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Abstract

The sampling problem under local differential privacy has recently been studied
with potential applications to generative models, but a fundamental analysis of
its privacy-utility trade-off (PUT) remains incomplete. In this work, we define
the fundamental PUT of private sampling in the minimax sense, using the f-
divergence between original and sampling distributions as the utility measure. We
characterize the exact PUT for both finite and continuous data spaces under some
mild conditions on the data distributions, and propose sampling mechanisms that are
universally optimal for all f-divergences. Our numerical experiments demonstrate
the superiority of our mechanisms over baselines, in terms of theoretical utilities
for finite data space and of empirical utilities for continuous data space.

1 Introduction

Privacy leakage is a pressing concern in the realm of machine learning (ML), spurring extensive
research into privacy protection techniques [[1H4]. Among these, local differential privacy (LDP) [5]
stands out as a standard model and has been deployed in industry, e.g., by Google [6, 7], Apple [8],
Microsoft [9]. In the LDP framework, individual clients randomize their data on their own devices
and send it to a potentially untrusted aggregator for analysis, thus preventing the user data from being
inferred. However, this perturbation inherently diminishes data utility. Consequently, the central
challenge in privacy mechanism design lies in optimizing utility while preserving the desired level of
privacy protection. This goal involves characterizing the optimal balance between privacy parameter
and utility, referred to as the privacy-utility trade-off (PUT). The analysis of the PUT and the proposal
of privacy mechanisms have been actively conducted for various settings of statistical inference and
machine learning [[10H27].

Most research in this field focuses on scenarios where each client has only a single data point.
However, there are increasingly more applications where each client has a large local dataset with
multiple data records. One can formulate the privacy requirement in these cases by assuming that
clients have datasets of the same size, generated independently from an underlying distribution [28l-
34]. This probabilistic assumption, however, restricts practical flexibility. The work [35] explored a
scenario where clients have large datasets that may vary in size and seek to privately release another
dataset that closely resembles their original dataset. In this scenario, local datasets can be represented
by an empirical distribution, allowing each client to be seen as holding a probability distribution and
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Original dist. Sampling dist. [35] Sampling dist. (ours)

Figure 1: Original Gaussian ring distribution and the sampling distributions of the baseline [35] and
our proposed mechanism for privacy budget ¢ = 0.5. The implementation details are in Appendix [F]

generating a private sample from it. This setup, which is called private sampling, is the main focus of
this paper.

Private sampling has recently found applications in the private fine-tuning of large language mod-
els [36]. Additionally, private sampling is connected to the challenge of learning private generative
models, a topic often explored in the central DP model [37-44]. While there exist studies on pri-
vate generative models within the local model [45H48]], all these works assume a single data point
per client. Very recently, the work [49] considered a setup where each client holds a probability
distribution, but in a different context of query estimation.

The private sampling mechanism in [35] can be described as follows. Initially, given a probability
distribution P representing a local dataset, the mechanism assumes a fixed reference distribution. It
then constructs what is termed the “relative mollifier”, a closed ball centered around the reference
distribution with a radius equivalent to half of the privacy budget, within the space of probability
distributions. Subsequently, the mechanism computes the projection of P onto the relative mollifier,
utilizing the Kullback-Leibler (KL) divergence. This projected distribution serves as the sampling
distribution for generating a sample (see Section[2.3|for more details). However, this mechanism has
a notable shortcoming: the sampling distribution is only locally optimal within the relative mollifier.
This, in turn, implies that the optimality of the sampling distribution depends on the choice of the
reference distribution. A more fundamentally intriguing goal would be to formulate and characterize
the PUT without such an ambiguity in the choice of reference distribution.

In this paper, we establish the optimality of locally private sampling in the minimax sense, and
identify optimal private samplers. Our primary contributions are summarized as follows:

* The fundamental PUT of private sampling is rigorously defined in terms of minimax utility,
which is commonly used in the literature of private estimation [[10, [11} 13} [30]. We impose
some minimal assumptions on client’s distributions as in [38]] (which studies sampling under
central DP, a weaker privacy model than the local model [50]). For utility measure, we use
the f-divergence [51,(52] between the original and the sampling distributions, that includes
KL divergence, total variation distance, squared Hellinger distance, and y2-divergence as
special cases.

* We characterize the exact PUT for both finite and continuous data spaces, and present optimal
sampling mechanisms achieving the PUT. Surprisingly, our mechanisms are universally
optimal under any choice of f-divergence for utility measure.

* We numerically demonstrate that our proposed mechanism outperforms the baseline method
presented in [35]]. Specifically, for finite data spaces, we derive a closed-form expression
for the utility of both our mechanism and the baseline, allowing for an exact comparison
of their utilities. In the case of continuous data spaces, a closed-form expression for the
baseline is not available, so we use empirical utility for the comparison. Figure [I]illustrates
our proposed mechanism outputs a distribution closer to the original, than the baseline.

All codes for experiments and figures are attached as a supplementary material, and can be found at
the online repositoryﬂ The instructions to reproduce the results in the paper are in Appendix

"https://github.com/phy811/0ptimal-LDP-Sampling,
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2 Problem Formulation

2.1 Notations and preliminaries

Notations. For a sample space X, let P(X") be the set of all probability distributions on X’. For
each n € N, let C(R™) be the set of all continuous probability distributions on R™. For each positive
integer k € N, let [k] := {1,2,--- ,k}. Forasubset A C X, 14 : X — {0,1} denotes the
indicator function, defined as 1 4(x) = 1 forx € Aand 1 4(z) = 0 for z ¢ A. Also, for s; < s9
and z € R, let clip(z; s1, s2) := max{sy, min{sz, z}}. We refer to Appendix [A] for the rigorous
measure-theoretic assumptions underlying the paper.

f-divergence. For a convex function f : (0,00) — R satisfying f(1) = 0 and two probability
distributions P, ) € P(X) on the same sample space X, let D (P||Q) denote the f-divergence
[511/52]]. The general definition of f-divergence is given in Appendix [B] For ¥ = R™ and P,Q €
C(R™) with P < Q (thatis, P(A) = 0 whenever Q(A) = 0), it is defined as

Dy (PlQ) = [ Y (%)dx 0

where p, q are pdfs of P, Q, respectively, and we define f(0) = lim,_,o+ f(z) € (—00, 00]. For
finite X', we can replace the integral with the sum and replace p, ¢ with P, (). Several well-known
distance measures between distributions are examples of f-divergence with different convex functions.
For instance, KL divergence (relative entropy), total variation distance, squared Hellinger distance,
and x2-divergence are f-divergences with f(x) = zlogx, f(z) = |z — 1]/2, f(z) = (1 — V/1)?,
and f(x) = 2% — 1, respectively. Two important properties of general f-divergence are keys for this
work. First, Dy (P||@Q) > 0, and equality holds if P = Q). Furthermore, we have

Dy (PIQ) < My = lim f(x) +f(1/2), @

where equality holds if P and ) are mutually singular (that is, they have disjoint supports). For a
more comprehensive list of such f-divergences and their properties, we refer the readers to [52].

We denote the KL divergence and the total variation distance as Dxp, (P||Q) and Drv (P, Q),
respectively. We note that the total variation distance is in fact a metric on P(X).

2.2 System model

Suppose a client has access to a distribution P € P(X’) over a sample space X', and wants to produce
a sample in X which looks like being drawn from P and to send it to a data curator. We assume that
there are some constraints on the possible data distribution P, so that P is restricted to be in some
subset P C P(X), and both the client and the curator know X’ and P. However, it is required that a
sampled element does not leak the privacy about the original distribution P. For this purpose, the
client and the curator agree a private sampling mechanism Q, which is a conditional distribution
from P to X'. After that, the client produces a sample following the distribution Q(:| P). To guarantee
the privacy protection, we impose Q to satisfy the local differential privacy (LDP) [10}35].
Definition 2.1. Let € > 0. A private sampling mechanism Q is said to satisfy e-LDP, or Q is an
e-LDP mechanism, if for any P, P’ € P and A C X, we have

Q(A|P) < e“Q(A[P'). (©)

For convenience, for each P € P, let Q(P) € P(X) denote the distribution of X given P through
Q, thatis Q(P)(A4) = Q(A|P) for each A C X. In this way, we equivalently see Q as a function

Q:P — P(X). Let Qy 5 . denote the set of all e-LDP mechanisms Q : P — P(X).

As the utility loss of the private sampling, we use the f-divergence between the original distribution
and the sampling distribution, D (P||Q(P)). Since the sampling procedure can be performed across
many clients who may have different data distributions, we measure the utility loss of Q by the
worst-case f-divergence,

R (Q) = sup Dy (P[|Q(P)). ©)

pPeP
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Given X, 75, €, and f, our goal is to find the smallest possible worst-case f-divergence,

R(X,P,e, f) = Qeignf R;(Q), 4)

X, P.e

and to find a mechanism Q € Q 5 _ achieving it. We say that Q € Q. 5 _ is optimal for (X, P, ¢)
under Dy if R;(Q) = R(X, P, e, f).

2.3 Related work

The most closely related work to our work is [35]. The system models are the same as this paper,
except the formulation of PUT. They first fix a reference probability distribution Qg € P(X’'), and only
consider mechanisms Q satisfying e~</2Q(A4) < Q(A|P) < e/2Qy(A) forall P € Pand A C X.
In other words, let M, o, = {Q € P(X) : e=/2Qo(4) < Q(A) < e/2Qu(A), VA C X}.
Then, they only consider Q such that Q(P) € M, g,. Note that this guarantees e-LDP. For each

P € P, they sought to find Q € M, g, which minimizes Dk, (PHQ) and set this @ to be Q(P).
First, they claimed to find a closed-form expression of such a minimizer () for finite X, given by

Q(x) = clip (P(x) Jrpie=2Qo (), 66/2Q0(x)> , (6)

where rp > 0 is a constant depending on P ensuring ) |, Q(z) = 1. Second, they presented an
algorithm, called Mollified Boosted Density Estimation (MBDE), to approximate the optimal solution
for continuous X. However, the utility varies over the choice of reference distribution @)y, and they
left the question of choosing a best () to achieve the best performance in both practice and theory.
Moreover, we found that the closed-form in (6) is incomplete, because for some (P, Qo), there may
be no rp > 0 such that the RHS of (6) does not sum to one. As an example, when P, Q¢ are point
masses at different points, then we can easily see that the sum of (G) is e~</? for any 7p > 0.

3 Main Results

3.1 Optimal private sampling over finite space

First, we consider the finite case, where X = [k] for some k € N. A natural setup for P is that
P = P([k]), i.e. there is no restriction on the client distribution P € P([k]). In this case, we

completely characterize the optimal worst-case f-divergence R(X, Pe, f) and find an optimal
private sampling mechanism. Surprisingly, for each £ € N and € > 0, we found a single mechanism
which is universally optimal for every f-divergence.

Theorem 3.1. For each k € N, € > 0, and an f-divergence D, we have

‘ 4k k—
RO P .) = st (o ) + e 1O @

Moreover, the mechanism Qj, . constructed as below satisfies e-LDP and is optimal for (X =
[k], P = P([k]), €) under any D;:

Q;, (z|P) = max ( ! P(x) L

- ’e€+k—1) Vz € [k], P € P([k]), ®

where rp > 0 is a constant depending on P so that 22:1 Qj. (x| P) = 1. Furthermore, rp can be
chosen such that 1 < rp < (e +k —1)/e".

By definition, we have Qj, (z|P) > eeJrlk 7 for a]l x € X. This also implies that Qj J:\P)
L=3er ey Qe@|P) <1 - e"_fkl_l = 6€+k_1. Hence, E‘+k 1 < Qi (2|P) < =5
This clearly implies that Qj; _ satisfies e-LDP.

Behaviors of the optimal mechanism. Let us observe some behaviors of the proposed mechanism
with respect to the system parameters, whose formal proofs are in Appendix [E| We visualize how
the mechanism Qj; . works for different € in Flgurel 2l Here, we write R to mean R([k], P([k]), €, f)
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for simplicity. If f(0) = oo, then R = oo, which means that R;(Q) = oo for any e-LDP sampling
mechanism Q. (Such a phenomenon happens for general (X', 75), whenever P contains two mutually
singular distributions) Hence, from now on in this paragraph, we assume f(0) < co. We can observe
that R is decreasing in € and increasing in k. For a fixed k, we have R — 0 as e — 0o, which makes
sense since € — oo corresponds to the non-private case. Also, as € — 0, we have Q;, (z[P) — 1/k
for every P € P([k]) and = € [k], thatis, Q} .(P) tends to the uniform distribution over [k] for
every P € P([k]). This fact can be also observed by Figure 2]

Remarks about the constant »p. The value
of rp may not be unique, but the mecha-

nism Qj . does not depend on the choice 0301 BN Original pmf P(v) BB Q) («|P), e = 0.5

of rp. To see this, let us fix P, and let Qi (elP) =10 mm_Q (s|P), e =01
0.254

gr(x) = max (%P(:r), flkq) Suppose that

k k 0.20 1
Yoweq gr(x) =0 g (x) = 1forr < 1.
Since g,(z) > g (x) for each x € [k], the

. k k S

equality > ., gr(x) = > . _; g () implies
that g-(z) = g, (z) for all = € [k]. Hence Qj, 0101
is uniquely determined. Since r — 22:1 gr(x)
is non-increasing and continuous, we can use
the bisection method to find rp. The ‘Further- 000
more’ part of the theorem statement precisely
means that forr = landr = (e + k — 1) /e,
the value of 25:1 gr(x) is at least and at most ~ Figure 2: A visualization of the mechanism Qj,
1, respectively, so that we can perform the bisection method with these two initial endpoints to find r

such that 2221 gr(z) = 1.

Probability

0.051

Data value x

Comparison with the previous work [35]. The expression of the optimal mechanism in (8]
is similar to (6), the expression of the KL divergence projection onto M. o, derived by Husain

etal. [35]. Since —— < Qj.(z[P) < 4=, we can alternatively write Q;, (z|P) =

. 1 . 1 eé . . . .
clip (EP(JS), Py oy R et e ) Hence, our optimal mechanism can be viewed as an instance of

a generalized version of (), where Q) is a positive measure, not necessarily a probability measure

. . e/2 Lo . L
summing to one, given by Qo (z) = %7~ A natural question is whether Qj, .(P) is a projection
of P onto M, q,, thatis Qj _(P) is a minimizer of Dk, (P[|Q) among Q € M, q,, where M q,
is similarly defined as in Section[2.3] As we shall discuss in Section [3.3] this statement is true —quite
surprisingly— even when we replace Dy, with any other f-divergences. However, our analysis
is more involved, as we need to show the optimality of the proposed mechanism over any other
possible mechanisms, including minimizers with respect to other choices of (Qy. Also, in Section
[5] we compare the worst-case f-divergence of our optimal mechanism with that of the mechanism
proposed in [33] which restricts Q to be a probability distribution.

3.2 Optimal private sampling over continuous space

Next, we consider the continuous case, where X = R" for some n € N. Some of the natural
setups for P are (i) P = P(R™), or (ii) P = C(R™). We can also think some restrictive but still
reasonable setups, such as the setups where (iii) P is the set of empirical distributions supported
on some non-empty open subset of R”, or where (iv) P is the set of continuous distributions on
[—1, 1]™ having smooth pdf and zero mean. However, we show that for a general class of P including
these four cases, any e-LDP sampling mechanisms have the worst-case f-divergence equal to the
maximum value M of the f-divergence defined in (2)). In the following proposition, X may be a
general sample space, not necessarily R™ or finite space. The proof is in Appendix [D}

Proposition 3.2. Suppose that P contains infinitely many distributions which are pairwise mutually
singular. Then, for any € > 0, for any e-LDP mechanism Q € Q x P and for any f-divergence, we

have R;(Q) = My, where My is define at ().
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Hence, we need to consider sufficiently regular but practical setups for P.

Our setup. In this subsection, when P, Q) € C(R"™), the corresponding small letters p, ¢ denote
their pdfs. In this paper, we consider the case that

P = Pereah = {P € C(R") : c1h(z) < p(z) < c2h(z), Vo € R"} ©)
for some pre-known h : X — [0,00) such that [, h(z)dz < oo and ¢; > ¢; > 0. Some of

the sampling tasks and generative models in literature [53,135] assume that the set of possible data

distributions P satisfies P C 73Cl cs,h fOr some cy, ca, h satisfying the aforementioned condition,
hence (9) is a moderate assumption. One example is the sampling from a Gaussian mixture, which

is one of the canonical sampling tasks in literature [53| 35]]. Suppose that P consists of Gaussian
mixtures, where each Gaussian has mean within a unit ball centered at the origin and has unit

covariance. That is, P = {Zle AN (i, L) = k€ Ny > O,Zle Ai = 1, ||| < 1}, where
I, is the identity matrix of size n X n. In this case, we can observe that P C 770 1,5 for h(z) =
(27) ="/ exp(—(max(0, [|z|| — 1))?/2), and it can be easily shown that Jan h(z) < 0.

Without loss of generality, we may assume the following normalization condition on ¢y, ¢, h, €:

hz)de =1, ¢ <1<co, ¢g>cref. (10)
R’n

The reason is as follows. First, if any one of three inequalities fR” x)dx >0, c1 fRﬂ x)dx < 1,
and co fRn h(z)dz > 1is not satisfied, then 7561 .ca,h 18 €ither an empty set or a singleton that consists

of a distribution having pdf ¢; h(x) or coh(x), which makes the problem trivial. Hence we impose all
of the three inequalities. Then, we can normalize cq, co, h, to make fRn h(z)dr =1landec; < 1 < co.

Furthermore, if co < eS¢y, then for any Py, Py € 7561,62,;1, we have py(z)/p2(z) < ea/e; < ef,
hence we can easily observe that the mechanism Q defined as Q(P) = P forall P € P, ., » satisfies

e-LDP and R;(Q) = 0, hence the problem also becomes trivial, giving R(R", P, c,.1,€, f) = 0.
Hence, we may assume

Minimax utility and optimal mechanism. For the aforementioned setup, we can completely
characterize R(X, P, ¢, f) and find a mechanism which is universally optimal for every f-divergence.
The formula is similar to the discrete case, with a carefully chosen clipping bound.

Theorem 3.3. For each ca > ¢ > 0,e > 0, and h : R™ — [0, 00) satisfying the normalization
condition (10), let us define the following constants determined by c1, ¢z, €:

Co —C1 C1 C2
b= = —= = —. 11
(ef —1)(1—c1)+ca—c1’ TG 2T e (an
Then, we have
~ 1-7r o — 1
R(Rn773017027h7 6? f) = ! f(r2) + 2 f(rl)' (12)
o —T1 T2 —T1

Moreover, the mechanism QZI o hie

R™, P = 7561762,;1, €) under any Dy:
For each P € P, Qr

cl,CQ,h,e(

constructed as below satisfies e-LDP and is optimal for (X =

P) =: Q is defined as a continuous distribution with pdf

o(o) = ctp ( opla):bh(o). be(o)) (3)

where rp > 0 is a constant depending on P so that fRn q(x)dx = 1. Furthermore, rp can be chosen
such that ri < rp < ro.

It is also clear that Qc o e satisfies e-LDP. Also, we note that ¢c; < b < 1 < be® < ¢ and
0<r <1<y, which is shown during the proof of Theorem 3.3in Appendix [C]

In practical scenario, it may be hard to expect P = ﬁch%h exactly, and we may only know

P C 7501,% n for some c1, c2, h satisfying aforementioned conditions. In such case, we still propose
touse Qf, ., 5 . and in Section 5| we numerically show that this proposed mechanism is better than
previously proposed mechanism [35] in terms of the worst-case f-divergence.
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Behavior of the optimal mechanism. We also observe some behaviors of the proposed mechanism
with respect to the system parameters, whose formal proofs are in Appendix [E] Again, we write R to
mean R(R™, P, ¢, 1, €, f) for simplicity. For a fixed (¢1, ¢2), R is decreasing in €. If ¢; = 0 (which
implies 7 = 0) and f(0) = oo, then R = oo, which means R¢(Q) = oo for any e-LDP sampling
mechanism Q. For the behavior at ¢ — oo for a fixed (¢, ¢2), if ¢; > 0, then for sufficiently large
€, we have c1e€ > ¢y , so we fall in the aforementioned trivial case that R = 0. If ¢; = 0 and
f(0) < oo, then as € — oo, we have R — 0, which again corresponds to the non-private case.

Remarks on the constant rp. By the same reason as in the finite space case, the value of rp
may not be unique, but Q7 ., , . does not depend on the choice of rp, and rp can be found
by the blsectlon method with a numerical integration of (TI3). Note that the continuity of r —
[ 9r(@)dz, g, (x) = clip (+ ( ); bh(x), bech(z)), follows from the dominated convergence theorem
[54] since we assume fRn x)dz < oo. The meaning of ‘Furthermore’ part is also similar to the
finite space case, that is, the value of f gr(z)dx at r = 71 and r = ry is at least and at most 1,
respectively, so that we can perform the blsectlon method with initial endpoints (r1,72) (When
r = 0, we define g, () = bech(x) whenever p(z) > 0 and gr( ) = bh(x) whenever p(z) = 0). A
corner case is that when r; = 0, the contlnulty of r — [ g,(x)dx does not suffice to guarantee the
existence of strictly positive r such that [ g,(x)dz = 1. However in the proof, we actually show that
J v, (x)dz = 1 implies [ g,(x)dz = 1 for every r € (rl, r9], which especially implies that even
when r; = 0, there is a strictly posmve r such that f gr(z)dxz = 1. This is the reason that we state
the strict inequality r; < rp.

3.3 Proof sketch of the theorems

The full proofs of the main theorems, Theorems [3.1] and [3.3] are presented in Appendix [C| In
Appendix [C] we present a generalized theorem which includes Theorems [.T]and3.3] as special cases,
where X can be a general sample space and P is similarly defined as in the continuous space case.
The key idea for proofs and proposed mechanisms is to focus on the behavior of Q(P) when P is
in an extreme case in P. In finite space, point masses are extreme cases, and for continuous space
with P = Py, ,.n, the cases that p(z) € {c1h(z), coh(z)} for all z € X are the extreme cases. As
implied by the proof, the worst-case f-divergence of the proposed optimal mechanism is attained
when P is in the aforementioned extreme cases. Such an approach using extreme case is a frequently
used technique in PUT analysis [S5H58]).

Our proof consists of two parts, the achievability part and the converse part. The achievability part is
to show that the worst-case f-divergence R ;(Q*) of our proposed mechanism Q* is upper-bounded
by the RHS of (7) or (I2Z). The converse part is to show that R¢(Q) of any e-LDP mechanism Q is
lower-bounded by the RHS of (7) or (12)). From now, we briefly describe the proof idea of each part.
Here, we omit the subscripts (k, €) or (c1, ¢a, h, €) for notational convenience.

Achievability part. Let /\/l {Q*(P):Pe 75} For finite space, M consists of all distributions
Q € P([k]) such that — +k 7 < Q(z) < =5 for every z € [k]. For continuous space, M

consists of all continuous distributions @ € C(R™) whose pdf ¢ satisfies bh(z) < g(x) < be‘h(z)
for every x € R".

We construct a mechanism Q' such that R;(Q) is upper-bounded by the RHS of (7) or (T2).
The construction is as follows. First, we set a reference distribution p € P(X) and a constant
v € [0, 1] according to a certain rule specified in Appendix Then, for each given P, we generate a
private sample by sampling from the original P with probability -y, and sampling from the reference
distribution g with probability 1 — ~. In other words, we have Qf(P) = P + (1 — ~)u. Our choice
of 1 and v makes QT(P) € M for every P € P, which especially implies that Q' also satisfies
e-LDP. Furthermore, we can find a bound on the ratio of the pmf or pdf for original distribution to
that for sampling distribution. Then, invoking [59] Theorem 2.1], which bounds f-divergences given
bounds on the ratio between pmf or pdfs, we show that Ry (Q) is upper-bounded by the RHS of

or (12).

Next, we demonstrate a non-trivial generalization of the main result of [35] that Q*(P) is the
f-divergence projection of P onto M for P € P and for every f-divergence.
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Proposition 3.4. Assuming the setups of (X, P, €) in either Theoremor let Q* denote the
proposed mechanism Qj. . or Q7 ., .. Also, let M be as described above. Then, for every P € P
and every f-divergence Dy, we have D¢ (P||Q*(P)) = infge m Dy (P]|Q).

Notice that this proposition differs from [35] in that it holds for all general f-divergences (as
opposed to only KL divergence) and general sample spaces, be it discrete or continuous. This
result immediately yields Dy (P||Q*(P)) < Dy (P||Qf(P)), and hence R;(Q*) < Rp(Qf) <
(RHS of (7 or (I2)). We remark that combining with the converse part (to be described below), it
implies that the QT is also optimal in our minimax sense. Nevertheless, Q* outperforms Q in that
Dy (P|Q*(P)) < Dy (P||Qf(P)) for every P € P.

Remark 3.5. For the finite case, y is the uniform distribution over [k] and ~ is taken in such a way
that Q' satisfies e-LDP tightly. In this case, an alternative way to implement Q' is as follows. For
each given P, first we sample from P to get a raw sample and then apply the k-ary randomized
response [60] to it.

Converse part. For each extreme P, let Ap be the “high probability set”, defined as Ap = {z €
X : P(x) = 1} for finite space and Ap = {x € X : p(x) = coh(x)} for continuous space. Then,
using the data processing inequality of f-divergence [61]], we take a lower bound of D (P||Q(P)) by
the f-divergence between the distributions of 1 4, (X) for X ~ P and that for X ~ Q(P). Such a
lower bound becomes a decreasing function of Q(Ap|P) in a certain range. Then, we seek to find an
upper bound on inf Q(Ap|P) over extreme P, which gives a lower bound on R;(Q). This involves
a novel combinatorial argument. We perform a “packing” of w copies of X’ by ¢ subsets A1, -+, A;
with A; = Ap, for some extreme P; and appropriately chosen ¢ and u. Then, we decompose the
RHS of u = 3" ; Q(X|P;) by an appropriate partition of X" involving A;’s and use the definition
of e-LDP to find an upper bound on inf Q(Ap|P).

4 Discussions on the Proposed Mechanism

4.1 Effect of the rp approximation error

In practice, it may not be possible to find the exact value of rp such that the sum or integration of the
RHS of @) or (T3) is 1. For the case of continuous space as in Theorem [3.3] one way to implement

the proposed mechanism Q. ,, . in practice is as follows. First, we fix parameters 6, € [0, 1) and

8> > 0 that quantify error tolerance. For a given P, we define g,.(z) = clip (1p(z); bh(z), be°h(z))
and find rp > 0 such that [, g, (x)dx € [1 — 01,1+ d,]; we delineate a numerical algorithm for
this task in Section [3.2]based on the bisection method and a numerical integration method. Then, we
get a private sample by sampling from the distribution with pdf () = g, (2)/ [. grp (x)dz. For
the finite case as in Theorem [3.1} we can implement in the same way, except replacing the integral
with the sum.

bh(z) beh(x)
14627 1—01

It is important to note that §(z) € [ } , indicating that the resulting Qj; . and Q

*
c1,¢2,h,e

satisfy (e + log 139 )-LDP as opposed to e-LDP. Thus, the above implementation yields e-LDP if it

1751
is used to implement Q7 _, or Q 140,
p ke’ 1-6;

that ¢ > 0.

Zh%h’e,, with ¢ = € — log and sufficiently small d1, 2 such

4.2 Continuity of the proposed mechanism

In some practical scenarios, the client may not have full access to their distribution P. One example
is that the client can only access to samples from P. In such case, the client may first estimate the
true distribution, and then perturb the estimated distribution through the optimal mechanism. The
question is how the perturbation using the estimated distribution deviates from that using the true
distribution. To answer this, we show that the proposed mechanism satisfies a pointwise Lipschitz
property with respect to the total variation distance, and the Lipschitz constant is closely related to
the factor rp we introduce in Theorems[3.1]and 3.3}
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Proposition 4.1. Assuming the setups of (X, P, €) in either Theoremor let Q* denote the
proposed mechanism Qj; . or Q;, Then, for any P, P' € P, we have

c1,c2,h,€e

2

————Dyv (P, P') (14)
max(rp, ’I“P/)

Dy (Q*(P), Q*(P)) <

where rp > 0 is as in Theorem[3.1| or[3.3]

This guarantees that for each given true P and given ¢ > 0, whenever the approximated P’ satisfies
Drvy (P, P") < drp/2, the perturbed distribution Q*(P’) satisfies Dy (Q*(P), Q*(P’)) < 4.
In theoretical perspective, this proposition implies that Q* is continuous when P and P(X) are
endowed with the metric topology from the total variation distance. The proof of Proposition4.T]is in

Appendix

5 Numerical Results

In this section, we numerically compare the worst-case f-divergence of our proposed mechanism
with that of the previously proposed sampling mechanism. To the best of our knowledge, the only
work about the private sampling under LDP is [35]], hence we set the baseline as the mechanism
proposed in [35]]. In all the cases, we perform the comparison across three canonical f-divergences:
KL divergence, total variation distance, and squared Hellinger distance, as well as across five values
of e: 0.1,0.5, 1,2, and 5.

5.1 Comparison for finite data space

In this subsection, we compare the mechanisms in the finite space, X = [k] and P = P([k]). As
mentioned in Sections 23] and 3.1} the baseline mechanism has a hyper-parameter, a reference
probability distribution Qg € P(X'). We set the baseline as a generalized f-divergence projection
onto the relative mollifier. That is, for each given f-divergence, we set the baseline to satisfy
Q(P) € arg mingep, o, Dy (P||Q), where M. g, is defined in Section As expected by

symmetry, for any f, choosing Qg to be the uniform distribution minimizes the worst-case f-
divergence R;(Q) among all choices of ()¢ for the baseline. Also, even though we do not obtain the
closed-form expression of Q(x|P) for the baseline, we obtain the value of R¢(Q) when Q) is the
uniform distribution. The proof of this fact, together with the precise value of R(Q) for uniform
Qo is in Appendix [F.1} Hence, we always set Qo to be the uniform distribution in the result about
the baseline. Since we have the precise Values of Ry Q ) for both our proposed mechanism and
the baseline, we plot such values of R(Q) in Figure 3| For simplicity, we only provide the plot
for k = 10. More plots for some other k’s can be found in Appendix |Gl As shown by the figure,
the proposed mechanism has lower worst-case f-divergence than the baseline for all choices of
f-divergences and € in the experiment, with significant gap in medium privacy regime € € [0.5, 2].

KL TV Sq. Hel

2 2.0 0.8
§ 1.5 1 0.6 1
=

“~ 1.0 A 0.4 1
2 0.5 0.2

0.0 - 0.0 - .
0.1 05 1.0 20 5.0 0.1 05 1.0 20 5.0 0.1 05 1.0 2.0 5.0

EEE Proposed I Baseline  Privacy budget ¢

Figure 3: Theoretical worst-case f-divergences of proposed and previously proposed baseline
mechanisms (with uniform Q) over finite space (k = 10)
(Left: KL divergence, Center: Total variation distance, Right: Squared Hellinger distance)
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5.2 Comparison for 1D Gaussian mixture

In this subsection, we conduct an experiment to compare the mechanisms when the client distributions
are Gaussian mixtures over a real line X = R, which is an instance of a continuous space case. We
consider the case that each client has a Gaussian mixture distribution in R, where each Gaussian
has a mean bounded by 1 and has a unit variance. To avoid arbitrarily large number of Gaussian
distributions to be mixed, we set an upper bound K of the number of Gaussian distributions to be
mixed per client. Also, to make the numerical integration tractable, we truncate the domain of the
distributions to lie inside an interval [—4, 4]. Unlike the finite space case, there is no known closed-
form expression of the worst-case f-divergence for the mechanism in [33]]. The set of Gaussian
mixtures is not exactly of the form P = P, ., 1, hence our proposed mechanism also does not have
a known closed-form expression of the worst-case f-divergence. Hence, instead, we compare the
mechanisms by an empirical worst-case f-divergence.

For an experiment, we randomly construct N Gaussian mixture distributions Py, P5,--- , Py € P,
where each P; is generated independently according to some rules specified in Appendix After
that, we plot the value of the empirical maximum f-divergence max;cn) Dy (P;||Q(P;)) for
the baseline and our proposed Q. For the baseline mechanism, we use MBDE with the same
hyperparameter setup as [35], Section 5], except a slight modification of the reference distribution to
consider the truncation of the domain. The implementation details are provided in Appendix [F2]

In Figure[d] we present the result for N = 100 and K = 10. We can see that the proposed mechanism
has much lower worst-case f-divergence than the baseline for all choices of f-divergences and e.

KL TV Sq. Hel

=}
'S
L

0.3 1

e
o
L

0.2 1

<
o
L

0.1 A

Worst f-divergence
o
=
!

0.0 = 0.0 =

0.00
0.1 05 1.0 2.0 5.0 0.1 05 1.0 2.0 5.0 0.1 05 1.0 2.0 5.0
B Proposed N Baseline Privacy budget e

Figure 4: Empirical worst-case f-divergences of proposed and baseline mechanisms over 100
experiments of 1D Gaussian mixture
(Left: KL divergence, Center: Total variation distance, Right: Squared Hellinger distance)

6 Conclusion

In this paper, we characterized the optimal privacy-utility trade-off for the private sampling under LDP
and found the optimal private sampling mechanism in terms of the minimax f-divergence between
original and sampling distributions, for both finite and continuous data spaces. Compared to the
previous work [35] based on relative mollifier with arbitrarily chosen reference distribution, our work
characterizes PUT without dependency on external information other than the original distribution,
and it is shown that the mechanism we found is universally optimal under any f-divergence.

For future works, there may be other P and other measures of utility more appropriate to practical
scenarios, which are not handled in this paper. For example, f-divergence may be an inappropriate
utility loss because it only depends on o-algebra structure and does not consider additional information
about geometry of X', such as underlying metric on X'. Using utility measures involving the geometry,
such as Wasserstein distance [62} (63} [49]], may be more appropriate for some scenarios. Also, we can
consider the Bayesian approach instead of the worst-case approach. Furthermore, we only consider
the task of releasing a single sample per client in this paper. We may also consider the case of
releasing multiple samples per client, rather than a single sample.

The limitations and broader impacts of this work are in Appendices|[[Jand[J] respectively.
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A Assumptions about the Measure Theory

The appendices assume the familiarity with the basic measure theory and real analysis. We refer the
standard textbooks about the measure theory and real analysis, e.g. [54].

Throughout the main paper and the appendices, we assume the followings:

* For each sample space X, a o-algebra on X is implicitly given. Unless mentioned otherwise,

— the discrete o-algebra is given for finite X', and
— the Borel o-algebra is given for X = R".

* A “subset” of X’ always means a “measurable subset”, and similarly A C X always means
A is a measurable subset.

* The “continuous" distribution precisely means the “absolutely continuous" distribution (with
respect to the Lebesgue measure).

In the appendices, we also introduce the following notations:

* For finite X', # denotes the counting measure.

e For X = R"”, m denotes the Lebesgue measure.

B General Definition and More Properties of f-divergences

In this appendix, we review the general definition and additional properties about the f-divergences
which are important in our analysis. Let a convex function f : (0,00) — R with f(1) = 0 be given.
For P, € P(X), not necessarily P < (), we first take a dominating measure x on X’ such that
P Q< p(eg,pu=P+Q),andletp =dP/du, ¢ = dQ/du. The f-divergence D (P||Q) is

defined as
D; (P1Q) = [ at)f (4 ) duta). 15)

We note that (I3)) is invariant under the choice of the dominating measure .

Since it is possible that p(z) = 0 or g(x) = 0, we need to define what is the value of the expression
qf(p/q) forp = 0 or ¢ = 0 [51L[52]]. It is well-known that any convex function f : (0,1) — R is
continuous, and the function

fr(x) =zf(1/x) (16)

is also convex on (0, 1). Furthermore, any convex function f : (0,1) — R with f(1) = 0 has a limit
lim, o4+ f(z) in R U {+00}. Hence, we have the continuous extension f : [0,00) — R U {400}
by setting f(0) = lim,_,o4 f(x), which is proper convex and continuous. By the same way, we have
the continuous extension f* : [0, 00) — RU {+oc}. Using these extensions, we define 0£(0/0) = 0,
qf(0/q) = qf(0) for ¢ > 0, and 0f(p/0) = pf*(0) for p > 0. Especially, if f*(0) = oo, then
Dy (P||Q) = oo whenever P < @ does not hold. (This is the case for KL divergence and x>
divergence for examples) Similarly, if f(0) = oo, then Dy (P||Q) = oo whenever () < P does
not hold. Also, the maximum value of the f-divergence My presented in () can be written as
M; = £(0) + £(0).

The following additional properties of f-divergences are important in our analysis. [61]

Theorem B.1. Any f-divergence is jointly convex, that is for any Py, Py, Q1,Q2 € P(X) and 0 <
A <1 wehave Dy (APy + (1 = AP [[AQ1 + (1 = A)Q2) < ADj (P1[|Q1) + (1= A) Dy (P2 Q).

Theorem B.2 (Data-Processing Inequality). Let M be a conditional distribution (Markov kernel)
Sfrom X to ). For given Py, Py € P(X), let Q1, Q2 € P()) be the push-forward measure of Py, Py
through M, respectively. Then for any f-divergence, we have Dy (P1||Py) > Dy (Q1]/Q2).

Also, we present several equivalent expressions for the total variation distance [51, 52]], which are
used in Appendix [D] In below expressions, the assumption is that P, Q < p for some dominating
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measure p with p = dP/dp and ¢ = dQ/dp.

Dry (P,Q) = ;5 [ Ip(e) ~ a(a)ldu(e) a7
-/ (alw) - pla))dp(x) (18)

z:p(z)<q(z)
-/ (p(a) — g(a))du(x). (19

z:p(z)>q(x)

We introduce one more notation. For A1, As € [0,1], let D]]? (A1]]A2) denotes the f-divergence
between Bernoulli distributions with Pr(1) = Ay and Ao, respectively. That is,

DF i) =af (31) + -7 (153 @0)

We should note the following facts:

1. By joint convexity of the f-divergence and continuity of f, D]]? (A1]|A2) is continuous and
jointly convex in (A1, A2). (But DJI? (A1]|A2) may be extended real-valued)

2. For afixed A\, D]]? (A1]]A2) attains a global minimum 0 at Ay = A;. Together with convexity,
we derive that DJE? (A1]|A2) is decreasing in Ay € [0, A1] and increasing in A2 € [A1,1],
respectively.

C Generalized Main Theorem and Proof

In this appendix, we present the formal proofs of the main theorems, Theorems [3.1and [3.3] As
mentioned in Section [3.3] we first state the generalized theorem with its proof, and later we show
how this generalized theorem includes the main theorems as special cases.

C.1 Statement of the generalized main theorem

First, let us define the general setup we consider. Let a (general) sample space X be given. For a
positive measure ;1 on X such that u(X') < oo and ¢ > ¢1 > 0, let us define

75c1,02,u ={PePX): P<p, ¢ <dP/dp<cy p-ae.}. 21

We generally consider the case that P = 75617627 u for some ¢y, ¢z, pi. For example, for the setup
of Section we have P, ¢, n = Pey,c.,u» Where p is a positive measure with 1 < m and
du/dm = h. For the setup of Section we have P([k]) = Po,1,%. By the same reason as in
Section@ we may impose the following normalization condition on ¢y, c2, p, €:

wX)=1,  <1l<eca co2>cpe. (22)
Note that 1(X) = 1 means that x is a probability measure, that is 4 € P(X). Also, note that for
X = [k], we can write in normalized form as P([k]) = Po k,u,, where py, = 14 is the uniform
distribution on [k].

First, let us define the proposed mechanism, together with the related constants as the same as
Theorem [3.3] For the ease of proof, we introduce an additional constant o over Theorem [3.3]
Definition C.1. Let ¢y, co, 1, € satisfying the normalization condition (22) be given, and let P =
Pe, ,cs,u- First, define the following constants determined by ¢y, ¢z, €:

1-— &1

oo loa (23)
Cy — C1
b= e = ! ’ (24)
(ec=1)(1—c1)+ec2—c1  aef+1—a
€ _1)(1 — _
- a _ ((e Y1 —c1)+ e Cl>01 = cy(aef +1— q), (25)
b C2 —C1
€_1)(1— _
rz:cQ:((e J(1—c1)+co 01)02:02(a65+1—a). (26)
be¢ Cc2 —C1 et e
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*

Also, define a mechanism Qg ., ,

€ Qy 5 . as follows:

For each P € P, Q (P) =: Q is defined as a probability measure such that Q < p and

dQ 1 dP
= (x) =clip [ —=—(2); b, be€ 27
(@) = ctp (1 G @) @
where rp > 0 is a constant depending on P so that [ %du(m) = 1. Furthermore, let M., ¢, ue =
ﬁb,beew so that Q* (P) € Mg, co . forevery P € P.

C1,C2,[,€

*
C1,C2,M,€

We should note that 1 = coar+¢1(1 — ) = befar+ b(1 — ). Also, Q clearly satisfies e-LDP.

*
C1,C2,[4,€

By the same reason as in Sections[3.1]and [3.2] the values of r» may not be unique, but the mech-

anism Qg ., , . does not depend on the choice of rp. Furthermore, we show that the value of

J clip (%%(m); b, bee) du(z) at v = r1 and r = ro are at least and at most 1, respectively.

Proposition C.2. Let c1,co, i, €, 75, «, b, 71,79 be as in Definition Then, for any P € P, we

have
1dP 1dP
. ) c 51> . ) c
/Chp (7’1 Fm (x);b,be ) du(z) > 1> /chp (r2 m (x);b,be ) du(zx), (28)

where, in the case of r1 = 0, we define

.~ dP _
clip (16”3(95);19, be€> - {b’ i G () =0 (29)

r1 dp bec, otherwise

Furthermore, if [ clip (%%(m); b, beE) dp(z) = 1, then [ clip (%%(w);@ bee) du(z) = 1 for

everyr € [ry,ra).

1dpP

This proposition, together with the fact that  — [ clip (T o

(x); b, bee) du(x) is continuous and
monotone decreasing, implies that rp can be chosen such that 7y < rp < 7o, as stated in Theorem

(Again, the continuity is from z(X) < oo and the dominated convergence theorem)

Also, we should remark that 0 < o« < 1 and ¢; < b < 1 < be® < co. The first one easily follows
from ¢; < 1 < ¢y and the definition of «. For the second one, first we have 1 < ae® +1 — a < €f,
as ae® + 1 — «v is a propoer convex combination of 1 and e. This directly implies that b < 1 < be€.
Next, by calculations, we can observe that

a((ef—=1)(1—-c1)+ea—c1)—(ca—c1) = (1 —c1)(c1ef —e2) <0, (30)
which implies ¢; < b, and
ca((ef =11 —c1)+ea—c1)—e(ea—c1) = (2 —1)(ca —€ecy) > 0, 31

which implies be® < cy. Especially, these inequalities imply that 0 < r; < 1 < 79.

Now, we show that under a mild ‘decomposability’ condition, the proposed mechanism Q7 ., ,  is

universally optimal under any f-divergences for (X, P = 75(;1,@2, 1, €). After that, we show that such
a mild condition holds for the setups of both of the main theorems, which finishes the proofs of the
main theorems.

First, let us state the ‘decomposability’ condition. This condition is a formal definition of the concept
of “packing of u copies of X by ¢ subsets Ay, -, A;”, which is briefly mentioned in Section [3.3]

Definition C.3. Let o € (0,1) and t,u € N, ¢t > u. We say that a probability measure p € P(X)
is (a, t, u)-decomposable if there exist ¢ subsets A, As, -+, Ay C X such that u(A;) = « for all
i € [t], and for every z € X, we have | {i € [t] : x € A;} | < u.

We say that i € P(X) is a-decomposable if for any § > 0, there exists t,u € N, ¢ > u, such that
a<uft < a+d,and pis (o, t, u)-decomposable.

We remark that («, ¢, 1)-deomposability means that there are ¢ disjoint subsets By, B, - - - , By such

that u(B;) = « for each i € [t]. Also, if « is a rational number with & = u/t, u,t € N, and p is
(a, t, u)-decomposable, then i is ca-decomposable.
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Then, we state the generalized theorem.

Theorem C4. Let cy,ca, pu, €, P,a,b, 1,72 be as in Deﬁnition If p is a-decomposable, then
for any f-divergences D¢, we have

R(X773a67f) = 1_r1 f(T2)+ 7"2_1

T2 —T1 T2 —T1

and furthermore, the mechanism Q7 ., . asin Deﬁnition is optimal for (X, P, €) under any
f-divergences Dy.

f(rl)v (32)

As guided in Section [3.3] the proof of this theorem is broken into two parts, the achievability part and
the converse part.

Proposition C.5 (Achievability part). Let c1,ca, 4, €, 75, a,b, 11,79 be as in Deﬁnition Then,
for any f-divergences Dy, we have

177"1 Tgfl

Ry (Qeyer ) <

(Here, we do not need to assume that (i is a-decomposable)

fr2) + f(r1). (33)

To —T1 To —T1

Proposition C.6 (Converse part). Let c1,ca, p, €, P.a,b,r1,75 be as in Deﬁnition and suppose
that p is a-decomposable. Then for any f-divergences Dy and for any e-LDP mechanism Q €
Qx p.o we have

1—7r ro—1

flre) +

T2 —T1 T2 —T1

Ri(Q) = f(r1). (34)

The remaining of this appendix is organized as follows. We first present the proofs of Propositions
[C3]and [C.6]in Appendices[C.2]and in which we grant Proposition[C.2]and some intermediate
lemmas. After that, in Appendix we show that Theorem@ contains main theorems, Theorems
[3.1]and [3.3] as special cases. Finally, Appendix [C.5] presents the proof of Proposition [C.2] and
Appendices|[C.6 and [C.7] prove intermediate lemmas.

C.2 Proof of achievability part (Proposition [C.5)

As mentioned in Section [3.3] the proof of the achievability part consists of two steps: first presenting
an alternative mechanism and then proving that Q7, ., , . performs the f-divergence projection for
any general f-divergence.

C.2.1 An alternative mechanism
Let QL,C% ue € Qx p . be amechanism defined as follows:
QLo (P) =P+ (1 =) (35)
where
e —1
(=Dl —ec1)+e2—cr

Since co > €°cq, it follows that 0 < v < 1. Also, a direct computation shows that

v = (36)

b=vc +(1—7), (37)
be® = vca + (1 — 7). (38)
T
Notice that since ¢; < % < ¢y and W = 7% + (1 — ~), we have
dQf P
7(201’62’“76( )(I) >yer+(1—7)=0b, (39
dp
Q! P
7(961’3’”’6( )(gc) < yea+ (1 —7) = be. (40)
1L
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Hence, Qf, ., ...(P) € Mq, ¢, 4. for every P € P, implying that Q] also satisfies e-LDP.

C1,C2,[,€

Now, we show that

1-— T1 To — 1
R (Qf < ) 41
.f(ch7027u7e) =y —r f(’I"Q) + I f(Tl) (41)
To this end, we need to show that for each P € 75 we have
1—r rog —1
¥ < 1 2
Dy (PHQChCmM,e(P)) = g — 11 fr2) + o — 11 f(r1). (42)
Fix P € P. Letp = dP/dp and ¢ = inl7627lt7E(P)/dp. First, we claim that
ry < plz) <rg (43)
q()
for p-almost every x € X'. We have
p(x) _ p(z) (a4
q(z)  yp(x)+(1—7)
1 1—7 )
=—|1-—, 45)
¥ < vp(z) + (1 —7)
which is increasing in p(z) > 0. Since ¢; < p(z) < c2, we have
“ < M@ 2 (46)

v+ (1 =7) 7 q@) T e+ (1-7)
for py-almost every z € X. From (B7), (38)), and Definition we conclude that

7 < —=% < 1o, (47)

which proves the claim. For the remaining of the proof, we need the following lemma.

Lemma C.7 ([59]], Theorem 2.1). Let P,Q € P(X). Suppose that P,Q < i for some reference

measure p on X, and there exist r1,7o € R with 0 < r; < 1 < 79 such that the densities
p 4Q satisfy q(x) > 0 and r; < ) < 7y for p-almost every x € X. Then for any

P= 997 qu a(@)
f-divergence Dy, we have
1—r ro — 1
Ds (PI|Q) € ———f(rz) + ———f(r1). (48)
ro —T1 To —T1

This lemma directly implies (@2)), and consequently @T).

C.2.2 f-divergence projection of the proposed mechanism

Next, we prove that Q7 .,  (P) is the projection of P onto M, ¢, .. for every f-divergence.

Proposition [3.4] can be stated in a more general way as follows.

Proposition C.8. For any P € P and any f-divergences D 1, we have
Dy (PQ, coe(P) =, Jnf Dy (PIQ). (49)

C1,CQ,1,€
This proposition implies that
Dy (P|| Q¢ e (P) < Dy (PQL, c c(P)) (50)

for every P € P, and hence

1—T1

flra) + —

T2 —T T2 —T1

Rf(Qzl,CQ,;L,E) < Rf(Qll,CZ,u,e) < f(r1>7 (51)

which completes the proof of the achievability part.
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Next, we prove Proposition Fix P € Pand p = dP/dp. If f(0) = oo and u({z : p(z) = 0}) >
0, then D (P||Q) = oo for every Q) € M., ¢, u.e> thus the proposition holds trivially. Consequently,
we assume either f(0) < oo or u({z : p(z) =0}) = 0.

The optimization problem infge g, Dy (P||@Q) can be cast as the following

1,C2:1,€

: p(z)
q:Xgl(%’oo)/Q(z)f (q(x)) dp(x) (52)
such that ¢(z) > b, Vz, (53)
q(z) < be, Vaz, (54
/ q(x)dp(r) =1, (55)

where ¢ = dQ/dp. Our goal is to show that ¢* = dQ}

o1.co.e(P)/dp is an optimal solution of the
above optimization problem.

Motivation for the optimality proof. To provide the motivation for the proof of the optimality of
q* for the above optimization problem, we first consider the following analogous finite-dimensional
optimization problem

oot s Zqz ( ) (56)

such that ¢; > b, 67
q; < bef, (58)

Zqi =1 (59)

for convex function f : (0,00) — R and p; > 0. The convexity of f*(z) = = f(1/x) (see Appendix
implies that the above is a convex optimization problem. For simplicity, we assume that f* is
differentiable. However, note that this assumption is only for simplifying the motivation for the proof,
and the result holds for general f or f*.

We formulate the Lagrangian for the above optimization as

n

q, 0, 1/’7 Z Ql/pz + ¢z(b Qz) + wz( qi — bee)) +v <1 - Z%) (60)
=1

=1
with dual variables ¢, 1) € [0,00)™ and v € R.
The Karush-Kuhn-Tucker (KKT) condition yields:

(f*)(ai/pi) — i + i —v =0, Vi, (61)
7, 58), 59, (62)

¢i, i >0, Vi, (63)

¢i(qi — b) = i(be — q;) =0, Vi. (64)

Now, suppose that there is a feasible point ¢* € (0, 00)™ satisfying (57), (58), and (59) such that
q* = clip(p;/r; b,be®) for some r > 0. We show that ¢* satisfies the KKT condition for some
feasible dual variables (¢, ¥, v).

For (¢*, ¢, 9, v) to satisfy the KKT condition, the following should hold:
o If b < p;/r < be®, then we have g; = p;/r. From (61) and (64)), we must have ¢; = ¢; =0
and v = (f*)"(1/r).
e If p;/r < b, then ¢f = b. Then, ¢; = 0 and ¢; = (f*)'(b/p;) — v.
o If p;/r > be®, then g = bec. Then ¢; = 0 and ¢; = v — (f*)(be/p;).
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Now, since f* is convex, (f*)’ is monotonically increasing. Hence, the following should be satisfied:
* If pi/r < b, then (f*)'(b/ps) — (f*)'(1/r) = 0, and
o If p;/r > bec, then (f*) (1/r) — (f*) (be®/p;) > 0.
It can thus be verified that (¢*, ¢, ¥, v) satisfies the KKT condition with
cv=(f)1/r)
. 4= {(f*)’(b/pi) = (/) @/r), ifpi/r <0,

0, otherwise,

N

0, otherwise.

Optimality proof. Next, we present a proof for the optimality of ¢* for the optimization problem

. p(x)
q:Xgl(f()m)/Q(x)f (q(x)) dp() (65)
such that ¢(z) > b, Vz, (66)
q(z) < be, Vaz, (67)
[ etz =1, (69)

Here, note that we do not assume f is differentiable. To this goal, we first review the following basic
facts about a general convex function f : (0, 00) — R, which may not be differentiable [64, 165]:

* The left derivative [/ (z) = limy,_,o_ L&)
lim g L) =SE)
differentiable or not.

* Forevery 0 < x <y, wehave f' (z) < f () < f' (y) < fiL(y).

* Forevery x,y € (0,00) and any g € [f’ (), f ()], we have
fy) = f(z) +9(y — ). (69)
By continuous extension, this holds for y = 0 also. That is, f(0) > f(z) — gz for every
z € (0,00) and g € [f’ (z), f} ()]

Let ¢ : X — (0,00) be any feasible function satisfying (66) - (68). Recall that f*(x) := 2 f(1/z)
is convex, and we can express q(z) f(p(z)/q(x)) = p(z) f*(¢(x)/p(x)) whenever p(x) # 0. Also,
whenever p(z) # 0, we bound f*(q(x)/p(x)) by the linear approximation of f* at ¢*(x)/p(x) using
(69D, as follows:

() () ) o

Hence, we have

and the right derivative f’, (z) :=

exist and finite for every z € (0, 00), regardless of whether f is

o (20 =) (42 2 alo)sta) + (o), an
where

=1 (58, 72

e =so)f (L) -y (L), a3)
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Also, whenever p(z) = 0, we have ¢(z) f(p(z)/q(z)) = q(x)p(0). Hence, we set {(z) = p(0) and
&(z) = 0 when p(x) = 0, so that

p(x
of (B8 > aa)élo) +€(2) 74
holds for all € X. We note that {(z) and &(x) does not depend on the choice of g(z). Also, the
equality holds if ¢(z) = ¢* (z).

Next, as an analogous to v in the above motivation for the proof, let v = (f*)’. (1/rp). Since
J q(z)dp(x) = 1, we can write

Jatrr (55 ) duta) = [ ot (1 (55 ) =) aute) + v s)
> [ la@)(C(@) - v) + @) dutz) + v (76)

Now, we define the following sets which form a partition of X
L:{xeX:rle(x)<b}, a7
M:{JJEX:I)S:P])(Q?)SbeE}, (78)
U= {x eX: %p(m) > bes}. (79)

For each case of x € L, M,U, we have ¢*(z) = b, % (x), be®, respectively. We observe the
following:

e If x € M, then ((z) = v clearly.

* If x € U, then ¢*(x)/p(x) < 1/rp. Since (f*)’. is monotone increasing, we have
C(z) <w.

* If x € Land p(xz) # 0, then ¢*(x)/p(x) > 1/rp. Again, since (f*)’, is monotone
increasing, we have ((x) > v.

* Finally, if p(z) = 0 (which implies z € L also), then from the definition f*(t) =
tf(1/t), we have (f*)/ (t) = f(1/t) — 1f.(1/t). From (89) with y = 0, we have
v=(f)sA/rp) = f(rp) —rpfL(rp) < f(0) = ((2).

Hence, ((z) > v for every x € L.

Therefore, since b < g(x) < be€, we can write

[t (p”) ) 2 [ la@)(€e) =) + 6@ du(o) + v (80)

q(x)
2 [b(¢(x) = v)LL(x) + be(((x) — v)1y(2) + &()]du(x) +v. (81)
The last expression does not depend on the choice of ¢(z). Also, we observe that all inequalities

become equality if ¢(x) = ¢*(«). This completes the proof for the optimality of ¢*, and hence
completes the proof of the achievability part. [J

C.3 Proof of converse part (Proposition [C.6)

Let Q € Qy 5 be given. Let A = {AC X :pu(A)=a}. Foreach A € A, let pa(z) =
cy ifzxeAd

{cl ifre X\A

A € A, we can define a probability measure P4 € P by

Since coa 4+ ¢1(1 — @) = 1, we have [pa(z)du(z) = 1. Hence for each

dPs __
du

For each A € A, let 84 = Q(A|P4). Then, the push-forward measures of P4 and Q(P4) by the
indicator function 1 4 are Bernoulli distributions with Pr(1) = ¢y« and 34, respectively. By the data
processing inequality (Theorem [B.2)), we have

Dy (P4l|Q(Pa)) = DY (cacr||Ba) - (82)

pa. Also, note that P4 (A) = caar.
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The main lemma to proceed is the following.

Lemma C.9. Let X be a sample space. Let t,u € N, t > w. Let Ay, Ag,--- | Ay C X be subsets
such that for each x € X, we have | {i € [t] : x € A;}| < u. Then for any t probability measures
Q1,- -+, Q¢ € P(X) satisfying that Q;(A) < e‘Q;(A) foralli,j € [t] and A C X, we have

. (u/t)ec
min Qi) < e 1= () (83)

Now, by the assumption that 1z is a-decomposable, there exist sequences {t;}7°, , {u;};~, C N
of positive integers such that t; > u;, a < w;/t;, lim;_, . u;/t; = «, and for each j € N, there

exist t; subsets Aj1, Ajo,---,Aj, C X such that u(A;;) = o forall i € [t;], and for every
x € X, we have |{2 €ftjl:x e Aj}tj}’ < u;. By applying Lemmato Qi = Q(Py,,), we

(uj/t;)e
Ject+1—(u;/t;)"
forall j € N, and by taking the limit j — oo, we have inf e 4 84 <

ae’
‘+l—a

(uj/t;)e
Jec+1—(u;/t;)
= be‘a.

obtain min;et,) Ba, ; < w7 This implies that inf 4c 4 B4 < TG

Since be® < ¢z, we have be‘or < cor. By continuity of DJ]? and the fact that Dj]? (A1]]A2) is decreasing
in Az € [0, A\{], we have

sup Dy (P4]|Q(Pa4)) > sup D]]?’ (coa||Ba) > D]]? (coa||becar) . (84)
AeA AcA
It follows that
Ry(Q) = sup Dy (P||Q(P)) > sup Dy (Pa]|Q(Pa)) > D} (caa|bea). (85)
PeP AcA

Furthermore, we have

DJ]? (coa]lbefar) = befaf (bceic(;) + (1 — bae®) f (11__;;0;) (86)
— be‘af (;20;) 11 —a)f <Cbl((11_;‘)>> (87)
=be‘af(rz) +b(1 —a)f(r), (88)

and we can derive bea = =" and b(1—a) = 2=L as follows. From (30), (3T) and the definition
2—T1 To—1T1
of r1, 79, we have

1—m=(1—¢)29C (89)
C—C
7«2*1:02_1w. (90)
e Co — Cq
From this, we have
1-— 1 1-— T1
To —T1 (7‘2—1)+(1—T1) ( )
(1 —¢p)ef
(I —c1)ef+(ca—1) 92)
(1 —¢q)ef
= 93
(ec=1)(1—=c1)+c2—ca ©3)
1
N ©4)
Co — C1
= be‘a. (95)
Also, from above and 1 = befa + b(1 — «), we have
-1 1—
270 12T 1 befa=b(1 - a). (96)
T —T1 ro — 71

This ends the proof of the converse part. [
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C.4 Deduction to main theorems

In this subsection, we show that Theorem [C.4] contains main theorems, Theorems [3.1] and 3.3] as
special cases.

C.4.1 Deduction to Theorem [3.1]

Recall that in this setup, X = [k], P = P([k]) = Po k., » Where py, is the uniform distribution on
[k]. Thatis, (c1,ca) = (0, k). The values of the constants a, b, 71, 79 are

a=1/k, 97)
k
b= —— 98
T (98)
r =0, (99)
c+ k-1
rg= ot 1 +e€ . (100)

We can easily observe that py, is (o, k, 1)-decomposable, because the sets {i}, i € [k], are disl'oint

and 1 ({i}) = 1. It follows that 4, is a-decomposable. Hence, we can apply Theorem By
a direct calculation of R(X, P, e, f) = Tl_frll f(ra) + :22::1 f(r1), we can derive the formula of

R([k], P([k]), €, f) presented in Theorem It remains to show that the mechanism Qj; _ presented
in Theoremis the same as Qg ;. . .. and show the claim about the range of rp. Recall that

1

1
Qlt,e(le) = nax (’/’pP(x)’ GE—Fk—l) Vr € [k},P € ,P([k}% (101)

and we claim that rp can be chosen such that 1 <rp < (e + k — 1)/e".

First, as explained in Section we can alternatively write

1 1 e
X P)=clip| —P(x); . 102
Qi (@lP) Clp(rp (x)’e€+k:—1’ef+k—1> (102
Since P(x) = %%(m) for each = € [k] and P € P([k]), (I02) can be written as
1dQ; (P) 11dP 1 e
LAy, —clip [ =24 . 103
P d ) Clp<rpkduk(“)’ee+k—1’ee+k—1) (103)
1 1 dP k ke€
= —clip [ — - (x); 104
]{?Clp<rpd/,ék(x,€€+k—1’66+k—1)7 (104)
hence,
dQj,(P) 1 dP k ke
T ) = clip | — 2 () 105
e (z) Clp(rpduk(x)’e€+k—1’ef+k—l> (105)
1 dP
=clip [ ——(x);b, be | . (106)
P <7“P duk( ) >
Hence, Q?E = Q(*Lk,uk,e'
Second, to prove the claim about the range of rp, let us fix P € P([k]). We need to show that
a 1 - e 1
P — | >1> P . 107
;max( (x)’ef—i—k—l)_ _;max<ee+k_1 (I)’ef—f—k—l) (107)
The left inequality can be easily derived by
k 1 k
P —_ ] > P(x) =1. 108
;max< (QL‘),eéJrkl)_IZ1 (x) (108)
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For the right inequality, we recall that b = Hﬁ Since P(x) < 1, we have ﬁP(w) < e;ﬁ
Hence, again by using P(z) = %(ZZ (z), we have
e 1
max (eEJrklP(x)’eeJrkl) (109)
e 1 e
=cli P(x); 110
Clp(e‘»—&—k—l (m)’e€+k—1’e€+k—1> (110)
ec 1 dP 1 e€
=cli ————(2); 111
Clp<ee+k—1kduk(z)’ee+k—1’ee+k—1) (1
1 1 dP
= —clip | ——(x); b, be* 112
k“p(wduk“)’ , ) (112)
and thus
b ec 1
—P _ 113
;max<ef+k—1 (x)’ef—&—k—l) (113)
F 1 1 dP
= —cli — ——(x); b, be* 114
;kmp (Tzduk(x)’ ’ e) 19
1 dP
= li ———(x);b,be | d . 115
[ et (e ) diaa) ms)

The desired inequality follows from Proposition [C.2}

C.4.2 Deduction to Theorem 3.3]

Recall that in this setup, X = R”, P = 7501,02,;1 = Peyca,u» Where < m and du/dm = h.
Note that the normalization condition (TI0) about (c1, 2, h, €) implies the normalization condition
about (cq, ¢2, i, €). It can be directly observed that Q because for each
P € P with corresponding pdf p(x), the chain rule of the Radon-Nikodym derivative shows that
plx) = £ = %(x)%(m) = %(m)h(m). Hence, once we show that y is «-decomposable,
Theorem [C.4] and Proposition[C.2]directly contain Theorem [3.3]as a special case. Thus, it remains to
show p is a-decomposable.

* _ *
c1,c2,h,e C1,C2,H,€°

In fact, we prove a stronger statement that: u is (o, ¢, u)-decomposable for any ¢, u € N such that
t > wand a < u/t. Then, since the set of rational numbers is dense in R, this also implies that p is
a-decomposable.

To prove this, let us first introduce the following lemma.

Lemma C.10. Let o € (0,1) and t,u € N, t > u, @ < w/t. If p € P(X) is (a/u,t,1)-
decomposable, then i is also (a, t,u)-decomposable.

Proof. In this proof, assume that the sum and subtraction operations performed in subscripts are
modulo ¢ operations, with the identification that 0 = .

By (a/u, t, 1)-decomposability, there are ¢ disjoint subsets By, Ba, - - - , B such that u(B;) = a/u
for each ¢ € [t]. Using this, for each i € [t], define A; as A; = U}Z&Biﬂ. As B;’s are disjoint,
we have p(4;) = Z;‘;& p(Bitj) = u x (o/u) = a forall i € [t]. Also, for each z € B;, x is
contained in exactly u sets among Ay, --- , A¢, which are A;; A;_1,--- , A;—y+1. Furthermore, if
x ¢ B; forall i € [t], then x is contained in none of A;. Hence | {i € [t] : x € A;}| < w for all
x € X. Thus p is (o, t, u)-decomposable.

By this lemma, it suffices to show that for any ¢ € N such that ¢ > 2 and o < 1/¢, pis (o, ¢, 1)-
decomposable. As yn < m, themap s € R +— p((—o0, s]xR"~1) is continuous, and as s — —oo and
0o, we have p((—o0, s] — 0 and 1, respectively. Hence by the intermediate value theorem, for each
i € [t], there exists s; € R such that j1((—o0, s] x R"~1) = «i. Then, setting A; = (—o0, s1] x R* 1
and A; = (si—1, 8] X R™ ! fori > 2 gives the desired A;’s in the definition of decomposability.

In conclusion, £ is a-decomposable, and hence Theorem [3.3]can be deduced from Theorem [C.4
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C.5 Proof of Proposition @

Let P € P be given. Let p = ; , and again assume that ¢; < p(x) < ¢y for all x € X. Similar
to the proof of the achievability part, for each » > 0, let us define the following sets which form a
partition of A’:

L, = {x eX: %p(x) < b}, (116)
MT:{xeX:bSip(a:)SbeE}, (117)
UT:{xeX:ip(x)>bes}. (118)

Forr = 0, welet Ly = {z € X :p(zx) =0}, Uy = {x € X :p(x) >0}, My = 0. Also, let
gr(z) = clip (2p(x); b, be®). Then, g, (z) = b, Lp(z), be® for z € L, M,, U,, respectively.

First, we show that [ g, (z)du(x) > 1. We divide the case of ¢; = 0 and ¢; > 0.

Suppose first that ¢c; = 0. Thenr; = 0, = é, and b = Uch I Observe that
1= [ pa)duta) = [ p(e)dn(e) < con(Ui). (119)
Uo
hence p(Upy) > 1/¢s. It follows that
[ e @) = (L) + be (U (120)
= b(1 — p(Uo)) + be u(Uo) (121)
= b(ef — D)u(Us) + b (122)
c—1
S Calal) Y (123)
C2
“4ep—1
_px el (124)
C2

Next, suppose that ¢; > 0. Then r; > 0. From p(z) > ¢;, we have %p(x) > 1% = b. Hence
L., = (. Thus

/qn( */ p(x)dp(z) + beu(U,,) (125)
1 M.

= rl (/M p(x)du(x) + crefu(U,, )) . (126)

Let Sy = [,, p(x)du(x)and T1 = p(U,,), so that
1

1
/qr1 (x)dp(x) = E(Sl + c1€Ty). (127)
As ¢1 < p(z) < ca, we have
Si = / p(@)du(z) > erp(My,) = e1(1 — p(Usr,)) = 1 (1 = Th), (128)
M,,
and
1-51=1 —/ p(x)du(x) = / p(x)du(x) < cou(Uy,) = coTh. (129)
M,, U,
From these, we can get
S1+caT 2 a, (130)
S1+cTy > 1. (131)
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As c; < c1e€ < ¢y, We can express c1e€ as a convex combination of ¢; and ¢s, as

cy — cref cef —
cle = C1 Co.
C2 —C1 C2—C1

Hence, by taking % [equation (T30)] + ¢ =<1 [equation (T31))], we get

C2—C1

cg — cref cief —
S+ cieT > c

1
C2 —C1 C2—C1
cog—cref+ef—1
= Cl
C2 —C
(ef—1)(1—c1)+c2—a1
Ca —C1
=T.

Thus we have [ g, (z)du(z) > 1.

(132)

(133)
(134)

(135)
(136)

Similarly, we show that [ g, (z)du(z) < 1. from p(z) < co, we have ip(a:) < 2 = be“. Hence

T

U, = (. Thus

/%mwwzwum+i/zmmm>
T2

M.,

1
=&wmwm+/
) M

Similar as above, let Sy = pu(Ly,) and To = [,, p(x)du(x), so that
L)

p(x)du(x)> :

T2

/%mwm=%@5%+nx

and, we have
n:/ p(@)dp(z) < eap(Myy) = e(1 — (L)) = ea(1— S2)
M.,
and
1—@:1—A[mwwmzﬁ p(@)dp(z) > erpLry) = 15,

hence

2582 + 15 < ey,

S+ 15 < 1.
As ¢ < coe™ € < cg, we have
_ cg — coe” € e € —cy
coe € = 1+ Co
C2 —C1 C2 —C1
and by the same reason, we have
Cog—Ce™ ¢ e —0C
coe €Sy +Th < + Co
C2 —C1 C2 —C1
l—e “+ce “—c
C2—C1
(66 - 1)(1 — Cl) +co — Clc e
C2—C1

Thus we have [ ¢, (z)du(z) < 1.
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Finally, we show that [ ¢, (z)du(z) = 1 implies [ g,(z)du(z) = 1 for all 7 € [rq,72]. Let us
assume [ ¢, (z)dp(z) = 1. We first claim that: p(z) = ¢, for p-a.e. z € U,,, and p(x) = ¢; for
p-a.e. v € X\U,,. Again, we divide the case of ¢; = 0 and ¢; > 0.

Suppose first that c1 = 0. By tracking the proof of [ ¢, (x)du(z) > 1, We can observe that the
equality [ ¢, (z)du(x) = 1 holds if and only if p(Uy) = 1/co, if and only if p(z) = ¢, for p-a.e.
x € Uy. By definition of Uy, we have p(z) = 0 = ¢; for all z € X'\Uy. Hence we get the claim.

Next, suppose that 01 > 0. Again, by tracking the proof of [ ¢, (x)du(x) > 1, We can observe that
the equality f Gr, (z)dp(x) = 1is equivalent to any of the following statements:

e Both S; 4+ ¢1T) = ¢; and S; + ¢T3y = 1 holds.
* Both [, p(x)du(z) = cip(M,,) and fU x)dp(x) = cou(U,, ) holds.
Ty
* p(x) = ¢ for p-ae. © € M,, and p(z) = co for p-ae. x € U,,.
Since L., = ), we also get the claim.

WLOG, assume that p(x) = ¢y for all x € U,,, and p(z) = ¢; for all € X\U,,. Then, for every
r € (r1,72], we have the following:

* For each z € U,,, we have 1p(z) > 2 = be*, hence g, () = be“.
e For each x € X\U,,,

- If ¢; =0, then p(x) = 0, g-(z) = b, and
- If ¢y > 0,thenry > 0, Lp(x) < & = b, hence again g, (z) = b.
Also, we have 1 = [ p(x) = cou(Uyy) + c1(1 — pu(Uy,)), hence pu(Uy,) = 012_—"011 = a

It follows that for every r € (7“1,7"2} we have [ ¢, (z)du(z) = be‘u(Uy,) + (1 — w(Up,)) =
be‘a + b(1 — o) = 1. This concludes the proof. [

C.6 Proof of Lemmal[C.7|

Although the proof can be found in [59]], we present the proof here for the completeness.

If 1 = 0 and f(0) = oo, then the RHS of the inequality we want to show is oo, thus it becomes
trivial. Hence, we may assume that either , > 0 or f(0) < oco.

By the assumption, p(x)/q(z) is the convex combination of 1 and ry for y-a.e. x € X, as follows.

(@) /q(x) = (p(x)/q(_x)) i (p(f)/q(@)u (149
T2 1 T2 1
Hence, by the convexity of f and [ p(z)du(z) = [ q(z =1, we have

D; (PIQ) = | ata)f(ple)/ala))du(a) (150)

< [ty (WELID 01 2= DD 1) Y ) a5

= / (Wf(m) + Mf(n)) dp(z) (152)

o —T g —T1
= :Qiflf(rz) + :22__7,11 f(ry). (153)

O

C.7 Proof of Lemmal[C.9]
First, we claim that for each ¢ € [t — u], we can construct a partition {B; 1, B; 2, -+ , B o} of Ayt

into u (measurable) sets, such that for each j € [u], the sets A;, By ;, B2 j, -+ , By—y,j are disjoint.
The construction is in the inductive way as follows: Given i € [t—u], suppose that we have constructed
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such partitions of A, 1, - Auﬂ 1 such that for each j € [u], A;,B1;,B2j, -+ ,B;_1,; are

disjoint. Let C; j; = A; U (U}C Bkj) Then for each x € A4, atleast one of C; 1,C 2, -+, Ci 4,
does not contain z, because
Yl (@) =) (1-1¢,, —U—Z]lcu (154)
j=1 j=1
u u 1—1
_“Z< +Z]13k,j(:v)>—uzlA SN 15, (155)
j=1 k= j=1k=1
i—1 wu
SR SETICIES 3) S TE IS SENE S PRt
k=1 j=1 j=1
>u—(u—1)=1 (157)
where the last line is from that since € A, ;, at most u — 1 sets among Ay, Ag, -+, Ay14—1 can
contain x. Hence, setting
Bij = {m € Aurs s j = min (5 clu:z¢ qﬁ)} (158)
gives the partition {B; 1, B; 2, - , Bi v} of Ay, such that for each j € [u], C;; and B; ; are
disjoint. This implies that A;, By ;, Ba j,- - - , B; ; are disjoint.
Now, let £ = min;c[g Qi(A;). Using these partitions, we can now show that
u U t—u
u=Y"Q;(X)>)"Q, (AjU<U Bk,j)) (159)
j=1 j=1 k=1
u u t—u u t—u u
=3 QAN+ DD Qi(Bry) =D _Qi(A) + > Q;(Br;) (160)
j=1 j=1k=1 j=1 k=1 j=1
u t—u
=Y Qi(A4) + Y Q(Aurs) (161)
j=1 k=1
u t—u
> Qi(A) + Y e Quin(Ausr) (162)
j=1 k=1
>l(ute“(t—u)). (163)
Hence
< u _ (u/t)e . (164)
ute ¢ (t—u) (u/t)ef+1— (u/t)
O

D Proofs of Remaining Propositions
We present the proofs of remaining propositions in the paper, Propositions [3.2]and [4.1]

D.1 Proof of Proposition3.2]

By the assumption, there are subsets {4;};—, of X which are pairwise disjoint and P;(4;) = 1

for all i € N. Let us pick P, € P, and let Qy = Q(Fy). Since A;’s are disjoint, we have
S Qo(Ai) = Qo (U2 Ai) < 1 < oco. Hence, we have lim; o, Qo(4;) = 0. Also, by
definition of e-LDP, for any P € P and i € N, we have Q(P)(4;) < e“Qo(A;). Especially, this

implies Q(F;)(Ai) < e“Qo(Ai), and thus lim; oo Q(F;)(A;) =0
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Now, similar to the converse proof in Section let 3; = Q(P;)(A;). Then, the push-forward
measures of P; and Q(P;) by the indicator function 1 4 are Bernoulli distributions with Pr(1) = 1
and (;, respectively. By the data processing inequality (Theorem|B.2), we have

Dy (P Q(P)) = DY (1]18,) (165)
Since lim;_,». 5; = 0, by continuity of D2, we have

Ry(Q) > limsup Dy (P,|Q(P,)) > lim DY (1)13) = D (1]0) = My, (166)

where the last equality is because two Bernoulli distributions with Pr(1) = 1 and Pr(1) = 0,
respectively, are mutually singular. Hence, we must have R;(Q) = M;. O

D.2 Proof of Proposition 4.1

For generality, we prove that the statement of Proposition 4.1 holds in the general setup in Definition
That is, for the setup in Definition C.1} the mechansim Q* = Q, ., , . satisfies

2
max(rp,rpr)

Drv (Q*(P), Q" (P)) < Dy (P, P') (167)

*
C1,C2,[4,€

for all P, P’ € P. As the mechanisms Q;..and Q
a proof in this general setup induces Proposition

* . .
w1.co.h.c 1Nl the paper are special cases of Q

Now, let us assume the setup in DeﬁnitionLet P P e P be given. WLOG, assume thatrp > rpr.
Letp = dP/du, p’ = dP’/du, and g(x) = clip (%p(z), b, be€>, ¢ (x) = clip (ip’(x); b, bef),
so that ¢ = dQ*(P)/du and ¢’ = dQ*(P’)/dp. For simplicity, we denote clip(z) := clip(z; b, be®).

We first note the fact that clip(z) is monotone increasing and 1-Lipschitz in 2. From this and the
equivalent expressions of the total variation distance in Appendix [B] we have

Drv (Q*(P), Q" (P")) (168)

- / (4(z) — ¢ (2))du(z) (169)
z:q(x)>q'(x)

= L e (clip <Tlpp(x)> — clip (;p’(@)) du(z)

—|—/ (clip <1p’(x)) — clip <1p’(x)>) du(z) (171)
z:q(x)>q' (2) rp rp
1
</ - 0a) = 0| ) + 0 (172)
z:q(x)>q' (z) rp
1 2
<L / Ip() — P (@) du(z) = — Drv (P, P'). (173)
e Jx rp
This ends the proof. [J

E Behaviors of Proposed Mechanisms

In this appendix, we present the formal proofs for the behaviors of the proposed mechanisms presented

in Sections3.1]and 3.2

We first observe that the formula of the optimal worst-case f-divergence in general case

f(ra) +

r2—T T2 —T1

17’[”1 7'271

f(r1) (174)
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is the y-coordinate value at 2z = 1 of the line segment joining (71, f(r1)) and (72, f(r2)). As f is
convex, this formula is increasing in ro and decreasing in r1, provided that r; < 1 < rs.

Now, let us present the proofs.
« If £(0) = oo and P contains two mutually singular distributions, then R(X, P, €, f) = co.

Proof. Let Py, P, € P be mutually singular distributions with disjoint supports Ay, Ao C X
respectively (That is, P;(A;) = Ps(A3) = 1 and A; N Ay = (). Suppose that Q is
an e-LDP sampling mechanism for (X, P) such that Rf(Q) < oc. Since f(0) = oo,
D¢ (P||Q) < oo, implies Q < P. Hence, as Dy (P;||Q(P;)) < oo and P;(A{) = 0,
we have Q(AS|P;) = 0 for each i = 1,2. As Q satisfies e-LDP, we have Q(A§|Pz) <
Q(AS|Py) = 0, Q(AS|P2) = 0. Now, since A; N A = (), we have Af U AS = X. But by
the union bound, 1 = Q(X|P;) < Q(A§|P2) + Q(AS|P2) = 0, which is a contradiction.
Hence, R;(Q) = oo for every e-LDP sampling mechanism Q. O

From now, assume f(0) < oo.

Let us first prove the behaviors for the case of finite X in Section[3.1]
* R([k],P([k]),€, [) is decreasing in € and increasing in k.

Proof. Recall from Appendix that the case of X = [k], P = P([k]) can be fit into the
general case with

r =0, (175)
e +k—1
e€ '

ro = (176)

Here, 75 is decreasing in € and increasing in k. As (I74) is increasing in 7o, we get the
desired claim. O

* For a fixed k, we have R([k], P([k]),€, f) = 0 as e — 0.
Proof. As € — oo, we have 72 — 1. As f is continuous, f(1) = 0, and f(0) < oo, we
obtain from (T74) that
1-0 1-1
R([k], P([K]), €, ) — mf(l) + ﬁf(o) =0 (177)
as € — oo. 0

* For a fixed k, as € — 0, we have Q;, (z|P) — 1/k for every P € P([k]) and = € [k].

Proof. We know that —— < Qj [(¢|P) < -=§—. As ¢ — 0, both of ——— and
e—fﬁ converges to % hence we get the desired claim. O
Next, let us prove the behaviors for the continuous case in Section@
* If¢; = 0 and f(0) = oo, then R(R", Py, ey, €, f) = 00.
Proof. Since ry > 1 and r; = 0, we have :22—;11 = % > 0. Hence :j—;}lf(rl) =
ﬁf(O) = 00, which proves R(R™, Pe, cp .1, €, f) = 00. O

« Forafixed (c1,ca), R(R™, Pey cp.hs € f) is decreasing in e.

Proof. We can observe that r; is increasing in € and r5 is decreasing in €. Since (174) is
increasing in 79 and decreasing in 71, we get the desired claim. O

* For a fixed (c1, ca) with ¢; = 0, as € — oo, we have R(R", Pe, ey, €, f) — 0.

Proof. We can observe that r; = 0 and ro — 1. Hence, by the same argument as (177), we
have the desired claim. O
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F Detailed Explanation of Setups in Numerical Results

We present details about the setups in producing numerical results in Section[5] and generating Figure
[Min Section[1l

i ' n -1 _ M) :
In this appendix, for each p € R", N}, s [z] = a7 o &P ( 5 is the pdf
of the n-dimensional Gaussian distribution with mean p and covariance >. Note that we denote
N (11, 2) to refer the Gaussian distribution itself with mean p and covariance matrix 3.

F.1 Explanation for numerical result for finite data space

In this appendix, we show that among the choices of Qg in the baseline for X = [k], choosing Qg
to be the uniform distribution minimizes R;(Q), and present the precise value of R(Q) for the
baseline with uniform (). From now, let us fix &, €, f, and we denote Q, to mean the baseline with
the reference distribution QQy. Also, let §,, € P([k]) be the point mass at x € [k]. Recall that

Mego ={Q € P(X) 1 e7?Qo(A) < Q(A) < e?Qu(4), vAC X}, (178)
and we set the baseline to satisfy that
Dy (PIQqo(P)) = inf Dy (PlQ). (179)

First, if Qo(z) = 0 for some z € [k], then Qq, (z|P) < e/2Qo(z) = 0, Qq, (z|P) = 0 for every
P € P([k]). Especially, Qq, (z|d,) = 0, and this implies that Qg, (J,;) and ¢, are mutually singular.
Hence,

Rf(QQ(J) = Dy (dLHQQO (5»L)) = My, (180)

concluding that R¢(Qg,) = M. Hence, to minimize R;(Qg, ), it suffices to set Qo (x) > 0 for all
x € [k]. Hence from now, we only consider such Q.

We note that for every x € [k] and P € P([k]), we have we have Qq, (z|P) < e“/2Qo(z), and
furthermore

Qu,(@P)=1- > Qq,lP) (181)
yek]\{z}
<1- ) e ?Quly) (182)
yek\{=}
=1—e (1 - Qo(x)) (183)
= e ?Qo(x) + (1 — e~ /?). (184)
Letting
B(t) = min{e*/?t,e"/*t + (1 — e~</?)}, (185)
we have
Qq, (z|P) < B(Qo(x))- (186)
Note that B(t) is increasing in ¢. Now, for any = € [k], we have
R1(Qqy) = Dy (62 Qco (92)) (187)
1
= Qq, (7|0z) f (Q<|5)) + Z Qq, (y/62) f(0) (188)
Q) ek )
1
= 5)f [ =——— ) + (1 — Qo (z[62)) £(0). 189
Qou(e11 (g ) + (1~ Qan(ald) O (159

We can observe that the last term can be written in the form of the optimal worst-case f-divergence
withr = 0 and o = 1/Qg, (z|0;). In other words, let

1—r ro — 1
1f(7”2)+ 2

o —T1 o —T1

9%(7"1, TQ) =

f(ra). (190)
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Then we have Rf(Qq,) > 91(0,1/Qq, (2]dz))-

As noted in Appendix@ P (r1,r2) is increasing in 7o for 0 < ry < 1 < 7a. Since Qg, (z]05) <
B(Qo(x)), we have

R (Qq,) = R(0,1/B(Qo(x))). (191)
Since this should hold for all z € [k], we have
Ry(Qo,) = maxR(0,1/B(Qo(a)). (192)

Since min, ) Qo(z) < 1/k for all Qo € P([k]), and B(t) is increasing in ¢, we have

R(Qq,) = R(0,1/B(1/k)). (193)
Now, let i, be the uniform distribution over [k]. We will show that
Rp(Qu) = R(0,1/B(1/k)), (194)

which suffices to prove that Qo = p minimizes R;(Qg, )-

We observe that M., is a convex set in P([k]). Since Dy (P||Q) is jointly convex in (P, Q),
we obtain that Dy (P[|Qy, (P)) = mingem, ,, Dy (P[|Q) is convex in P by [64] Section 3.2.5].
Hence, the maximum of D (P||Q,, (P)) occurs when P is one of the extreme points of P([k]),
that is, the point masses d,. By the same arguments as in (I87)-(I89), we have Dy (6,]|Q) =
2R(0,1/Q(x)), and hence

Rf(QMk) = sup Dy (PHQMk(P)) (195)

PeP([k)
= max Dy (0:[1Quu. (0)) (196)
= inf Dy (0, 197
maX oout , Pr0:]@) (197)
= inf  9R(0,1 198
maX el (0,1/Q(x)) (198)

1
=NR10,— . (199)
Ming ¢ (k] SUPQe M., Q(x)
Also, by the same arguments as in (I81)-(I84), we have

Q(x) < B(1/k), YQ € M.,z € [k]. (200)

Now, we will show that supge v, , Q(z) = B(1/k) for any = € [k]. To show this, we will prove

that there is a distribution @ € P([k]) such that Q(z) = B(1/k) and Q(y) = %_(11/’“) for all
y € [k]\{x}, and this @ is contained in M ,,, . It suffices to show the followings:

%e*/? < B(1/k) < min {1, llceeﬂ} , (201)
%6*6/2 < %_(11/@ < min{l, 1166/2}' (202)

‘We note that whenever 0 < ¢ < 1, we have

o B(t) = min{e/?t,e= /%t + (1 — e~/?)} > t, and
s Bt)<e Pt (l—e/)=1-(1—t)e /?<1.

From these, we can easily observe that B(1/k) < min {1, +e*/?}, and

%6—6/2 < = < B(1/k). (203)

=
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Also,

—B(1/k) _1-(1/k) 1 . L
- < 1 —kSmln{l,ke }, (204)
—BQ/k) (1= PA/R)+(1—e )] 1 _
-1~ k-1 ¢ (205
This shows that supge v, , @(2) = B(1/k) for any « € [k]. Thus,

min  sup Q(z) = B(1/k), (206)

ze[kl QeM ),

1

Ry(Qu,) =% (07 B(l/k)) . (207)

This ends the proof that Qg = ju;; minimizes R(Qq, ), and R¢(Q,,) = R(0,1/B(1/k)).

F.2 Explanation for the experiment in 1D Gaussian mixture

The precise description of the set of possible client distributions in our experimental setup is as
follows:

k k

N T NN,

P = {P:p(x) 42?1 i [7] 11[_4,4](@7166[K],Az-ZO,Z/\i:l,Im\ Sl}-
Joa i ANy, a[z)da i=1

(208)

Each of P; € P is generated by choosing k, \;, and j; in (208) as follows: (i) First, choose the
number of Gaussian distributions k by first sample &k from the Poisson distribution with mean kg

(which is chosen beforehand), and let & = min(l:: + 1, K), and (ii) after that, sample each of
U1, , b independently from the uniform distribution on [—1, 1], and sample (A1, - - -, \x) from
the uniform distribution on P([k]).

The implementation of our proposed mechanism is as follows. We can observe that

4 k
/ Z)\i/\/m’l[m]dxz inf N’ dac—/ M 1[z]dz = (3) — ®(—5),  (209)
—4i=1

rE[-1,1]

where ® is the cdf of the 1D standard Gaussian distribution, and for each « € [—4, 4], we have

1
NNy alzlde < sup N,
; walelde < sup Noale) = 7

Hence, we have P C 75071);1 = Po.cy.h» Where
- exp (f[max(m — 1,0)]2/2)
h(z) =
V2r(®(3) — B(—5))

and c; = [ h( h(x)dz, h(x) = h(z)/co. When implementing our proposed mechanism, we use the
bisection method to ﬁnd a constant rp. We predetermine the error tolerances d1, 02 > 0, d; < 1, and
we terminate the bisection method to find 7 p if the integration of (T3) lies in the interval [1—d7, 1+d2].
As mentioned in Section to consider the error tolerances, we actually implement Qg .., ;, .. (P),

1+52
1-61°

exp (—[max(|z| — 1,0)]?/2) . (210)

11y 4(2) (211)

with ¢/ = ¢ — log
In the experiment in the paper, we use kg = 2 and §; = d = 1075,

For the baseline, we use the same hyperparameter setups as in [35, Section 5, Paragraph “Architec-
tures"], except a slight modification in a reference distribution ()y. In [35], they set the standard
Gaussian as the reference distribution, Qo = N(0, 1). To consider the truncated domain [—4, 4], we
set (g as the truncation of the standard Gaussian, that is, )y has a pdf

/\/—0’1[.');‘]

—_— 1 . 212
ff4N0,1[$]d=T [4’4](96) 12

qo(w) =
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The baseline has many other hyperparameters not specified in [35], such as the proposal distri-
bution used for the Metropolis-Hasting algorithm [66, |67]], initial model parameters for the weak
learner, etc. We noticed that the code for [35]] is available at https://github.com/karokaram/
PrivatedBoostedDensities/tree/master and hence we made every effort to faithfully repro-
duce the baseline with exactly the same hyperparameters, including those not mentioned in the
paper [35]. However, subtle variations may arise due to differences in the programming languages
employed; we used Python, while [35]] used Julia.

F.3 Explanation for Figure[i]

For £ € N and o > 0, the Gaussian ring distribution with £ modes and a component-wise variance

o2 is the mixture of k& Gaussian distributions in R? with equal weights, where each Gaussian

distribution has the covariance 02I, and equally spaced mean in the unit circle, and one of the

Gaussian distribution has mean (1,0). That is, it has a density %Zle Ny ozr, ], with p; =
271 271

(cos 2, sin =) In Figure the left image is the pdf of the Gaussian ring distribution with &k = 3
and 02 = 0.5. It is used as a client’s original distribution.

For our proposed mechanism, similar to Section we use the setup that P consists of Gaussian
mixtures, where each Gaussian has mean within a unit ball centered at the origin and has covariance

0.51,. thatis, P = {Zle NN (25,0%1) : k € N \; >0, Zf:l i = 1, |Ja;]| < 1}, witho? = 0.5.
We can also observe that P C 750.,1,}1 for h(z) = 5z exp (f [max(0, 121l - 1))* )

20

Same as Appendix we have 750 i = Po.cs.ns Where co = [ h(z)dx, h(x) = h(x)/co. Hence,
we use Qg ., 5, .- The implementation of Q;, ., ;, ((P) is the same as the description in Appendix

with 6 = 1075, For the baseline, we also use MBDE with the same hyperparameter setup as [35}
Section 5, Paragraph “Architectures"], with the (untruncated) 2D standard Gaussian as a reference
distribution, Qo = N (0, I2).
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G Additional Numerical Results for Finite Space

In this appendix, we present more numerical results for the finite space case explained in Section[5.1]
for other k. We present the result for & = 5, 20, and 100 in Figures [5}{7] As shown by the figures, the
proposed mechanism always has the smaller worst-case f-divergence compared to the baseline, as
the optimality is proved for the proposed mechanism. However, the performance gap between two
mechanisms decreases as € becomes smaller and k becomes larger.

Worst f-divergence

1.5 1

1.0 1

0.5

0.0 -

KL

TV

Sq. Hel

0.1 05 1.0 20 50
BN Proposed

0.8

0.6

0.4

0.2

0.0

N Baseline

0.1 05 1.0 20 5.0
Privacy budget €

0.1 05 1.0 20 5.0

Figure 5: Theoretical worst-case f-divergences of proposed and previously proposed baseline
mechanisms (with uniform )g) over finite space (k = 5)

Worst f-divergence

TV

Sq. Hel

0.1 05 1.0 2.0 5.0
B Proposed

0.8 1

0.6

0.4

0.2 4

0.0 -

N Baseline

0.1 1.0 2.0 5.0

0.5
Privacy budget e

0.1 0.5 1.0 2.0 5.0

Figure 6: Theoretical worst-case f-divergences of proposed and previously proposed baseline
mechanisms (with uniform Q) over finite space (k = 20)

Worst f-divergence

Sq. Hel

0.1
B Proposed
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1.00 1

0.75 1

0.50 4

0.25 1

0.00 =

W Baseline

0.1 0.5

1.0 2.0 5.0
Privacy budget e

0.1

05 1.0 20 5.0

Figure 7: Theoretical worst-case f-divergences of proposed and previously proposed baseline
mechanisms (with uniform @)y) over finite space (kK = 100)
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H Instructions for Reproducing Results

In this appendix, we provide instructions for reproducing the experiments and figures in the paper. For
a detailed document about the code, refer to the provided file README .md. For the tasks consuming a
large time, we also specify the running times of such tasks. We do not specify the running times of
the short tasks consuming less than 5 seconds. All experiments are performed on our simulation PC
with the following specifications:

* OS: Ubuntu 22.04.1
¢ CPU: Intel(R) Core(TM) 19-9900X
* Memory: 64GB

There are a few remarks:

* Although we expect that the codes can be run and reproduce our results on sufficiently recent
versions of Python libraries, we provide the information about the anaconda environment
used in the experiment in environment . yaml for the completeness.

* The provided codes contain some lines to make the figures use TgX fonts. Running such
lines requires the IXTEX to be installed in the experimental environment. We can remove the
following lines to disable using TX:

matplotlib.use("pgf")

"pgf.texsystem": "pdflatex",
’font.family’: ’serif’,

’text.usetex’: True,

’pgf.rcfonts’: False,

’font.serif’ : ’Computer Modern Roman’,

H.1 Instruction for producing Figure ]

Figure[I|can be obtained by running the code plot_GaussRing.py, without any program arguments.
We measure the running time for initializing the mechanism and and calculating the sampling
distribution for the baseline (MBDE [35]]) and our proposed mechanism. The measured running times
in our environment are as follows: (unit: second)

* Initializing the mechanism

— Baseline: 0.80
— Proposed: 1.22

¢ Calculating the sampling distribution

— Baseline: 35.19
— Proposed: 664.18

H.2 Instruction for producing Figure

Figure [2] can be obtained by running the code visualize_finiteSpace.py, without any program
arguments.

H.3 Instruction for producing results for finite space

The results about the theoretical worst-case f-divergence for finite space, Figures [3|5][6][7] can be
obtained by running the code plot_finite.py with a program argument --k to specify the value
of k. For example, in the command line, the aforementioned four figures can be generated by the
following commands, respectively:

python plot_finite.py --k 10
python plot_finite.py --k 5
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python plot_finite.py --k 20
python plot_finite.py --k 100

H.4 Instruction for producing results for 1D Gaussian mixture
The experiment of 1D Gaussian mixture in Section [5.2]consists of the following two codes:

1. exp_1DGaussMix.py

This code performs an experiment on a single e. We can provide two program arguments
--eps and --seed to specify the values of € and the random seed, respectively.

2. plot_1DGaussMix.py
This code generate the plot like Figure ] from the results of exp_1DGaussMix.py

The results in the paper, Figure ] can be obtained as follows:

1. First, run the following commands:

python exp_1DGaussMix.py --eps 0.1
python exp_1DGaussMix.py --eps 0.5
python exp_1DGaussMix.py --eps 1.0 --seed 3
python exp_1DGaussMix.py --eps 2.0
python exp_1DGaussMix.py --eps 5.0

These can be run in any order or in parallel. Check that all of the five result files
data_1DGaussMix_eps{eps}.npy corresponding to five values of € are generated. In
our environment, running all of the five commands in parallel consumes 3h 13m 35s.

2. Then, run the code plot_1DGaussMix.py without any program arguments.

I Limitations

Our main contribution lies in proposing a minimax-optimal mechanism, and we present several
experimental results based on synthetic data to support the superiority of our mechanism. However,
since we have not conducted experiments based on real datasets, the analysis of performance in
real-world scenarios is insufficient. Also, our PUT formulation in the minimax sense provides optimal
utility in the worst case, which may result in reduced average utility when prior information is given.
Finally, our implementation of the proposed mechanism requires a large amount of running time due
to numerical integration, which makes experiments in multidimensional spaces challenging.

J Broader Impacts

Our proposed mechanism can be utilized for privacy protection in the field of generative models,
which has recently received significant attention. A major deterrent to the adoption of privacy
protection algorithms in real-world scenarios is the potential performance degradation. Our PUT-
optimal mechanism, that minimizes the loss of utility given the privacy budget, can alleviate such
concerns.

We should note that an LDP mechanism provides a certain level of privacy protection but cannot
guarantee complete privacy protection without completely sacrificing utility. Additionally, clients
typically provide multiple data points through various channels, and when these data are combined, it
can lead to greater privacy leakage [68! 69]].
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly stated the main contributions and scope of our paper in the abstract
and introduction (Section|[T)).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We stated the limitations of our work in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All theorems, propositions, and lemmas in the paper include all the necessary
assumptions, and are accompanied with either the proofs in the appendices or relevant
references.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided instructions to reproduce all the figures and experimental results
in Appendix [H|

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We plan to make the code attached in the supplementary material publicly open
after the review period. Also, the instructions to reproduce the results are fully specified in

Appendix
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We presented enough details to implement our proposed mechanism, and we
attached the code for implementing both the proposed mechanism and the baseline in the
supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: As the main contribution is theoretically characterizing the worst-case utility,
we focused on extracting the worst-case utility in the experiment.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided the information about the computer resources and running times
for the experiments in Appendix [H]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discussed both the positive and negative societal impacts in Appendix [J]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not recognize any risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: All of the codes only use the basic Python libraries like numpy, scipy, torch,
and so on. No other external assets are used.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: As mentioned in Appendix [H} we documented the details of our codes in the
file README . md, which is provided by the NeurIPS Code and Data Submission Guidelines.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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