
Scaling Continuous Latent Variable Models as
Probabilistic Integral Circuits

Gennaro Gala1, ∗ Cassio de Campos1 Antonio Vergari2, ∫ Erik Quaeghebeur1, ∫

1Eindhoven University of Technology, NL
2School of Informatics, University of Edinburgh, UK

Abstract

Probabilistic integral circuits (PICs) have been recently introduced as probabilistic
models enjoying the key ingredient behind expressive generative models: contin-
uous latent variables (LVs). PICs are symbolic computational graphs defining
continuous LV models as hierarchies of functions that are summed and multiplied
together, or integrated over some LVs. They are tractable if LVs can be analyti-
cally integrated out, otherwise they can be approximated by tractable probabilistic
circuits (PC) encoding a hierarchical numerical quadrature process, called QPCs.
So far, only tree-shaped PICs have been explored, and training them via numer-
ical quadrature requires memory-intensive processing at scale. In this paper, we
address these issues, and present: (i) a pipeline for building DAG-shaped PICs
out of arbitrary variable decompositions, (ii) a procedure for training PICs using
tensorized circuit architectures, and (iii) neural functional sharing techniques to
allow scalable training. In extensive experiments, we showcase the effectiveness
of functional sharing and the superiority of QPCs over traditional PCs.

1 Introduction

Continuous latent variables (LVs) are arguably the key ingredient behind many successful genera-
tive models, from variational autoencoders [24] to generative adversarial networks [20], and more
recently diffusion models [56]. While these models allow to learn expressive distributions from
data, they are limited to sampling and require task-specific approximations when it comes to per-
form probabilistic reasoning, as even simple tasks such as computing marginals or conditionals are
intractable for them. On the other hand, performing these tasks can be tractable for (hierarchical)
discrete LV models [4, 3], but these prove to be more challenging to learn at scale [9, 10, 32, 33].

This inherent trade-off among tractability, ease of learning, and expressiveness can be analyzed
and explored with probabilistic integral circuits (PICs) [18], a recently introduced class of deep
generative models defining hierarchies of continuous LVs using symbolic functional circuits. PICs
are tractable when their continuous LVs can be analytically integrated out. Intractable PICs can
however be systematically approximated as (tensorized) probabilistic circuits (PCs) [53, 4], the
representation language of discrete LV models. An instance of such PCs encodes a hierarchical
numerical quadrature process of the PIC to approximate, and as such is called quadrature PC (QPC).

Distilling QPCs from PICs has proven to be an effective alternative way to train PCs, but it has
only been explored for tree-shaped PICs, as building and scaling to richer LV structures is an open
research question that requires new tools [18]. In this paper, we fill this gap by redefining the se-
mantics of PICs and extending them to DAG-shaped hierarchies of continuous LVs. Specifically, we

∗Corresponding author: g.gala@tue.nl
. ∫ Shared supervision

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

10959 https://doi.org/10.52202/079017-0350

design PICs as a language to represent hierarchical quasi-tensors factorizations [49], parameterized
by light-weight multi-layer perceptrons.

Contributions. (1) We present a systematic pipeline to build DAG-shaped PICs, starting from ar-
bitrary variable decompositions (Section 3.1). (2) We show how to learn and approximate PICs via
a hierarchical quadrature process which we encode in tensorized QPCs that match certain circuit
architectures proposed in different prior works [43, 42, 31, 36] (Section 3.2). (3) We present func-
tional sharing techniques to scale the training of PICs, which lead us to parameterize them with
multi-headed multi-layer perceptrons (MLPs) requiring comparable resources as PCs (Section 3.3).
(4) In extensive experiments (Section 4), we show that (i) functional sharing proves remarkably
effective for scaling and that (ii) QPCs outperform PCs commonly trained via EM or SGD, while
being distilled from PICs with up to 99% less trainable parameters.

2 Probabilistic integral circuits

Notation. We denote input variables as X and latent variables (LVs) as Y and Z, with x,y and
z as their realization respectively. We denote scalars with lower-case letters (e.g., w ∈ R), vectors
with boldface lower-case letters (e.g., w∈RN), matrices with boldface upper-case letters (excluding
X,Y,Z, e.g., W ∈ RM×N), and tensors with boldface calligraphic letters (e.g., W ∈ RL×M×N).

A probabilistic integral circuit (PIC) c is a symbolic computational graph representing a non-
negative function c(X) = ∫ c(X, z) dz, i.e. c(x) ≥ 0, over observed variables X and continuous
latent variables Z. Similar to probabilistic circuits (PCs) [53, 4], PICs have input, sum and product
units.2 Different from PCs, however, PICs operate on functions, not scalars, and make use of a
new type of unit: the integral unit ∫ , which allows to represent continuous LVs. To satisfy non-
negativity, we parameterize PICs with non-negative functions and positive sum weights, specifically:

• An input unit u (depicted as in our figures) represents a possibly non-normalized distribution
fu(Xu,Zu)→R+, where Xu ⊆X and Zu ⊆Z;

• A sum unit u (+) outputs a weighted sum of the functions it receives from its input units, i.e.
gu(Xu,Zu)=Σi∈in(u)wigi(Xi,Zi), where in(u) is the set of units u takes as input, wi> 0,
Xu = ∪i∈in(u) Xi and Zu = ∪i∈in(u) Zi. Similarly, a product unit u (×) outputs the product
of its incoming functions, i.e. gu(Xu,Zu)=Πi∈in(u)gi(Xi,Zi);

• Finally, an integral unit u (∫) encodes an “uncountable weighted sum” whose weights are
compactly represented by a function fu(Zu,Yu)→R+, where ∅ ̸=Yu ⊆Z are the LVs
that are being integrated out by u, while Zu can potentially be empty, i.e. Zu =∅. The
unit receives a function gi(Xi,Yu) from its only input unit i and outputs the function
gu(Xi,Zu)=

∫
∆
fu(Zu,yu) gi(Xi,yu) dyu, where ∆= supp(Yu) is the support of Yu. For

instance, an integral unit u with fu({Z}, {Y })= 2Z − Y 2 and supp(Y) = [−1, 1] receiving
function gi({X}, {Y })=X2−3X+4Y would output gu({Z}, {X}) = 2/3X(X−3)(6Z−1).

Fig. 1(b) and Fig. 2(b) show example PICs. Note that we use f to indicate the functions attached
to input and integral units which are essentially parameters of the model, while we use g to indicate
functions being outputted by all type of units. The output of a PIC c is the output function returned
by its root unit u, which is only defined on X, i.e. c(X) = gu(X) and Zu =∅. Similar to PCs,
imposing structural constraints over PICs can unlock tractable inference [4]. As such, we assume
that (i) all + -units receive functions defined on the same input variables (aka smoothness), and (ii)
all × -units receive functions defined over disjoint sets of input variables (aka decomposability).

PICs are tractable when their LVs can be analytically integrated out, meaning that we can pass-
through integral units computing the integration problem they define, eventually outputting a func-
tion. Notably, this is possible when LVs are in linear-Gaussian relationships [27] or when functions
are polynomials. Intractable PICs can however be approximated via a hierarchical numerical quadra-
ture process that can be encoded as a PC called quadrature PC (QPC). Intuitively, each PIC integral
unit can be approximated by a set of sum units in a QPC, each conditioning on some previously
computed quadrature values, with a large but finite number of input units [18]. Materializing a QPC
allows to train PICs by approximate maximum likelihood: Given a PIC, gradients to its parameters

2We refer the reader to Appendix A for an introductory overview of (probabilistic) circuits.

2

10960https://doi.org/10.52202/079017-0350

attached to input, sum and integral units can be backpropagated through the corresponding QPC
[18]. This also provides an alternative way to train PCs that can rival traditional learners.

Figure 1: PGM (a) → tree PIC (b)

So far, the construction of PICs has been limited to a
simple compilation process from probabilistic graphi-
cal models (PGMs) [27] with continuous LVs [18]. In a
nutshell, the LV nodes of a PGM become integral units
of a PIC model, and the PGM (conditional) distribu-
tions become the functions fu attached to input and in-
tegral units of the PIC, as we illustrate in Fig. 1. How-
ever, the PGM structure needs to be limited to a tree, as
to avoid that the hierarchical quadrature process would
yield an exponentially large QPC, thus hindering learn-
ing. This imposes a semantics for current PICs as sim-
ple latent tree models [3], and clearly limits their expressiveness as more complex LV interactions
are not possible. Building more expressive PICs requires reinterpreting this semantics and introduc-
ing new tools, which we do next.

3 Building, learning and scaling PICs

In Section 3.1, we systematize the construction of DAG-shaped PICs, showing how to build them
starting from arbitrary variable decompositions, going beyond the current state-of-the-art [18]. Then,
in Section 3.2, we show how to learn and approximate such PICs with QPCs encoding a hierarchical
quadrature process, retrieving PC architectures proposed in prior works [36]. Finally, in Section 3.3,
we present (neural) functional sharing, a technique which we use to parameterize PICs as to make
their QPC materialization fast and cheap, allowing scaling to larger models and larger datasets.

3.1 Building PICs from arbitrary variable decompositions

Standard PCs can be built according to established pipelines that allow to flexibly represent arbitrary
variable decompositions, as well as rich discrete LV interactions [36, 41]. In the following, we derive
an analogous pipeline for PICs that allows to take care of continuous LVs, going beyond their current
tree-shaped semantics (Section 2) yet allowing to perform hierarchical quadrature without blowing
up the size of the materialized QPCs. To do so, we start by formalizing the notion of hierarchical
variable decomposition, or region graph, out of which we will build our PIC structures.

Definition 1 (Region Graph (RG) [15]). An RG R over input variables X is a bipartite and rooted
directed acyclic graph (DAG) whose nodes are either regions, denoting subsets of X, or partitions,
specifying how a region is partitioned into other regions (Fig. 2(a)).

RGs can be (i) compiled from PGMs [5, 27, 3, 31], (ii) randomly initialized [43, 16], (iii) learned
from data [15, 19, 40, 57], or (iv) built according to the data modality (e.g. images) [45, 42, 36]. If
we compile from a tree PGM, as in (Fig. 1), the resulting RG will be a tree, thus yielding a tree-like
PIC [18]. Our pipeline, detailed in Algorithm 1, takes an arbitrary DAG-shaped RG as input, and
can deliver DAG-like PICs. Without loss of generality, we assume to have an RG R which only
allows for (i) binary partitionings of regions (i.e. all product units will have two input units) and (ii)
univariate leaves, as shown in Fig. 2(a). Our construction iteratively builds a PIC in a bottom-up
fashion, associating regions to PIC units. For every leaf region Xu ∈X in R, we instantiate an
input unit u with function fu({Xu}, {Zu}), where Zu ∈Z is an arbitrary continuous LV (Line 8,
Algorithm 1). Such functions can be univariate conditional densities, i.e. pu(Xu|Zu), resembling
small VAE-like decoders [24] amenable to be numerically integrated.

Once all leaf regions have been processed, we move to the inner ones. Let X ⊆ X be an inner region
partitioned inN ≥ 1 different ways as {(X(n)

1 ,X(n)

2)}Nn=1, i.e. (X(n)

1 ∩X(n)

2) = ∅ and (X(n)

1 ∪X(n)

2) =
X for every n. For each partition (X(n)

1 ,X(n)

2), we will merge the PIC units associated to regions
X(n)

1 and X(n)

2 using consecutive applications of product and integral units—as we explain next—
eventually associating a unit the partition itself. One can design such merging as desired, as long as
smoothness and decomposability are not violated. Finally, in case N =1, we associate to X the unit
associated to its only partition, otherwise, in case N > 1, we merge the N units associated to each
n-th partition using a sum unit which we then associate to X (Line 6, Algorithm 1).

3

10961 https://doi.org/10.52202/079017-0350

Figure 2: The pipeline presented in this paper: RG → PIC → QPC → folded QPC. Starting
from a (fragment of) a DAG-shaped region graph (a), we build a DAG-like PIC via Algorithm 1
using Tucker-merge (b). Then, we materialize a tensorized QPC encoding a hierarchical quadrature
process via Algorithm 3, using K =2 quadrature points, which we fold to allow faster inference (d).

Algorithm 1 RG2PIC(R)

Input RGR over variables X
Output PIC c(X) =

∫
c(X, z)dz

1: U ← map() ▷ from regions to PIC units
2: for each region X ∈ postOrder(R) do
3: if X partitioned as {(X(n)

1 ,X(n)

2)}Nn=1 then
4: ρ ← True if X = X else False

5: S←{merge(U [X(n)

1],U [X(n)

2], ρ)}Nn=1

6: U [X]← pop(S) if N=1 else +([S])
7: else ▷ |X| = 1

8: U [X]← (fu(X, {Zu}))
9: return A PIC with U [X] as root unit

Algorithm 2 merge(u1, u2, ρ)
Input Units u1, u2, and boolean flag ρ
Output ∫ or × unit u with (u1, u2) as descendants

1: procedure (Tucker-merge) ▷ Zu1 ̸= Zu2

2: Zu ← ∅ if ρ else {Z} ⊂ Z \ {Zu1 , Zu2}
3: return ∫ (× ([u1, u2]), fu(Zu, {Zu1 , Zu2}))

4: procedure (CP-merge) ▷ Zu1 = Zu2

5: Zu3 ← ∅ if ρ else {Zu3} ⊂ Z \ {Zu1}
6: u3 ← ∫ (u1, fu3(Zu3 , {Zu1}))
7: Zu4 ← ∅ if ρ else {Zu4} ⊂ Z \ {Zu2}
8: u4 ← ∫ (u2, fu4(Zu4 , {Zu2}))
9: return × ([u3, u4])

Merging PIC units. Let u1 and u2 be candidate units to merge, each outputting functions with LV
Zu1

and Zu2
respectively. We present two ways of merging units: Tucker-merge and CP-merge,

which we detail in Algorithm 2 and whose names will be clearer in the next section. If Zu1
̸=Zu2

,
we use Tucker-merge: We merge u1 and u2 with a product, which is then input to an integral
unit u with function fu({Zu}, {Zu1 , Zu2}), where Zu ∈Z \ {Zu1 , Zu2}. Otherwise, if Zu1=Zu2 ,
we use CP-merge: We add two integral units, u3 with input u1 and u4 with input u2, which we
finally merge with a product. We parameterize unit u3 (resp. u4) with fu3({Zu3}, {Zu1}) (resp.
fu4

({Zu4
}, {Zu2

})), where Zu3
̸=Zu1

(resp. Zu4
̸=Zu2

). Note that whenever merging two units
defined on X, we need to marginalize out the remaining LVs, without introducing new ones. We
illustrate the application of Algorithm 1 in Fig. 2(a-b). Our pipeline generalizes the PICs used in
prior work [18] (Fig. 1) as we can build them by just converting latent tree structures in tree RGs
and using CP-merge as merging procedure. While we now do not need a PGM to build a complex
PIC structure, one could try to reverse-engineer our PICs to retrieve a PGM via decompilation [1],
the result would be a very intricate hierarchy over continuous LVs [41].

3.2 Learning PICs via tensorized QPCs

Given a DAG-shaped (intractable) PIC, we now show how to approximate it with a tensorized PC en-
coding a hierarchical quadrature process, namely a QPC. Intuitively, we interpret PICs as to encode
a set of quasi-tensors [49], a generalization of tensors with potentially infinite entries in each dimen-
sion corresponding to a continuous LV, which we materialize into classical tensors via quadrature.
We begin with a definition of tensorized circuits and a brief refresher on numerical quadrature.
Definition 2 (Tensorized Circuit [36, 43]). A tensorized circuit c is a parameterized computational
graph encoding a function c(X) ∈ R, and comprising of input , product × and sum + layers.
Each layer consists of many computational units defined over the same variables, and every non-
input layer receives vectors as input from one or more layers. Each input layer ℓ is defined on vari-
ables Xℓ ⊆X and computes a collection of Kℓ parametric functions [fk : dom(Xℓ)→R]Kℓ

k=1, out-
putting aKℓ-dimensional vector. Each product layer ℓ computes either an Hadamard product (⊙) or
a Kronecker product (⊗) of the vectors it receives from its inputs layers. Specifically, the Hadamard
product is an element-wise product of vectors, and therefore applicable when these have same size,
while the outer product of two vectors u∈RN and v∈RM is w=u⊗v= ||Ni=1uiv ∈ RNM ,
where || is the concatenation operator. Finally, a sum layer ℓ with Sℓ sum units receives inputs from

4

10962https://doi.org/10.52202/079017-0350

Figure 3: From functions to sum-product layers via multivariate numerical quadrature (Sec-
tion 3.2). We illustrate how the 3-variate function f({Z}, {Y1, Y2}) (a) can be seen as an infi-
nite (quasi) tensor that we first materialize w.r.t. integration points z̃ as a finite tensor W of size
K × K × K (b, Equation (2)), then flatten as a matrix accounting for integration weights w̃ (c,
Equation (3)), and finally use to parameterize a Tucker layer (d, Equation (Tucker-layer)).

N layers {ℓi}Ni=1 and computes the matrix-vector product W||Ni=1ℓi(Xℓi), where W ∈ RSℓ×K ,
K=ΣN

i=1Kℓi , are the sum layer parameters. When N =1, then it simply computes Wℓ1(Xℓ1).

Numerical quadrature. A numerical quadrature rule is an approximation of the definite inte-
gral of a function as a weighted sum of function evaluations at specified points [13]. Specif-
ically, given some integrand f :R→R and interval ∆ := [a, b], a quadrature rule consists of a
set of K integration points z̃∈∆K and weights w̃∈RK minimizing the integration error εK =
| ∫∆ f(z) dz − ΣK

k=1w̃kf(z̃k)|, which goes to zero as K→∞. To approximate an integral of an N -
dimensional function f , we can phrase the multiple integral as repeated one-dimensional integrals
by applying Fubini’s theorem [17], aka tensor product rule, as follows.∫

∆K

f(z)dz =

∫
∆

...
(∫

∆

f(z1, ..., zN)dz1

)
...dzN ≈

∑
i1∈[K]

w̃i1 ...
∑

iN∈[K]

w̃iN f(z̃i1 , ..., z̃iN). (1)

From PICs to QPCs. Given a candidate PIC, we will explore it in post order traversal, and itera-
tively associate a circuit layer (Definition 2) to each PIC unit, a process that we call materialization.
We detail such procedure in Algorithm 3, which essentially applies Eq. (1) hierarchically over the
PIC units. Each unit encodes a function over potentially continuous and discrete variables, hence
representing a quasi-tensor, which we approximate by evaluating it over the quadrature points only,
thus materializing a classical tensor (Fig. 3 (a,b)). We facilitate quadrature by assuming that all PIC
LVs have bounded domain ∆ := [−1, 1]. This way, we can always use the same quadrature rule
(z̃, w̃) for each required (multivariate) approximation, and also simplify treatment and exposition.

Algorithm 3 PIC2QPC(c, z̃, w̃)

Input PIC c, quadrature rule z̃, w̃ ∈ RK

Output Tensorized QPC
1: L ← map() ▷ from PIC units to layers
2: for each unit u ∈ postOrder(c) do
3: if u is then
4: L[u]← [(fu(Xu, Zu=z̃k))]

K
k=1

5: else if u is ∫ (u1, fu) then
6: L[u]← W̃(u) L[u1] via Eq. (3)
7: else if u is +([ui, wi]

N
i=1) then

8: L[u]←W(u)||Ni=1L[ui] via Eq. (4)
9: else if u is × ([u1, u2]) then

10: #← ⊙ if Zu1= Zu2 else ⊗
11: L[u]← L[u1]#L[u2]

12: return A QPC with L[c] as root layer

We begin materializing every PIC input unit u with
function fu({Xu}, {Zu}) w.r.t. integration points z̃, ef-
fectively creating an input layer ℓ : dom(Xu)→RK as
[fu(Xu, Zu=z̃k)]

K
k=1 (Line 4, Algorithm 3). The pa-

rameters of such layer can be materialized as a matrix of
shape K ×P , where P is the number of parameters fu
requires. For example, if fu is a univariate conditional
Gaussian pu(Xu|Zu), we use a K × 2 matrix for pa-
rameterizing the layer, where each row stores the mean
and standard deviation at each integration point z̃k.

Next, we address the most important part of this quadra-
ture process, i.e. the materialization of PIC integral
units as sum layers. Specifically, let u be an integral
unit with N -dimensional function fu(Zu,Yu), where
|Zu|=NZ , |Yu|=NY and N =NZ +NY . We mate-
rialize fu w.r.t. integration points z̃, effectively creating
an N -dimensional tensor W(u) ∈ RK×···×K , such that

w
(u)
i1,...,iN

= fu({Z1=z̃i1 , . . . , ZNZ
=z̃iNZ

}, {Y1=z̃i1+NZ
, . . . , YNY

=z̃iN }). (2)

After materializing tensor W(u), we flatten it w.r.t. variables Zu and Yu, so as creating a matrix
W(u) of size KNZ ×KNY , an operation aka matricization. As last step, we plug-in the quadrature

5

10963 https://doi.org/10.52202/079017-0350

weights w̃ ∈ RK in W(u), arriving to matrix W̃(u) of KNZ ×KNY , whose i-th row is

w̃
(u)
i: = (w̃ ⊗ · · · ⊗ w̃)w

(u)
i: = w̃⊗NY w

(u)
i: , (3)

where w̃⊗NY is the vector of size KNY resulting from the NY -times application of the Kronecker
product ⊗ over w̃ (Line 6, Algorithm 3). We illustrate this process in Fig. 3(a-c). Similarly, we also
materialize every PIC sum unit u with weights {wi}Ni=1 as a sum layer, but parameterized by

W(u) = ||Ni=1wi IK ∈ RK×NK , (4)

where IK is theK×K identity matrix and || the concatenation operator (Line 8, Algorithm 3). Note
that such sum layer can be seen as a mixing layer [42, 36]. Finally, consider a PIC product unit u
with inputs u1 and u2, each outputting functions with LVs Zu1

and Zu2
respectively. We associate

to u an Hadamard product layer if Zu1 =Zu2 , or a Kronecker product layer if Zu1 ̸=Zu2 , reflecting
the fact that we are marginalizing out two different LVs. We summarize our PIC materialization—
illustrated in Fig. 2—in Algorithm 3, where we iteratively associate a PIC unit to a circuit layer,
eventually delivering a tensorized QPC. We stress that being QPCs just standard PCs they enjoy their
same properties (e.g. tractable marginalization). We will learn PICs via maximizing the likelihood
of its QPC materialization.

QPCs as existing tensorized architectures. Materializing PICs built via Algorithm 1 delivers ten-
sorized PCs with alternating sum and product layers, aka sum-product layers [36]. An instance of
such layers is the Tucker layer, used in architectures like RAT-SPNs [43] and EiNets [42]. Specifi-
cally, a binary Tucker layer ℓ [51] computes

ℓ(Xℓ) = W (ℓ1(Xℓ1)⊗ ℓ2(Xℓ2)) , (Tucker-layer)

where W ∈ RK×K2

and ℓ1, ℓ2 are input layers of ℓ, each outputting a K-dimensional vector. In
contrast, the recent HCLT architectures [31] use the canonical polyadic (CP) layer ℓ [2], i.e.

ℓ(Xℓ) =
(
W(1)ℓ1(Xℓ1)

)
⊙
(
W(2)ℓ2(Xℓ2)

)
, (CP-layer)

where W(1),W(2) ∈ RK×K . We exactly recover Tucker (resp. CP) layers in our QPCs when these
are materialized from PICs built via Tucker-merge (resp. CP-merge) in Algorithm 2, and hence
the name of the merging procedure. Therefore, some QPCs can exactly match existent tensorized ar-
chitectures, and this certainly happens when these are materialized from PICs built via Algorithm 1.
This gives a new point of view on traditional tensorized architectures, and new possibilities for rep-
resentation learning [54]. Figure 3 illustrates how the materialization of a 3-variate function leads to
a Tucker layer. This 1-to-1 mapping between tensorized PC architectures and QPCs will allow for a
fair comparison in our experiments.

Folding tensorized circuits for faster inference. The layers of a tensorized circuit that (i) share the
same functional form and that (ii) can be evaluated in parallel, can be stacked together as to create
a folded layer [36, 42] which speeds up inference and learning on GPU by orders of magnitude.
For instance, let {ℓi}Fi=1 be F parallelizable Tucker layers each parameterized by a matrix W(i)

of size K×K2. Such layers can be evaluated as a folded layer ℓ parameterized by a tensor W
of size F×K×K2, which computes the—otherwise sequential—F tucker layers in parallel. We
illustrate folding in Fig. 2(d), and later on in Fig. 4(c). Note that (i) the input layers sharing the same
function form can always be folded and that (ii) although a tensorized circuit may have many types
of sum-product layers, using one type only is common in practice, and promotes depth-wise folding.

3.3 Scaling PICs with neural functional sharing

Materializing QPCs can be memory intensive and time consuming, depending on: (i) the cost of
evaluating the functions we need to materialize, (ii) the degree of parallelization of the required
function evaluations, and (iii) the number of integration points K. To solve these issues, we intro-
duce neural functional sharing [47], i.e. we share multi-layer perceptrons as to parameterize multiple
PIC units at once. This allows us to scale to larger models and datasets, as we make materialization
faster and more memory-efficient than previous work [18].

PIC functional sharing. Functional sharing is to PICs as parameter-sharing is to PCs. This type of
sharing can be applied over a group of input/integral units—grouped according to some criteria—
whose functions have all the same number of input and output variables. Specifically, let γ =

6

10964https://doi.org/10.52202/079017-0350

Figure 4: From neural C-sharing to folded CP-layer (Section 3.3). We sketch a 4-headed MLP
with Fourier-Features (a) which we use to parameterize a group of 4 integral units (at the same depth)
of a PIC (b), whose materialization leads to a folded CP-layer parameterized by a tensor W of size
2× 2×K×K (c), with K being the number of integration point. Note that, during materialization,
the FF-MLP block in (a) will be only evaluated K2 times, and not 4K2.

{ui}Ni=1 be a group of N input/integral units, each with function fi : RI → RO. The simplest
form of functional sharing is to set all functions to be equal, i.e. ∀i, j ∈ [N] : fi = fj . In this way,
we reduce the number of function evaluations from NK to K as long as we materialize each fi
w.r.t. the same integration points z̃ ∈ RK , which is the case for Algorithm 3. We call this type of
sharing F-sharing, as per full-sharing. More interestingly, leveraging functional composition, we
may define fi = hi ◦ f , so as sharing an inner function f for all unit functions. Similarly as before,
as long as we materialize each fi w.r.t. the same quadrature points z̃ ∈ RK , we would only need
K function evaluations for f instead of NK, as we can share them with all outer functions hi for
further evaluation. We call this type of sharing C-sharing, as per composite-sharing. The original
implementation of PICs [18] used neither F-sharing nor C-sharing.

Finally, we present and apply two different ways of grouping units. The first consists of grouping
all input units, a technique which is only applicable when all input variables share the same domain.
With this grouping, coupled with F-sharing, we would only need to materialize K ×P parameters,
and use them to parameterize every QPC input layer. The second consists of grouping all integral
units at the same depth of the PIC structure, which we couple with C-sharing and materialize as a
folded sum-product layer. Despite grouping units that materialize into a folded layer is a natural and
convenient choice, note that we can also group units that do not materialize as such. Once all units
in a PIC have been grouped, materialization can be performed per-group.

PIC functional sharing with (multi-headed) MLPs. Similar to [18], we parameterize PIC input
and integral units with light-weight multi-layer perceptrons (MLPs). However, instead of using a
single MLP for each function, we will apply functional sharing as we strive to make the QPC mate-
rialization faster and memory efficient. Specifically, consider a group of integral units γ= {ui}Ni=1,
each with function fi : RI → R, over which we want to apply functional sharing. For every group
γ, we would have an L+ 1 layered MLP of the form:

ϕ(γ) : RI → RM := ϕ
(γ)
L ◦ · · · ◦ ϕ(γ)1 ◦ FF, (5)

where FF : RI → RM is a Fourier-feature layer [48], and each ϕ(γ)i : RM → RM is a standard linear
layer followed by an element-wise non linearity ψ, i.e. ψ(Az + b), with A ∈ RM×M ,b ∈ RM ,
and M being the size of the MLP. Applying F-sharing over γ would simply consist of setting

fi : RM → R := softplus(h(γ) · ϕ(γ) + b(γ)), (neural F-sharing)

where h(γ) ∈ RM and b(γ) ∈ R are group-dependent parameters, therefore making all functions in
the group equal. Instead, to implement C-sharing, we parameterize each fi as

fi : RM → R := softplus(h(i) · ϕ(γ) + b(i)), (neural C-sharing)

where h(i) ∈ RM and b(i) ∈ R are function-dependent parameters, effectively creating a multi-
headed MLP. As an example, consider a folded CP-layer with F =500 and K =512—which we
actually used in practice—resulting in 2FK2 ≈ 262M trainable parameters. Assuming no bias
term, an MLP with L=2 and M =256 would only instead require LM2+2FM ≈ 387K trainable
parameters to materialize the same tensor, resulting in more than 99% less trainable parameters. We
illustrate such C-sharing in Fig. 4. In Appendix C.1 we provide more details about our MLPs.

7

10965 https://doi.org/10.52202/079017-0350

16 32 64 128 256
0

5

10

15

20

25

K =

GPU Memory (GiB)

16 32 64 128 256

100

200

300

400

K =

Time (ms)

16 32 64 128 256

1B

2B

K =

Num. of trainable parameters

32 64 128 256

1B

2B

M =

32 64 128 256

2M

5M

M =

QT-CP QG-CP QG-TK PC (F, N) PIC (F, N) PIC (F, C)

Figure 5: Learning PICs using
functional sharing requires (i) com-
parable resources as PCs and (ii) up
to 99% less trainable parameters.
We compare the GPU memory (top-
left) and time (bottom-left) required
to perform an optimization step with
PCs (), PICs with functional sharing
(), and without (), while consider-
ing three different architectures (QT-
CP, QG-CP, QG-TK). To the right,
we report the number of trainable pa-
rameters for (i) PCs () at different
K, and (ii) for PICs (,) at differ-
ent MLP sizes M . The isolated
nodes refer to refer to PIC (F, N) with
QG-TK which we could only run at
K =16. The benchmark is conducted
using a batch of 128 RGB images of
size 64x64 and Adam [23]. Extra de-
tails in Appendix D.1.

Fast & memory-efficient QPC materialization. Combing PIC functional sharing and per-group
materialization allows scaling the training of PICs via numerical quadrature, as we drastically reduce
the number and the cost of function evaluations required for the QPC materialization. We can now
materialize very large QPCs, matching the scale of recent over-parameterized PCs yet requiring
up to 99% less trainable parameters when using a large K. This was not possible in the original
formulation of PIC [18] as (i) the entire QPC was materialized in one-shot, not per-group, and (ii)
no functional sharing was implemented, as each input/integral function had its own MLP.

4 Experiments

In our experiments, we first benchmark the effectiveness of functional sharing for scaling the training
of PICs via numerical quadrature, comparing it with standard PCs and PICs w/o functional sharing
[18]. Then, following prior work [10, 32, 33, 18], we compare QPCs and PCs as distribution esti-
mators on several image datasets. We always train using the trapezoidal integration rule. We use an
NVIDIA A100 40GB throughout our experiments. Our code is available at github.com/gengala/ten-
pics.

Thanks to our pipeline, we can now use two recently introduced RGs tailored for image data which
deliver architectures that scale better than those built out of classical RGs [45, 43, 31]: quad-trees
(QTs), tree-shaped RGs, and quad-graphs (QGs), DAG-shaped RGs [36]. These are perfectly bal-
anced RGs, and therefore applying Algorithm 1 over them would deliver balanced PIC structures
amenable to depth-wise C-sharing of integral units. We report full details about QTs and QGs in
Appendix B. We denote a tensorized architecture as [RG]-[sum-product layer]-[K], e.g. QT-CP-
16, which can be trained as a standard PC or materialized as QPC from a PIC. We treat pixels as
categorical variables, and, as such, our architectures model probability mass functions.

Scaling PICs. For each model type, {PC,PIC}, we specify a pair (·, ·) where the first (resp. second)
argument specifies the sharing technique, {F, C, N}, for the input (resp. inner) layers/groups, where
N stands for no sharing. In Fig. 5, we report the time and GPU memory required to perform an
Adam [23] optimization step using PCs (), and PICs with () and without () functional C-sharing
over the integral unit groups. We note that PICs using functional sharing () proves very effective
for scaling, requiring comparable resources as standard PCs (), while those who do not ()—
like prior work [18]—are orders of magnitude slower and quickly go Out-Of-Memory (OOM) for
K> 64. Remarkably, some QG-TK configurations of PICs (), see Table D.2, require even less
GPU memory than PCs, and this is because of the significant difference in the number of trainable
parameters, since copies of these have to be stored by Adam during optimization. In fact, the number
of parameters for PCs and PICs w/o functional sharing (,) is in the order of hundreds of millions

8

10966https://doi.org/10.52202/079017-0350

https://github.com/gengala/ten-pics
https://github.com/gengala/ten-pics

QPC PC Sp-PC HCLT RAT IDF BitS BBans McB

MNIST 1.11 1.17 1.14 1.21 1.67 1.90 1.27 1.39 1.98
F-MNIST 3.16 3.32 3.27 3.34 4.29 3.47 3.28 3.66 3.72
EMN-MN 1.55 1.64 1.52 1.70 2.56 2.07 1.88 2.04 2.19
EMN-LE 1.54 1.62 1.58 1.75 2.73 1.95 1.84 2.26 3.12
EMN-BA 1.59 1.66 1.60 1.78 2.78 2.15 1.96 2.23 2.88
EMN-BY 1.53 1.47 1.54 1.73 2.72 1.98 1.87 2.23 3.14

0.00 1.00

QPC

PC

min-max bpd

K = 16

K = 32

K = 64

K = 128

K = 256

K = 512

Figure 6: QPCs improve over PCs and other DGM baselines in terms of test-set bpd for the
MNIST-family datasets. We compare against SparsePC [10], HCLT [31], RAT-SPN [43], IDF [21],
BitSwap [25], BBans [50] and McBits [46]. HCLT results are taken from [18]. Columns QPC and
PC report results from this paper, with QG-CP-512 being the best performing architecture for both.
Scatter plot (right): bpd for QPCs (y-axis) and PCs (x-axis) paired by architecture and min-max
normalized for the MNIST and F-MNIST datasets. A point below the diagonal is a win for QPCs.

QPC∗ PC∗ QPC† PC† HCLT† LVD† LVD-PG†

CIFAR 5.09 5.50 4.48 4.85 4.61 4.37 3.87
ImgNet32 5.08 5.25 4.46 4.63 4.82 4.38 4.06
ImgNet64 5.05 5.22 4.42 4.59 4.67 4.12 3.80

CelebA 4.73 4.78 4.11 4.16 - - -

Table 1: QPCs improve over PCs. We
mark results with * for YCoCg-R and
† for YCoCg. QG-CP-512 (resp. QG-
CP-256) is the best performing archi-
tecture for QPCs and PCs on CIFAR &
ImgNet32 (resp. ImgNet64 & CelebA).

(hitting 2B+), while PICs with functional sharing () scale much more gracefully, hitting only 6M+
parameters. We emphasize that the number of trainable parameters of PICs is independent of the
K at which we materialize, but only dependent on the size of the MLPs M we use to parameterize
them, which can also be thought as the cost of evaluating PIC functions. We report more (tabular)
details in Appendix D.1.

Distribution estimation. Following prior work [10, 32, 33, 18], we extensively test QPCs and PCs
as distribution estimators on standard image datasets. Our full results are in Appendix D.2, while we
only report here the bits-per-dimension (bpd) of the best performing models, which always belong
to a QG-CP architecture, reflecting the additional expressiveness of DAG-shaped RGs. Our full
results also highlights how the the more expressive yet expensive Tucker layers we introduced for
PICs deliver the best performance for smallK, but are hard to scale. All QPCs are materialized from
PICs applying F-sharing over input units and C-sharing over groups of integral units, i.e. PIC (F, C).
We begin with the MNIST-family, which includes 6 datasets of gray-scale 28x28 images: MNIST
[29], FASHIONMNIST [55], and EMNIST with its 4 splits [7]. Fig. 6 shows that QPCs generally
perform best, improving over standard PCs (5/6), complex heuristic-based PC learning schemes as
pruning-and-growing (5/6) [10], and some deep generative models (DGMs) (6/6).

Then, we move to larger RGB image datasets as CIFAR [28], ImageNet32, ImageNet64 [14], and
CelebA [34]. To compare against prior work [32, 33], we have to preprocess the datasets using the
YCoCg transform, a lossy color-coding that consistently improves performance for PCs when ap-
plied to RGB images.3 We also report results over datasets preprocessed with the lossless YCoCg-R
transform [39], effectively doubling the number of datasets. We report details about these trans-
forms in Appendix C.3. From Table 1, we see that QPCs prove again very competitive, consistently
outperforming standard PCs commonly trained with Adam, and the best performing PC from the lit-
erature, HCLT, which is trained via EM schemes and patch-wise methods [32]. Furthermore, QPCs
are close to PCs trained via latent variable distillation (LVD, LVD-PG in Table 1) [32, 33], a frame-
work that requires extra supervision over their latent spaces by distilling information from existing
deep generative models (DGMs). This technique requires pre-trained DGMs, several heuristics,
and a final fine-tuning stage via EM or SGD, while PIC training method is instead end-to-end and
self-contained.

3The use of the lossy YCoCg transform is undocumented in [32, 33] but confirmed via personal communi-
cation with the authors. Note that columns in Table 1 using it (†) are not directly comparable to the rest.

9

10967 https://doi.org/10.52202/079017-0350

5 Discussion & Conclusion

With this work, we systematized the construction of PICs, extending them to DAG-like structures
(Section 3.1), tensorizing (Section 3.2), and scaling their training with functional sharing (Sec-
tion 3.3). In our experiments (Section 4), we showed how this pipeline is remarkably effective when
the tractable approximations of PICs, QPCs, are used as distribution estimators. This in turn be-
comes a new and effective tool to learn PCs at scale. In fact, prior work has shown that naively
training large PCs via EM or gradient-ascent is challenging, and that PC performance plateau as
their size increases [10, 8, 32, 33]. Our contributions go beyond these limitations, while offering
a simple, principled and fully-differentiable pipeline that delivers performance that rival more so-
phisticated alternatives [10, 32] (Section 4). We conjecture that this happens as training PCs via
PICs drastically reduces the search space while allowing (i) smoother training dynamics and (ii) the
materialization of arbitrarily large tractable models.

The development of tractable models is an important task in machine learning as they provide many
inference routines, and can be used in many down-stream applications such as tabular data modeling
[8], generative modeling [42], lossless compression [30], genetics [11], knowledge-graphs [37],
constrained text generation [58], and more. Our work has also certain parallels with tensor networks
and (quasi-)tensor decompositions [51, 26, 22, 6, 49], as [36] recently showed how hierarchical
tensor decompositions can be represented using the language of tensorized circuits. Furthermore,
we note that the recent non-monotonic PCs [35] (i.e., PCs with negative sum parameters) can also be
thought as the result of a quadrature process from PICs whose function can return negative values.

Our work does not come without limitations. Although we showed that training PICs with function
sharing requires comparable resources as standard PCs, traditional continuous LV models as VAEs,
flows and diffusion models are more scalable. Also, sampling from PICs is currently not possible,
as we cannot perform differentiable sampling from our (multi-headed) MLPs. Future work may
include the investigation of more efficient ways of training PICs, possibly using techniques as LVD
or variational inference [24] to directly maximize PIC lower-bounds, requiring numerical quadrature
only as fine-tuning step to distill a performant tractable model. We believe our work will foster new
research in the field of generative modeling, and specifically in the realm of tractable models.

Author Contributions

GG led the project, proposed neural functional sharing, and ran all experiments. GG and AV devised
the original idea of a pipeline to build PICs, and leverage tensorized folded circuits for training them.
AV and EQ equally supervised all the phases of the project. CdC supervises the project, and critically
read the manuscript and provided feedback.

Acknowledgments

The Eindhoven University of Technology authors thank the support from the Eindhoven Artificial
Intelligence Systems Institute and the Department of Mathematics and Computer Science of TU
Eindhoven. TU/e authors also thank the support of EU European Defence Fund Project KOIOS
(EDF-2021-DIGIT-R-FL-KOIOS). AV was supported by the "UNREAL: Unified Reasoning Layer
for Trustworthy ML" project (EP/Y023838/1) selected by the ERC and funded by UKRI EPSRC.
We thank Lorenzo Loconte for insightful discussions about (quasi-)tensor decompositions.

References
[1] Cory Butz, Jhonatan S Oliveira, and Robert Peharz. Sum-product network decompilation. In

International Conference on Probabilistic Graphical Models, pages 53–64. PMLR, 2020.

[2] J. Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimensional
scaling via an n-way generalization of “eckart-young” decomposition. Psychometrika, 35:283–
319, 1970.

[3] Myung Jin Choi, Vincent Y. F. Tan, Animashree Anandkumar, and Alan S Willsky. Learning
latent tree graphical models. Journal of Machine Learning Research, 12(49):1771–1812, 2011.

10

10968https://doi.org/10.52202/079017-0350

[4] YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying
framework for tractable probabilistic models. Technical report, UCLA, 2020.

[5] C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees.
IEEE Transactions on Information Theory, 14(3):462–467, 1968.

[6] Andrzej Cichocki and Anh Huy Phan. Fast local algorithms for large scale nonnegative ma-
trix and tensor factorizations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 92-
A(3):708–721, 2009.

[7] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: Extending
MNIST to handwritten letters. In IJCNN 2017, pages 2921–2926, 2017.

[8] Alvaro Correia, Robert Peharz, and Cassio P de Campos. Joints in random forests. In Advances
in Neural Information Processing Systems, volume 33, pages 11404–11415, 2020.

[9] Alvaro H. C. Correia, Gennaro Gala, Erik Quaeghebeur, Cassio de Campos, and Robert Peharz.
Continuous mixtures of tractable probabilistic models. Proceedings of the AAAI Conference
on Artificial Intelligence, 37(6):7244–7252, 2023.

[10] Meihua Dang, Anji Liu, and Guy Van den Broeck. Sparse probabilistic circuits via pruning and
growing. In NeurIPS 2022, volume 35 of Advances in Neural Information Processing Systems,
2022.

[11] Meihua Dang, Anji Liu, Xinzhu Wei, Sriram Sankararaman, and Guy Van den Broeck.
Tractable and expressive generative models of genetic variation data. In Research in Com-
putational Molecular Biology, pages 356–357, 2022.

[12] Adnan Darwiche. Modeling and reasoning with Bayesian networks. Cambridge University
Press, 2009.

[13] Philip J. Davis and Philip Rabinowitz. Methods of numerical integration. Academic Press,
1984.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[15] Aaron W. Dennis and Dan Ventura. Learning the architecture of sum-product networks using
clustering on variables. In Advances in Neural Information Processing Systems 25 (NeurIPS),
pages 2033–2041. Curran Associates, Inc., 2012.

[16] Nicola Di Mauro, Gennaro Gala, Marco Iannotta, and Teresa Maria Altomare Basile. Ran-
dom probabilistic circuits. In 37th Conference on Uncertainty in Artificial Intelligence (UAI),
volume 161, pages 1682–1691. PMLR, 2021.

[17] Guido Fubini. Sugli integrali multipli. Rend. Acc. Naz. Lincei, 16:608–614, 1907.

[18] Gennaro Gala, Cassio de Campos, Robert Peharz, Antonio Vergari, and Erik Quaeghebeur.
Probabilistic integral circuits. In Proceedings of The 27th International Conference on Arti-
ficial Intelligence and Statistics, volume 238 of Proceedings of Machine Learning Research,
pages 2143–2151. PMLR, 02–04 May 2024.

[19] Robert Gens and Pedro M. Domingos. Learning the structure of sum-product networks. In
International Conference on Machine Learning, 2013.

[20] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS 2014,
volume 27 of Advances in Neural Information Processing Systems, 2014.

[21] Emiel Hoogeboom, Jorn Peters, Rianne van den Berg, and Max Welling. Integer discrete flows
and lossless compression. In NeurIPS 2019, volume 32 of Advances in Neural Information
Processing Systems, 2019.

11

10969 https://doi.org/10.52202/079017-0350

[22] Yong-Deok Kim and Seungjin Choi. Nonnegative tucker decomposition. In CVPR. IEEE
Computer Society, 2007.

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR
2015, 2015.

[24] Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In ICLR 2014, 2014.

[25] Friso Kingma, Pieter Abbeel, and Jonathan Ho. Bit-swap: Recursive bits-back coding for loss-
less compression with hierarchical latent variables. In Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 3408–3417, 2019.

[26] Tamara G. Kolda. Multilinear operators for higher-order decompositions. Technical report,
Sandia National Laboratories, 2006.

[27] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques.
MIT press, 2009.

[28] Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009.

[29] Yann LeCun, Corinna Cortes, and Christopher J. C. Burges. The MNIST database of hand-
written digits, 2010.

[30] Anji Liu, Stephan Mandt, and Guy Van den Broeck. Lossless compression with probabilistic
circuits. In ICLR 2022, 2022.

[31] Anji Liu and Guy Van den Broeck. Tractable regularization of probabilistic circuits. In
NeurIPS 2021, volume 34 of Advances in Neural Information Processing Systems, pages 3558–
3570, 2021.

[32] Anji Liu, Honghua Zhang, and Guy Van den Broeck. Scaling up probabilistic circuits by latent
variable distillation. In ICLR 2023, 2023.

[33] Xuejie Liu, Anji Liu, Guy Van den Broeck, and Yitao Liang. Understanding the distillation
process from deep generative models to tractable probabilistic circuits. In Proceedings of the
40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 21825–21838, 2023.

[34] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in
the wild. In Proceedings of International Conference on Computer Vision (ICCV), December
2015.

[35] Lorenzo Loconte, M. Sladek Aleksanteri, Stefan Mengel, Martin Trapp, Arno Solin, Nicolas
Gillis, and Antonio Vergari. Subtractive mixture models via squaring: Representation and
learning. In The Twelfth International Conference on Learning Representations (ICLR), 2024.

[36] Lorenzo Loconte, Antonio Mari, Gennaro Gala, Robert Peharz, Cassio de Campos, Erik
Quaeghebeur, Gennaro Vessio, and Antonio Vergari. What is the relationship between ten-
sor factorizations and circuits (and how can we exploit it)? arXiv preprint arXiv:2409.07953,
2024.

[37] Lorenzo Loconte, Nicola Di Mauro, Robert Peharz, and Antonio Vergari. How to turn your
knowledge graph embeddings into generative models via probabilistic circuits. In Advances in
Neural Information Processing Systems 37 (NeurIPS). Curran Associates, Inc., 2023.

[38] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In
ICLR 2017, 2017.

[39] Henrique Malvar and Gary Sullivan. Ycocg-r: A color space with rgb reversibility and low
dynamic range. ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q, 6, 2003.

[40] Alejandro Molina, Antonio Vergari, Nicola Di Mauro, Sriraam Natarajan, Floriana Esposito,
and Kristian Kersting. Mixed sum-product networks: A deep architecture for hybrid domains.
In AAAI Conference on Artificial Intelligence, 2018.

12

10970https://doi.org/10.52202/079017-0350

[41] Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro Domingos. On the latent variable
interpretation in sum-product networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(10):2030–2044, 2017.

[42] Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp,
Guy Van Den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast
and scalable learning of tractable probabilistic circuits. In 37th International Conference on
Machine Learning (ICML), volume 119 of Proceedings of Machine Learning Research, pages
7563–7574. PMLR, 2020.

[43] Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin
Trapp, Kristian Kersting, and Zoubin Ghahramani. Random sum-product networks: A simple
and effective approach to probabilistic deep learning. In Proceedings of The 35th Uncertainty
in Artificial Intelligence Conference, volume 115 of Proceedings of Machine Learning Re-
search, pages 334–344, 2020.

[44] Knot Pipatsrisawat and Adnan Darwiche. New compilation languages based on structured
decomposability. In Proceedings of the 23rd National Conference on Artificial Intelligence
(AAAI’08), volume 1, pages 517–522, 2008.

[45] Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In IEEE
International Conference on Computer Vision Workshops (ICCV Workshops), pages 689–690.
IEEE, 2011.

[46] Yangjun Ruan, Karen Ullrich, Daniel S. Severo, James Townsend, Ashish Khisti, Arnaud
Doucet, Alireza Makhzani, and Chris Maddison. Improving lossless compression rates via
monte carlo bits-back coding. In Proceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine Learning Research, pages 9136–9147,
2021.

[47] Eran Segal, Dana Pe’er, Aviv Regev, Daphne Koller, Nir Friedman, and Tommi Jaakkola.
Learning module networks. Journal of Machine Learning Research, 6(4), 2005.

[48] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let net-
works learn high frequency functions in low dimensional domains. In NeurIPS 2020, vol-
ume 33 of Advances in Neural Information Processing Systems, pages 7537–7547, 2020.

[49] Alex Townsend and Lloyd N Trefethen. Continuous analogues of matrix factorizations.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
471(2173):20140585, 2015.

[50] James Townsend, Thomas Bird, and David Barber. Practical lossless compression with latent
variables using bits back coding. In ICLR 2019, 2019.

[51] L. R. Tucker. The extension of factor analysis to three-dimensional matrices. In Contributions
to mathematical psychology., pages 110–127. Holt, Rinehart and Winston, 1964.

[52] Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A com-
positional atlas of tractable circuit operations for probabilistic inference. In NeurIPS 2021,
volume 36 of Advances in Neural Information Processing Systems, 2021.

[53] Antonio Vergari, Nicola Di Mauro, and Guy Van den Broeck. Tractable probabilistic models:
Representations, algorithms, learning, and applications, 2019. Tutorial at the 35th Conference
on Uncertainty in Artificial Intelligence (UAI 2019).

[54] Antonio Vergari, Robert Peharz, Nicola Di Mauro, Alejandro Molina, Kristian Kersting, and
Floriana Esposito. Sum-product autoencoding: Encoding and decoding representations using
sum-product networks. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1),
2018.

[55] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for
benchmarking machine learning algorithms. arXiv, 2017.

13

10971 https://doi.org/10.52202/079017-0350

[56] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao
Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of meth-
ods and applications. ACM Computing Surveys, 56(4):1–39, 2023.

[57] Yang Yang, Gennaro Gala, and Robert Peharz. Bayesian structure scores for probabilistic
circuits. In Proceedings of The 26th International Conference on Artificial Intelligence and
Statistics, volume 206 of Proceedings of Machine Learning Research, pages 563–575, 2023.

[58] Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable control
for autoregressive language generation. In 40th International Conference on Machine Learn-
ing (ICML), volume 202 of Proceedings of Machine Learning Research, pages 40932–40945.
PMLR, 2023.

14

10972https://doi.org/10.52202/079017-0350

A Background on Circuits

Definition 3 (Circuit [4, 52]). A circuit c over variables X is a parameterized computational graph
encoding a function c(X), and comprising three kinds of computational units: input, product, and
sum. Each product or sum unit u outputs a scalar and receives as inputs the output scalars of other
units, denoted with the set in(u). Each unit u computes a function fu defined as: (i) fu(Xu)→R if u
is an input unit, where fu is a function over variables Xu ⊆ X, called its scope, (ii) Πi∈in(u)fi(Xi)
if u is a product unit, and (iii) Σi∈in(u)fi(Xi) if u is a sum unit, with wi ∈ R denoting the weighted
sum parameters. The scope of a product or sum unit is the union of the scopes of its input units.
Definition 4 (Probabilistic Circuit). A PC over variables X is a circuit c encoding a (possibly non-
normalized) distribution, e.g., a function that is non-negative for all values of X:

c(x) ≥ 0, ∀x ∈ dom(X)

Definition 5 (Smoothness). A circuit is smooth if, for each sum unit u, its inputs depend on the same
variables: ∀u1, u2 ∈ in(u),Xu1

= Xu2
.

Definition 6 (Decomposability). A circuit is decomposable if the inputs of each product unit u
depend on disjoint sets of variables: ∀u1, u2 ∈ in(u),Xu1

̸= Xu2
.

Definition 7 (Structured-decomposability [44, 12]). A circuit is structured-decomposable if (i) it is
smooth and decomposable, and (2) any pair of product units having the same scope decompose their
scope at their input units in the same way.

Although all tensorized architectures mentioned in this paper are smooth and decomposable, only
PCs built from tree RGs are also structured-decomposable, and as such are potentially less expressive
because they belong to a restricted class.

B Region Graphs

In Algorithm B.1 we detail the construction of the Quad-Tree (QT) and Quad-Graph (QG) region
graphs [36]. Specifically, QTs (resp. QGs) are built setting the input flag isTree to True (resp. False).
Intuitively, these RGs recursively split an image into patches, until reaching regions associated to
exactly one pixel. The splitting is performed both horizontally and vertically, and subsequent patches
can either be shared, thus yielding a RG that is not a tree (QGs), or not (QTs).

Algorithm B.1 buildQuadGraph(H,W, isTree)
Input: Image height H , image width W , and whether to
enforce the output RG to be a tree.
Output: A RGR over H ·W variables
1: S← {Xij = {Xij} | (i, j) ∈ [H]× [W]}
2: R← a RG with leaf regions S
3: h← H; w ←W
4: while h > 1 ∨ w > 1 do
5: h← ⌈h/2⌉; w ← ⌈w/2⌉; S′ ← ∅
6: for i, j ∈ [h]× [w] do
7: Ω←({2i−1, 2i}×{2j−1, 2j})∩([H]×[W])
8: if |Ω| = 1 then
9: Let Xpq ∈ S s.t. (p, q) ∈ Ω

10: addRegion(R,Xpq)
11: else if |Ω| = 2 then
12: Let Xpq,Xrs ∈ S s.t.
13: (p, q), (r, s) ∈ Ω, p < r, q < s
14: addPartition(R,Xpq ∪ Xrs, {Xpq,Xrs})
15: else ▷ |Ω| = 4
16: if isTree then mergeTree(R,Ω,S)
17: else mergeDAG(R,Ω,S)
18: Xij ←

⋃
(r,s)∈Ω Xrs s.t. Xrs ∈ S

19: S′ ← S′ ∪ {Xij}
20: S← S′

21: returnR

Algorithm B.2 mergeTree(R,Ω,S)
Input: A RG R, a set of four coordinates Ω, and
a set of regions S
Behavior: It merges the regions indexed by Ω in
R by forming a tree structure
1: Let Xuv = Yp+u q+v ∈ S s.t.
2: (p+ u, q + v) ∈ Ω, u, v ∈ {0, 1}
3: X← X00 ∪ X01 ∪ X10 ∪ X11

4: addPartition(R,X, {X00,X01,X10,X11})

Algorithm B.3 mergeDAG(R,Ω,S)
Input: A RG R, a set of four coordinates Ω, and
a set of regions S
Behavior: It merges the regions indexed by Ω in
R by forming a DAG structure
1: Let Xuv = Yp+u q+v ∈ S s.t.
2: (p+ u, q + v) ∈ Ω, u, v ∈ {0, 1}
3: X← X00 ∪ X01 ∪ X10 ∪ X11

4: addPartition(R,X, {X00∪X01,X10∪X11})
5: addPartition(R,X, {X00∪X10,X01∪X11})
6: addPartition(R,X00 ∪ X01, {X00,X01})
7: addPartition(R,X10 ∪ X11, {X10,X11})
8: addPartition(R,X00 ∪ X10, {X00,X10})
9: addPartition(R,X01 ∪ X11, {X01,X11})

15

10973 https://doi.org/10.52202/079017-0350

C Implementation details

C.1 Multi-headed MLP details

A multi-headed MLP of size M parameterizing a group γ= {ui}Ni=1 of N PIC units with functions
of the form RI →RO consists of:

1. A Fourier-Features Layer (details below), i.e. a non-linear mapping RI → RM ;
2. Two linear layers followed by hyperbolic tangent as activation function, i.e. two consecu-

tive non-linear mappings RM → RM ;
3. N heads with Softplus non-linearity, i.e. N different non-linear mapping RM →RO.

Note that, if γ is a group of CP (resp. Tucker) integral units, then I = 2 (resp. I = 3), while the
output dimension O is always equal to 1. Instead, if the group γ is a group of input units, the input
dimension I is always equal to 1, while the output dimension O is equal to the number of required
parameters of the specific distribution, e.g. O=2 for Gaussians.

Such multi-headed MLP is implemented using grouped 1D convolutions, which allow a one-shot
materialization of all the layer parameters associated to the group. We found that initializing all the
heads to be equal improves convergence.

Fourier Feature Layer. Fourier Feature Layers (FFLs) are an important ingredient for the multi-
headed MLPs. FFLs [48] enable MLPs to learn high-frequency functions in low-dimensional prob-
lem domains and are usually used as first layers of coordinate-based MLPs. FFLs transform input
z ∈ RI to

FFL(z) : RI → RM := [cos(2πf⊺1 z), sin(2πf
⊺
1 z), . . . , cos(2πf

⊺
M/2z), sin(2πf

⊺
M/2z)],

where M is a hyper-parameter and vectors fi ∈ RI are non-learnable, randomly initialized param-
eters. FFLs have two main benefits: (i) They allow learning more expressive functions by avoiding
over-smoothing behaviors, and (ii) they reduce the total number of trainable parameters when used
instead of conventional linear layers as the initial layers in MLPs.

C.2 Training details

We train both PICs and PCs using the same training setup. Specifically, for each dataset, we perform
a training cycle of T optimization steps, after which we perform a validation step and stop training if
the validation log-likelihood did not improve by δ nats after 5 training cycles. Using δ > 0 can avoid
long trainings with negligible improvements. We report these common training hyper-parameters in
Table C.1. We use Adam [23] and a batch size of 256 for all experiments.

PIC training. After some preliminary runs, we found that a learning rate of 5× 10−3 worked best,
which we annealed towards 10−4 using cosine annealing with warm restarts across 500 optimization
steps [38]. We also apply weight decay with λ = 0.01.

PC training. After some preliminary runs, we found that a constant learning rate of 0.01 worked
best for all PC models, and for all datasets. We keep the PC parameters unnormalized, and, as such,
we clamp them to a small positive value (10−19) after each Adam update to keep them non-negative,
and subtract the log normalization constant to normalize the log-likelihoods.

Table C.1: Common training hyper-parameters for PICs and PCs.
dataset max num epochs T δ

MNIST-family excl. EMNIST-BY 200 250 0
EMNIST-BY 100 1000 0

CIFAR 200 250 0
ImageNet32 50 2000 10
ImageNet64 50 2000 30

CelebA 200 750 10

16

10974https://doi.org/10.52202/079017-0350

C.3 YCoCg color-coding transforms

In Fig. C.1 and Fig. C.2 we provide pytorch code for the lossless and lossy versions of the YCoCg
transform that we used in our experiments (Section 4). In Fig. C.3, we show how to apply them and
that the lossy version is on average off less than a bit. Finally, in Fig. C.4 we show the significant
visual difference of the two transforms when applied to an RGB image.

def rgb2ycc_lossless(
rgb_img: torch.Tensor

):
assert rgb_img.size(-1) == 3

def forward_lift(x, y):
diff = (y - x) % 256
average = (x + (diff >> 1)) % 256
return average, diff

red = rgb_img[..., 0]
green = rgb_img[..., 1]
blue = rgb_img[..., 2]

temp, co = forward_lift(red, blue)
y, cg = forward_lift(green, temp)
ycc_img = torch.stack(

[y, co, cg], dim=-1
)
return ycc_img

def ycc2rgb_lossless(
ycc_img: torch.Tensor

):
assert ycc_img.size(-1) == 3

def reverse_lift(average, diff):
x = (average - (diff >> 1)) % 256
y = (x + diff) % 256
return x, y

y = ycc_img[..., 0]
co = ycc_img[..., 1]
cg = ycc_img[..., 2]

green, temp = reverse_lift(y, cg)
red, blue = reverse_lift(temp, co)
rgb_img = torch.stack(

[red, green, blue], dim=-1
)
return rgb_img

Figure C.1: Lossless YCoCg transform (aka YCoCg-R [39]). We attach pytorch code for the
RGB → YCoCg direction (left) and YCoCg → RGB direction (right), where one is the inverse of
the other. The input to both functions is a tensor with discrete values in [0, 255], so their output.

def rgb2ycc_lossy(
rgb_img: torch.Tensor

):
assert rgb_img.size(-1) == 3

deq_img = (rgb_img / 127.5) - 1
red = (deq_img[..., 0] + 1) / 2
green = (deq_img[..., 1] + 1) / 2
blue = (deq_img[..., 2] + 1) / 2

co = red - blue
tmp = blue + co / 2
cg = green - tmp
y = tmp + cg / 2
y = y * 2 - 1

transformed_img = torch.stack(
[y, co, cg], dim=-1

)
ycc_img = torch.floor(

((transformed_img + 1) / 2) * 256
).long().clip(0, 255)
return ycc_img

def ycc2rgb_lossy(
ycc_img: torch.Tensor

):
assert ycc_img.size(-1) == 3

deq_img = (ycc_img / 127.5) - 1
y = deq_img[..., 0]
co = deq_img[..., 1]
cg = deq_img[..., 2]

y = (y + 1) / 2
tmp = y - cg / 2
green = cg + tmp
blue = tmp - co / 2
red = blue + co

transformed_img = torch.stack(
[red, green, blue], dim=-1

)
rgb_img = torch.floor(

(transformed_img * 255)
).long().clip(0, 255)
return rgb_img

Figure C.2: Lossy YCoCg transform. We attach pytorch code for the RGB → YCoCg direction
(left) and YCoCg → RGB direction (right). The two functions do not represent a bijection. The
input to both functions is a tensor with discrete values in [0, 255], so their output.

17

10975 https://doi.org/10.52202/079017-0350

batch_size = 100
img_size = 32
rgb_batch = torch.randint(256, (batch_size, img_size * img_size, 3))

ycc_batch_lossless = rgb2ycc_lossless(rgb_batch)
recon_rgb_batch_lossless = ycc2rgb_lossless(ycc_batch_lossless)
print((recon_rgb_batch_lossless == rgb_batch).all()) # True

ycc_batch_lossy = rgb2ycc_lossy(rgb_batch)
recon_rgb_batch_lossy = ycc2rgb_lossy(ycc_batch_lossy)
print((rgb_batch - recon_rgb_batch_lossy).abs().float().mean()) # around 0.66

Figure C.3: Application of the YCoCg transforms. We show that YCoCg-R is indeed a bijection,
and that the lossy YCoCg is on average off less than a bit.

Figure C.4: Visual difference of YCoCg-R and YCoCg. Given the RGB image to the left, we
show the application of YCoCg-R in the middle and that of YCoCg to the right.

D Additional results

D.1 Scaling experiments

We report the time and GPU memory required to perform and Adamp optimization step for several
model configurations in Table D.1, Fig. D.1 and Table D.2.

16 32 64 128 256 512
0

5

10

15

20

K =

GPU Memory (GiB)

16 32 64 128 256 512

50

100

150

200

250

300

K =

Time (ms)

QT-CP QG-CP QG-TK PC (F, N) PIC (F, C)

QT-CP QG-CP QG-TK

PIC 1.1M 2.2M 1.8M

K=16 270K 800K 6M
K=32 1M 3M 51M
K=64 4M 13M 408M
K=128 17M 51.1M -
K=256 69M 204M -
K=512 277M 817M -

Figure D.1: Training PICs using functional sharing requires comparable resources as PCs. We
compare the average GPU memory (left) and time (right) required to perform an Adam optimization
step with PCs (blue) and PICs (green), varying region graph type, parameterizations, andK. We pair
the plots with a table reporting the number of parameters of PCs at different K and PICs, with the
latter being independent of K and allowing up to 99% less trainable parameters (QG-CP-512). The
benchmark is conducted using a batch size of 256 gray-scale images of size 28x28, i.e. MNIST-like.
Extra (tabular) details in Table D.1.

18

10976https://doi.org/10.52202/079017-0350

Table D.1: Training PICs using functional sharing requires comparable resources as
PCs. We report the time (in milliseconds, top) and GPU memory (in GiB, bottom) re-
quired to perform an Adam optimization step on 256 MNIST-like images by varying: architec-
ture ({QT-CP, QG-CP, QG-TK}), size K ({2i}9i=4), model ({PC,PIC}), and sharing technique
({C,F,N}). For each model we attach a pair (·, ·) where the first (resp. second) argument speci-
fies the sharing technique for the input (resp. inner) layer(s).

RG-layer K
PC

(F, N)
PC

(N, N)
PIC

(F, C)
PIC

(C, C)
PIC

(F, N)

QT-CP

16 16 16 18 18 67
32 17 17 19 19 63
64 19 19 21 21 89
128 24 24 25 26 OOM
256 38 40 43 47 OOM
512 82 90 116 128 OOM

QG-CP

16 48 48 43 43 193
32 52 52 45 46 189
64 58 59 52 52 OOM
128 74 74 66 67 OOM
256 119 121 122 126 OOM
512 257 264 326 337 OOM

QG-TK
16 71 72 56 57 156
32 102 102 89 89 OOM
64 221 221 288 289 OOM

RG-layer K
PC

(F, N)
PC

(N, N)
PIC

(F, C)
PIC

(C, C)
PIC

(F, N)

QT-CP

16 0.08 0.14 0.15 1.00 2.68
32 0.16 0.28 0.19 1.05 6.97
64 0.36 0.60 0.40 1.27 20.11
128 0.83 1.31 0.97 1.93 OOM
256 2.17 3.12 2.68 3.83 OOM
512 6.86 8.39 8.75 10.09 OOM

QG-CP

16 0.18 0.24 0.22 1.03 7.85
32 0.38 0.49 0.42 1.24 13.95
64 0.83 1.07 0.92 1.79 OOM
128 2.03 2.50 2.29 3.25 OOM
256 5.54 6.50 6.66 7.66 OOM
512 17.14 19.05 21.70 23.04 OOM

QG-TK
16 0.68 0.73 0.80 1.55 18.60
32 2.94 3.04 3.75 4.37 OOM
64 14.72 14.92 21.04 21.71 OOM

19

10977 https://doi.org/10.52202/079017-0350

Table D.2: PICs using functional sharing require comparable resources as PCs to be trained,
and scale much more gracefully than PICs without sharing. We report the time (in milliseconds,
top) and GPU memory (in GiB, bottom) required to perform an Adam optimization step on a batch
of 128 RGB images of size 64x64 by varying: architecture ({QT-CP, QG-CP, QG-TK}), size K
({2i}8i=4), model ({PC,PIC}), sharing technique ({C,F,N}), and also the MLP size M ({2i}8i=5)
of the PIC models. For each model we attach a pair (·, ·) where the first (resp. second) argument
specifies the sharing technique for the input (resp. inner) layer(s).

K PC (F, N)
PIC (F, C) PIC (F, N)

M =256 128 64 32 M =256 128 64 32

QT-CP

16 37 40 38 40 39 330 203 94 59
32 51 53 49 53 51 388 161 124 72
64 74 78 77 77 76 OOM OOM 245 120
128 126 126 124 126 126 OOM OOM OOM OOM
256 246 257 253 249 251 OOM OOM OOM OOM

QG-CP

16 77 73 71 71 70 OOM 550 238 129
32 98 94 92 88 89 OOM 762 312 150
64 135 132 130 128 123 OOM OOM OOM 264
128 215 213 209 208 201 OOM OOM OOM OOM
256 428 449 440 433 425 OOM OOM OOM OOM

QG-TK 16 117 99 98 98 95 OOM OOM 429 164
32 211 204 202 199 183 OOM OOM OOM OOM

K PC (F, N)
PIC (F, C) PIC (F, N)

M =256 128 64 32 M =256 128 64 32

QT-CP

16 0.67 0.70 0.68 0.67 0.67 13.81 5.03 2.14 1.13
32 1.23 1.27 1.25 1.24 1.23 31.45 12.54 6.15 2.94
64 2.48 2.57 2.52 2.50 2.49 OOM OOM 22.59 10.97

128 5.48 5.74 5.61 5.54 5.51 OOM OOM OOM OOM
256 13.48 14.45 13.96 13.72 13.60 OOM OOM OOM OOM

QG-CP

16 0.71 0.78 0.74 0.72 0.72 OOM 12.68 4.88 2.10
32 1.40 1.50 1.44 1.42 1.41 OOM 27.72 12.93 6.00
64 3.15 3.35 3.24 3.20 3.17 OOM OOM OOM 22.13

128 8.15 8.74 8.44 8.30 8.22 OOM OOM OOM OOM
256 24.14 26.29 25.22 24.69 24.42 OOM OOM OOM OOM

QG-TK 16 2.24 2.35 2.26 2.22 2.20 OOM OOM 22.46 11.10
32 10.77 11.35 10.81 10.54 10.40 OOM OOM OOM OOM

20

10978https://doi.org/10.52202/079017-0350

D.2 Additional distribution estimation results

In this section, we report tabular results for all our experiments.

Note that, every input layer of a standard PC is parameterized by a matrix K ×P , where P is
the number of categories, which is 256 for grey-scale image datasets and 768=256 · 3 for RGB
images. We found that sharing a single input layer among all pixels results in (slightly) worse
performance for grey-scale images (as detailed in Table D.3). In contrast, we found that such
sharing considerably improves performance for RGB image datasets. Besides improving perfor-
mance for RGB image datasets, such sharing considerably lower the number of trainable param-
eters from D×K ×P to only K ×P where D is the number of pixels. For instance, parame-
terizing all input layers of a tensorized architecture with K =256 built for 64x64 images would
require 805, 306, 368 = 256 · 64 · 64 · 768 parameters, while only 3, 145, 728 if we apply the shar-
ing. Therefore, without applying such sharing, we cannot even scale to big tensorized architectures
(e.g. QG-CP-512) on our GPUs.

All QPCs are materialized from PICs applying F-sharing over the group of input units, and C-sharing
over the groups of integral units.

We extensively compare QPCs and PCs as density estimators on several image datasets and report
test-set bits-per-dimension (bpd) in Table D.3, Table D.4, and Table D.5.

Table D.3: PCs with a shared input layer deliver comparable performance as PCs who do not
on the MNIST-family datasets. We compare the bits-per-dimension of PCs with (w/) and without
(w/o) a shared input layer considering three different tensorized architectures: QT-CP-512, QG-CP-
512 and QG-TK-64.

QT-CP-512 QG-CP-512 QG-TK-64
w/o w/ w/o w/ w/o w/

MNIST 1.175± 0.001 1.213± 0.002 1.177± 0.006 1.241± 0.005 1.257± 0.005 1.300± 0.004
F-MNIST 3.381± 0.001 3.381± 0.002 3.317± 0.005 3.375± 0.005 3.499± 0.006 3.560± 0.007
EMN-MN 1.706± 0.007 1.761± 0.005 1.643± 0.007 1.711± 0.006 1.756± 0.002 1.772± 0.004
EMN-LE 1.698± 0.006 1.735± 0.007 1.626± 0.004 1.656± 0.004 1.725± 0.003 1.728± 0.003
EMN-BA 1.731± 0.007 1.772± 0.007 1.665± 0.004 1.696± 0.003 1.751± 0.002 1.749± 0.005
EMN-BY 1.542± 0.008 1.548± 0.007 1.474± 0.009 1.481± 0.007 1.665± 0.007 1.679± 0.006

Table D.4: QPCs consistently improve over PCs on MNIST and FASHIONMNIST. Test-set bits-
per-dimension (bpd) on MNIST (top) and FASHIONMNIST (bottom) averaged over 5 runs. All QPCs
are materialized from PICs applying F-sharing over the group of input units, and C-sharing over the
integral units groups, i.e. QPCs are materialized from PICs (F, C). PCs do not apply any form of
parameter sharing, as these deliver the best performance for these datasets, as detailed in Table D.3.

K
QT-CP QG-CP QG-TK

QPC PC QPC PC QPC PC

16 1.275± 0.009 1.283± 0.004 1.237± 0.009 1.248± 0.003 1.215± 0.010 1.233± 0.004
32 1.220± 0.003 1.242± 0.004 1.189± 0.008 1.212± 0.003 1.168± 0.002 1.222± 0.004
64 1.195± 0.002 1.217± 0.002 1.162± 0.002 1.185± 0.002 1.144± 0.006 1.257± 0.005

128 1.161± 0.003 1.196± 0.004 1.144± 0.006 1.171± 0.002 OOM
256 1.135± 0.006 1.184± 0.002 1.120± 0.005 1.173± 0.009 OOM
512 1.126± 0.004 1.175± 0.001 1.115± 0.005 1.177± 0.006 OOM

16 3.547± 0.003 3.589± 0.005 3.427± 0.006 3.464± 0.005 3.424± 0.009 3.446± 0.008
32 3.429± 0.001 3.497± 0.003 3.319± 0.001 3.385± 0.004 3.323± 0.003 3.417± 0.005
64 3.349± 0.005 3.442± 0.003 3.258± 0.004 3.339± 0.004 3.251± 0.003 3.499± 0.006

128 3.289± 0.001 3.408± 0.003 3.212± 0.003 3.319± 0.004 OOM
256 3.242± 0.001 3.392± 0.002 3.174± 0.002 3.317± 0.002 OOM
512 3.209± 0.003 3.381± 0.001 3.154± 0.004 3.317± 0.005 OOM

21

10979 https://doi.org/10.52202/079017-0350

Table D.5: QPCs generally improve over PCs on distribution estimation. We report the average
test-set bits-per-dimensions of QT-CP-512, QG-CP-512 and QG-TK-64 for datasets up to image
size 32x32, and of QT-CP-256, QG-CP-256 and QG-TK-32 for datasets of image size 64x64. All
architectures are trained both as QPCs and PCs. QPCs are materialized from PICs applying F-
sharing over the group of input units, and C-sharing over the groups of integral units. PCs do
not apply any form of parameter sharing for MNIST-family datasets, as these delivered the best
performance for such datasets Table D.3, while they apply F-sharing at the input layer for RGB
datasets. We mark with * (resp. †) datasets preprocessed using YCoCg-R (resp. YCoCg). All
results are averaged over 5 different runs.

QPC PC QPC PC QPC PC
QT-CP-512 QG-CP-512 QG-TK-64

MNIST 1.126± 0.004 1.175± 0.001 1.115± 0.005 1.177± 0.006 1.144± 0.006 1.257± 0.005
F-MNIST 3.209± 0.003 3.381± 0.001 3.154± 0.004 3.317± 0.005 3.251± 0.003 3.499± 0.006
EMN-MN 1.592± 0.007 1.706± 0.007 1.556± 0.006 1.643± 0.007 1.699± 0.004 1.756± 0.002
EMN-LE 1.622± 0.007 1.698± 0.006 1.545± 0.007 1.626± 0.004 1.696± 0.003 1.725± 0.003
EMN-BA 1.638± 0.006 1.731± 0.007 1.593± 0.005 1.665± 0.004 1.715± 0.005 1.751± 0.002
EMN-BY 1.597± 0.006 1.542± 0.008 1.537± 0.004 1.474± 0.009 1.703± 0.004 1.665± 0.007
CIFAR∗ 5.198± 0.003 5.596± 0.004 5.097± 0.002 5.496± 0.004 5.556± 0.003 5.647± 0.004
CIFAR† 4.577± 0.004 4.884± 0.003 4.486± 0.009 4.856± 0.010 4.888± 0.007 4.983± 0.004

ImgNet32∗ 5.196± 0.007 5.286± 0.001 5.085± 0.001 5.255± 0.001 5.544± 0.001 5.700± 0.002
ImgNet32† 4.578± 0.001 4.662± 0.002 4.468± 0.001 4.632± 0.003 4.893± 0.004 5.045± 0.001

QT-CP-256 QG-CP-256 QG-TK-32

CelebA∗ 4.810± 0.004 4.851± 0.002 4.739± 0.002 4.781± 0.002 5.352± 0.002 5.364± 0.002
CelebA† 4.159± 0.003 4.215± 0.003 4.114± 0.003 4.155± 0.006 4.720± 0.003 5.718± 0.001

ImgNet64∗ 5.143± 0.003 5.221± 0.003 5.051± 0.002 5.220± 0.005 5.657± 0.004 5.764± 0.001
ImgNet64† 4.523± 0.003 4.591± 0.002 4.425± 0.004 4.590± 0.006 5.011± 0.007 5.138± 0.001

22

10980https://doi.org/10.52202/079017-0350

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Abstract and main text accurately and precisely state the actual claims of the
research presented.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations mentioned in the last section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

23

10981 https://doi.org/10.52202/079017-0350

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All data used is publicly available. All model and experimental code to fully
reproduce our own experimental results is shared.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24

10982https://doi.org/10.52202/079017-0350

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All data used is publicly available. All model and experimental code to fully
reproduce our own experimental results is shared.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental settings overview included in paper; key details included in
appendix; full details in the included code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Statistical significance indicated for all experimental results, including the
nature of the error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

25

10983 https://doi.org/10.52202/079017-0350

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Overview compute resources included in paper; key details discussed in ap-
pendix; full details listed in structured template-description of corresponding assets.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Problematic aspects of generative AI mentioned, used asset licenses men-
tioned, produced assets (code, models) licensed and shared, reporducibility ensured.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Positive: better interpretability of this class of generative AI models men-
tioned; Negative: problematic aspects of generative AI models in general mentioned.

Guidelines:

26

10984https://doi.org/10.52202/079017-0350

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Original papers cited and/or URLs provided; license mentioned in reference.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

27

10985 https://doi.org/10.52202/079017-0350

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: Code and models included (as zip file for submission, also as URL for final);
Structured templates used for details.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

28

10986https://doi.org/10.52202/079017-0350

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

29

10987 https://doi.org/10.52202/079017-0350

