
HydraLoRA: An Asymmetric LoRA Architecture for
Efficient Fine-Tuning

Chunlin Tian†

University of Macau
yc27402@um.edu.mo

Zhan Shi†
University of Texas at Austin
zshi17@cs.utexas.edu

Zhijiang Guo
University of Cambridge
zg283@cam.ac.uk

Li Li*
University of Macau
llili@um.edu.mo

Chengzhong Xu
University of Macau
czxu@um.edu.mo

Abstract

Adapting Large Language Models (LLMs) to new tasks through fine-tuning has
been made more efficient by the introduction of Parameter-Efficient Fine-Tuning
(PEFT) techniques, such as LoRA. However, these methods often underperform
compared to full fine-tuning, particularly in scenarios involving complex datasets.
This issue becomes even more pronounced in complex domains, highlighting the
need for improved PEFT approaches that can achieve better performance. Through
a series of experiments, we have uncovered two critical insights that shed light
on the training and parameter inefficiency of LoRA. Building on these insights,
we have developed HydraLoRA, a LoRA framework with an asymmetric structure
that eliminates the need for domain expertise. Our experiments demonstrate that
HydraLoRA outperforms other PEFT approaches, even those that rely on domain
knowledge during the training and inference phases. Code is available.

1 Introduction

Large Language Models (LLMs; [10, 3, 36, 47, 48, 32, 33]) are notably powerful, yet their training
involves substantial expense. Adapting a single LLM for multiple downstream applications via fine-
tuning has emerged as a prevalent method to cater to specific domain needs, balancing performance
with practicality. This approach, however, faces a significant challenge due to the extensive memory
and computational resources required for full fine-tuning (FFT), i.e., fine-tuning all billions of
parameters. A solution to this has been the development of more selective adaptation techniques,
involving modifying only a portion of the parameters or integrating external modules designed for
new tasks. Key methodologies in this sphere include LoRA [18], Adaptors [37, 17, 31], and many
other variants [25, 24, 9, 14, 53], all part of what can be generally termed as Parameter-Efficient
Fine-tuning (PEFT). PEFT strategies are characterized by freezing the backbone model parameters
while only a minimal number of task-specific parameters are introduced and fine-tuned. This method
substantially boosts efficiency in the phases of fine-tuning and subsequent deployment, marking a
significant advancement in the practical use of LLMs.

While fine-tuning a small subset of parameters offers a streamlined approach for domain adaptation,
it’s well-recognized that model performance is closely tied to the number of parameters involved [22].
This intrinsic characteristic of methods like LoRA often results in them falling short of the FFT
baseline, which updates all parameters, thereby creating a trade-off between efficiency and model
quality. This issue of compromised quality in a low-parameter setting becomes even more pronounced
in target domains characterized by complex sub-domains and diverse tasks. This situation presents a
compelling research question:

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

9565 https://doi.org/10.52202/079017-0304

https://github.com/Clin0212/HydraLoRA

(C) AutoLoRA: Split-fusion multi-LoRA framework.

 Hybrid Corpus

...
Auto Init. # of LoRA

�� �� ��
...

A

�� �� ��...

A

��

�� ��...

Tasks
Auto-Router

Shared A module

Auto Split Corpus

�� �� ...���� ��

�

�

�’

(a) (b) (c)

Figure 1: Illustration of LoRA architecture changes in HydraLoRA. Only the tunable parameters
are shown in this Figure. (a) LoRA architecture with matrix A to achieve low rank and matrix B to
recover. (b) under the same parameter count, a monolithic LoRA is split into multiple smaller A and
B matrices to avoid training interference. (c) based on (b), HydraLoRA has an asymmetric structure
that has a shared A matrix and multiple B matrices.

What is the optimal architecture that can deliver superior model performance while still capitalizing
on the efficiency benefits of a reduced parameter footprint?

In our research, we carry out a series of exploratory experiments, applying LoRA to the LLaMA2 [48]
model to adapt it to a new domain encompassing multiple downstream tasks. As shown in Figure 1(a),
LoRA adds trainable pairs of rank decomposition matrices A and B in addition to existing weight
matrices. Our in-depth analysis of LoRA’s mechanics yields several insightful observations and
leads to the formulation of key hypotheses. First, rather than employing a single LoRA for the
entire domain, it proves more effective to deploy multiple, smaller LoRA heads, each dedicated to
a specific downstream task (see Figure 1(b)). This suggests that domain or task interference might
harmfully impact the training process. We further hypothesize that this interference originates from

“intrinsic components”—sub-domains or distinct tasks—potentially unknown even to domain experts.
Additionally, upon visualizing the parameters of LoRA, we discern a pattern: some parameters
predominantly learn the commonalities across all data, while others focus on the unique aspects of
each intrinsic component. From these observations, we posit that an optimal LoRA architecture
should embody an explicit, asymmetric structure.

Building upon the observations, we propose an improved end-to-end LoRA framework, which
we refer to as HydraLoRA. From the architecture perspective, unlike LoRA’s symmetric structure,
HydraLoRA has an asymmetric structure that has a shared A matrix and multiple B matrices (see
Figure 1(c)). The shared A matrix is used by all samples for parameter efficiency. During the
fine-tuning phase, HydraLoRA is designed to auto-identify “intrinsic components” and segregate
training samples into distinct B matrices. During the inference phase, HydraLoRA leverages multiple
B matrices using Mixture-of-Experts (MoE; [20, 40]) manner. Unlike prior work, HydraLoRA
completely eliminates the need for human expertise and assumptions, showing better performance
than using domain knowledge to guide the fine-tuning process.

2 Background and Motivation

2.1 LoRA Basics

LoRA [18] achieves comparable performances to fine-tuning on many benchmarks by freezing the
pre-trained model weights W0 and inserting trainable rank decomposition matrices into each layer of
the pre-trained model. In particular, for each layer, LoRA uses two sequential low-rank matrices A
and B to fit the residual weights for adaptation. The forward computation is written as follows:

y′ = y +∆y = W0x+BAx (1)

where y ∈ R d is the output and the x ∈ R k denotes the input. B ∈ R d×r, A ∈ R r×k with
r ≪ min(d, k). Normally matrix B is initialized with zeroes and matrix A is initialized with
Kaiming Uniform [15] to force ∆ y = 0 at the beginning.

2

9566https://doi.org/10.52202/079017-0304

2.2 LoRA’s Practical Dilemma

Parameter count has a clear impact on the performance of neural models [22, 33]. Yet, Parameter-
Efficient Fine-tuning (PEFT) methods, such as Adapter [17] and prefix-tuning [25], focus on fine-
tuning a limited set of parameters. These approaches present a practical dilemma: while restricting
the number of tuned parameters is essential for training efficiency, it hinders the model’s ability to
learn from diverse datasets. This trade-off becomes particularly evident when considering corpus
heterogeneity [2]. Figure 2 reveals a notable performance disparity between PEFT techniques and
full fine-tuning (FFT), with the gap widening in scenarios involving a more diverse or heterogeneous
training corpus.

Corpus Heterogeneity

Pe
rf

or
m

an
ce

Increased Gap

Full Parameter Fine-Tuning
Parameter-Efficient Fine-Tuning

Figure 2: Performance impact of corpus heterogeneity
on full fine-tuning vs. parameter-efficient fine-tuning.
Heterogeneity signifies the diversity within the dataset,
often leading to interference due to its varied content and
style [2]. Parameter-efficient approaches are particularly
sensitive, suffering greater performance losses in hetero-
geneous cases.

Table 1: Performance on instruction tuning with
Dolly-15K [8] and evaluated with MMLU [16] with
different ranks. For LoRA (Split) decomposes high-
rank LoRA modules into smaller, equivalent low-
rank components (r×n). n is the number of LoRAs,
r denotes the rank of each LoRA.

Schemes r × n MMLU ↑ % Parameter
LoRA 8× 1 43.22 0.062
LoRA 16× 1 45.45 0.124
LoRA 32× 1 46.59 0.248

LoRA (Split) 16× 2 46.82 0.248
LoRA (Split) 8× 4 46.94 0.248
LoRA (Split) 4× 8 46.83 0.248

2.3 Observations

In this work, we aim for a PEFT approach that strikes a better balance between maximizing the
learning capability for heterogeneous data and minimizing the number of parameters involved. A
key goal is to ensure that our enhanced technique exhibits robust generalization across unseen tasks,
independent of any prior task-specific knowledge. To achieve our objectives, we focus on LoRA and
conduct a series of experiments as Table 1 to gain a deeper understanding of its mechanisms. Our
methodology involves leveraging data from diverse tasks within a domain, and training distinct LoRA
heads for each domain, leading to our first observation:

Observation I: With the same parameter count, rather than employing a single LoRA for the entire
domain dataset, it proves more effective to deploy multiple, smaller LoRA heads, each dedicated to a
specific downstream task.

This suggests that interference among tasks might harmfully impact the training process. Furthermore,
we posit that this interference is NOT exclusive to this explicit multi-task training. This interference
could happen in any training setting since all datasets inherently consist of multiple implicit intrinsic
components, such as sub-domains or tasks within a domain that is even unknown to domain experts.
To better understand how multiple LoRA heads mitigate the interference among intrinsic components,
in Figure 3, we employ the t-SNE technique [49] to visualize the parameters of matrix A and B across
all heads. This analysis yields another critical observation:

Observation II: When multiple LoRA heads are trained individually on different data, the parameters
of matrix A from different heads tend to converge, while those of matrix B are distinguishable.

In detail, the parameters of matrix A across all heads exhibit a high degree of similarity, leading to
their overlaps in the figure. Conversely, the parameters of matrix B from different heads are distinct
and easily distinguishable. We posit that this divergence is an artifact of the initialization schemes,
with matrix A inclined toward capturing commonalities across domains, while matrix B adapts to
domain-specific diversities. The distinction between matrix A and B offers valuable insights for
enhancing both parameter efficiency and effectiveness. From an efficiency standpoint, our hypothesis
suggests that the parameters of matrix A could potentially be shared across multiple heads, thereby
reducing redundancy. Regarding effectiveness, since the parameters of matrix B of different heads

3

9567 https://doi.org/10.52202/079017-0304

−100 −50 0 50 100
−100

−50

0

50

100

0

1

23

4

5

6

7

8

9

10

11

12

13 1415

16

17

18

19
20

21

22

23

24

25

26
27

28

29

30

31
32

33
34

35

36

37

38

39

40

41

42

43

44

45

46 47 48

49

50

51
52 53

54

55

56 57

58
59

60

61

62
63

64

66

67

68
6970 71

72

73

74

75

76

77

78
79

80

81
82

83

84

85

86

87
88

89 90

91

9293

94

95

96

9798

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115116 117
118

119
120

121

122

123

124

125

126

127

t-SNE Visualization of BA-Matrix Diff. LoRAs

SUM
QA

IE

ALL

−100 −50 0 50 100
−100

−50

0

50

100

0

2
4

6 8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46 4850

52

54

56

58

60

62

64

66

68
70

72

74
76

78

80

82

84

86

88

90

92

94

96

98

100
102104

106

108

110
112

114

116

118
120

122

124

126

t-SNE Visualization of A-Matrix Diff. LoRAs

SUM

QA

IE

ALL

−50 0 50
−75

−50

−25

0

25

50

75

1

3 5
7

9

11

13
15

17

1921
23

25

27

29

31

33

35 37

39

41

43

45

47

49

51
53

55

57

59
61

63

65

67

6971

73

75

77

79

81

83

85

87

89

91

9395

97

99

101

103

105

107109111113115117
119

121

123

125127

t-SNE Visualization of B-Matrix Diff. LoRAs

SUM

QA

IE

ALL

Figure 3: Breakdown analysis of LoRA modules. Compare fine-tuned LoRA modules of Dolly-15K [8] with
three subtasks of Dolly-15K including “summarization (Sum)”, “closed QA (QA)” and “information extraction
(IE)” using t-SNE. Consider LLaMA2-7B (random seed=42), which contains 32 decoder layers, corresponding
to 32 adaptive modules. Each module consists of {0: q_proj of A, 1: q_proj of B, 2: v_proj of A, 3: v_proj of B}
submodules. This makes a total of 32× 4 submodules. Left displays all submodules. Center shows all even
submodules, i.e. the A matrix. Right represents all odd submodules, i.e. the B matrix. It can be seen that the
differences in the fine-tuned LoRA modules for different tasks arise mainly from the B matrix.

are dispersed, suggesting that using a single head to adapt to multiple domains might be less effective
than using individual heads for each domain, which minimizes the interference between domains.

Building upon our observations, we propose an optimized LoRA architecture designed to enhance
cost-effectiveness. In this architecture, we share the parameters of A matrix across various sub-
domains or tasks to improve parameter efficiency, while deploying multiple B matrices, each tailored
to handle different intrinsic components. This design allows for a more effective adaptation to
the specific characteristics of each component. While these intrinsic components can be manually
identified using prior knowledge of the training data, we also introduce end-to-end methods using
Mixture-of-Experts (MoEs) [21], which will be detailed in the methodology section. This automatic
approach facilitates flexibility and applicability, particularly in scenarios where prior knowledge is
limited or unavailable.

3 HydraLoRA

In this section, we introduce the proposed HydraLoRA, an asymmetric LoRA architecture for efficient
fine-tuning, as illustrated in Figure 1. After that, we show the workflow of HydraLoRA as Figure 4.

3.1 Asymmetric LoRA architecture

The LoRA method updates two low-rank matrices A and B, and uses AB as the change of a pretrained
and frozen weight W0 of a linear layer as shown in Eq. 1. The integral parameters are fine-tuned for
the whole corpus in the original LoRA, which causes difficulty in learning the various knowledge
aspects. Drawing from a detailed breakdown analysis of LoRA, a potential solution is to segment
the entire LoRA into “Hydra” structured LoRA variants, that is, characterized by a central shared
matrix A and several distinct matrices B, fostering a blend of shared knowledge and specialized
functionalities. As Figure 1, HydraLoRA is to fine-tune LoRAs to achieve robust performance without
redundancy, thereby benefiting the entire heterogeneous corpus. The asymmetric LoRA architecture
can be formulated as:

W = W0 +∆W

= W0 +

N∑
i=1

ωi ·BiA
(2)

The matrics Bi ∈ Rd×r and shared A ∈ Rr×k. The hyper-parameter N denotes the number of B
matrices. The term ωi modulates these contribution weights for head Bi.

3.2 Workflow of HydraLoRA

Figure 4 illustrates the workflow of HydraLoRA. Initially, HydraLoRA delves into the adaptive
identification and initialization of LoRA modules within a heterogeneous corpus, aligning them with

4

9568https://doi.org/10.52202/079017-0304

... ...
Attention

LN

FNN

LN

Pretrained
Weights �

∆�� ∆�� ∆�� Router

A

�� �� ��

Output

Mixed-task Input

Trained HydraLoRA

1. Initialization

Segregate training
samples to intrinsic
components by MoE

3. Inference

A. Fine-Tuning B. Inference

2. Tuning
Routing LoRA Merge

...

Router

Heterogeneous
Corpus

Identify intrinsic
components

Initialized HydraLoRA

Figure 4: Architecture and workflow of HydraLoRA. During the fine-tuning stage, HydraLoRA first adaptively
identifies and initializes N of intrinsic components without specific domain knowledge. It then employs a
trainable MoE router that treats each intrinsic component as an expert to automatically segregate training samples
into intrinsic components for fine-tuning. During the inference stage, HydraLoRA merges multiple B matrices
flexibly and dynamically through a trained router.

task relevance through the application of k-means or developer-specified size. Subsequently, we
propose a Mixture-of-Experts (MoE) framework that handles B matrices as expert adapters to ensure
computational efficiency throughout the fine-tuning (Section 3.2.1) and inference (Section 3.2.2)
stages by freezing the rest of the LLM parameters. During inference, it flexibly and dynamically
merges multiple B matrices through the MoE router.

3.2.1 Fine-tuning

Motivated by Mixture-of-Experts (MoEs; [20, 40]), where experts are selectively activated by a gating
mechanism (Router) in response to different inputs. In HydraLoRA, we substitute each expert with a
lightweight LoRA adapter. During fine-tuning, while weights of LLMs remain frozen, the experts and
router layers are trained from scratch. In order to achieve a unified approach to the distinct forward
processes of multiple B matrices, we define a set of experts, denoted as (E1, . . . , EN), to learn the
updated matrix ∆W . As HydraLoRA fine-tunes the experts using the heterogeneous corpus, the
shared matrix A inherently captures collaborative knowledge to augment intra-gains, and different
matrices B foster knowledge modularity to mitigate fine-tuning inter-offsets. Based on this structure,
the forward process of HydraLoRA is expressed as:

y = W0x+
N∑
i=1

ωiEiAx (MoE) (3)

where N denotes the number of experts, i.e., B matrices.To regulate these contributions, we introduce
a gate function (router network) commonly consisting of a dense layer with trainable weights
(transformation matrix) Wg ∈ Rr×N followed by a softmax function which takes an intermediate
token representation x as input and combines the output of each expert based on the gating scores
(ω1, . . . , ωN):

ωi = softmax(W T
g x) (Router) (4)

3.2.2 Inference

During inference, HydraLoRA merges adapters by enabling routing computation based on the input.
Specifically, since matrices B operate as linear functions, we initially compute a weighted average
of the experts. Following this, we apply a PEFT transformation using the combined expertise. The
HydraLoRA significantly enhances training efficiency through an extremely parameter-efficient MoE
formulation. Additionally, the intrinsic structural modularity of HydraLoRA facilitates rapid recovery
and merging of the trained parameters during inference, leading to substantial memory savings.

5

9569 https://doi.org/10.52202/079017-0304

Table 2: Comparative performance of different tuning schemes across multiple benchmarks on a single domain.
8-shot for GSM8K, zero-shot for others. #B̄ refers to the average B matrix number.

HumanEvalSchemes MMLU Medical Law P@1 P@10 GSM8K %Param #A #B̄

LLaMA2-7B [48] 38.88 35.98 33.51 13.10 20.34 10.38 - - -
Full Fine-Tuning 49.91 46.78 46.08 20.24 32.93 25.70 100 - -

Prompt Tuning [24] 39.91 37.59 35.02 13.66 21.55 13.18 0.001 - -
P-Tuning(256) [29] 41.11 39.81 36.72 13.60 21.13 15.56 0.193 - -
Prefix Tuning [25] 41.78 40.28 36.54 13.23 22.56 16.89 0.077 - -

(IA)3 [27] 40.45 37.12 35.25 13.54 23.17 13.98 0.009 - -
AdaLoRA(r=8) [55] 44.32 42.83 39.36 14.81 23.78 19.51 0.093 1 1

LoRA(r=8) [18] 43.22 41.59 37.85 15.67 22.95 18.24 0.062 1 1
LoRA(r=16) 45.45 43.10 39.64 16.71 25.60 20.32 0.124 1 1
LoRA(r=32) 46.59 44.32 40.81 17.12 25.89 20.67 0.248 1 1

LoRA-Split(4×8) 46.94 45.28 41.35 18.20 26.85 21.92 0.248 4 4

HydraLoRA(r=8) 47.22 45.71 42.18 18.31 27.43 22.27 0.124 1 3

4 Experiments

In this section, we detail the principal experiments. We begin with an overview of the experimental
setup and implementation intricacies. Following this, we share our findings and offer a succinct
interpretation.

4.1 Experiment Setting

Dataset and Benchmarks To explore the properties and commonalities of the LoRA asymmetric
structure, we conduct experiments on both single and multiple domains to evaluate the effectiveness
of HydraLoRA for profiling intrinsic components. • Single domain. 1) General: we fine-tune with
the general instruction tuning databricks-dolly-15k [8] for generic language capability and evaluate
with MMLU [16]. 2) Medical: we fine-tune with GenMedGPT and clinic-10k from ChatDoctor [26]
for medicine applications and evaluate medical tasks in MMLU. 3) Law: we fine-tune with two legal
instruction tuning datasets Lawyer-Instruct [1] and US-Terms [4] then evaluate with law tasks in
MMLU. 4) Math: we fine-tune with the training split of GSM8K [7] for mathematical reasoning and
evaluate with test set of GSM8K. 5) Code: we fine-tune with CodeAlpaca [5] for code generation and
evaluate with HumanEval [6]. • Multi-task domain. We select a portion of the Flanv2 [51] datasets
covering Natural Language Understanding (NLU) and Natural Language Generation (NLG), which
can be grouped into 10 distinct task clusters. Then we evaluate it with the Big-Bench Hard (BBH)
[45] benchmark. A detailed description of the benchmarks can be found in Appendix A.1.

Baselines • First, we compare HydraLoRA with different PEFT methods on single datasets: 1)
Full fine-tuning; 2) Prompt Tuning [24]; 3) P-Tuning [29]; 4) Prefix Tuning [25]; 5) IA3 [27]; 6)
AdaLoRA [55]. • Second, we extend the experiments exploring HydraLoRA on multiple datasets
compared with more weighted average methods: 1) Lorahub [19] employs black-box optimization
to learn weights of 20 randomly selected LoRAs for new tasks, using weighted averaging without
needing gradient calculations. 2) LoRA MoE [52] combines lightweight experts (LoRA) with MoE
architecture for high efficiency, generalizing to new tasks without prior knowledge. A detailed
description of the baseline models can be found in Appendix A.2.

4.2 Overall Performance

The experimental results of HydraLoRA and the competing baselines are presented in Table 2 with a
single domain and Table 3 with the mixed task domain. The evaluation of diverse tasks demonstrates
that HydraLoRA consistently outperforms all other schemes. The performances rooted in LoRA
outperform those of conventional PEFT methodologies. Compared to the default single LoRA
configuration (rank=8), the Hydra architecture, enriched by the integration of several B matrices,
effectively addresses the inherent conflicts among intrinsic components of the corpus. Furthermore,
with equivalent parameters (rank=16), the model shows superior performance, confirming the ef-

6

9570https://doi.org/10.52202/079017-0304

Table 3: Comparative performance of different tuning schemes, including base model (Base), LoRA tuning
(LoRA), LoraHub learning, multi-LoRA tuning with MoE inference (LoRA MoE) and our proposed HydraLoRA
learning across mix-task domain on the BBH benchmark with LLaMA2-7B, LLaMA2-13B as the base LLM
(3-shot).

Metrics Base [48] LoRA [18] Lorahub [19] LoRA MoE [52] HydraLoRA

Performance 7B 31.6 36.8 39.7 40.3 41.5
13B 38.4 40.1 41.9 43.7 44.1

of A/B for training 0/0 1/1 48/48 48/48 1/10
of A/B for inference 0/0 1/1 20/20 48/48 1/10

% Params - 0.062 1.240 2.976 0.341

fectiveness of the adopted parameters. Based on Table 2 and Table 3, we propose three research
questions that confirm the aforementioned observations.

RQ1: Is it more effective to use multiple smaller LoRA heads for specific tasks rather than one
single LoRA for the entire domain dataset, given the same parameter count? Comparing the
high-dimensional LoRA configuration with r = 32 against a segmented version using LoRA-Split, a
variant introduced by HydraLoRA, which divides the model into four distinct components each with
r = 8. That is, multiple vanilla LoRAs are directly utilized to capture the differences between data.
We observe a noteworthy trend in the performance across a variety of tasks as detailed in Table 2. It
illustrates the superior performance of LoRA-Split in comparison to the traditional LoRA approach,
across all the evaluated scenarios. This enhancement in performance is a strong indication of the
detrimental impact that task interference can have on the training process. By segregating the tasks
into discrete components, LoRA-Split effectively minimizes the conflict and interference between
tasks, thereby promoting a more efficient and focused environment.

The concept of LoRA-Split hinges on the construction of different intrinsic component compositions,
employing LoRA as a foundational technique to strategically mitigate the interference conflict. This
architectural innovation has proven to be a pivotal factor in enhancing model performance. However,
it’s important to note that while LoRA-Split marks a significant advancement in model efficiency and
task handling, it also introduces a certain level of parameter redundancy. The segmented approach of
LoRA-Split inevitably leads to an increase in the overall model parameters, which can be manifold in
comparison to the traditional, singular LoRA model. This increase in parameters, while contributing
to the model’s robustness and capability to handle multiple tasks simultaneously, also poses new
challenges in terms of computational resources and model optimization.

RQ2: Will multiple LoRA heads, individually trained on different data, improve efficiency by
distinguishing matrix B parameters? We evaluated the Hydra structure LoRA — HydraLoRA
that is characterized by a shared LoRA A matrix, while maintaining distinct B matrices that are
trained separately. This configuration was meticulously compared with both the standard LoRA and
the LoRA-Split approaches, emphasizing efficiency parameters.

According to the results presented in Table 2, unlike split which straightforwardly adopts multiple
vanilla LoRAs, HydraLoRA adopts an asymmetric LoRA structure that not only improves parameter
efficiency by separating the uses of A matrix for commonalities and B matrices for diversities with a
notably smaller adapter parameter set, but also employs a trainable router to improve the composition
of multiple B matrices that outperforms the LoRA-Split approach. This finding is significant as it
suggests that HydraLoRA not only enhances performance efficiency but also boosts overall system
effectiveness. This may be driven by 1) different B matrices capturing different features of the
data-intrinsic knowledge, mitigating mutual interferences, and avoiding performance offsets. 2)
Module A maintains the collaborative knowledge by taking the strengths of each and integrating
them to improve the model performance.

RQ3: How does HydraLoRA fare against other merge methods in complex, multi-task domains,
considering scalability and robustness? While we hypothesize that the asymmetry is mainly
rooted in the different initialization methods of A and B matrices, it is possible that this behavior varies
on different model architectures and datasets. Recent work confirms similar empirical observations
[54, 13]. To the best of our ability, we extended the experiments exploring HydraLoRA on multiple

7

9571 https://doi.org/10.52202/079017-0304

CPU GPU RAM0.0
0.5
1.0
1.5
2.0
2.5
3.0

E
n
er

gy
 (

K
W

h
) LoRA(r=8)

LoRA(r=16)
LoRA(r=32)
LoRA-Split(4x8)
HydraLoRA

R=8 R=16 R=32 Split HydraLoRA0
1
2
3
4
5

L
at

en
cy

 (
h
)

Figure 5: Energy consumption and latency during fine-tuning with different LoRA approaches
(fine-tuning LLaMA2-7B with GSM-8K).

Mmlu Medical Law
35.0

37.5

40.0

42.5

45.0

47.5

50.0

P
er

fo
rm

a
n
ce

 (
%

)

43.22

41.59

37.85

42.81

40.92

37.12

46.94

45.28

41.35

47.22

45.71

42.18

w/o MoE

w/o Gate

w/o Hydra

HydraLoRA

Figure 6: Comparative performance of ablation study for HydraLoRA across multiple benchmarks.

datasets. LoRA MoE and their variants typically aim at tackling multi-tasks by employing multiple
independent LoRAs. This makes them suitable for handling various domains. However, for a single
dataset like ours, a “default” MoE method might not be optimal. HydraLoRA addresses this by
constructing asymmetric structures and utilizing multiple B matrices to capture the specific nuances
within the single dataset. The effectiveness of this approach is demonstrated by the experimental
results in Table 3.

4.3 Energy and Throughput Analysis

RQ4: How does the “Hydra” structure in HydraLoRA enhance system efficiency, particularly
in reducing training energy consumption and latency? We evaluate the system efficiency of
HydraLoRA from two perspectives: training energy consumption and latency. The following experi-
ments were executed on a GPU infrastructure consisting of 4 NVIDIA A40 GPUs and a CPU powered
by an Intel(R) Xeon(R) Gold 6330 CPU clocked at 2.00GHz. Power consumption measurements
were recorded using CodeCarbon [34]. Figure 5 shows the results of various fine-tuning approaches
for GSM-8K using the LLaMA2-7B model. we can see that HydraLoRA effectively speeds up the
training process 1.96× and reduces 49.6% energy cost compared to LoRA (rank=32). While the
energy consumption and latency of LoRA-Split exceeds the LoRA (rank=32). This is for the reason
that HydraLoRA jointly considers inherent knowledge modularity and collaboration, which utilizes
the “Hydra” structure with a shared A matrix and different B matrix. In this way, it only employs
rank=16 training overhead but expands to a performance enhancement of more than rank=32. Overall,
this experiment demonstrates the parameter effectiveness of HydraLoRA.

4.4 Ablation Study

RQ6: What impact do the MoE architecture and the gate function have on the fine-tuning
process? To delve deeper into understanding the contributions of each component in HydraLoRA.
we present the results of our ablation study in Figure 6. The variant w/o MoE (essentially reverts to
LoRA) excludes the MoE architecture. Similarly, the w/o gate variant employs uniform expert weights
bypassing the gate function. The w/o hydra adopts multiple vanilla LoRAs in a straightforward way.
Figure 6 indicates that the full HydraLoRA model outperforms its variants, showing that both the MoE
architecture and gate function significantly contribute to its effectiveness across various language
understanding domains.

8

9572https://doi.org/10.52202/079017-0304

0 2 4 6 8 10 12 140

1

2

3

4

5

N
u
m

b
er

 o
f
C

lu
st

er
s

Static
K-means
DBSCAN

Figure 7: Number of clusters generated by different approaches
including developer-specific (static), k-means, and DBSCAN.

N=1 2 3 4 546.0
46.2
46.4
46.6
46.8
47.0
47.2
47.4

P
er

fo
rm

a
n
ce

 (
%

)

Figure 8: The results of experiments for
hyper-parameters number of clusters.

4.5 Hyper-parameter Analysis

RQ7: How do the number of intrinsic component of HydraLoRA influence performance out-
comes? As Figure 8 shown, we conduct a comprehensive and meticulous analysis by fine-tuning
the Dolly-15K model on the LLaMA2-7B dataset and subsequently evaluating its performance on
the MMLU benchmark to rigorously examine the impact of variations in the intrinsic component,
symbolized by the variable N , on the model’s overall performance. Empirically we find that the
number N of clusters is not a sensitive parameter for HydraLoRA, with a wide range of reasonable
number N of clusters (e.g. 2 to 4) performing decently well in all settings in our experiments. Specifi-
cally, the performance loss of N = 3 vs. the optimal N = 4 is only 0.42%. Meanwhile, as illustrated
in Figure 7, we employ three distinct methods to generate the number of corpus clusters 15-fold,
and the results demonstrate that the k-means [30] yields comparable outcomes with DBSCAN [39].
Therefore, based on this observation, we choose k-means because it is simple but effective, more
sophisticated hyperparameter search approaches (e.g. DBSCAN, parameter sweep and Bayesian
optimization) will be unnecessarily costly. It’s noteworthy that HydraLoRA is adeptly designed
to orchestrate its components in a way that it can automatically calibrate and navigate toward the
optimal performance configuration across various parameters. This intelligent auto-tuning is achieved
through the application of the k-means clustering algorithm. This strategic component orchestration
not only enhances performance but also ensures a more efficient and effective utilization of resources,
underpinning the model’s capability to adapt and perform efficiently in a dynamic computational
environment.

5 Related work

Parameter-Efficient Fine-tuning LLMs are becoming increasingly powerful, but fine-tuning
them often requires significant computational resources. This has spurred research on parameter-
efficient fine-tuning (PEFT) techniques that reduce memory and storage costs during adaptation.
One prominent PEFT approach is adapters [17, 37]. It introduces new, trainable dense layers within
the existing model, keeping the original parameters frozen. This concept has proven successful
across various domains [35, 42, 43, 56]. Further improvements on adapter compactness involve
constructing parameter matrices using Kronecker products of low-rank matrices [31]. Another
PEFT strategy directly manipulates activations with learned vectors. This can be achieved through
concatenation [29, 25, 24], multiplication (IA3; [27]), or addition (BitFit; [53]). Prefix-tuning [25] and
prompt-tuning [24] are noteworthy examples that fine-tune continuous prompts instead of designing
discrete ones [9]. Interestingly, a study suggests that many PEFT methods can be viewed as a form
of adapter, providing a unified perspective [14]. Beyond adding new parameters or altering the
computational graph, researchers also explore sparse [12, 44, 46] or low-rank updates (LoRA; [18]).

Multi-LoRA Architecture LoRA has notably garnered increasing interest recently, becoming
a standard approach for adapting LLMs such as LLaMA [47, 48] under limited computational
resources. Recognizing its potential, researchers have delved deeper, exploring the benefits of
employing multiple LoRAs. LoraHub [19] takes this multi-LoRA approach by training several
adapters and strategically picking combinations based on the domain during inference. Meanwhile,
MultiLoRA [50] focuses on horizontal scaling, aiming to reduce LoRA’s parameter dependence.
This involves splitting LoRA modules along the rank dimension and introducing learnable scaling
factors for enhanced expressiveness. Addressing scaling challenges from a different angle, the
mixture of LoRA concept is further proposed [52]. This mitigates resource consumption when

9

9573 https://doi.org/10.52202/079017-0304

scaling instruction-tuned LLMs. Recognizing the potential for conflict during instruction tuning,
LoRAMoE [11] leverages the Mixture-of-Experts (MoEs; [20]) structure to safeguard the pre-
trained LLM’s knowledge from excessive corruption by instruction data. Similarly, MOELoRA [28]
incorporates a MoE framework into LLMs, thereby improving their multitasking capabilities in the
medical domain. Shifting the focus to the system perspective, S-LoRA [41] provides a framework
for efficiently serving multiple LoRA adapters. Unlike previous methods that relied on choosing
LoRA combinations based on their training domains, HydraLoRA breaks free from the dependence
on domain knowledge during inference. Additionally, HydraLoRA’s asymmetric structure further
enhances parameter efficiency compared to existing symmetric approaches.

6 Conclusion

In this work, we start by conducting exploratory experiments applying the LoRA technique to
LLaMA2, aiming to adapt it to a new domain across various tasks. This study unveils the limitations
of employing a single LoRA for the entire domain, highlighting the detrimental effects of domain
interference. In response, we introduce a novel architecture HydraLoRA that features an asymmetric
structure with a shared matrix for all samples and distinct matrices for each intrinsic component. This
design improves domain adaptation by selectively focusing on distinct components, enhancing both
fine-tuning and inference efficiency. Our research highlights the importance of balancing learning
capabilities for diverse datasets against the need for a lean model, offering a viable pathway for
improving LLMs with minimal parameter growth. More discussion about limitation and broader
impacts are available in Appendix D and E.

7 Acknowledgments

This research received support from MYRG-GRG2023-00211-IOTSC-UMDF and the Start-up
Research Grant of the University of Macau (SRG2022-00010-IOTSC). Chunlin Tian and Zhan Shi
contributed equally to this work. For correspondence, please contact Dr. Li Li (llili@um.edu.mo) or
Dr. ChengZhong Xu (czxu@um.edu.mo).

References
[1] Alignment-Lab-AI. Lawyer-instruct, 2024.

[2] Sara Babakniya, Ahmed Roushdy Elkordy, Yahya H. Ezzeldin, Qingfeng Liu, Kee-Bong Song,
Mostafa El-Khamy, and Salman Avestimehr. Slora: Federated parameter efficient fine-tuning of
language models. CoRR, abs/2308.06522, 2023.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[4] Ilias Chalkidis, Nicolas Garneau, Catalina Goanta, Daniel Katz, and Anders Søgaard. LeXFiles
and LegalLAMA: Facilitating English multinational legal language model development. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 15513–15535, Toronto, Canada, July 2023. Association for
Computational Linguistics.

[5] Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation.
https://github.com/sahil280114/codealpaca, 2023.

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul

10

9574https://doi.org/10.52202/079017-0304

https://github.com/sahil280114/codealpaca

Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374,
2021.

[7] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021.

[8] Mike Conover, Matt Hayes, Ankit Mathur, Xiangrui Meng, Jianwei Xie, Jun Wan, Sam Shah,
Ali Ghodsi, Patrick Wendell, Matei Zaharia, et al. Free dolly: Introducing the world’s first truly
open instruction-tuned llm, 2023.

[9] Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng
Song, Eric P. Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforce-
ment learning. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022,
Abu Dhabi, United Arab Emirates, December 7-11, 2022, pages 3369–3391. Association for
Computational Linguistics, 2022.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages
4171–4186. Association for Computational Linguistics, 2019.

[11] Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi,
Xiao Wang, Xiaoran Fan, Shiliang Pu, Jiang Zhu, Rui Zheng, Tao Gui, Qi Zhang, and Xuanjing
Huang. Loramoe: Revolutionizing mixture of experts for maintaining world knowledge in
language model alignment. CoRR, abs/2312.09979, 2023.

[12] Demi Guo, Alexander M. Rush, and Yoon Kim. Parameter-efficient transfer learning with diff
pruning. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors, Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1:
Long Papers), Virtual Event, August 1-6, 2021, pages 4884–4896. Association for Computational
Linguistics, 2021.

[13] Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large
models. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net, 2024.

[14] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. To-
wards a unified view of parameter-efficient transfer learning. In The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. Open-
Review.net, 2022.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In 2015 IEEE International
Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages
1026–1034. IEEE Computer Society, 2015.

[16] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. CoRR, abs/2009.03300,
2020.

11

9575 https://doi.org/10.52202/079017-0304

[17] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages 2790–2799.
PMLR, 2019.

[18] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The
Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022.

[19] Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
Efficient cross-task generalization via dynamic lora composition. CoRR, abs/2307.13269, 2023.

[20] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive
mixtures of local experts. Neural Comput., 3(1):79–87, 1991.

[21] Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.
Neural Comput., 6(2):181–214, 1994.

[22] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. CoRR, abs/2001.08361, 2020.

[23] David J Ketchen and Christopher L Shook. The application of cluster analysis in strategic
management research: an analysis and critique. Strategic management journal, 17(6):441–458,
1996.

[24] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau
Yih, editors, Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November,
2021, pages 3045–3059. Association for Computational Linguistics, 2021.

[25] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors, Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021, pages 4582–4597. Association for Computational
Linguistics, 2021.

[26] Yunxiang Li, Zihan Li, Kai Zhang, Ruilong Dan, Steve Jiang, and You Zhang. Chatdoctor: A
medical chat model fine-tuned on a large language model meta-ai (llama) using medical domain
knowledge. Cureus, 15(6), 2023.

[27] Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, 2022.

[28] Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu, Derong Xu, Feng Tian, and Yefeng
Zheng. Moelora: An moe-based parameter efficient fine-tuning method for multi-task medical
applications. CoRR, abs/2310.18339, 2023.

[29] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang.
GPT understands, too. CoRR, abs/2103.10385, 2021.

[30] Stuart P. Lloyd. Least squares quantization in PCM. IEEE Trans. Inf. Theory, 28(2):129–136,
1982.

12

9576https://doi.org/10.52202/079017-0304

[31] Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient
low-rank hypercomplex adapter layers. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages 1022–1035, 2021.

[32] OpenAI. ChatGPT, 2022.

[33] OpenAI. GPT-4 Technical Report. CoRR, abs/2303.08774, 2023.

[34] David A. Patterson, Joseph Gonzalez, Quoc V. Le, Chen Liang, Lluis-Miquel Munguia, Daniel
Rothchild, David R. So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network
training. CoRR, abs/2104.10350, 2021.

[35] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych.
Adapterfusion: Non-destructive task composition for transfer learning. In Paola Merlo, Jörg
Tiedemann, and Reut Tsarfaty, editors, Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume, EACL 2021, Online,
April 19 - 23, 2021, pages 487–503. Association for Computational Linguistics, 2021.

[36] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

[37] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains
with residual adapters. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 506–516, 2017.

[38] Gerard Salton and Chris Buckley. Term-weighting approaches in automatic text retrieval. Inf.
Process. Manag., 24(5):513–523, 1988.

[39] Erich Schubert, Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. DBSCAN
revisited, revisited: Why and how you should (still) use DBSCAN. ACM Trans. Database Syst.,
42(3):19:1–19:21, 2017.

[40] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E.
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[41] Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang, Christopher
Chou, Banghua Zhu, Lianmin Zheng, Kurt Keutzer, Joseph E. Gonzalez, and Ion Stoica. S-lora:
Serving thousands of concurrent lora adapters. CoRR, abs/2311.03285, 2023.

[42] Asa Cooper Stickland and Iain Murray. BERT and pals: Projected attention layers for efficient
adaptation in multi-task learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 5986–5995. PMLR, 2019.

[43] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. VL-ADAPTER: parameter-efficient transfer
learning for vision-and-language tasks. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pages 5217–5227.
IEEE, 2022.

[44] Yi-Lin Sung, Varun Nair, and Colin Raffel. Training neural networks with fixed sparse masks. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pages 24193–24205, 2021.

13

9577 https://doi.org/10.52202/079017-0304

[45] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challeng-
ing big-bench tasks and whether chain-of-thought can solve them. In Anna Rogers, Jordan L.
Boyd-Graber, and Naoaki Okazaki, editors, Findings of the Association for Computational
Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, pages 13003–13051. Association for
Computational Linguistics, 2023.

[46] Chunlin Tian, Xinpeng Qin, and Li Li. Greenllm: Towards efficient large language model via
energy-aware pruning. In 32nd IEEE/ACM International Symposium on Quality of Service,
IWQoS 2024, Guangzhou, China, June 19-21, 2024, pages 1–2. IEEE, 2024.

[47] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023.

[48] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models. CoRR, abs/2307.09288, 2023.

[49] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[50] Yiming Wang, Yu Lin, Xiaodong Zeng, and Guannan Zhang. Multilora: Democratizing lora for
better multi-task learning. CoRR, abs/2311.11501, 2023.

[51] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In The
Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022.

[52] Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermis, Acyr Locatelli, and Sara Hooker.
Pushing mixture of experts to the limit: Extremely parameter efficient moe for instruction
tuning. CoRR, abs/2309.05444, 2023.

[53] Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), ACL 2022, Dublin, Ireland, May 22-27,
2022, pages 1–9. Association for Computational Linguistics, 2022.

[54] Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. CoRR, abs/2308.03303, 2023.

[55] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023.

[56] Han Zhou, Xingchen Wan, Ivan Vulic, and Anna Korhonen. Autopeft: Automatic configuration
search for parameter-efficient fine-tuning. CoRR, abs/2301.12132, 2023.

14

9578https://doi.org/10.52202/079017-0304

A Datasets and Baselines

A.1 Datasets

Single Domain

1. General: we fine-tune with the general instruction tuning databricks-dolly-15k for generic
language capability and evaluate with MMLU.

2. Medical: we fine-tune with GenMedGPT and clinic-10k from ChatDoctor for medicine
applications and evaluate medical tasks in MMLU including three related tasks: “clinical
knowledge”, “professional medicine” and “college medicine”.

3. Law: we fine-tune with two legal instruction tuning datasets Lawyer-Instruct and US-Terms
then evaluate with law tasks in MMLU including two related tasks: “professional law” and
“international law”.

4. Math: we fine-tune with the training split of GSM8K for mathematical reasoning and
evaluate with test set of GSM8K.

5. Code: we fine-tune with CodeAlpaca for code generation and evaluate with HumanEval.

Multi-task Domain As well for complex mixed multi-task/domain, we select a portion of the
Flanv2 datasets covering Natural Language Understanding (NLU) and Natural Language Generation
(NLG), which can be grouped into 10 distinct task clusters. Then we evaluate it with the Big-Bench
Hard (BBH) benchmark.

We summarize the details of the used datasets as follows:

1. Struct-to-Text Conversion: This task evaluates the capability to generate natural language
descriptions from structured data inputs. We use the following datasets: (1) CommonGen;
(2) DART; (3) E2ENLG; (4) WebNLG;

2. Translation: Translation involves converting text from one language to another, maintaining
the original meaning and nuances. We use the following datasets: (1) En-Fr from WMT’14;
EnDe, En-Tr, En-Ru, En-Fi, En-Ro from WMT’16; (3) En-Es from Paracrawl.

3. Commonsense Reasoning: This involves assessing the ability to apply physical or scientific
principles alongside common sense in reasoning tasks. We use the following datasets: (1)
COPA, (2) HellaSwag, (3) PiQA, and (4) StoryCloze.

4. Sentiment Analysis: A fundamental task in natural language processing (NLP) that deter-
mines the sentiment polarity (positive or negative) of a given text. We use the following
datasets: (1) IMDB, (2) Sentiment140, (3) SST-2, and (4) Yelp. information sources. We
use the following datasets: (1) ARC, (2) NQ, and (3) TriviaQA.

5. Paraphrase Detection: This task requires models to ascertain whether two sentences convey
the same meaning, indicating semantic equivalence. We use the following datasets: (1)
MRPC, (2) QQP, and (3) Paws Wiki.

6. Coreference Resolution: Involves identifying instances within a text that refer to the same
entity, demonstrating an understanding of textual context. We use the following datasets: (1)
DPR and (2) WSC273.

7. Reading comprehension: Assesses the capability to derive answers to questions from a
provided text containing relevant information. We use the following datasets: (1) BoolQ, (2)
DROP, (3) MultiRC, (4) OBQA, (5) SQuADv1, (6) SQuADv2.

8. Reading Comprehension with Commonsense: Merges traditional reading comprehension
skills with commonsense reasoning, requiring understanding beyond the explicit text. We
use the following datasets: (1) CosmosQA; (2) ReCoRD.

9. Natural Language Inference: Focuses on deducing the relationship between two sentences,
determining if the second sentence logically follows from, contradicts, or is unrelated to the
first sentence. We use the following datasets: (1) ANLI, (2) CB; (3) MNLI; (4) QNLI; (5)
SNLI; (6) WNLI; (7) RTE.

10. Closed-Book Question Answering: This task challenges models to answer questions about
general knowledge without direct access to external

15

9579 https://doi.org/10.52202/079017-0304

A.2 Baselines

PEFT methods

1. Full Fine-tuning is the default strategy for adaptation. During fine-tuning, the model is
initialized with pretrained weights and biases, and all model parameters undergo gradient
updates.

2. Prompt Tuning adds task-specific prompts to the input, and these prompt parameters are
updated independently of the pretrained model parameters which are frozen.

3. P-Tuning adds trainable prompt embeddings to the input that is optimized by a prompt
encoder to find a better prompt, eliminating the need to manually design prompts. The
prompt tokens can be added anywhere in the input sequence, and P-Tuning also introduces
anchor tokens for improving performance.

4. Prefix Tuning prefixes a series of task-specific vectors to the input sequence that can be
learned while keeping the pretrained model frozen. The prefix parameters are inserted in all
of the model layers.

5. IA3 enhances efficiency by infusing learned vectors into transformer architectures, drasti-
cally cutting trainable parameters while preserving performance and minimizing inference
latency.

6. AdaLoRA is a method for optimizing the number of trainable parameters to assign to weight
matrices and layers, unlike LoRA, which distributes parameters evenly across all modules.
More parameters are budgeted for important weight matrices and layers while less important
ones receive fewer parameters.

Multiple LoRA weighted average methods

1. LoRA MoE. A collection of n parameterized experts, denoted as E1, ..., En, is orchestrated
by a router network R. This network features a dense layer with adjustable weights Wg

from Rdm×n. A softmax function then processes an intermediate token representation x,
yielding gating scores s1, ..., sn that determine the weighted contribution of each expert’s
output:

si = R(x)i = softmax(WT
g x) (Router) (5)

Subsequently, the overall output y is synthesized by aggregating the experts’ outputs, each
modulated by its respective gating score:

y =

n∑
i=1

si · Ei(x) (MoE) (6)

This results in a dynamic allocation of the model’s capacity, enabling specialized processing
by experts as directed by the router’s gating mechanism.

2. LoraHub aggregates 20 LoRAs at random for new downstream tasks. To master the weight
of each LoRA, it utilizes a black-box optimization technique, bypassing the need for gradient
calculations of the large model. This process involves weighted averaging at the parameter
level. Mirroring the MoE training approach, we select 20 random samples for each task,
creating a cohesive training dataset optimized through this black-box method.

B Initialization via k-means

In the case of considering heterogeneous corpora, it is crucial to select the appropriate number N
of matrix B, to ensure consistent performance and minimize unnecessary computational overhead.
This choice is usually closely related to the training corpus. In this work, we propose initializing
HydraLoRA modules via k-means [30] algorithm for adaptive initialization. Specifically, k-means is
utilized to process the heterogeneous corpus to identify the best-fit taxonomy of the corpus, i.e., the
optimal N . First, we extract key features from the corpus by applying the Term Frequency-Inverse
Document Frequency (TF-IDF; [38]) algorithm and transform the textual information into numerical

16

9580https://doi.org/10.52202/079017-0304

feature vectors. We integrate the elbow method [23] to determine the optimal value of N . Initially,
N cluster centers are randomly selected for preliminary clustering as Eq. 7, followed by updating
the cluster centers to accurately reflect the data within each cluster as Eq. 8. where Cj is the cluster
center to which data point Xi is assigned and d(·, ·) is the Euclidean distance function. Sj is the set
of data points in the j-th cluster.

Cj = argmin
Cj

d(Xi, Cj) (7)

Cj =
1

|Sj |
∑

Xi∈Sj

Xi (8)

By analyzing the relationship between the sum of squares of errors (SSE) and different N values, we
observe that SSE decreases as N increases. Identifying the elbow point on the SSE curve — where
the rate of decrease in SSE slows down — is crucial. The elbow point represents the optimal N value,
beyond which increasing the number of clusters does not significantly enhance performance, thereby
achieving an ideal balance between model complexity and performance.

C LoRA Breakdown

−40 −20 0 20 40

−20

0

20

40

0

1

2

3

4

5

6
78

9

10

11

12

13

14

15

16

17

18

19

20

21

2223

24

25
26

27

28

29

30

31
32

33

34

35

36

37
38

39
40

41

42

43

44

45
46

47
48

49

50
51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
67

68

69

70

7172

73

74

75

76 77
78

79

80

81

82

83

84

85 8687

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104
105

106

107

108

109

110

111

112

113

114

115
116 117

118 119

120

121

122 123

124

125

126

127

t-SNE Visualization of BA-Matrix Diff. LoRAs

LoRA 1

LoRA 2

LoRA 3

GSM K8

−40 −20 0 20 40

−20

0

20

40

0

2

4

6

8

10

12

14

16

18
20

22

24

26

28

30

32

34

36

38

40

42

44

46 48

50

52

54

56

58

60

62

64

66

68
70

72

74

76
78

80

8284

86

8890

92

94

96

98

100

102

104

106

108

110
112

114

116

118

120

122

124

126

t-SNE Visualization of A-Matrix Diff. LoRAs

LoRA 1

LoRA 2
LoRA 3

GSM K8

−20 −10 0 10 20 30

−10

0

10

20

30

1
3

5

7

9

11

13

15

17

19

21

23

25

27
29

31

3335

37
39

41
43

4547

49

51

53

55
57

59

61

63
65

67
69

71

73

75

77

79

81
83

85
87

89

91

93

95

97
99

101

103

105

107
109

111

113

115
117

119

121

123

125

t-SNE Visualization of B-Matrix Diff. LoRAs

LoRA 1

LoRA 2
LoRA 3

GSM K8

(a) Compare fine-tuned LoRA modules of GSM8K [7] with its subsets using T-SNE. We employ the Independent
and Identically Distributed (IID) segmentation scheme to divide GSM8K into three subsets and fine-tune them
using different LoRAs.

−40 −20 0 20 40

−20

0

20

40

0

1

2

3

4

5

6
78

9

10

11

12

13

14

15

16

17

18

19

20

21

2223

24

25
26

27

28

29

30

31
32

33

34

35

36

37
38

39
40

41

42

43

44

45
46

47
48

49

50
51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
67

68

69

70

7172

73

74

75

76 77
78

79

80

81

82

83

84

85 8687

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104
105

106

107

108

109

110

111

112

113

114

115
116 117

118 119

120

121

122 123

124

125

126

127

t-SNE Visualization of BA-Matrix Diff. LoRAs

LoRA 1

LoRA 2

LoRA 3

GSM K8

−40 −20 0 20 40

−20

0

20

40

0

2

4

6

8

10

12

14

16

18
20

22

24

26

28

30

32

34

36

38

40

42

44

46 48

50

52

54

56

58

60

62

64

66

68
70

72

74

76
78

80

8284

86

8890

92

94

96

98

100

102

104

106

108

110
112

114

116

118

120

122

124

126

t-SNE Visualization of A-Matrix Diff. LoRAs

LoRA 1

LoRA 2
LoRA 3

GSM K8

−20 −10 0 10 20 30

−10

0

10

20

30

1
3

5

7

9

11

13

15

17

19

21

23

25

27
29

31

3335

37
39

41
43

4547

49

51

53

55
57

59

61

63
65

67
69

71

73

75

77

79

81
83

85
87

89

91

93

95

97
99

101

103

105

107
109

111

113

115
117

119

121

123

125

t-SNE Visualization of B-Matrix Diff. LoRAs

LoRA 1

LoRA 2
LoRA 3

GSM K8

(b) Specific tasks.

Figure 9: Breakdown analysis of LoRA modules. Compare fine-tuned LoRA modules of GSM-
8K [7] with its subsets using T-SNE. We employ the Independent and Identically Distributed (IID)
segmentation scheme to divide GSM8K into three subsets and fine-tune them using different LoRAs.
Consider LLaMA2-7B (random seed=42), which contains 32 decoder layers, corresponding to 32
adaptive modules. Each module consists of {0: q_proj_A, 1: q_proj_B, 2: v_proj_A, 3: v_proj_B}
submodules. This makes a total of 32× 4 submodules. (a,b) left displays all submodules. (a,b) center
shows all even submodules, i.e. the A-matrix. (a,b) right represents all odd submodules, i.e. the
B-matrix. It can be seen that the differences in the fine-tuned LoRA modules for different tasks arise
mainly from the B matrix.

D Limitation

In this study, we concentrate on well-established PEFT techniques, particularly LoRA. However,
we have not yet investigated other configurations, such as prompt-tuning and adapters, which are

17

9581 https://doi.org/10.52202/079017-0304

−100 −50 0 50 100
−100

−50

0

50

100

110

38

44

118

91

91

91

91

87
87

87

87

33

33

33

33

43

43
43

43

t-SNE Visualization of Matrix Diff. LoRAs

SUM
QA

ALL
IE

Figure 10: Breakdown analysis of LoRA modules (Dolly-15K) with its subsets using T-SNE on
different layer.

reserved for future exploration. Our current evaluation is limited to fine-tuning, while an examination
of the efficacy of these techniques during the pre-training phase remains a subject for subsequent
research. Another potential limitation stems from the training data itself. In multi-task scenarios,
extreme conditions—such as contaminated or adversarial data—can significantly impair performance
due to aggregation issues. The heterogeneity across tasks, including variations in language, task
type, and domain, may reduce the effectiveness of shared knowledge, thereby diminishing its
overall impact. This challenge is not exclusive to HydraLoRA but is common to all multi-task
frameworks. Addressing these concerns may involve implementing robustness-enhancing measures
(e.g., data sanitization, robust aggregation, and anomaly detection) and integrating privacy-preserving
technologies, such as homomorphic encryption, differential privacy, and blockchain.

E Broader Impacts

Positive Societal Impacts The proposed HydraLoRA framework, with its asymmetric structure
and parameter-efficient fine-tuning approach, has the potential to make LLMs more accessible and
efficient. This could democratize AI, enabling more researchers, developers, and organizations to
leverage the power of LLMs for various applications, ultimately driving innovation and progress.
Moreover, by effectively addressing the challenge of domain or task interference, HydraLoRA could
significantly enhance the performance of LLMs in complex, multi-task domains. This could lead to
more accurate and reliable AI-powered tools and services in areas like healthcare, education, and
finance, ultimately improving the quality of life for many people. Lastly, the parameter-efficient
approach of HydraLoRA could help reduce the computational resources required for training and
fine-tuning LLMs, thereby lessening the environmental impact of AI.

Negative Societal Impacts As with any AI technology, there are potential negative societal impacts
to consider. The risk of misuse is a significant concern, as HydraLoRA could be used for malicious
purposes, such as creating more sophisticated and convincing deepfakes or spreading misinformation
and propaganda. Additionally, the increased efficiency and accessibility of AI brought about by
HydraLoRA could lead to job displacement in certain sectors, as AI-powered tools and services
become capable of performing tasks traditionally done by humans. Lastly, the use of LLMs in various
applications could potentially lead to privacy and security issues, especially if these models are used
to process or generate sensitive information. The proposed HydraLoRA framework, while not directly
related to these issues, could inadvertently contribute to them by making it easier to deploy LLMs in
various applications.

18

9582https://doi.org/10.52202/079017-0304

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction sections, we articulate the motivation behind
HydraLoRA, highlight its differences from previous work, and outline the contributions of
this paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations in the Appendix D.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed explanation of the parameter usage and will release the
source code to ensure reproducibility.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide a detailed explanation of parameter usage and will release the
source code.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The full details are provided in the appendix and supplemental material (code).

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Experimental results are tested multiple times to ensure stability and reliability.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

19

9583 https://doi.org/10.52202/079017-0304

Justification: Compute resources are thoroughly described and evaluated in both the experi-
mental setup and the experimental results sections.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper fully conforms to the NeurIPS Code of
Ethics in every respect.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential positive societal impacts and negative societal impacts
of the work performed in Appendix E.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper cites the original paper that produced the code package or dataset.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: This paper relates the details of the code as part of the submission.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

20

9584https://doi.org/10.52202/079017-0304

https://neurips.cc/public/EthicsGuidelines

