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Abstract

The Lipschitz constant plays a crucial role in certifying the robustness of neural
networks to input perturbations. Since calculating the exact Lipschitz constant is
NP-hard, efforts have been made to obtain tight upper bounds on the Lipschitz
constant. Typically, this involves solving a large matrix verification problem, the
computational cost of which grows significantly for both deeper and wider net-
works. In this paper, we provide a compositional approach to estimate Lipschitz
constants for deep feed-forward neural networks. We first obtain an exact decom-
position of the large matrix verification problem into smaller sub-problems. Then,
leveraging the underlying cascade structure of the network, we develop two algo-
rithms. The first algorithm explores the geometric features of the problem and
enables us to provide Lipschitz estimates that are comparable to existing methods
by solving small semidefinite programs (SDPs) that are only as large as the size
of each layer. The second algorithm relaxes these sub-problems and provides a
closed-form solution to each sub-problem for extremely fast estimation, altogether
eliminating the need to solve SDPs. The two algorithms represent different levels
of trade-offs between efficiency and accuracy. Finally, we demonstrate that our
approach provides a steep reduction in computation time (as much as several thou-
sand times faster, depending on the algorithm for deeper networks) while yielding
Lipschitz bounds that are very close to or even better than those achieved by state-
of-the-art approaches in a broad range of experiments®. In summary, our approach
considerably advances the scalability and efficiency of certifying neural network
robustness, making it particularly attractive for online learning tasks.

1 Introduction

The Lipschitz constant, which quantifies how a neural networks output varies in response to changes
in its inputs, is a crucial measure in providing robustness certificates [, 2] on downstream tasks
such as ensuring resilience against adversarial attacks [3, @], stability of learning-based models or
systems with neural network controllers [5-3], enhancing generalizability [T0U], improving gradient-
based optimization methods and controlling the rate of learning [IT][I2?]. The problem of calcu-
lating the exact Lipschitz constant is NP-hard [3]. Therefore, efforts have been made to estimate
tight upper bounds for the Lipschitz constant of feed-forward neural networks (FNNs) [T4-I8] and
other architectures such as convolutional neural networks (CNNs) [[9-21]]. Typical approaches in-
clude formulating a polynomial optimization problem [2Z] or bounding the Lipschitz constant via
quadratic constraints and semidefinite programming (SDP) [[4], which in turn requires solving a
large-scale matrix verification problem whose computational complexity grows significantly with

“https://github.com/YuezhuXu/ECLipsE

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

10414 https://doi.org/10.52202/079017-0333



both the depth and width of the network. These approaches have also motivated the development of
methods to design neural networks with certifiable robustness guarantees [[9, 23-25].

Contribution. In this paper, we provide a scalable compositional approach to estimate Lipschitz
constants for deep feed-forward neural networks. We demonstrate steep reductions in computation
time (as much as several thousand times faster than the state-of-the-art depending on the experiment),
while obtaining Lipschitz estimates that are very close to or even better than those achieved by
state-of-the-art approaches. Specifically, we develop two algorithms, representing different levels
in the trade-off between accuracy and efficiency, allowing for application-specific choices. The first
algorithm, ECLipsE, involves estimating the Lipschitz constant through a compositional layer-by-
layer solution of small SDPs that are only as large as the weight matrix in each layer. The second
algorithm, ECLipsE-Fast, provides a closed-form solution to estimate the Lipschitz constant,
completely eliminating the need to solve any matrix inequality SDPs. Both algorithms provably
guarantee the existence of solutions at each step to generate tight Lipschitz estimates. In summary,
our work significantly advances scalability and efficiency in certifying neural network robustness,
making it applicable to a variety of online learning tasks.

Theoretical Approach. We begin with the large matrix verification SDP for Lipschitz constant esti-
mation under the well-known framework LipSDP [I4]. To avoid handling a large matrix inequality,
we employ a sequential Cholesky decomposition technique to obtain an exact decomposition of the
large matrix verification problem into a series of smaller, more manageable sub-problems that are
only as large as the size of the weight matrix in each layer. Then, observing the cascade structure of
the neural network, we develop (i) algorithm ECLipsE, which characterizes the geometric features
of the optimization problem and enables us to provide an accurate Lipschitz estimate and (ii) algo-
rithm ECLipsE-Fast, which further relaxes the sub-problems, and yields a closed-form solution
for each sub-problem that altogether eliminates the need to solve any SDPs, resulting in extremely
fast implementations.

Related Work. The simplest way to estimate the Lipschitz constans is to provide a naive upper
bound using the product of induced weight norms, which is rather conservative [26]. Another ap-
proach is to utilize automatic differentiation to approximate a bound, which is not a strict upper
bound, although it is often so in practice [[3]. Additionally, compositions of nonexpansive av-
eraged operators and affine operators [[[6], Clarke Jacobian based approaches and other methods
focusing on local Lipschitz constants [["Z][271] have also been studied. Recently, optimization-based
approaches such as sparse polynomial optimization [22] and SDP methods such as the canonical
LipSDP framework [T4] have been successful in providing tighter Lipschitz bounds. SDP-based
methods specifically exploit the slope-restrictedness of the activation functions to cast the problem of
estimating a Lipschitz constant as a linear matrix verification problem. However, the computational
cost of such methods explodes as the number of layers increases. A common strategy to address this
is to ignore some coupling constraints among the neurons to reduce the number of decision variables,
yielding a more scalable algorithm at the expense of estimation accuracy [I4]. Another strategy is
to exploit the sparsity of the SDP using graph-theoretic approaches to decompose it into smaller
linear matrix inequalities (LMI) [I5][28]. Along similar lines, [21] and [29] employ a dissipativity-
based method and dynamic convolutional partition respectively to derive layer-wise LMIs that are
applicable to both FNNs and CNNs. Very recent developments also focus on enhancing the scalabil-
ity of SDP-based implementations through eigenvalue optimization and memory improvement [20],
which are compatible with autodiff frameworks such as PyTorch and TensorFlow.

2 Problem Formulation and Background

Notation. We define Zy = {1,..., N}, where N is a natural number excluding zero. A symmetric
positive-definite matrix P € R™*" is represented as P > 0 (and as P > 0, if it is positive semi-
definite). We denote the largest singular value or the spectral norm of matrix A by ¢4, (A). The
set of positive semi-definite diagonal matrices is written as D .

2.1 Problem Formulation

We consider a feedforward neural network (FNN) of  layers with input z € R% and output y € R%
defined as y = f(z). The function f is recursively formulated with layers L;, i € Z,, defined as

Li: 29 =) VieZi_y, Li:y=fz)=20=00 20— (D
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where v(9) = W; 20— 4-b; with T; and b; representing the weight and bias for layer L; respectively,
and ¢ : R% — R% is a nonlinear activation function that acts element-wise on its argument. The
last layer L; is termed the output layer. We denote the number of neurons in layer L; by d;, i € Z;;.
Definition 1. A function f : R% — R% is Lipschitz continuous on Z C R if there exists a
constant L > 0 such that || f(z1) — f(22)|l2 < L||z1 — 22||2, V21, 22 € Z. The smallest positive L
satisfying this inequality is termed the Lipschitz constant of the function f.

Without loss of generality, we assume W; # 0, i € Z;, as any weights being 0 will lead to the trivial
case where the output corresponding to any input will remain the same after that layer. Our goal is to
provide a scalable approach to give an efficient and accurate upper bound for the Lipschitz constant
L > 0. Note that the proofs of all the theoretical results in this paper are included in Appendix A.

2.2 Preliminaries

We begin with a slope-restrictedness property satisfied by most activation functions, which is typi-
cally leveraged to to derive SDPs for Lipschitz certificates [I4].

Assumption 1 (Slope-restrictedness). For the neural network defined in (D), the activation function
¢ is slope-restricted in [, B], a < [ in the sense that Yvi,v2 € R™, we have a(vy — v2) <
d(v1) — P(v2) < B(v1 — v2) element-wise. Consequently, we have that for VA € D,

[¢(UIS - ZQM] T {—%&A _TA} [gb@fﬁ - Zf@z)} <0, p=af. m=(atp)/2 @

Now, we can obtain an upper bound for the Lipschitz constant as follows; this result is equivalent to
the well-known LipSDP framework [14].

Theorem 1 (LipSDP). For the FNN (D) satisfying Assumption W, if there exists F' > O and positive

diagonal matrices A; € D, i € Z;_1 such that withp = a8 and m = %

I+ pWIAw, —mW{A, 0 0
—mAL W Ay + pW2TA2W2 —mWéTAQ 0
0 —mAy Wo Ao + pW Az W3 0
. >0, 3)
0 —mA_2W;_o Ao+ pWE A Wiy —mWE A1

0 —mA_1W;_q A1 — FWEW,

0
then Hzél) - ZY)H </1/F Hzéo) — Zgo)
2
constant L to be upper bounded by \/1/F.

Remark 1. LipSDP provides three variants that tradeoff accuracy and efficiency, namely, LipSDP-
Network, LipSDP-Neuron, and LipSDP-Layer, whose scalability increases sequentially at the ex-
pense of decreased accuracy. However, [30] provides a counterexample showing that the Lipschitz
estimate from LipSDP-Network is not a strict upper bound; thus, only LipSDP-Neuron, and LipSDP-
Layer are valid. Theorem [ here directly corresponds to LipSDP-Neuron. If all A;, i € Z;_; in (B)
are set to multiples of identity matrices, thatis, \;I, ¢ € Z;_1, then it corresponds to LipSDP-Layer.

, which provides a sufficient condition for the Lipschitz
2

Assumption [ holds for all commonly used activation functions; for example, it holds with oo = 0,
B =1, thatis, p = 0,m = 1/2 for the ReLU, sigmoid, tanh, exponential linear functions. Therefore,
we focus on this case in this work.

3 Methodology

We now develop two fast compositional algorithms based on LipSDP-Layer and Lipschitz-Neuron
respectively. Both algorithms are not only scalable and significantly faster, but also provide compa-
rable estimates for the Lipschitz constant.

3.1 Exact Decomposition

We circumvent direct solution of the large matrix inequality in (B), which becomes computationally
prohibitive as the FNN () grows deeper. Instead, we develop a sequential block Cholesky decom-
position method, akin to the technique introduced in [B1], also expanded in [32, B3]. We first restate
Lemma 2 of [B1] below.
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Theorem 2 (Restatement of Lemma 2 of [31]). A symmetric block tri-diagonal matrix defined as

P11 Ra 0 0

R P2 Rs .. 0

0 Rfj P> Rs .. 0
: ) €]

0 .. 0 R, P R

0o .. 0 R P

is positive definite if and only if X; > 0,Vi € {0} U Z;_1, where
P i A s)

Pi — Ri Xi—lRi lf’L eZi_1.

Theorem 3. Ler P; be defined as in (B) with p = 0, m = 1/2. Then, the Lipschitz certificate P, > 0
holds if and only if the following sequence of matrix inequalities is satisfied:

M; >0, VYieZ_,, M,_y — FW W, > 0, (6)
where
I 1=0
M; = _ . . 7
{Az — iAZWZ(szl)l 1WiTAi 1€ Lj—1 7

Theorem B provides an exact decomposition of (3), and allows us to establish necessary and suffi-
cient conditions through small matrix inequalities that scale with the size of the weight matrices of
each layer, rather than that of the entire network. To accurately estimate the Lipschitz constant, we
need to decide on A;, ¢ € Z;_, that generate a tight upper bound at the last stage. In other words, we
want M;_ — F VVZTVVl > 0 to yield the smallest estimate for /1/F. In the following subsection,
we provide compositional algorithms to decide the appropriate A;, i € Z;_; sequentially, so that we
only need to solve one small problem corresponding to each layer.

3.2 Compositional Algorithms

We first propose two practical algorithms here. The theory supporting the algorithms and the geo-
metric intuition are deliberately deferred, and will be thoroughly discussed in a the next subsection.

The first algorithm, ECLipsE, explores the geometric features that enables us to provide an accurate
Lipschitz estimate by solving small semidefinite programs (SDPs), which are of the size of the
weight matrices on each layer. The second algorithm, ECLipsE-Fast relaxes the sub-problems
at each stage and yields a closed-form solution for each sub-problem that makes it extremely fast.
These algorithms represent different trade-offs between efficiency and accuracy; one may choose
ECLipsE if pursuing accuracy, and ECLipsE-Fast for applications where time is of the essence.

We observe in (1) that M; is obtained in a recursive manner and depends on A; and M;_1,i € Z;_1.
Therefore, we decide A; and then calculate M; for i € Z;_1 sequentially. Thus, these two algorithms
can be implemented layer-by-layer in a compositional manner.

Concretely, for ECLipsE, we obtain A;, i € Z;_; at each stage i using the information from the
next layer, i.e. W; 1, by solving the following small SDP:

o wT T LA(WAM._ =13
Az Cle_;_leJrl 2A1(W1(szl) Wl )2 > 0, A'L ED+, c; >0

max ¢; - s.L. L(Wi(M;_1)"tWT)3 A, I
@ 2 1 11— 7 T
3
For ECLipsE-Fast, A; is reduced to \; 1, i € Z;_; and ); is calculated in closed-form as
2
Ai = )

Omaz (Wi(Mifl)_1W1T> .

Note that this completely eliminates the need to solve matrix inequality SDPs altogether. At last,
after all A;s, i € Z;_ are decided, we obtain the smallest 1/F', which yields the smallest Lipschitz

estimate L = \/1/F, as follows
1/F = omaz (W Wi(Mi—1) ™). (10)
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Remark 2. We choose to directly calculate the smallest 1/F rather than first derive the largest F'.
This is because obtaining the largest F' first involves taking the inverse of VVlTVVl, which can cause
numerical issues due to potential singularity of W, W;. In contrast, directly calculating the smallest
1/ F involves taking the inverses of M;_1, which is already guaranteed to be strictly positive definite
at layer [ — 1 when deciding A;_;.

We summarize the algorithms as one in Algorithm . Algorithms ECLipsE and ECLipsE-Fast
are respectively preferable based on whether the priority is on accuracy or speed.

Algorithm 1 ECLipskE and ECLipsE-Fast

Input Weights {W;}!_, from a FNN (1) with activation function slope-restricted in [0, 1]
Output Lipschitz estimate L

1: Set MO =1

2: fori=1,2,....,1—1do

3: ifECLipsE (pursuing accuracy) then

4: Obtain A; from the optimal solution of (R)

5. elseif ECLipsE-Fast (pursuing speed) then
6: Obtain \; from ()

7: A, — N1

8: endif

9:  Obtain M; from (@) with A; and M;_4
10: end for

11: Obtain 1/F from ([)
12: Return L = /1/F

3.3 Theory

Now we dive into the cascade structure of feed-forward neural networks and demonstrate the theory
behind the two algorithms. We analyze the compositional algorithms in Section B2 in a backward
manner, starting with the output layer. After all A;, i € Z;_ are decided, M; > 0, i € Z;_5 hold.
From Theorem B, it remains to guarantee that M;_; — F WZTWZ > 0, and consequently, (M), for
which we state the following result.

Proposition 1. For given A;, i € Z;_1 that satisfies M; > 0, i € Z;_s, the tightest upper bound for
Lipschitz constant is L = \/amax (WIWi(M—1)~Y).

Now, at stage [ — 1, when deciding A;_1, A;, @ € Z;_5 are fixed and thus M;_s is fixed. According
to Proposition [, we would like to choose A;_1 such that 0,4, (WITWZ (Ml_l)’l), where M;_ is
a function of A;_1, is as small as possible. We have the following result.

Lemma 1. If M; > 0, then WZ£1Wi+1(Mi)’1 and Wi g1 (M;) "1 (Wi 1) share the same non-zero
eigenvalues.

Note that at stage 14, it is guaranteed that M; > 0. Taking ¢ = [ — 1, Lemma [ infers that it is
equivalent to minimize 0,4, (Wl(Ml,l)*IVVlT) when deciding on A;_;. Note that M;_; > 0,
and consequently, the existence of M l__ll is already guaranteed when we reach the last stage. For the
sake of conciseness, we define F; = Wi(M;—1)"*WI i€ Z_y. From @), M; = A; — %Ai}"i/\q;.
We further write out the recursive expression for F; as

_ waw{ i=0
Fin1 = Wiiq(M; it — 1 . 11
+1 +1( ) i+1 {”riH(Ai _ iAz‘fiAi)_lﬂfﬁ-l 1€ Zyj—1 (11)

Lemma 2. For any constant v € (0,1), any A; € Dy that satisfies M; = A; — %Ai}"iAi >0
is also a feasible solution for M; & A; — iAi('yFi)Ai > 0. In other words, the feasible region
{Az M; > 0,A; € ID)+} - {Az : Mi >0,A; € D+}

Lemma @ gives us the observation that a contraction F; — ~F;,v € (0,1) yields a larger fea-
sible space for A; € D, to ensure M; > 0. Meanwhile, () shows that for any given A;, a
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smaller F; leads to a smaller F;;; for the next stage. We can characterize how ‘small’ F; is
by its spectral norm ., (F;). Then, minimizing 0,4, (F;) aligns with our goal of minimizing
Omaz WIWI(Mi—1)™Y) = omae (Wi(Mi—1) *W) = 0paa(F7) at the last stage. In other
words, a smaller 7 at the start will generally translate to a tighter Lipschitz estimate at output layer
if we always choose to minimize the spectral norm o,,,.. (F;) at each stage.

Now we focus on how to specifically optimize A;, i € Z;_;. At stage i, the goal is to seek for the
A; that minimizes o,qq (Fi41), where Fiqy = W1 (A; — $A;F;A;) ' WL | as in (). Note that
M;_; and F; are already fixed and can be regarded as constants at the i-th stage.

Proposition 2. [f there exists a singular matrix N > 0 such that M; = cZ-W-:Q_l Witr1 + N, with

(2
constant ¢; > 0, then 000 (Fiv1) = 1/¢;, Vi € Z_1.

In other words, we need to find the largest ¢; > 0 to minimize 0,4, (Fi+1) = 1/c;. Recall that
M; = A; — %A,;}}Ai is a function of A;. We state the following proposition that is used to derive
the small sub-problems at each stage.

Proposition 3. Consider the following optimization problem for Vi € Z;_;.

1
IIlcaX c; S.t A — ZAiWi(Mi_l)ilwiTAi - Ci(WZ£1Wi+1) >0, AeDy, ¢ >0
(12)

Then, the optimal value c; is the largest constant such that M; can be written as M; =
cﬂ/VﬁlWHl + N, where N is some singular matrix such that N > 0. Moreover, the feasible
region for the optimization problem is always nonempty.

Geometric Analysis: We illustrate the process of achieving the largest ¢; > 0 in Fig. . We geo-
metrically represent a positive semidefinite matrix by the ellipsoid generated by the transformation
of a unit ball in the Euclidean space by the matrix. For simplicity of exposition, we refer to this
ellipsoid as the ‘shape’ of the matrix. We plot the shapes of M; and szjerHl in green and blue,
respectively, in 2D. The positive definiteness of the constraint in (IZ) is equivalent to the ellipsoid
of Wf’;lWiH being contained in the ellipsoid corresponding to M;/c;. Specifically, when ¢; > 1,
Fig. [E demonstrates the maximum contraction of M;, corresponding to the largest c¢;, such that
ellipsoid of WgeriH is still contained in ellipsoid of ¢; M;. Similarly, for the case where ¢; < 1,
Fig. [H demonstrates the minimum extent (the smallest 1/¢;) to which M; needs to expand, such
that the ellipsoid of WiﬁlWiH is contained. Algebraically, in both cases, c¢; is the ratio of the
lengths of the green and pink arrows. By Proposition O, the resulting ellipsoid (depicted in pink) is
M;/c; = W,ﬂlWHl + N/¢; for both cases, and is tangent to the ellipsoid of VV};l W,+1. Moreover,
the vector pointing from the origin to the tangency point aligns with the direction of eigenvectors
(the grey vector v in the plots) corresponding to the zero eigenvalues of the singular matrix N > 0.

(a) Intuition with ¢; > 1 (b) Intuition with ¢; < 1

Figure 1: Geometric Analysis of ECLipsE

Combining Proposition B and B, we can derive an optimization problem to sequentially find the
appropriate A;, i € Z;_1. The first constraint in (I2) is quadratic in A;, which makes it unattractive
for practical purposes. Therefore, we apply the Schur Complement to transform it into the linear
matrix inequality (LMI) constraint in (8). Thus, the optimization problem in Proposition B becomes
equivalent to the SDP in (B), yielding algorithm ECLipsE. Notice that there are several ways to
write the Schur complement of the constraint in (IZ). We choose this specific structure to avoid
singularity of the diagonal entries and ensure positive definiteness.

ECLipsE-Fast achieves remarkable speed by further reducing A;, i € Z;_; to a multiple of
identity matrix A\;I, where \; > 0, and by relaxing the sub-problems. While our goal remains to
minimize ooz (Fig1) = Omaz (Wi (A — TAF;A;) "W, ), we intentionally disregard infor-
mation from W, 1, and instead focus solely on minimizing the spectral norm of (A; — %Aq; ]:,iA,-)’l.
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Roughly speaking, a smaller 0,4, ((Al — %AiFiAi)_l) yields a smaller 0,44 (F;+1). This relax-

ation allows us to derive a closed-form solution for A;, 7 € Z;_; as follows.

Proposition 4. Choosing \; = #(E) > 0 minimizes 0maz ((AZ — iAi}}Ai)’l) where A; =

i1 under the constraint that M; = A\; — iAi}'iAi > 0. Moreover, this closed-form solution for \;
always satisfies M; > 0,1 € Z;_1.

By the definition of F;, Proposition B matches with (8), yielding algorithm ECLipsE-Fast. Al-
though this relaxation may result in a loss of tightness, the closed-form solution offers the advantage
of significantly increased computational speed.

Geometric Analysis: We now demonstrate the geometric analysis behind the development of
ECLipsE-Fast and compare it with ECLipsE in the case where ¢; > 1 (Fig. D). We also
include the case ¢; < 1 in Appendix B. The key idea behind ECLipsE-Fast is that instead of
keeping the shape of M, fixed, and contracting the ellipsoid itself, as in ECLipsE, we first find
the largest inscribed ball (dark green) for the ellipsoid of M;. Then, we contract this ball to the
maximum extent such that it still contains Wg_lWiH. The resulting ball (dark blue) is precisely
the smallest circumscribing ball for the ellipsoid of WZTHW,;_H. Note that this approach serves as
an approximation for the process of contraction depicted in Fig. [[H (corresponding to ECLipsE),
thus yielding a smaller ¢;. We use this approximation to achieve a closed-form solution, which
significantly increases the computational speed.

(a) Geometric Intuition of ECLipsE-Fast (b) Geometric Intuition of ECLipsE

Figure 2: Comparison between ECLipsE-Fast and ECLipsE with¢; > 1

Remark 3. In Lemma [, the analysis initially fixes the shape of F;. However, when optimizing
A;, the shape of the feasible region depends on JF;, which can vary with different A;_1, i € Z;.
Thus, this approximation, which allows for a scalable distributed algorithm to solve the centralized
problem (B) introduces an unavoidable but minor tradeoff in achieving global optimality.

4 Experiments

We implement our algorithms? on randomly generated neural networks and ones trained on the
MNIST dataset. The details of the experimental setup, and training of the neural networks (both
randomly generated and trained on the MNIST dataset) are described in Appendix O.

Baselines.?  For ECLipsE, A;, i € Z;_; can have different diagonal entries, which bench-
marks to LipSDP-Neuron. For ECLipsE-Fast, A; = X\ I, ¢ € Z;_1, which benchmarks
to LipSDP-Layer. Additionally, we compare our Lipschitz estimates to the naive upper bound
Lygive = Hé:l |IW;||2[26], CPLip [I6] and LipDiff [20]. The codes for these baselines are avail-
able at [B4, 35, 20]. Note that LipDiff is accelerated using a node with 2 NVIDIA A100 GPUs (80G)
and 512 GB of memory.

4.1 Randomly Generated Neural Networks

We first consider randomly generated networks, where the number of layers are chosen from
{2,5,10,20, 30,50, 75,100}, and number of neurons are chosen from {20, 40, 60, 80, 100}, amount-
ing to a total of 40 experiments for each algorithm (including the baselines). We quantify the com-
putation time and tightness of the Lipschitz bounds (raw data in Appendix B). The Lipschitz bounds
presented in the following figures are normalized to the trivial upper bound for ease of comparison.

"https://github.com/YuezhuXu/ECLipsE

#Note that SeqLip [I3] is also an often-used benchmark; however, we do not consider it since it does not
represent a true upper bound for the Lipschitz constant. We also note that we do not include Chordal-LipSDP
[IS] as a baseline , since only the case where 7 = 0 in that work is valid, and all other cases, are no longer valid
in certifying the Lipschitz constant as discussed in Remark [ as well as [[I5].
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Case 1: Varying network depth (number of layers). We select a network with 80 neurons per
layer, and demonstrate the scalability of our algorithm as network depth increases. Note that all
baseline approaches fail to provide a Lipschitz estimate within a computational cutoff time of 15
min for networks larger than this size (see results in Appendix H). As the number of layers increases,
the computation time for CPLip algorithm explodes (the algorithm does not return a Lipschitz esti-
mate within the cutoff time beyond 20 layers); however, CPLip provides the most accurate estimates
in smaller networks. LipDiff provides inadmissible Lipschitz estimates even for moderate networks,
returning as much as 10-100 times the trivial bound (see Table 2a, Appendix B for the estimates).
Also, while LipDiff has similar computational time for smaller networks, computational time grows
for deeper networks as recorded in Appendix B Table 2b. Consequently, we do not include these re-
sults in the plots. LipSDP-Neuron and LipSDP-Layer are also scalable to some extent; however, they
fail for a networks of 30 and 50 layers respectively. In contrast, the computation time for ECLipsE
and ECLipsE-Fast stays low and grows only linearly with respect to the number of layers (Fig.
BH). Notably, ECLipsE-Fast is significantly faster (thousands of times) than LipSDP-Layer,
owing to the closed-form solution at each stage, while ECLipsE is also considerably faster than
LipSDP-Neuron. The Lipschitz estimates given by algorithms ECLipsE and ECLipsE-Fast
are very close to the ones from LipSDP-Neuron and LipSDP-Layer respectively (Fig. Bd), and out-
perform the trivial bound. As the number of layers increases, the normalized Lipschitz estimates are
smaller, indicating that our algorithms are well-suited to very deep networks.

400 x ECLipsE
) ——— ECLipsE-Fast
N LipSDP-neuron
~ 350 1 — — LipSDP-layer
| — — CPLip
300 x
1
250 !
1

—— ECLipsE
ECLipsE-Fast
LipSDP-neuron
— — LipSDP-layer
— — CPlip

1

o
©

®

2

o
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©

Normalized Lipschitz Estimates
o o © o o o
o
Time

o
N

°

o
o
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(a) Lipschitz estimates normalized to trivial bound (b) Computation time (seconds)

Figure 3: Performance of ECLipsE-Fast and ECLipsE, with respect to baselines for increasing
network depth, with 80 neurons per layer. The red x markings indicate that the algorithm fails to
provide an estimate within the computational cutoff time beyond this network size.

Case 2: Varying neural network width (number of neurons per layer). We now examine the per-
formance of our algorithms for wider (more hidden neurons per layer), rather than deeper networks
(with more layers), and demonstrate the results for networks with 20 and 50 layers respectively (Fig.
@). While the complete raw data is presented in Appendix B, we discuss the results for 20 and 50
layer networks here, since they represent the network sizes where different baselines fail to return
Lipschitz estimates beyond the computation cutoff time of 15 min. Note that while LipDiff also
manages to generate estimates for all network sizes in our 50 layers case, it once again provides
inadmissible Lipschitz constants, returning as much as 10% — 109 times the trivial bound. Therefore,
we do not include these results in Fig. B (see Tables 3a and 3b in Appendix H for the estimates
and computation time.) We can observe from Figs. BH and Ed that the computation time needed
for CPLip, LipSDP-Layer, and LipSDP-Neuron significantly increases with the number of neurons,
while the computation time of our method still grows linearly. Meanwhile, the Lipschitz estimates
from algorithms ECLipsE and ECLipsE-Fast are close to the ones from LipSDP-Neuron and
LipSDP-Layer respectively (Figs. Bd and Bd). Thus, we can conclude that our method significantly
improves scalability for wider neural networks.

Case 3: Comparison with LipSDP implementations. In order to address the scalability issue as
the size of the network grows, LipSDP utilizes a splitting approach, where the network is split into
smaller sub-networks and the Lipschitz constants for each sub-network are composed at the end to
obtain the final estimate. We benchmark our approach with respect to the performance of LipSDP-
Layer and LipSDP-Neuron considering different sub-network sizes. Note that our algorithms do not
require any splitting, since they remain scalable to large networks. As the FNNs are larger than the
ones in previous cases, we change the cutoff time to 30 minutes. We conduct two sets of experiments
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Figure 4: Performance of ECLipsE-Fast and ECLipsE with respect to baselines as network
width increases, for a randomly generated network with 20 layers ((a) and (b)) and 50 layers ((c)
and (d)). The Red x markings indicate that the algorithms fail to provide an estimate within the
computational cutoff time of 15 min beyond this network size.

to study how our algorithms perform on considerably deep neural networks and how network width
affects these results.

In the first set of experiments, we consider FNNs with 100 layers, with the number of neurons chosen
from the set {80,100,120,140,160}. The splitting sizes for LipSDP-Neuron and LipSDP-Layer are
3, 5 and 10. We represent different FNN sizes by shapes and different algorithms by the color in
Fig. B. By plotting the normalized Lipschitz

0.95

PR Ty estimates and computation times on the two
os| $7 5 190 neurons axes, we illustrate how efficient and accurate
085|® N v 4 T4oneurons an algorithm is by how close the correspond-

8 .l A v A ing data point is to the origin. We observe
£ Lon ¢ Ak that all the data points for ECLipsE-Fast
%0.75‘ o L — Lirsornouronts) are at the leftmost extreme of the plot, in-
% ol :Eggégijil}“' dicating that it is the most efficient algo-
S R v ry rithm. Further, ECLipsE-Fast also out-
0851 *" performs the red cluster (LipSDP-layer with
o6 ® the network split into 3) in both tightness and
| e | | speed. Comparing data points of the same
%% 200 40 600 800 1000 1200 1400 1600 1300 shape, ECLipsE-Fast outperforms LipSDP-

Time Used

) ) i o Layer for all sub-network splits both in terms
Figure 5: Computation time vs estimation ac- of the Lipschitz estimate and the computation
curacy for ECLipsE, ECLipsE-Fast and (jme. Finally, the data points corresponding
LipSDP splitting with different sub-network sizes. g ECLipsE are clustered at the bottom left,

demonstrating that it is relatively more accurate
and efficient than all LipSDP methods, no matter how the network is split.

In the second set of experiments, we explore even wider networks. Specifically, we choose a fairly
deep neural network with 50 layers and vary the width from 150 to 1000. The splitting size for
LipSDP-Neuron and LipSDP-Layer is 5. The resulting Lipschitz estimates (normalized with respect
to trivial upper bounds) and the computation time are provided in Tables 4a and 4b of Appendix
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B due to space limitations. From these results, we observe that ECLipsE—Fast is extremely fast
even for very wide networks, with a running time of only 15.63 seconds for a network width of
1000, while the computation time for LipSDP-Layer grows significantly. Also, while ECLipsE
fails when the width reaches 300, it is comparable to LipSDP-Neuron split into 5 sub-networks in
terms of time performance.

Remark 4. We notice that when the neural networks are significantly wide, ECLipsE takes more
than 30 minutes while ECLipsE-Fast remains efficient. This observation can be explained by
examining the computational complexity of these algorithms. Note that we directly state the com-
putational complexity of each algorithm here for brevity; the detailed derivations are included in
Appendix O. Suppose a neural network has n hidden layers with m neurons. Then, the computa-
tional cost for LipSDP and ECLipsE are O(n*m*) and O(nm*) respectively. We can observe that
the complexity is significantly decreased in terms of the depth, but is the same in terms of the width,
immediately indicating the advantage for deep networks. Nevertheless, as m grows, the difference
between O(n*m*) and O(nm?) is still drastically enhanced, especially with large n. More impor-
tantly, for ECLipsE-Fast, the computational cost drops to O(nm?). This is the fastest one can
expect if the weights on each layer are treated as a whole.

4.2 Neural Networks Trained on MNIST.

We now demonstrate our algorithms on four networks trained on the MNIST dataset (see Appendix
D for details) to achieve an accuracy of at least 97%. The resulting networks are not very deep
(3 layers), with 100, 200, 300, and 400 neurons. We set a computational cutoff time of 30 min to
obtain Lipschitz estimates. As described in the note on Baselines earlier in this section, ECLipsE
is benchmarked against LipSDP-Neuron and ECLipsE-Fast is benchmarked against the faster
LipSDP-Layer due to their mathematical structure. From Fig. BB, we can see that ECLipsE-Fast
is significantly faster than LipSDP-Layer, while ECLipsE is also considerably faster than LipSDP-
Neuron. Note that all algorithms provide very similar Lipschitz estimates (Fig. Bd). Therefore, for
networks that are not very deep, such as those in this example, ECLipsE-Fast is the optimal
choice, since it significantly outperforms all algorithms in terms of speed, while the approximation
error due to the closed-form solution is not too significant compared to the baselines.

1
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Figure 6: Performance of ECLipsE-Fast and ECLipsE, with respect to baselines for increasing
number of neurons, for a 3-layer network trained on MNIST. The red x markings indicate that the
algorithm fails to provide an estimate within the computational cutoff time beyond this network size.

5 Conclusion

‘We propose a scalable approach to estimate Lipschitz constants for deep neural networks by develop-
ing a new matrix decomposition that yields two fast algorithms. Our experiments demonstrate that
our algorithms significantly outperform the state-of-the-art in terms of computation speed, while
providing comparable Lipschitz estimates. We envision that further computational speedup can be
achieved through sparse matrix multiplication and eigenvalue estimation techniques, and leveraging
autodiff frameworks, along the lines of [0]]. While we can unroll the convolutional layers in CNN
structure to a large fully connected neural network layer to apply ECLipsE and ECLipsE-Fast
to estimate Lipschitz constant, better compositional methods that are tailored to feature the convolu-
tional layers are expected for future work. Similarly, other architectures, such as residual networks,
present additional challenges due to their unique structures and will be considered in future research.
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Appendices

A Technical Proofs

Proof of Relation in Assumption [ll. We show how the slope-restrictedness of the activation func-
tion implies (B). The inequality a(v; — v2) < ¢(v1) — ¢(v2) < B(v1 — vy) that holds elementwise
yields

A [(p(v1) — ¢(va)) — aufvg — v2)]; X [(¢(v1) — P(v2)) — B(v1 — v2)];, <0, Vi e R, VAL >0,

where subscript 7 indexes the i** element of the vector.
Summing all the inequalities for i € R™ and letting A = diag(\!, A2, ..., \"), we have

[(d(v1) = (v2))—a(vr — v2)]" A[(d(v1)—(v2))—B(v1 — v2)] <O0.

In other words, we have the following quadratic inequality

(601) () A1) ~9(02) L (B(01)~0(02)) A 01 — v2)
D (o) A(B01) (0201 —1) T A (11 -02) < 0,

which can be directly rewritten as (@) with p = a8 and m = ot

2
Proof of Theorem 1. For any two 1nputs z( ) and zé ), let zl ,zg), v%l), vy’ ,z € Z; be computed
as in (I0). Define Az() = zgi) 22 ,i € {0} UZ and AvU) = U(J) (3), j € Z;. By both left
and right multiplying the left hand side in (B) by the vector [Az(?), Az .. Az(=D]T we have

Az(i—1) pWINW;, —mWZIA| [Az0-D
(0T A .(0) i i
(Ae7)7as +Z <[ 2 } {—mAiZWiz A ]| A (13)

— F(Az(07Y )WITWZAZI V>o.

Now, we show that every summand in the above inequality (3) is negative semidefinite. In fact,
with Assumption I, using notation Av(® = v — v and Ag(v®) = ¢(v?) — ¢(v$"), i € Z,,
and taking A = A;, we can write

Av® ’ pA; —mA; Ayp®
{A(ﬁ(v(i))] {—mAi A; } [Aqﬁ(v(i))] <0. (14)

Note that Av(® = (Wi +b;) — (W20 4+ b;) = W3 A2~ and Ad(vi) = Az, We can
express these relationships in matrix form as

Av® W, 0] [AzG—D
o] =[5 9] [0 ] ®

Substituting (I3) into ([4), we have

Az=D17" pWINW;  —mWIA;] [Az6-D <0 (16)
Combining (3) and (IH), we have
(AzNTAZO — F(AZDy W W A0 > 0. a7

Similarly, as the last layer is a linear layer, Az() = Av() = W; Az~ Then (I2) is exactly
(AHTAZ < (Az(0 VA,

yielding a upper bound +/1/F for the Lipschitz constant.
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Proof of Theorem 2. Applying Lemma 2 in [B1], we define

1
Ri= —§WiT_1Ai—17i € Zy, (18)
and
I ifi—0,
P, = { A ificZ s, (19)

N — FWIW, ifi=1-1.
Then, with P; and R; defined above, we directly have

X; ifi € {0}JZ_s,
M; = o 20
{XH—FWITWl ifi=1-1. 20)

In other words, the sufficient and necessary condition X; > 0, Vi € {0} U Z;_ is equivalent to
M; >0, Yi€Z_o, M;_1 — FWIW, >0, (21)
which is the same as ().

Proof of Proposition 1. As M; > 0, ¢ € Z;_- has been guaranteed, it remains to ensure that
M, — F WlTWl > 0 by Theorem B. This is equivalent to M;_1/F > WZTWZ. Therefore, the
smallest possible 1/F is 0naq (W, Wi (M;—1)~"). Then by Theorem [, the upper bound for the

Lipschitz constant is \/1/F = \/ama@-(WlTWz(Ml—ﬁ_l)

Proof of Lemma 1. M; > 0 indicates (M;)~* > 0. Then for Vug # 0,

TWZ—H( i) W+1UO (Wiilvo)T(Mi)ﬂWﬁonZU, (22)

meaning that all eigenvalues of W 1 (M;) W1 ;11 are non-negative. As WH—I # 0, we know that
the largest eigenvalue is positive and should be the same as 0,44 (VVH_l( i) W ) > 0.

Now consider any non-zero eigenvalue )\, of matrix W; 1 (M;) W2 "1 and let v, ;é 0 be its corre-
sponding eigenvector. Then,

W1 (M;)™ Wﬂva = A\gVq. (23)

Left multiplying both sides with ngrl, we have
WgerzH(M )_I(Wi:iWa) = WZAWHI(M) W+1”a = Wijjrl)‘ava = Aa(W; +1”a) (24)

As \, # 0, we know that W7, it1Va 7# 0 from (Z3). (Otherwise, A\ v, = 0 with v, # 0 will lead
to A\q = 0). With Wl v, # 0, (Z8) implies that \, is also an eigenvalue of W}, W;1(M;)™*
corresponding to eigenvector W; +1va # 0.
Conversely, for any non-zero eigenvalue A, of WEHWHl(Mi)_l corresponding to eigenvector
vp # 0, we have

W Wi (M) oy = Apue. (25)
Letv, = /\%Wiﬂ (M;)~ vy We have v, = WL vc. Then we substitute v, on the both sides in (2Z3)
and obtain

WiTleiJrl (Mi)_IWErlvc = MW +1Ve-

Left multiplying both side with W1 (M;) ™, we further have
Wip1(M;)™ 1W+1WZ+1( i) 1Wz‘7:rlvc = )‘bWHl(Mi)_le‘ilvc-
Letvg = Wi_i_l(Mi)ilW-

vac, we finally have

Wi+1(Mi)71le_;_1Ud = \pUq.

Similarly, we can conclude that A\, # 0 is the eigenvalue of W;, 1 (M,»)—lwﬁl and vy is the corre-
sponding eigenvector.
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Proof of Lemma 2. To prove that {A;: M; >0,A; €Dy} C{A;: M; > 0,A; € D, }, it suffices
to show that M; — M; > 0 for any y € (0, 1). In fact,

1

M; — M; = A; — iAif'.iAi — (A — %Ai]‘—il\i) = %Ai}—i/\b (26)

Atstage i, M; 1 > 0is guaranteed. Then, similar to (Z2), we know that F; = W;(M,;_1)"*W; >0
Since A; € Dy and 0 < v < 1, implying 252 > 0, we have —A FiNi > 0.

Proof of Proposition 2. Recall that by deﬁn1t10n, Fiv1 = Wip1 (M;)'WZ . Applying Lemma I,
we have 000 (Fit1) = Omae (W Wig1(M;) ™). Meanwhile, with M; = ¢; W2 W1 + N,

_ N _ N _
W Wi (M;) 1==(W§i1mﬁ+14-z;)@%mﬁi1ﬂﬁ+1+-AU 1—-EfUHW411WG+1*-AU !

1 N
= —T— —(My)~L.
Ci Ci
27)
WIth N > 0 and M; > 0 after A; is decided, we show that g(Mi)*l only has non-negative
eigenvalues. As M; > 0 is guaranteed to symmetric according to (1), there exists a symmetric square
root for (M;)~! and we denote it to be (M;) 2. Then N(M;)~* is similar to (M;)~2 N (M;)" 2,
thus sharing the same eigenvalues. Furthermore, for Va # 0,

o7 (M) N(M;) %z = ((Mi)_%x)TN ((Mi)—%a:) > 0.

It indicates (Mi)_%N (Mi)_% only has non-negative eigenvalues. The first equation holds by
the symmetry of (MZ-)_% and the second inequality is because of the definition of positive semi-
definiteness of N. Therefore, with ¢; > 0, the eigenvalues of cﬂi(Mi)_l = C%_N (M;)~! are all
non-negative. and all eigenvalues of W +1I/V1+1( ;) ! should be less than or equal to 1/¢;. On the
other hand, as N is singular, N (M;)~! is also singular, thus having eigenvalue 0. Therefore,

Omax (fiJrl) - Jmax(Wij_;J Wi+1 (Mi)il) - ]-/Cz
Proof of Proposition 3. We first show that if M;_; > 0, the feasible region is always non-empty

for Vi € Z;_1. We use o to denote 0,44 (Wi(Mi,l)’lwiT) = Omaz(Fi). We take A; = %I and

L 0.9 . ; ) ; )
c; = p— (AL AsW; #£ 0,4 € Z;, we have o > 0 and 04,44 (F;) > 0, ensuring A; € Dy

i+1
and ¢; > 0. Further,

1
A; — ZAZWZ(MZ_l)ilwlTAZ — Ci(WIE1Wi+1)
2 14 0.9
> 2T — - —ol - WL, w;
=7 4 0_20 O Oman (WZ+1W ) ( 1+1 +1) (28)
l[, @I 0.

Therefore, the feasible reglon at least includes the A; and ¢; we specified, and is thus not empty.

To make the feasibility complete, we prove that M; > 0, Vi € {0} Z;—1 by induction. When
i =0, M; = My =1 > 0. When it comes to stage ¢, we have by induction that M;_; > 0 is true.
As A; are obtained satisfying (I2) with ¢; > 0 and recall the recursive relation for M;, ¢ € Z;_; to

be M; = A; — iAiWi(Mi_l)flszAi, we have M; > CiWZTlei-H > 0.

We now prove by contradiction that the optimal value c; is the largest constant such that M; can

be written as M; = ciWﬁlWiH + N, where N is some singular matrix that N > 0. M; =

C; Wﬁlmﬂ + N. Suppose there exists a ¢; > ¢; such that it satisfies all the constraints. Then,
from the first constraint in (I2), we have
(ci — &)W Wig1 + N = M; — (Wi Wis1) >0 (29)

Let v # 0 be the eigenvector of N corresponding to eigenvalue 0. Observe that
oT ((e; — &)W Wig1 + N)v

=v" ((ci = e)WhWig1) v+0 (30)
=(ci —¢&)v (Wij-;-IWi-&-l) v < 0.
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The last step holds because ¢; — ¢; < 0 by definition of ¢;. It contradicts (£9).
Proof of Proposition 4. When A; = \;1,

1 -1 1 -1
A= SNFiN ) = (NI —X2F ) .
( % 4 zfz 1) (f\z 4/\1]:1>

As M; = A; — A, F;A; > 0, we have

1 o L
T — Z)\2F = :
Omax <()‘l 4)\1]:1) ) i — )\,Lzamax(}—i)/4 oy

Minimizing the above spectrum is equivalent to maximizing the denominator \; — A\20 4 (F;) /4
in (BI), which is quadratic in \;. To find the optimal \;, we set the derivative of the denominator
with respect to \; to be 0, and obtain the closed-form solution \; =

2
Omax (]:L) :
Moreover, with A; = %ml and F; > 0 guaranteed at stage 7, we have

1 1
Mi = Al — *Az]:zAz =—T7>0.
4 O-mam(fi)

B Geometric Analysis for ECLipsE-Fast

The geometric analysis for algorithm ECLipsE-Fast analogous to Fig. D, comparing the case
where ¢; > 1 and in other cases are shown in Fig. [.

S L ,

(a)Forc; > 1 (b) For other cases

Figure 7: Geometric Intuition of ECLipsE-Fastwith ¢; > 1 and otherwise.

C Computational Complexity Derivation

We derive the time complexity for both ECLipsE and ECLipsE-Fast in detail here. Suppose
a neural network has n hidden layers with m neurons. Then, the large matrix in Theorem [ has
dimension nm + O(1) and the decision variable is of size nm + O(1). Note that the computational
complexity for solving an LMI with the size of the matrix constraint being size A and the number
of decision variables being B is O(A® + A2B?). Therefore, the computational cost for LipSDP is
O((nm + O(1))® + (nm + O(1))?(nm + O(1))?) = O(n*m*). Contrarily, ECLipsE solves n
sub-problems as in Eq. (8), each involving a matrix of size O(m) and m decision variables. The
corresponding total computational cost is n x (O(m3 +m?m?)) = O(nm?). This directly indicates
the advantage of ECLipsE for deep networks. Also, as m grows, the difference between O(n*m*)
and O(nm?) is still significantly enhanced, especially with large n. Regarding ECLipsE-Fast,
we note that we do not need to solve any SDPs and the computational cost drops to n x O(m?) =
O(nm?). This is the fastest one can expect if the weights on each layer are treated as a whole.

D Experimental Setup and Data Generation
Experimental Setup. All experiments are implemented on a Windows laptop with a 12-core CPU
with 16GB of RAM.

Randomly Generated Neural Networks. We set the input dimension to be 4 and the output dimen-
sion to be 1. The activation functionsare chosen to be ReLLU, and the number of neurons in each
hidden layer is set to be the same. We randomly generate weights for each layer to follow the normal
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distribution. Also, in order to avoid the case where the Lipschitz constant is too large or too small
and may cause numerical issues, we scale the weights on each layer such that the is norm randomly
chosen in [0.4, 1.8], following a uniform distribution.

MNIST. For training on the dataset MNIST, the input dimension is 784 and output dimension is
10, which is compatible with the dataset. he activation functionsare chosen to be ReLU, and the
number of neurons in each hidden layer is set to be the same. We train neural networks using the
SGD optimizer with a learning rate of 0.01 and momentum of 0.9 until they achieve at least 97%
accuracy on test data.
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E Additional Experimental Results

The Lipschitz constant estimates and computation times for randomly generated neural networks
with the number of layers chosen from {2, 5, 10, 20, 30, 50, 75, 100}, and number of neurons are
chosen from {20, 40, 60, 80, 100}, are provided below.

Table 1a: Lipschitz constant estimates
Neurons\Layers | 2 5 10 20 30 50 75 100
2 20 1.020 | 3.171 | 1.173 | 6.725 | 3.430 | 49.696 1.091 0.002
é 40 0952 | 3.356 | 0910 | 3431 | 0.004 | 260.807 | 2.895 0.119
-§ 60 1.433 | 2.830 | 0.040 | 0.067 | 0.706 | 0.013 16.433 | 8.890
= 80 0.875 | 0.418 | 0.681 | 4.023 | 0.010 | 0.057 1.291 0.054
100 1.046 | 0.626 | 4.144 | 0346 | 2.521 | 46.466 6.933 95.263
Neurons\Layers | 2 5 10 20 30 50 75 100
- 20 0.856 | 2.485 | 0.822 | 4.189 | 1.985 | 18.974 0.290 0.000
& | 40 0.775 | 2.696 | 0.722 | 2434 | 0.003 | 137.421 | 1.413 0.043
L:) 60 1.207 | 2.391 | 0.031 | 0.051 | 0.480 | 0.008 9.187 4.388
80 0.737 | 0.338 | 0.565 | 3.078 | 0.007 | 0.039 0.810 0.030
100 0.884 | 0.527 | 3414 | 0.276 | 1.904 | 33.261 4.524 57.734
Neurons\Layers | 2 5 10 20 30 50 75 100
Z 20 0941 | 2.825 | 0.990 | 5.354 | 2.612 | 30.884 0.568 0.001
;; 40 0.868 | 3.030 | 0.814 | 2912 | 0.003 | 191.736 | 2.026 0.072
'3 60 1.324 | 2.611 | 0.035 | 0.059 | 0.588 | 0.010 12.355 | 6.285
Eu) 80 0.809 | 0.378 | 0.622 | 3.544 | 0.009 | 0.047 1.027 0.041
100 0.968 | 0.577 | 3.779 | 0.310 | 2.204 | 39.529 5.633 74.570
Neurons\Layers | 2 5 10 20 30 50 75 100
g 20 0.856 | 2.481 | 0.819 | 4.165 | 1.978 | 18.851 0.287
:%’ 40 0.775 | 2.693 | 0.721 | 2.430 | 0.003 | 137.025
é 60 1.207 | 2.390 | 0.031 | 0.051 | 0.479
;‘_]3* 80 0.737 | 0.338 | 0.564 | 3.077
100 0.884 | 0.526 | 3.413 | 0.276
Neurons\Layers | 2 5 10 20 30 50 75 100
E 20 0.938 | 2.814 | 0.985 | 5.327 | 2.607 | 30.763 0.565
E 40 0.863 | 3.019 | 0.812 | 2.901 | 0.003 | 190.489
a2 60 1.319 | 2.606 | 0.035 | 0.059 | 0.584 | 0.010
E“ 80 0.806 | 0.377 | 0.621 | 3.531 | 0.009
100 0965 | 0.575 | 3.770 | 0.310 | 2.197
Neurons\Layers | 2 5 10 20 30 50 75 100
20 0.469 | 1.408 | 0.493 | 2.669
;‘_]3‘ 40 0.432 | 1.510 | 0.406 | 1.451
® 60 0.660 | 1.303 | 0.018 | 0.029
80 0.403 | 0.189 | 0.311
100 0.483 | 0.288 | 1.885
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Table 1b: Computation time (seconds)

https://doi.org/10.52202/079017-0333

"§ Neurons'\Layers I 2 I 5 | 10 I 20 I 30 | 50 75 I 100
©
3
:é N/A
Neurons\Layers | 2 5 10 20 30 50 75 100
- 20 0.374 | 1.393 | 2.776 | 6.243 10.246 | 16.731 24.533 | 37.118
& | 40 0.572 | 2.115 | 4.263 | 8.944 15.730 | 27.977 36.769 | 52.201
L:) 60 1.007 | 3.551 | 7.768 | 14.938 | 25.616 | 46.128 72.479 | 109.913
80 1.381 | 5.428 | 11.650 | 28.458 | 43.255 | 82.461 120.167 | 157.274
100 2.346 | 7.818 | 18.265| 35.685 | 53.392 | 102.400 | 160.400 | 188.536
Neurons\Layers | 2 5 10 20 30 50 75 100
Z 20 0.001 | 0.002 | 0.001 | 0.002 0.003 0.006 0.007 0.010
E 40 0.002 | 0.004 | 0.008 | 0.018 0.029 0.036 0.060 0.057
;% 60 0.002 | 0.005 | 0.010 | 0.026 0.038 0.057 0.076 0.083
2 80 0.004 | 0.009 | 0.024 | 0.051 0.056 0.089 0.127 0.136
100 0.007 | 0.016 | 0.021 | 0.070 0.058 0.095 0.151 0.190
Neurons\Layers | 2 5 10 20 30 50 75 100
§ 20 5.684 | 6.691 | 8.944 | 9.876 15356 | 83.294 153.800 | 373.500
2 40 6.974 | 8.192 | 12.519| 30.342 | 87.703 | 498.750 | >15min
é 60 8.285 | 9.410 | 18.654 | 110.670 | 438.040| >15min
-E‘ 80 8.812 | 10.749 | 43.734 | 303.440| >15min
100 8.876 | 15.009 | 88.894 | 789.330
Neurons\Layers | 2 5 10 20 30 50 75 100
E 20 5.594 | 5941 | 7.800 | 9.013 9.831 23.968 117.23 | 342.93
E 40 6.941 | 7.616 | 8.829 | 19.676 | 40.463 | 216.22 >15min
a2 60 7.849 | 8.790 | 12.591 | 51.714 | 140.270 | 692.47
L% 80 8.087 | 9.834 | 17.815| 125.050 | 393.480| >15min
100 8.431 | 10.356 | 33.859 | 210.090| 687.710
Neurons\Layers | 2 5 10 20 30 50 75 100
20 ~0 0.001 | 0.105 | 158.603 | >15min
-E‘ 40 ~0 0.003 | 0.385 | 614.917
S |60 ~0 | 0006 | 059 | >I5min
80 ~0 0.018 | 1.633 | >15min
100 ~0 0.079 | 3.851
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Table 2a: Normalized Lipschitz Estimates for Randomly Generated NN with 80 Neurons
Layers | ECLipsE ECLipsE-Fast | LipDiff LipSDP-Neuron | LipSDP-Layer | CP-Lip
20 0.765184 0.88079 1.72459 0.76481 0.877786 >15min
30 0.737564 0.863682 155.8985 >15min 0.861134
50 0.669903 0.823353 5.320799 >15min
75 0.627432 0.795877 18.57997
100 0.557117 0.751101 >15min
Table 2b: Time used (sec) for Randomly Generated NN with 80 Neurons
Layers | ECLipsE ECLipsE-Fast | LipDiff LipSDP-Neuron | LipSDP-Layer | CP-Lip
20 28.45839 0.0515 22.23 303.44 125.05 >15min
30 43.25548 0.05645 51.22 >15min 393.48
50 82.46052 0.089058 178.03 >15min
75 120.1665 0.126933 532
100 157.2741 0.136244 >15min
Table 3a: Normalized Lipschitz Estimates for Randomly Generated NN with 50 layers
Neurons| ECLipsE ECLipsE-Fast | LipDift LipSDP-Neuron | LipSDP-Layer | CP-Lip
20 0.381796 0.621443 118628.2 0.379323 0.619014 >15min
40 0.526908 0.735163 2635012.67 | 0.525388 0.730384
60 0.649970 0.810128 23.46069 >15min 0.808237
80 0.669903 0.823353 5.505175 >15min
100 0.71581 0.850702 10622.75
Table 3b: Time used (sec) for Randomly Generated NN with 50 Layers
Neurons| ECLipsE ECLipsE-Fast | LipDiff LipSDP-Neuron | LipSDP-Layer | CP-Lip
20 16.73062 0.005613 12.31672 83.294 23.968 >15min
40 27.97682 0.03643 34.29124 498.75 216.22
60 46.12812 0.056791 86.27217 >15min 692.47
80 82.46052 0.089058 178.2235 >15min
100 102.4001 0.095034 327.946
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Table 4a: Normalized Lipschitz Estimates for Randomly Generated NN with 50 Layers
Neurons ECLipsE ECLipsE-Fast | LipSDP-Neuron Splitby 5 | LipSDP-Layer Split by 5
150 0.743745 0.867548 0.758217 0.87342
200 0.773494 0.883758 0.785171 0.888306
300 >30min 0.897008 >30min 0.899164
400 0.899916 >30min
500 0.903529
1000 0.912093

Table 4b: Time Used (sec) for Randomly Generated NN with 50 Layers
Neurons ECLipsE ECLipsE-Fast | LipSDP-Neuron Split by 5 | LipSDP-Layer Split by 5
150 387.7 0.387262 451.07 93.129
200 1386.6 0.584115 1377.9 210.16
300 >30min 1.321177 >30min 612.47
400 2.657505 2110.9
500 3.7435 >30min
1000 15.63342

F Broader Impacts

This work is primarily theoretical and pertains to obtaining upper bounds on the Lipschitz constant,
which can serve as a measure of the robustness of deep neural networks, and does not have any direct

societal impact.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in our abstract and introduction accurately reflect the paper’s
scope and contributions. All the theoretical and experimental results are aligned with the
claims made in the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We clearly discuss all the theoretical assumptions behind our work and the
classes of networks for which this work is applicable. We also discuss and demonstrate the
computational efficiency of the proposed algorithms for different network sizes.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

» The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the complete list of assumptions behind the theoretical results
in Sections 2 and 3 of the main paper. We also provide the key ideas and geometric intu-
ition behind the proofs in Section 3. The detailed proofs of all results are provided in the
Appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the experimental details are described in the Appendix, and all the code
and data are submitted along with the paper.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the code and data are submitted along with the paper, and will be open-
sourced upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, the paper details the experimental setting and benchmarks in Section 4
and the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our algorithms to compute Lipschitz constant bounds are deterministic, and
always yield the same result for a given neural network up within numerical accuracy
bounds.
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8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational resources and computation time required for each experi-
ment are provided in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics, and ensured that our paper
conforms to these regulations.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: The paper is primarily theoretical, and does not have any immediate societal
impact. We discuss this in the Appendix section B.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not pose any such risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the datasets used to train our neural networks, and the code for the papers
utilized as benchmarks to evaluate our algorithms are cited in the main text and in our code.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/
dataset s has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: All the code and data are submitted along with the paper, and will be released
publicly with detailed documentation upon publication.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper is mainly theoretical and does not involve crowdsourcing or human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: This paper is mainly theoretical and does not involve crowdsourcing or human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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