
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Bounding @ Note that by Assumption |QG 2" Momen

Sall22{E.} < (8+ aD2)L{E}
4aC’RT75
=Pt Gy

It follows that

[Zll2Vdl {E} _ BvderIn(¥js)  4aCn(*/s)\/Rrsdes
r = Rrs (s +7)?

2
Since Bv/dess In(K/s) < ”TI_T_TW"S , we obtain

® = [I[® fn{E}< F( 1 4OzCln(K/6)\/RT75deff>

T+~ P2 (s +7)?

Bounding B Note that by equation (8),

IVE(xo)IL{Es} _ 26v/Cln(%/s)
r - s+

Furthermore, by Assumption|QG 2" Moment|and the definition of E
aCR 5
VI (B} < /B + VTS

S+
Recalling that 8 < %,
IV PGl (B} _ 2e/Cin(fsy /s | 4nCn(K/5)/aRirs
r T (s NVder(T + ) (s +7)?
2 In(K 4kC' In(K
< /s kv C In(K/s) n kC'In( /6)2\/&
(5 +7)V/dest (T + ) (s + )
Bounding © By equation (8],
IVF(xs)%1 {ES} T 8/136’3/2 In(K/5)?
2 s+7)°

Bounding @ Since 8d < &= RT 8 it follows tat

[V F (%) |12 || odefe 1 { Es } 2/1\/51n(K/6)2 ( 4ozCRT75d)
r2 - Ry s(s+7) (s+7)2
< 2/@\/5111(1(/6)2/1 Rrs = 8akdln(K/s)2C°\/Rrs
(s + (T +7) (s +7)3

<u\/m<2/@\/>ln(l(/é) +8a1€d1n(K/5)203/2>

(s+N(T+7) p2 (s +7)3

Hence, we conclude that

7
by S@+@+©+@SM\/RT,5ZBJ‘

j=1
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where By, ..., By are defined as follows:
1
=Ty
4aC/dIn(In(T)/s)
By = 2 2
1 (s +7)
_ 2k+/C In(In(T)/s)
(s + VAT +7)
_ 4ARC In((T)/5)\/ax
(s +)?
 8k3CY2 In(n(T)/5)?
(s
By — 2k7/C In(In(T)/5)?
(s + (T +7)
_ 8akdIn(n(T)/5)2C%*
s+

By

7

By

)

5

)

)

By

C.3 Proof of Lemmal[9

As before, for s € [1 : T) define E[v,vT|F,_1] = %,. Following the same steps as in that of the
proof of Lemma(7] we use Lemmald]and the fact that Cov|g;|F;—1] = X to obtain:

IVEGR)IILE) | [VFGe)IPTHS,1 {5,)
T2 2
4 2
VPG (B} LB IVF Gl (5 o
4aCRr s HVF(XS)H4]1 {Es} HVF(xt)HQdeFIL {Es} 4aCRy s
Giy? 2 * 2 (5+<s+w2)

1Zsll2 < 1IZsll21 {Es} +

< 1{E} (8 +aD?) +

<p+

7)
where the second inequality follows from Assumption |QG 2" Moment|and the second inequality
follows by definition of Fg

Furthermore, since clipy- is a convex projection, the following holds:

Tr(Xs) < Tr(X5)1{Es}
< degt (B4 aD?) 1{E,}
4adCRyr ;s

< Bdeff + (S T 7)2

(18)
Now, for s € [t], we define h; as follows:

. (s +
ho = (Voo ds) G Vaas

Note that E[hs|Fs_1] = 0. Furthermore, since ||v;| < 2T and ||d,|| < VOErs

s+vy—1
VCRrs
|hs| < 2T - o

s+v—1

< 41—\/CRT,5 <

4Ry 57/ C
In(¥/s)

54 7)2,4—1

(
(+7)22

. 24-2

t+y

19)
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For s € [t], define 02 = E[h2|F,_1]. It follows that,
o2 — (s+)" 2 7

AN A
G kel :
< ey Vsl 12allz

s+ 4A—4 B
<4CRr; - s
< ACRz,s (t - ) 12411

4OzCRT75

< 4CRrs (s+’y>4A_4 [[M 10CRr;s | |VF()['I{E} | |[VF ()| derll {E,) (B

t+~ (s+7)? Iz 2
where the last inequality follows from equation @[) and the fact that defr = Tr(®)/||||.. We now use
the above inequality to control 3°_, 02 In(X/s) as follows:

t , t S+’7 4A—4
> oln(K/s) < 4CRT,51n(K/a)Z< ) B

s=1 s=1 t+ v

t

+ 4CRT75 ln(K/é) Z (S + '7)41476

(t+7)

s+v\ " IVE(x) |1 {Es}
t+y I2

4aCRr s

+4CRy s In(K/s

»
HMW [
LN

1

)
)

]~

+ 4ORT75 IH(K/(;

s+ IVF(x) |21 {Es} Bdes
t+ I'2

s=1

(s + 7)1 0 4| VF(x)||?1 {E,} adCRr s
- (t +)2A-4 T2

We now control each of the five terms in th above inequality as follows

M~

+ 4C Ry 5 In(K/5) (20)

t s+ 4A—4
ACRy s In(K/5) ) <7> B < 4CRr s In(K/s)pBt

s=1 ¢ + v
2
p Rr s

<4CtRrs  ——r—

5 (T + )V defr
< 44*CR7. 5

To control the second term,
! 7)44=6 Cln(K/s
4C Ry 5 In(K/s) Z 4A o —4aCRrs < 16CR2T75/¢2W

s=1
S 16CR%~5M2
where the second inequality follows by setting A > 3/2 and the last inequality follows by setting

v > %ﬁf%) Before controlling the remaining terms, we recall from (8)) in the proof of Lemma|§|
that
K
IVEGe )t (5 < TV
< 26T In(K/s)\/C
- s+

where I' = V Rr.s It follows that

In(%/s) *
||VF(xS)||4]l{ES} < 16x*C2T2 ln(K/5)4
2 - (s+7)*
16x*C? ln(K/5)2
= 2Ry s - -
poRTs (s+7)4

(s+7)?
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Thus, we can control the third term in equation (20) as follows

t 4A—4 4 t 4A 8
VF(x,)||*1{Es
4CRT61H K/5 E (iiz) || (X%! { } < 64 2OR25 /Q40211'l K/53 E 4A -
s=1 s=1
102 n(K/5)3
< 64p>CRZ. ;- T L0
= )

< 64p°CR7 5

where the second inequality follows by setting A > 2 and the last inequality follows by setting
v > KO3 In(K/s).

To control the fourth term in (20), we note that by equation (8)) and the definition of Ry

|V F(x,)|*dese S1 { E } < W2 s - >CIn(K/5)?
2 = T ) (s 1 )2
It follows that
t 4A—4 t 4A—6
s+ |V F(x)||?Bess 9o K2CIn(K/s)3
4 In(X —_— - <1 .
C Ry n(s) ;(tﬂ> L0 < gpeemy, - g S
20 In(K/s5)?
< 16u2CR? N AT
=TI T )

< 16M20R2T,5
where the second inequality follows by setting A > 3/2 and the last inequality follows by setting
v > kV/C'n(K/s)%2,
To control the fifth term in equation (20), we proceed as follows:

t

ACRrsIn(K/)5) Y

s=1

(5 + 7)1 0 4| VF(x,)||?1 {E,} adC Rz 5
(t + ,7)4A74 1‘*2

)4A—8

adrk?C? In(K/s)3 Zt: (s+7~
2 — (t+7)
adk?C?In(K/s)3
P2t +7)?

< 64p>CR7 4A_4

< 64p°CRY 5 -
< 64p°CR7 5
where the second inequality follows by setting A > 2 and the last inequality follows by setting

/8 4%/3 ,.2/30%/3 1 (K
y > S 77 n(fe) Substituting the above bounds into equation (20), we note that

t
> olIn(K/s) < 1644°CRr. s
s=1
Thus, by Freedman’s inequality (Lemma[3), we conclude that the following holds with probability at
least 1 — ¢/2 uniformly for every ¢ € [T7:

t 2A—1 t t
Z 2A S (Vs,dy) Z <2 Z o2In(K/s) + 8uRr sV'C < 34RpsVC  (21)

s=1 =

T+
that E[zs|Fs_1] = 0 and ||z;|| < ||Vs|| < 2T. Define the PSD matrices G = E[z,z]|F;_1] =

24-2 _ . -
(ij_‘g) Y. Recalling the bounds obtained on |||z and Tr(3;) in equations (T7) and (I8), we

A1
To prove the second inequality of this lemma, we define z; = v - (8+7> for s € [t]. Note
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infer the following:

™G <8+7>2A 1 (5.
t+y
24-2 _
(ji::) Bdess + :IZ))QA 44adeffCRT§
1G]z = (5”) 152
( ) S+W)2A 44ozCRT6 + (8+7)2A_2 IVEGes) [T {Es}
t+vy + y)24-2 P 2

s+ IIVF(XS)||211 {Eo} Bdes (5 +9)*" 7" | VF(x,)[PL{E, } dadesC s
t+y I2 (t+7)24-2 I2

Substituting equation (8] into the bound for ||G||2, we obtain the following
sy 242 st (s 4 7)2A4—4
t+y T ()R
2A-2 2A—4 2A—6

s+ (s +7) (s +7)

Gsll2 <ps = + a5 4aCRrs+ ——5—
1Gsll2 <p (t T 7) p (t +7)2A2 T,8 (t + ~)2A-2

(s +7)*4 (s 4 7)2A-6 i ,
] W'madeﬂRTﬁﬁ C?In(K/5)% (22)

By Cauchy Schwarz inequality,

Tr(Gs) < gs = ( dadesC Ry 5

165*C? In(K/5)? 1> Ry 5

< - 4Bdegr*C' In(K/s)? +

4A—-4 4A-8 4A-12
+ + +
pg < 5 <m> 62 +5- ((!:4—:;))4*4_416&202R%’5 +5- W . 256;‘1804 1D(K/5)4,U4R%75
(s + 7)41478 (s + 7)4A712

. 16432 402 1y (K /)4 )
(T 108G C2 n(10)! 4 5+ S

+5- - 2560 d% RY, 55" C* In(K/s)*

(23)
Since T' 2 In(In(d)), K = In(In(T")), our choice of I" and the definition of Ry s ensures that the

conditions of Corollary 5] are satisfied. Hence, by Corollary[5] we conclude that the following holds
with probability 1 — /2 uniformly for all ¢ € [T]

UP(t)
ZHZSII2<4OMF21n<K/5 +Ou Y Qu+ L - p2

s=1

Simplyfing the above using equations (22)), (23)) and the definition of I', we obtain the following:

uP - uP
i lzs]|> < 4Cnp*Rrs + Cur i) sea) 25deff +Cu i) M daduiCRrs
s=1 B 7 s=1 t+’)/ s=1 (t+7)
4 5Cu Ui(f) (5 + 7)4A_4 p2tIn(K/5)*  5Cum Ui) (s + )"~ 1602C*Ry st In(K/s)?
4 H \t+y 12Rr 4o ey e
UP(t) _
5Cs (s +~)tA-12 o 6. o
t ; (t+v)2A-4 1256k C7 In(K/a) "ty R s
UP(t) A-8  p24
50]\/1 (8 + 7)4 B 4 ~2
+ . -16K"C* In(K/s
4 ; (t+y)a-t QRTé o
5Car Ugf) (s +9)M712 256k Cla’dZy In(/5)° Rr,s (24)
T I w
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We now simplify each term in the above inequality by using the fact that UP(¢) < min{T, 2t}. To
this end, the second term is simplified as follows by using A > 1

UP(t)

s—l—’y 4A—4
=7 defr < UP(t)Bdess < i°R
Z(t—i—'y) Biesr < UP(t)Bdess < pi* R s

s=1
We now control the third term by noting that for s < 2¢, s +v < 2t + v < 2(t + 7):

t 2t
(S 7)2A 4 22A 2adeff 1

dt
< 9241 2R o _ aat
TopA(t )2
< 224731 Rys
where the last inquality follows by setting v > %.
‘We now control the fourth term as follows:
UP(t) 4A—4
Z s+y B2t In(K/s)? < 1Ry - UP(?) < 1u®Rrs
2 \t14 R e T L
We now control the fifth term as follows:
160202 Ry st In(K/5)2 ) (5 + 7)*A-8 o 2410202 In(K/s)%t S 1
: (4t = e 4 G
a s=1 v K s=1 T
a2C?n(K/5)2244-5
B (152
ph(t+7)
< 24A_9M2RT,5
where the last inequality usesy > %W
We now simplify the sixth term as follows:
UP(¢) (s 4 y)t4-12 2t 1
2562 Ry sk3C* In(K/5)%t < p? Ry 5t - 224745 CH In(K/5)°
; (t+)t4 ; (t+7)®
2
< pRr.s QM8 80 | (K /5)6
(t+7)°
< 24A_15M2RT,5
where the last inequality follows by setting v > 4x"/3C** In(%/s).
We control the seventh term as follows:
UP(®) 4A-8 5242 4,42 )6 2t 4A-8
t 2*k*C*? In(K/5)°t
Z — 7)4,4—4 ' 52 - 1651C% In(%/5)° < 2Ry - ne) Z 4A 4
— (t+7) W R, (T+7)? &=
24A_3K4O2 ln(K/(S)ﬁ

<M1 2p,
where v > 4k+v/C In(K/s)%>.

We use a similar argument to simplify the final term as follows:

uP
z(f) t(s +~)tA-12 . 2802d%, Ry sk C4 In(K/5)0 < Ry 244-30242 k404 In(K/5)0
= (t+y)at p? - pi(t+7)°

< 24A_15M2RT76
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2 1 2
43 q 3?3 In(K
where 7 > = ey HC% (/%) We now set A > 3 and ~ as follows:

1
23déf3a1

k7 (K /5), wIn(K/s)7?, T B In(%/s)}

Under these parameter settings, we substitute the obtained bounds into equation (I3)), we conclude
that the following holds with probability at least 1 — /2 uniformly for every ¢ € [T]:

t s +’}/ 2A-2 t 25
~S‘ 2 — s 2 <C 2R 24A737 5. 24.4711 5. 24A716 5. 24A713
] G B A N e G v v

5> 40 max {Oédeff aln( K/s)

The proof is completed via a union bound.

D Analysis for Smooth Convex Functions

Let degs = ﬁ (Hz) Following a convention similar to that of Section[B| let K’ = 4 max{8, Cps, In(T)}.

For ¢ > 1, define the filtration 7; = o (x1,8s|1 <s<t) and Fy = o(x1). Furthermore,

let VF( xt) = clipp(g:) + by + v¢ where by = VF(x;) — E[clipp(g:)|Ft—1] and vy =
Elclipp(g:)|Fi—1] — clipp(gt). As beforem, we note that E[v;|F;_1] = 0 and ||v¢|| < 2T". Hence v,
is an F adapted almost surely bounded martingale difference sequence. Now, let D; = ||x; — x*||
where x* is the minimizer of F' considered in the statement of Theorem 3] Using the smoothness and
convexity properties of F', we first prove the following intermediate average iterate guarantee:

Lemma 10 (Intermediate Average Iterate Guarantee). The following holds for n < 1/2L
1 & M — M —
N * * 2 2
F(xr) — F(x7) _277T TZ b, x¢ — T;<Vtaxt_x>+?;”bt” TZ:: [vell

Define the events E; and the random vectors d;, f)t and v, as follows for ¢ € [T
E,={D; < 2D}
d; = (x¢ —x")1{E;}
b, = b1 {E,}
v =vi 1 {E;}
We use the following lemma to control the bias
b,|| < B where B is defined as follows:

12 |2v/desr N 2LD1+/||Z]l2 n 8L*Dj} n 2||X|[2defr LDy
I 12 12

Lemma 11 (Bias Control). Foreveryt € [T/,

B =

We use the following lemma to control the varince
Lemma 12 (Variance Control). Let V' > 0 be defined as follows:
16L*DY  AL?D?| S| 2dest
2 + Iz
Then the following holds with probability at least 1 — § uniformly for every t € [T

t
> (¥e,dy) < 4D1/VtIn(K/s) + 8T Dy In(K/s)
s=1

V=|Zll2 +

Z [9:]> < Cug®T
s=1

where C\yy is a numerical constant and g2 is defined as follows
472 In(K/5)? . V2T
T 412

9° = ||Z]2desr +
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Let E denote the following event

—{Z Ve,d,) < 4D;+\/VtIn(K/s) + 8U' Dy In(K/s) V't € [T)]

Z IV:l> < Cug?T vt e [T}

s=1

We define the constant A as follows:

A= |IZ2Vder + D1/ 2]z = 2Tz (VTH(E) + LDy

We now set the clipping level I' = ,/ ln(K 75y For this choice of I', we now obtain the following
bound on B:

b < IZIvde  2LD1/E]: | SLADY | 2)Slader LDy
- I I 12 12
Aln(K/5) | 20Dy In(%/s)
- T AT

(IIZ]l2dess + L* DY) = B’ (25)
Similarly, we bound the value of V" as follows:

16L4D* In(/5) | AL2D?||%|yd In(¥/s)

V< |22+ T AT =V (26)
Equipped with the above inequality, we then bound the value of g as:
oT'In(K/s) VT
3|2de
15 ]|2desr + 77 tar
V/In(X/s
< VI )2de + 21/ AIn(K/s) + n(t/s)
A
< /TSTodar + 2v/ATa(5) + El2VIn(/5) | 8LTD" In (/)% 2L2D?||S||ader In(*/5)"*
- 2WVA A*2T AT
8LAD*In(K/5)*?  2L2D?||S||odesr In(K/5)*/>
< VIZlloder +3v A (K)s) + ——mm—=— + WRT =g @

We prove the following lemma to control the growth of the iterates D;.

Lemma 13 (Iterate Bound). Let n < cmin{l/2r, D1/, D1/¢'/T} where ¢ = Then,

conditioned on the event E, Dy < 2Dy Vit € [T).

1
V8C+330°

Equipped with the above lemmas, we now present a proof of the following theorem, which is a formal
restatement of Theorem 3]

Theorem 7 (Smooth Convex Objectives). Let|Convexity||L-smoothness|and|Bdd. 2" Moment|be
satisfied. Then, for any 6 € (0,%/2) and T > In(In(d)), there exists an n € (0,1/2L] such that
the average iterate of Algorithm[I| run for T iterations with step-size 1, = 1 and clipping level

- \/T [l (/T (2)+LD1)

T (T3] satisfies the following with probability at least 1 — § :

Tr(D) + ||2||2( Tr(E)+LD1)1n(1n(T)/6) LD?
T + T

L LDRIn(nMfs) [TH(%) + L2D} | 12Dj In(In(T)/5)¥? [Tr(Z) +L2Dq i
T [1Z]]2 T 1Z]2

F(xr) - F(x*) S D1
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D.1 Proof of Theorem[7]

We condition on the event F and let p = 3 min{i, é’,aﬂ, g,[\)/lf} where ¢ = \/ﬁ. Note that

this choice of 1) satisfies the requirements of Lemma[T0|and Lemma([T3] By Lemma([I0] the following
holds:

T
F(xr) - F(x* §2777T+TZ by, x; — ?Z Vi, Xp — X +*Z||b||2+*ZHVH2

By Lemmal[13] 1 {E;} = 1Vt € [T]. Hence, the followmg holds.

T
F(xy) — F(x") < M+T2<bt,dt> Z Vi, dy) + antnz 25 P
t=1

D2 Vin(K/s)  8D1T'In(K/s)
< —
< 277T +2BD; + 2nB? + 2nChg® + 4D, T + T
In(K Aln(K
§—1+37)BQT+27)CM92+4D1 w+8pl M
nT T T

Where the second inequality uses Lemma(IT]and the definition of the event E and the third inequality
uses ab < a? +b”/4. For the rest of the proof, we shall use C' to denote an absolute numerical constant
whose value can differ at every step. By our choice of the step-size

D? CLD2 CD1g
< +CD1B' +
WT ST ' VT
3nB*T < CD,B’
CD:¢'
20Carg® < ﬁg

Hence, conditioned on the event F, the following holds:

2 "n(K In(k¥
L +CD13’+CD19’\/T+CD”/V%W+CDM/W

Substituting the values of ¢’, B and V', we obtain the following:

F(xr) - F(x") <

2 K 2 1n(K 2712
F(kr) — F(x*) < C’LD1 LoD, Aln; /5) n CLDy ln( /5) ' {Tr(E)ZL Dl]
C’LD2 In K/5 Tr(%) + L2D? CL2D3 In K/5)3/2 Tr(X) + LQDf
+
T3/2 A3/

Substituting the value of A, we conclude that the followmg inequality holds almost surely conditioned
on the event F/

TH(E) + ||z||2( Tr(Z)+LD1)1n(1n(T)/5)+ LD?

Flxr) - F(x*) S Dy - -

n LD?In(In(T)/s) [Tr(X) + L2D? = L2D3In(In(T)/5)*? [Tr(Z) + Lsz} /e
T 1512 T/ 1%
The prooof is completed by observing that P(E) > 1 — 6 by Lemmawhich implies that the above
inequality also holds with probability at least 1 — §

D.2 Proof of Lemma/[I0]

Proof. Since Il¢ is a contractive operator
Diy = |Ixee1 —x*||* < DF = 20 (VF(x;) — by — v, x, — X°) + 0?[[VE(x;) — by — vi|
< D? =2 (VF(x4),xs — X*) 4+ 21 (b, x; — x*) + 21 (v, x; — X*)
+ 27| VE (x0) | + 4% [[ve|l* + 4% || be |
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By the coercivity property,
=20 (VF(x¢),x; = x") < =2n[F(x;) = F(x")] = %HVF(Xt)H2
Substituting this into the recurrence for D, ;, we obtain the following:

Dt2+1 < D2 —2n[F(x¢) — F(x")] 4 20 (ve, x¢ — ") + 21 (bg, x¢ — X7)

+ (20 = YL VE(x)|* + 4n? || ve|* + 4n? [ by |*

< D = 29[F(x;) = F(x")] + 20 (ve, x; = x") + 20 (by, X — x") + 40?||ve||* + dn? [ by ||*
where the last inequality uses the fact that 77 < 1/21, Rearranging and taking averages on both sides

T P 1 1 X o & o &
Y F(xy) - F(x*) < F =D bexe =X+ =Y (vexe —x)+ ) beP+ D [vell?
= 277T T t=1 T t=1 T t=1 T t=1

Using the above inequality and the convexity of F’, we conclude that

T
F(xr) — F(x*) = F (; th> — F(x

T
1 *
STZF(Xt)—F(X)
t=1
D? 1 & 1 < 2 — , 20— )
<SR H Y (bux =X+ 5> (viex —x )+ 5 [P+ 5D vl
277T TtIl Tt:1 T t=1 T t=1

O

D.3 Proof of Lemma (11l

Note that by definition of F;
IVE(x)[|[1{E:} < LD:1{E;} <2LD,

We recall that b, = E[g;|F;_1] — E[clipp(g:)| F¢—1]. Since Cov[g;|F;_1] < ¥ by Assumption[Bdd]
we obtain the following bound on ||b,|| by an application of Lemma

IIEIIQ\/ e [IVEk II\/I\Elz IVEG)I® | [Ell2detl|VF (x0)l|

||bt|| < FQ F2

Since b; = b,1 {E,}, it follows that

by < ||Z||2\/deff | VF(x;) ﬂ{Et}II\/IIEb |VE(x)|°1{E} n 2] 2dess ||V F'(x0) || 1 { £ }
= r r2 r2
3N3
. 12112 v/dete . 2LDM/||2H2 | 8D . 2|3 |2def LDy

T I 12 12
D.4 Proof of Lemma (12|

For any s € [T'], we recall that vy = E [clipp(gs)|Fs—1] — clipp(gs). Since E[gq|Fs—1] = VF(x,)
and Cov[g,|Fs—1] < X, we obtain the following from Lemma

. VF(x)|[* VF(x)|?Tr(Z

I [vv? 1o 1]z = [ Cov [elipe ()1, 1] < 5 + ey IV e )

Tr (E [vov{ [ Fs1]) = Tr(Cov [clipp(gs) [ Fs—1]) < Tr(E)

For s € [1: T define E[v,vT|F,_1] = X,. Since 1 {E,} is F,_;-measurable and v, = v,1 {E,},
it follows that ¥, = E [VSVST\]-"S_l] 1{FE,}. Hence, we conclude the following from the above
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inequality

IVEGe)I*L {Es} | IVE(x)[PTr(2)1 { B}

1Z6ll2 < [IS]|2 + T2 2
16LAD%  4L2D2Tr(%)
<IBle+ —m—+——F— =V
Tr(Z) < Tr(%) (28)

For s € [T, define hs = (V,,d,). We note that
[hs| < [[s]] - [lds|| < 4Dy
E [hsu—s—l] = <E[‘7s|fs—1]vd8> =0
B [121F,_1] = dE[7,97]d"
=d’y.d,
< |lds|P|1Z]| < 4DV

Hence, by Freedman’s inequality (Lemma[3), we conclude that the following holds with probability
atleast 1 — 9/2:

> (e, di) < 4D1/ViIn(K/s) + 8T Dy In(K/s) V't € [T

s=1

We now apply Corollary E] with ps =V, g = Tr(X) and 7 = 2T to conclude that the following
holds with probability at least 1 — 4/2 uniformly for every ¢ € [T

t
CutUP(H)V?2
N 19417 < 4CuT2 In(K/5)? + CrrUP()Tr(S) + %
s=1
2 2 CMT2V2
<ACyT  In(K/s)* + CyTTr(X) + TR
AT2 In(K/s5)2 V2T
< CuT <|Z||2defr + 1(1 /%) + e > =Cug*T

where

9% = ||22desr +

412 In(K/5)? . V2T
T 412
The proof is concluded by a union bound

D.5 Proof of Lemma (13|

We prove the claim via induction. Clearly, the claim is true for ¢ = 1. Now, suppose the claim holds
for every s < t for some ¢ € [T]. Since Il is a contractive operator

Dy = |xesr —x*|[? < DE = 20 (VF(x¢) — by — Vi, x¢ —X°) + 0% VF(x) — by — ve|

< D? — 2 (VF(x), %, — X*) 4 21 (b, x; — X*) + 21 (v, x; — X*)

+ 207 | VE(xo)[| + 4% [[v]|* + 4n* || be ||
By the coercivity property,

~2 (VF(x0). %0 = x7) < ~2[F(x) = F(x)] = F[VE(x)]
Substituting this into the recurrence for D7, ;, we obtain the following:
Dt2+1 < Dt2 —2n[F(x¢) — F(x*)] + 20 (ve, x¢ — Xx7) + 21 (bg, x¢ — X7)
+ (20 = Y1) [VE ()| + 40?||[ve|* + 4n* [ by *
< D} 420 (ve,xg = X7) + 20 (by, ¢ — x7) + 4% ve||? + 4| |2
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where we use the fact that n < 1/21. Now, by the Cauchy Schwarz inequality and the fact that
ab < a? + b*/4 we obtain the following:

1 (by,x; —x*) < JrnQTH'OtII2

2T
It follows that

Dtg+1 <1 + QT) D2 + 5772T||b75||2 + 4n? ||vt||2 —2n (v, xt — x*)

Unrolling the above recursion for ¢ steps and using the fact that (1 + 1/27)T < 2, we obtain the
following:

1 t—s .
D?, < <1+ ) D2+Z<1+> (52T ||byl[? + 47 |[vs | + 21 (vs, x5 — X))

< 2D% + Z 109*T|[bg |2 + 877 [[ve||* — 4n (vs, x5 — x*)

s=1
By the induction hypothesis, 1 { E;} = 1 Vs € [¢]. Hence,

t t t
Diy <2DF +100°T Y |Iby[* +80° Y |9ll* —dn)_ (v.,d

s=1 s=1 s=1

< 2D2 + 102T2 B? + 8Cyn2g*T + 160D, {\/Vt n(K/s) + 2T 1n(K/5)]

2
< 3D? + 10p2T2 B? + 8C 12 g*T + 64 (\/Vt In(K/s) + 20 ln(K/6)>
< 3D} +10n°T?B? + 8Cym?¢*T + 1280° VT In(K/s) + 102412 In(K/s)?
where the second 1nequahty follows from the Lemma|TT|and the fact that we have conditioned on E.
Note that by definition of g and the AM-GM inequality
22

G*T > 4T% In(K/5)% + > max{4T% In(X/s5)?, 2V T In(X/s)}

It follows that
D}, | <3D7 +10n*T?B? 4 8(C + 40)n°g*T
< 3D37 +10¢>DF + ¢*(8C)y + 320) D}
< 4D?

where the second inequality uses the definition of 7 and the fact that B’ and ¢’ upper bound B
and G respectively by equations (23] and and the last inequality sets ¢ = \/% Hence,

i 8Cn +330
Dy < 2D; which proves the claim by induction.

E Analysis for Lipschitz Convex Functions

Let degr = M) Since X is positive semidefinite, 1 < der < d. Moreover, let clipp(g:) =

[BIB
OF(x¢) + by + v, where b, = E[clipp(g:)|Fi] — OF (x;) represents the bias due to clipping and
E[v¢|F:] = 0. Let D; = ||x; — x*|| where x* is the minimizer of F' considered in the statement

of Theorem 3] Using the smoothness and convexity properties of F', we first prove the following
intermediate average iterate guarantee:

Lemma 14 (Intermediate Average Iterate Guarantee). The following holds for any n > 0

s * 1 *
F(xr)— F(x") _%—T—Tz by, x; — fZ<Vt’xt_X>
t=1

2n 2n
+nG* + T Z [be]|* + T Z [[vell®
t=1 t=1
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Define the events E; and the random vectors d as follows for ¢ € [T
E; = {D; <2D\}
d; = (x; —x")1{E:}
We use the following lemma to control the bias
Lemma 15 (Bias Control). Foreveryt € [T, || < B where B is defined as follows:

1212 v/ dess n GVl n G? n [X]|2der G
r r I2 T2

B =

We use the following lemma to control the varince
Lemma 16 (Variance Control). Let V' > 0 be defined as follows:
G G?||3||2des
=22+ = T + Te
Then the following holds with probability at least 1 — & uniformly for every t € [T

zt: (vs,ds) <4D;+/VitIn(£/s) 4+ 8Dy In(%/s)

t
S IIvll? < Cug®T
s=1

where C\yy is a numerical constant and g is defined as follows
412 In(K/5)? 4 V2T
T 412

9% = ||Z]|2desr +

Let E denote the following event

E={Y(vid,) <4D1/Vtln(K/s) + 8TD; In(K/5) V't € [T]

t
oIVl < Cug®T vt € [T]}

s=1
Note that by Lemmal[l6] P(E) > 1 — 6. We define the constant A as follows:

A= [ZeVder + GV = VIE: (V) + 6)

We now set the clipping level I' =  / hlf‘%. For this choice of I', we now simplify the expression

for B as follows:

Aln(K/s) N G (||%]2desr + G?) In(K/s)

B = T AT (29)
Similarly, the expression for V' can be simplified as follows
G?In(K/s
V=|Zl2+ A(T /%) (IZlloder + G*) (30)
Using the above inequality, we derive the following upper bound for g:
2T In(K/s) VT
3|2d
12| 2desr + T + 5T
V/In(X/s
— VTSTadr + 2/ AT + )
[|12]|24/In(X/s) G2 In(K/s)> 9
— K
= VIt +2v/AI(a) + =28 ornp— (Blader + G%)
G?In(K/s)*?
< VI[Zl2def + 31/ Aln(K/s) + T hT ([IZ]l2dess + G?) = ¢’ 3D

We also prove the following uniform upper bound on the iterates x;
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Lemma 17 (Iterate Bound). Let 7 < cmin{D1/BT, D1/¢' VT, D1/GVT} where c = Then,

conditioned on the event E, Dy < 2Dy Vit € [T).

1
V8Ch+334"

Equipped with the above lemmas, we now prove the following theorem which is a formal restatement
of Theorem H]

Theorem 8 (Lipschitz Convex Objectives). Let Assumptions|[Convexity] [G-Lipschitzness|and[Bdd)
be satisfied. Then, for any § € (0,1/2) and T > In(In(d)), there exists ann € (0, G/VT]
such that the average iterate of Algorithm[I|run for T iterations with step-size 1, = 1 and clipping

level T' = \/ r “ﬂ?&(;;g )+C) satisfies the following with probability at least 1 — §

1G Tr(X) + V122 ( Tr(X) + G) In(K/s)
+ D1
VT T

L DiGIn(<)s) [Tr(%) +G* | DiG? In(1/5)> (Tr(E) +G2)1/4
T 1212 Te> =3

Fxr) - F(x") S

E.1 Proof of Lemma|[14]

Proof. Since Il¢ is a contractive operator

Dy = [[xer1 — X2 < DF = 20 (OF (x;) + by + Ve, x¢ — X°) + 7P| VE(x¢) + by + V4|
< Dt2 =20 (OF (x¢), x¢ —x*) — 2 (b, x¢ — X*) — 20 (v, x¢ — X7)
+ 202 OF (x0) |17 4 407 || v || + 41 || be |
< D? = 2[F(x;) — F(x%)] — 21 (by, x¢ — X*) — 20 (v, x¢ — X*) 4+ 202G? + 402 || by ||* 4 402 || v¢||?

where the second inequality follows from the definition of the subgradient and the G lipschitzness of
F'. Rearranging and taking averages on both sides

T

T
1
ZF(xt)fF(x* _27777?2 by, x; — th:ZI<vt,xt7x*)
2n 2
+nG* + T Z [be[|* + T Z [[vell®
t=1 t=1

Using the above inequality and the convexity of F', we conclude that

F(xr) — (%i )

1

IN
N

T

> F(xi) — F(x¥)

t=1

D2 T 1 T

1 TZ by, x¢ — x*) Z Vi, Xt — X))
t=1 t:l

T
2n
+1G* + lebtll“r?ZIIthl2
=1 t=1

| /\

https://doi.org/10.52202/079017-0282 8881



E.2 Proof of Lemma([13

We recall that b, = E[g;|F;_1] — E[clipr(g¢)|Fi—1]—. Since Cov|g:|F;—1] < X by Assumption
[Bdd. 2"¥ Moment} we obtain the following bound on ||b;|| by an application of Lemmal4]

by < HEHz\/defF |OF (x;) || Hle [OF (x,)|? N (| |2 defe || OF () |
Hh= r 2 2
< [|32]|2 v/ desr N Gx/IIE\z +7+ |Z]|2der G

r r 2 2
E.3 Proof of Lemma (16
For any s € [T, we recall that vy = E [clipp(gs)|Fs—1] — clipp(gs). Since E[gy|Fs—1] = OF(xs)
and Cov[g,|Fs—1] < X, we obtain the following from Lemma
I [v.v 1]l = [Cov elpg (ge)| Fucs] | < 5 + LZECIE JOFCeo) )
GY  G*Tr(Y)
A v
Tr (E [vsvI|Fs—1]) = Tr(Cov [clipp(gs)| Fs]) < Tr(%)
For s € [T, define hs = (v, d). We note that
[hs| <[] - [lds|| < 4Dy
E[hs|Fs—1] = (E[vs|Fs-1],ds) =0
E [hf|For] = dJE[v.v{]d.
=d’y.d,
< [ld|*15s]| < 4DV

Hence, by Freedman’s inequality (Lemma [3), we conclude that the following holds with probability
at least 1 — 9/2:

<%l + =z

t

> (i,di) < 4D1/ViIn(K/s) + 8T Dy In(¥/s) V't € [T]

s=1

We now apply Corollary |§| with ps = V, g5 = Tr(X) and 7 = 2T to conclude that the following
holds with probability at least 1 — 9/2 uniformly for every ¢ € [T]
CartUP(t)V?

412
CyT?V?

412

412 In(K/5)? V2T 9

T T ) =Cug’T

t
> IVl < 4CuT? In(K/s)® + CrUP () TH(S) +

s=1

< ACHT? In(K/5)? + CyTTr(E) +

chTsz¢ﬁ+

where
412 ln( K/ 6)

9% = ||22desr +

The proof is concluded by a union bound

4F2

E.4 Proof of Lemma 17
We prove the claim via induction. Clearly, the claim is true for £ = 1. Now, suppose the claim holds
for every s < t for some ¢ € [T]. Since Il is a contractive operator
Dy = |xes1 —x*|* < Df = 20 (OF (x¢) + by + Vi, %0 — X°) + 0% VF (%) + by + ve|
< D? -2 (0F (x;), %y — x*) — 21 (by, x; — X*) — 2 (v, x; — X*)
+ 202 OF (x0)|I* + 4n? || ve|* + 4n? [ by *
< D} = 2[F (%) = F(x")] = 21 (bg, x¢ = X") = 20 (ve, X¢ = X7) + 2°G* + 40? [ be||* + 4n* || v ||*
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where the second inequality follows from the definition of the subgradient and the G lipschitzness of
F. Now, by the Cauchy Schwarz inequality and the fact that ab < a? + b”/4 we obtain the following:

* D2
=21 (bs,x; —x*) < ﬁ + 77T ||y ||?
It follows that

D}, < (1 + ) D? 4 50T ||by||* + 202G? + 40 ||v¢|* — 20 (vs, x; — X¥)

Unrolling the above recursion for ¢ steps and using the fact that (1 + /27)”7 < 2, we obtain the
following:

1 t—s .
D2, < (1 + ) D%+ Z (1 + ) (57°T|[bs||? + 27 G2 + 4n? || v4||? — 21 (ve, x5 — X))

< 2D? + 4°G*T + Z 107°T by |2 + 872 ||vsl|? — 47 (ve, x5 — x¥)
s=1

By the induction hypothesis, 1 {Es} = 1 Vs € [t]. Hence,

t t t
D,y <2D7 + 4°GPT +10°T Y |[bul* + 87 > [Ivall® =40 (ve,dy)

s=1 s=1 s=1

< 2D? 4 42G2T + +10°T2 B? + 8C 12 g*T + 160D, {\/Vt In(K/s) + 2T ln(K/é)}
2

< 3D% + 42G2T + +1002T2B2 + 8Carn2g*T + 6417 (\/Vt In(K/s) + 20 ln(K/é))

< 3D} +4n*G*T + +100*T? B? + 8Cyn* g T + 1280V T In(K/s) + 102472 In(K/s5)*

where the second 1nequahty follows from the Lemma [T5]and the fact that we have conditioned on E.
Note that by definition of g? and the AM-GM inequality

22

¢>T > AT? In(K/s)% + > max{4* In(K/5)*, 2V T In(%/5)}

It follows that

D2

71 < 3D% + 4n*G*T + 100°T?B* + 8(Cs + 40)n°g°T

< 3D} + 4c2D? 4 102 D3 + ¢*(8C + 320) D}
< 4D?

where the second inequality uses the definition of 7 and the fact that ¢’ upper bounds g, and the last
inequality sets ¢ = \/ﬁ. Hence, D;,; < 2D; which proves the claim by induction.

F Improved Martingale Concentration via PAC Bayes Theory

We have the following re-statement of Theorem 5| for the sake of readability.

Theorem 9. Suppose M, fort = 0,. .., T is an R? valued martingale such that My = 0 almost surely,
the martingale difference sequence vy := My — My_1 is such that | v¢|| < T and E[v,v] | F_1] = 24
almost surely for everyt = 1,...,T for some I" > 0. Assume that there are deterministic sequences
P1y...,prand qu, ..., qr such that Tr(X;) < q; and ||Z¢|| < p; almost surely.

Let G := th 19t and p —Tzf 1 bt Then, for any 6 € (0, )

P(sup || My|| > g(T,5)V'T) < 6
t<T

Where g(T,0) = C |/q + %% VT \/» log(%)} and K = log @(log((@ + 1) log(d +1)))
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Define the event A;(g) := {||M;|| < gv/T} and B;(g) := N’_,A,. Consider the quantity N; :=
1M = Sy 1Vl

Theorem 10. Let § € (0, 1) and g = g(T, $) be as defined in Theorem|9| Under the conditions of
Theorem[9) the following mequalzty holds for some large enough universal constant C.

P ({sup | N¢| > I‘Cg\/Tlog(%) + %Ts“} N BT(g)) <4
t<T

The next corollary is a simple consequence of the Theorems [9]and [T0]

Corollary 6. Let 6 € (0, ) and g = g(T ) be as specified in Theorem|§| Under the conditions of
Theorem[9) thefollowmg znequallty holds wzth probability at-least 1 — 0:

T
> lvil? < Co*T

t=1

F.1 Proof of Theorem[9]

The aim of this section is to prove the sharp concentration result given in Theorem[9} We now consider
the concentration of norms of the martingale ||AZ;]|. Define the event A, := {||M;| < gv'T'} and
B; = N%_, As. Let H be any stopping time for the martingale M;. We have the following inequality
which follows from PAC-Bayes theory (see Equation 5.2.1, Page 159 in [7]).

Theorem 11. Suppose 7 be any measure over R? and let M (R?) denote the space of all probability
measures over R%. Let v > 0 be arbitrary. Then conditioned on B, with probability at-least 1 — 6,
the following inequality holds:

X Mpin(u,1),0))1(B
sup  Epepy (M7, 0) — KL (p]|m) < log (EMEMQ 20 Moty 0 1 T’) (32)
pEM (R)

We will now bound the exponential moment: Ep;Eg... exp(y (M, 0)) whenever 7 = A (0,1).

Theorem 12. Let h(t) := Y'_, log (1 + 'Y;qt exp(72T?) + v4pg®T exp(272I‘g\/T)>. Then,

Egr exp(y{(Mz, 0) — h(t))1(B;)

is a supermartingale with respect to the filtration F;

Proof. Let Xy := E[vyv{|F;_1] and v; := ||%]|. First, consider Eg.. exp(y (M;,0)). By the
properties of the Gaussians, we must have almost surely:

g exp(y (My, 0))1(By) = exp( L) 1(B,) (33)

Using the fact that || M;||? = ||v¢]|? + 2(v¢, My_1) + || M;—_1]|?, we have:

E {exp(wﬂgtn?)ﬂ(lgt)

ftl} = E |oxp(hg=E 4 P 52 (v, M,)) (B,

=E [exp(7 lve? + % (v, My_1))1(Ap)

fH] exp(LIMe—1 By (B, ) (34)
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We will now bound the quantity: E {exp('y [ V2 (v, My_1))1(Ap) ]-'t_l]. Using the convex-

ity of © — exp(z), we conclude:

V¢ 2
E{exp(’y ”2 | + 9% (ve, My—1))1(Ay)

]

<E [1 exp P Vi) A + 5 exp(23? (v My-1) 1A 7

2

[ + 72 Tr () exp(y QFQ)] +E [; exp(2y? (v, My 1)) 1(Ay) | Fie ] (35)

In the second step, we have used the fact that exp (72 ||v¢||?)1(A;) < 1+72]|v¢]|? exp(72T2) almost
surely using the power series expansion of the exp() function. Using the power series expansion of
exp(z), we have:

E [expw (Vi My-1)1(A) f} <E [expw <vt,Mt_1>>\ft_1}

2k 2k
k!

=1+ 2’)/2E[<Vt, Mt—1>|ft71] + Z E[(<Vt7 Mt*1>)k|}—t*1]

k>2

(e, My_1))*TF 2| My ||F 2 | Fi—1]

k>2
k,ka
<1+Z i (My_1, S My_1) TF 2| My_q||F2
k>2
2ky2k s k 4 2 2
<14y T DI | <1 29 | M| exp(29* | M 1) (36)
k>2

Here, v, = ||X||op In the second step we have used the fact that E[v,|F;_1] = 0 and the fact that
(v, My_1) < T'||M;_1]|| almost surely. Plugging Equation (36)) into Equation (33), we conclude:

PIvel? | o
E | exp( 9 + 97 (v, My—1))1(Ag) | Fit
2
< 14+ S Tr(2) exp(y°0?) + 7 w4l My | exp(2°D| M ) (37)

Using Equation and that under the event 3,_; we must have ||M;_1| < gv/T, we conclude:

E [exp(’vzlgﬁlz )1(B,)

]:t—lj|

2 2 2
< (1 + lqt exp(Y’T?) + y*p,g*T exp(2’yﬁ“gﬁ)> exp(%)ﬂ(lgtq)

2
=exp(h(t) — h(t — 1)) exp <72|]\/[t2_1”2> 1(B:—1) (38)
Therefore, by induction, we conclude the statement of the theorem.
O
Theorem 13. For any stopping time H,
EnEgmr exp(y (Myinca, 1), 0))1(Br) < exp(h(T)) (39
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Where h(T) = Zthl log (1 + % exp(y2I'?) + ’y4ptg2Texp(2'y2Fg\/T))

Proof. From Theorem[T2]and the optional stopping theorem, we conclude that the following quantity
is a super-martingale:

Mtexp = Egrexp(y <Mmin(H,t)a ‘9> — h(min(H, t)))]l(Bmin(H,t))

Therefore, we have:

Egr exp(y <Mmin(H’T), 9> — h(T))1(Br) < M7® <EMG® =1
O

Combining Theorem [T3]and Equation (32)), we conclude that the following inequality holds with
probability at-least 1 — 0 when conditioned on Br:

sup oy (Munin(r,m), 0) — KL (pl|7) < h(T) + log(5505:7)
pEM (RY)

In the RHS of the inequality above, we replace the supremum over M with the supremum over
the set of all probability distributions {N'(a,I) such that¢ € S4° 1 a > 0}. We note that

KL (N (&, TI)||7) = %2 to conclude that the following inequality holds with probability at-least 1 —§
when conditioned on B :

2
o 1

Slipo'yaHMmin(H,T)H - < WT) + 105(@)

That is:

2h(T) + 2log(ﬁ)
| Min(a,1) |l < \/ 7 (Bo)

Now, note that by definition,

nMT) 1 = 08 272 4 2 2
= t;log L+ e exp(y°T?) + 7' pig®T exp(29°TgV'T)
2
< %(jexp('yzfz) + v g T exp(27°TgV'T) (40)

Therefore, whenever: v < min < L L

T o\ /TgvT

), we note with probability at-least 1 — § conditioned

on the event Br:

| Moinger 1yl S \/ T +~2pg*T? +  1og (557ky )

We therefore state the following theorem:

Theorem 14. Suppose 6,01 € (0, 3). If My satisfies (g, T, 8) uniform concentration for some § < %
Then M, also satisfies (¢', T, § + 01) concentration, where

log(5-)
7T

(9")? =C |q+~"pg*T +

3

or an < min [ L .
Jor any v < (F,2 o )
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Additionally, suppose g > co% for some fixed constant cy > 0, then we have for some constant
C‘iter(CO):
(¢)? = Charlco)la + g (BT + - 1og(H))]

Proof. Since § < 1, we conclude that P(Br) > 1. Given that M, satisfies (g, T’ d) uniform

concentration. We conclude from the discussion above that for some universal constant C' and any

< min [ & L , we have:
v= (F’ o\/TovT

SUp B(| Masa(s. 1) ” > CITa+9°p9°T* + S log ()] Br) < 61

Picking H to be the stopping time given by H = inf{t > 0 : |[M||*? > C[Tq + +*pg*T? +

log ( )]} where C is the same constant as in the equation above, we conclude:
P(sup | My 2 > O[T ++*pg*T* + 3 log (£ )1|Br) < o1
t<T

Only in this proof, call the event G := {sup,< [|M;||* > C[Tq + +*pg*T* + % log (%)]} We
have:

P(G) = P(G N Br) + P(GNBL) < P(G|Br) + P(B%) < 61+

ci(co)

IgvT

Whenever g > ¢y %, we can pick A = and conclude the result.

We now state consider Lemma 11 from [2]].
Lemma 18. Suppose o, 3 < 0 with o + 3 > 0. Consider the function f : Rt — R™ given by

2
f(u) = a+ Bv/u. Then, f has the unique fixed point: u* := <ﬁ+ ”§2+4a> . Fort € N, denoting

) to be the t fold composition of f with itself, we have for any u € Rt :

1 1
7O w) =] < BT = w2
We are now ready to prove the main theorem 9]
Proof of Theorem[9} 1t is sufficient to show that there exists K = log ©(log(I'T'dlog(%)))) such
that M; obeys (g, T, ) uniform concentration where g = C max(—= T d+ p\f + \Ff log(%))

Let K € N be any fixed integer. By Theorem (6| we conclude that the martingale M, is (go( ), T, <)
uniformly concentrated. Fix some ¢ > 0 and Citer(co) be as in Theorem [14]

%\N

)-

If g9 < co%, then the statement of the theorem follows. Suppose there exists K1 < K — 1

such that gi, < ‘jﬁ and suppose that it is the first such integer. If K; = 0, the statement of the

Define the sequence g; := \/Citer(0)q + 1/Citer(c0)gi—1G where G = @ + f log(

theorem follows from (go(Z), T, K) uniform concentration of M;. Suppose 1 < K; < K — 1.

Then, min(go, - .., 9Kx,-1) > Coﬁ~ Then, by Theorem the fact that /o +y < z + /y
(i41)8
K

and induction, we conclude that M, obeys (g;, T, ) for every ¢ < K. Thus we conclude the

statement of the theorem.
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Suppose such a K7 does not exist. Then, min(go, ...,gx—1) > co%. Then, by Theorem the

fact that /= +y < \/x 4 \/y and induction, we conclude that M, obeys (g;, T, “}1)6) for every
1 < K — 1. Therefore, it obeys (gx, T, §) uniform concentration.

Consider the function f in Lemma |18| with o = /Citer(co)q and 8 = /Citer(co)G and let the
corresponding fixed point be denoted by g*. It is easy to show that the fixed point g* < /g + G.

After K iterations, we must have:

_1 w11l . 1 o
9K < g" + (Cirer(c0)G ™28 ) gy — g7[2F < g* + (G' 73K )|go|2F

We can show that picking K = log ©(log((1 + @) log d)), and the bound on T, we conclude the
result. O

F.2 Proof of Theorem [10]

Proof of Theorem[I0} Recall that X; := E[vyv]|F_1], vp = ||| and N, = || M)* —
ZZ=1 |ve]|?. Note that v < p; and Tr(X;) < p; almost surely.
Lety € R. Define hy(t) := >\ _, log (1 +4v%psg*T exp(2|'y|Fg\/T)) with empty sum denoting

0. We first show that N;® = exp(yN; — hn(t))1(Br) is a super martingale with respect to the
filtration F; for 0 < ¢ < T ForT >t > 1, we have:

Elexp(vNy)1(Bt)|Fi—1] = exp(yNi—1)1(Bi—1)Elexp(2y(ve, Me—1))1(B;) | Fi-1]

=1
< eXP(’YNt—l)]l(Bt—l)E[Z ng’YkWta My—1)*1(By-1)|Fi1]
= exp(YNi—1)L(Bi—1)E[1(Bs—1 +Z*2k (v, My—1)F1(By 1) | Fi 1]

< exp(YNe-1)1(B—1)E[L + Z g2klvl’“<w7 My 1)? T2 [ My |*721(Be 1) | Fi 1]
k=2

P(YNe 1) LB 1)E[1 + 442 (v, My_1)? exp(2|T| My 1 ) 1(Br_1)|Fo 1]
exp(YN1—1) L(Bi—1)E[L + 420 | My | exp(2A|T | My ) L(By—1) | Fii]
( )
) -

IN N

IN

P(YNe—1)1(Bi—1 (1+4’y Vtngexp(2|*y|Fg\f)>
hn(t—1))1(Bi-1) (41)

exp

= exp(YN¢—1 + hn(t

This shows that N;™® is a super-martingale. Using the fact that N7® = 1 almost surely, the optional
stopping theorem and the Chernoff bound, we conclude that for any stopping time H, we have for
any o,y > 0

P({ Nuin(r, 1) > o} N Br) < Elexp(YNuin(r, 7y — 7)) 1(Br)]
< Elexp(YNmin(r,m#) — Y) L(Bumin(r, 7))
< E[NEEZ(T,H)] eXp(hN(T) - ’VO‘)
< exp(hn(T) — ya) (42)
Taking v = \F allows us to conclude:
: 1)
P({ Nuin(r,m) > DCgVT log(2) + %W} NBr) < B

Let o« = I'CgVTlog(2) + % and take H to be the stopping time min(inf;{¢t > 0 : N; >
a},T) where infimum of an empty set is taken to be infinity. We note that {sup,<, N; > a} =
{Nmin(r, ) > a}. We thus conclude:
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P({sup N; > 'Cgv/T log(2) + C"gfw} NBr) <
¢t<T

N

Taking -y negative gives the analogous proof for N; < —a.

FE.3 Proof of Corollary 5|

Proof. Consider the set S = {UP(t) : 0 <t < T}. The, |S| < logy(T) + 1. By Corollary [6] we

have for any ¢y € S, the following is true with probability 1 — TFlog,(T)

to 5
1 < tog?(ty, ——2

Therefore, by union bound of the above event over every to € S, we have with probability 1 — ¢:

to
1)
2 2
su vi|? < tog?(tg, —————) <0
me%z” I” < tog™ (o, 530, @)y

s=1

Now, note that 3°_, [[vs[2 < S2UP1 ||v,||2 almost surely for every ¢ € [T] since t < UP(t).
Therefore, we conclude that with probability at-least 1 — 4, the following holds for all ¢ € [T]

simultaneously:
¢
2 o 2 5
> vl < g7 (UP(0). sy ) UP)
s=1
Using the definition of g(, ) from Theorem[9} we conclude the result. O

G Applications to Streaming Heavy Tailed Statistical Estimation

G.1 Streaming Heavy Tailed Mean Estimation : Proof of Corollary 1|

Proof. Recall that for this problem, = = C, Ec.p[¢] = m € C and Cov[{] < X. Consider the
following quadratic loss function f : C — R:
fx6) =3lx—¢1?  &~P

The associated population risk function F' is given by
1 1
F(x) = 5 Bewp [Jx— €JP] = F(x) = 5 lIx — m] + Tr(Cove-.p[¢]

Note that F' is L-smooth and p-strongly convex with . = y = 1. Thus, x = 1. Furthermore, m
is the unique minimizer of F'. Hence, solving the streaming heavy tailed mean estimation problem
is equivalent to solving the [SCO]problem for F. To this end, we consider the following stochastic
gradient oracle:

9(x§) =x—¢

It is easy to see that Ey [g(x;£)] = VF(x), i.e., the stochastic gradient estimate is unbiased. The
associated stochastic gradient noise n(x; £) is given by

n(x;§) =VF(x)-Vfy(x)=y—-m
‘We now note that
2(x) = En(x; On(x;£)"] = E[(y — m)(y —m)"] = Tr(Cove~p[é]) X &

Hence, we note that the [Bdd. 2"¢ Moment| assumption is satisfied. Hence, the result follows by an
application of Theorem ]| O
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G.2 Streaming Heavy Tailed Linear Regression : Proof of Corollary2|

We use 6 € C to denote the parameter of F'. Recall from Sectionthat Z =R9 x R, and given a
target parameter 6* € C, P defines the following linear model:

x~Q, Ex] =0, Exx"] =% > 0; y=(x,0") +¢ Ele|x] =0, E[*|x] < o
In addition, we make the following bounded 4" moment asumption on the covariates x
E[(x,v)!] < C4(E[(x,v)?])? Vv eR?

for some numerical constant Cy > 1. Recall that the sample loss function is given by:

(6 — 6*,x) — ¢)*

DN | =

((0,%) —y)* =

N | =

f(0:x,y) =
Using the fact that E[e|x] = 0, E[x] = 0 and E[xx”] = £
F(6) = 36— %) Epex"](0 — 6°) + B[
_ %(9 _ 0750 — 6%) + B[]

We note that E[¢?] < o2 as per our assumption hence F is well defined. Furthermore.

VFE(0)=%(0—-0%)
V2F(0) =%
Thus, the population risk F'is L-smooth and u-strongly convex with L = ||X||2 and g = Apin(2),
)\‘LH(ZE). Furthermore, the unique minimizer of I is *. Hence, k = )\‘L”(ZE) the linear
regression task of estimating 6* is equivalent to solving for the above objective.

ie, Kk =

The associated stochastic gradient oracle g(6;x,y) at any 6 € C is given by:

9(0;x,y) = Vf(0;x,y) =x((0,x) —y) =x((0 — 0",x) —¢)

=xx7 (0 — %) — xe
We first show that g(6;x,y)) is indeed an unbiased estimate of VF'(9)
Elg(6: %, y)) = E[xx7)(0 — %) — ExE[e|x]] = (6 - 6°) = VF(0)
The associated stochastic gradient noise n(6; x,y)(#) is given by

n(0;x,y)(0) = g(6;x,y)(0) — VF(x)
= (xxT — Z) (6 —0") — xe

¥(0) = E[n(0;x,y)n(0;x,y)]. For convenience, we use M = xx7 — ¥ and dy = 6 — 6* and note
that M is symmetric. It follows that:

%(0)

E {(Mdg ~ xe) (Mdy — xe)T]
E [MdgdgM} +E [XXT -E [e2|x]] — E[xdgl\/[ -Ele|x]] — E[Mdng - Ele|x]]
=< E [Mdydj M] + o°%

where we use the fact that E[e|x] = 0, E[¢?|x] < 02 and E[xx'] = %.

We shall now upper bound ||$(6) 2. To do so, we define A (#) = E [Mdydj M| and note that A (6)
is a PSD matrix since for any v € R%, vI'A(f)v = E [(vI Mdg)?] > 0. Without loss of generality,
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we assume 0 # 0* and observe that

sup E[vIA(0)v] = sup ]E[(dg,MV>2]

Ivl=1 [Ivl=1
2
= dolf® sup Bl ey Mv) ]
< ||d9||2 g Elw. My’
v||=1,||w]||=1

= ||d9||2 » 511Hp |\ E[(WT (XXT — Z) V>2]
v||=1,||w|=1

< ||dg||? sup E {((w,x) (v, x) — WTEV)Q}
Ivi=1,]wll=1

< ||dg|I? sup 2 (WTZV)2 +2E [(w,x)2 (v,x)ﬂ
Ivl=1,llwl=1

< 2||dy|? <||z|§ sup  \/Elw, %) /E[(v, ) )

Ivil=1,|lw[=1

< 2| dy|f? (IIE@ +Cy o H:IE[<W,X>2] ~]E[<V,X>2]>

< 2||dg|? <||E|§—|—C'4 sup wXw - sup VTEV>

llwil=1 lIvil=1

< |ldo|I* - 2/BI*(Cs + 1)

where we use the fourth moment assumption on the covariates in the eighth step. Note that the above
bound also holds when 6 = 6* since in that case A(6) = 0 and dy = 0. It follows that

SO < 1A@)] +o*12]
<2(Ca+1)IIZ)?)0 - 0717 + o 2]

We shall now derive an upper bound for Tr(3(#)) as follows:

Tr(2(0)) = E[[n(6;x,y)]
=E [|[Mdy — xe|?]
= E[|[Mdg|*] — 2E[(Mdy, x) E[e|x]] + E[[|x|*E[¢*|x]]
< E[|[Mdyg]|?] + o>Tr(%)

We now control E[[|Mdy||?]. Note that E[||Mdg||?] = 0 if = §* so we shall now consider the case
when 6 # 6*. To this end, let e, . . ., €4 be an orthonormal basis of R such that e;

_ _dsg

— dell”

For the remainder of the proof, we use X, to denote >;; = eiTEej where i, j € [d], which implies that
Tr(2) = 3¢, %4 We also note that for any two symmetric matrices B, C, (B—C)? < 2B242C2,
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Hence,
E[|Mdy|*] = [|do|°E [|[Me1]
= ||d9||2]E [elT(Z — xxT)zel}
< 2||dg|IPE [e] (£ + (xx")?) €]
< 2|ldg|* (7221 +E [fer, %)’

xI2])

d
1220+ E | 1,07 3" fen) D
1=1

< 2]dy|?

< 2|[dy|f?

||ZJH2+IE (e1,x }—&-ZE e, x)” (e;,x >2]>

(

(

<||2|2+E +Z\/ [<ei=X>4D
< 2ldy <||2|2+04E e1x)?] +04Z]E[eh >2}E[<e“x>2}>

(

(

< 2|[dy|f?

=2

< 2jdgl” { 121 +C4ZE [fer %% B [<ei»x>2}>

< 2|[dy|f?

d
IZ]” + Ca(ef Ter) Z(eiTZei)>

i=1

d
< 2|[dy|f? <||2|2 + Cuef Xey) Z%)
i=1

< 2[|do | (IIS]|Tr(2) + Cal|Z[|Tr(X))
< 2(Cy+ 1)) Tr(X)]|do |
Clearly, the above bound holds even when 6 = 6*. Hence, we infer that
Tr(2(6)) < 2(Cy + D[E[2Tr(2)[10 — 071 + 0*Tr(S)
From these bounds, we can conclude the following
IZO)] < 2(Cy + 1)I[Z3]16 — 67> + o*||Z|

()
TEE) < 5,

Thus, the stochastic gradient oracle satisfies Assumption with o = 2(Cy +1)||3]13,

B = 0?||2|| and des = Tr(®)/|x||. Hence, the result follows by an application of Theorem

[2(Ca + DIZ[3N0 — 07117 + o*12]]

G.3 Heavy Tailed Streaming Logistic Regression : Proof of Corollary 3]

Recall from Sectionthat Z =R? x {0,1} and P denotes the following linear-logistic model:
x~Q, Ex] =0, Exx'] < %; y ~ Bernoulli(¢p((6,x)))
where ¢(t) = (1 + e~*)~L. The covariates x are heavy tailed, with only bounded second moments.

The sample-level loss is given by the negative log likelihood of y|x as follows:
f(0;x,y) = In(1 +exp((x,0))) —y (x,0)
The associated population loss and stochastic gradient oracle is given by
F(0) = Exy~p [In(1 4 exp((x,6))) — y (x,6)]
9(0;x,y) = o((x,0))x — yx
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We now compute the gradient and the Hessian of F'
exp((x,6)) .
T+ exp((x, 0)) "X = o((x,0%))x
=E[(¢((x,0)) — ¢({x,07))) x]
V2F(0) = E[¢/((x,0))xx"]
E[¢((x,0))(1 = ¢((x,6)))xx]
Since 0 < ¢(t) < 1 forevery t € R, we note that 0 < V2F(0) < E[xx’] < X (as E[x] = 0).

Hence, F' is convex and L smooth with L = ||X||,. Furthermore, since VF(6*) = 0 and F is convex,
we conclude that §* is a minimizer of F.

It is easy to see that E [g(0;x,y)] = E[(¢((x,0)) — ¢((x,0%))) x] = VF(0), i.e., the stochastic
gradient is unbiased. Let n(#;x, y) denote the stochastic gradient noise, i.e.,:

n(0;x,y) = g(0;x,y) — VF(0)
= o((x,0))x — E[o((x,0))x] + E[#((x,07))x] — yx

We shall now control the stochastic gradient covariance $() = E[n(6; x, y)n(6;x, y)”]. To this
end, we define a(6) and cx, (6) as follows:

ax(0) = o((x,0))x — E[¢((x,0))x]
Cxy(0) = E[p((x,07))x] — yx

We note that [E [cx ,, (6)|x] = 0 and E[ax(0)] = 0. Since nyx ,(0) = ax(0) + bx ,(6), it follows that:

VF(0) =E

%(0) == E[n(0;x,y)n(0;x,9)"] = E [ax(0)ax(0)"] + E [cxy(0)cxy (0)7]
We now control each of the terms in the RHS as follows:

E [ax(0)ax(0)"] = E[¢ )?xx"] — E[6((x,0))x] E [((x, 0))x]"

where we use the fact that ¢(¢) < 1. Similarly,

E [exy(0)exy (0)"] = Ely*xx"] — Elo((x,0"))x]E[6({x, 0"))x]"
P((x

,0%))xx"]
xx'] X%

where we use the fact that E[y?|x] = ¢((x, 0*)) < 1. It follows that

%(h) < 2%

Thus, the stochastic gradient oracle satisfies the[Bdd. 2"¢ Moment{assumption. Hence, the stochastic
gradient oracle satisfies the [Bdd. 2"® Moment|assumption. Thus, the following result, which is a
formal version of Corollary [3] is implied by Theorem 7]

Corollary 7 (Heavy Tailed Logistic Regression). Under the stochastic subgradient oracle described
above, realized using N 2 In(In(d)) i.i.d samples from P, the average iterate of Algorlthml I} when
run under the parameter settmgs of Theoremd|satisfies the following with probability at least 1 — §:

A ) TH(®) + VISl (VIFE) + 122D ) (=) 53,03
F(y) = F(67) < Dy - =
D} In(n()/s) 32 4 IZ1 DF In(n) /)2 2 o e
+ SIS Te(S) + 51203 + N (Tr(2) + IZI3D3)
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G.4 Proof of Corollary 4

Recall from Section that = = R? x R and given a target parameter * € C, P defines the
following linear model:

x~Q, E[x] =0, Exx"] < %; y = (x,0") + ¢, Median(e|x) =0

We allow both the covariate x and target y to be heavy tailed, assuming only bounded second
moments for x. We do not assume any moment bounds on €|x. The Least Absolute Deviation (LAD)
Regression problem involves estimating 6 by solving with the following sample loss

f(O:x,y) = [ (x,0) —y
The associated population risk and one possible realization of a stochastic subgradient oracle is given
by:
F(O) =E[[ (0 —07,x) — e
9(0:x,y) = sgn((0,x) —y)x

where sgn(t) = L for t # 0 and sgn(0) = 0. We note that for every (x,y) € R? x R, f(0;x,y) is
Il

a convex function in 6, and thus, the population risk F' is a convex function, whose subgradient is
given by:

OF(0) = E[sgn ({0 — 0" ,x) — €) X]
We now show that F is a Lipschitz function by bounding OF'(6) as follows:
[OFO)] = [[E [sgn ((0 — 07, %) —€)x] ||
< E{lsgn ((0 = 0%, %) — )| - [Ix]]
< VE[[Ix]?]

<VTr(X)

where the second step follows from Jensen’s inequality, the third step uses the fact that |sgn(¢)| < 1

and applies the Cauchy Schwarz inequality. Hence, F' is G-Lipschitz with G = /Tr(X). We now
show that 9F(6*) = 0 which would imply that 6* is a minimizer of F' (as F' is convex)

VF(0*) =E[sgn(e)x] = E[x - E[sgn(e)|x]] =0

where we use the fact that E[sgn(e)|x] = 0, because ¢|x is a continuous random variable with zero
median.

For the stochastic gradient oracle described above, the associated stochastic gradient noise n(6;x, y)
and its covariance Y(0) are given as follows:

n(0;%,y) = sgn({6 — 6%, %) — )x — Efsgn({6 — 6%, x) — e)x]
5(6) = E [sgn((6 — 0%, %) — %x"] — E [sgn((6 — 0%, %) — x| E [sgn((0 — 0°,x) — )]
= E [sgn({0 — 0*,x) — €)*xx"]
jE[xxT]jZ

Hence, the stochastic gradient oracle satisfies the [Bdd. 2" Moment| assumption. Thus, the following
result, which is a formal version of Corollary ] is implied by Theorem

Corollary 8 (Heavy Tailed LAD Regression).

) TH(E) + ST (E) In(m®)/5)  DyTe(S) In(mN)/s) Dy Tr(S)% In(In(N)/5)%2
F(HN)_F(Q*)SDl\/ + 3 3
N N/l N#/z|| B[

NeurlIPS Paper Checklist

1. Claims
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We provide complete mathematical proofs of the claims.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification:
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not include theoretical results.
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* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: The paper is purely theoretical.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: Paper do note include experiments requiring code.

Guidelines:
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» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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8.

10.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper is purely theoretical and we do foresee any societal impact of this
work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

¢ If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: purely theoretical work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:
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Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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