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Abstract

In the last years, the research interest in visual navigation towards objects in indoor
environments has grown significantly. This growth can be attributed to the recent
availability of large navigation datasets in photo-realistic simulated environments,
like Gibson and Matterport3D. However, the navigation tasks supported by these
datasets are often restricted to the objects present in the environment at acquisition
time. Also, they fail to account for the realistic scenario in which the target object
is a user-specific instance that can be easily confused with similar objects and may
be found in multiple locations within the environment. To address these limitations,
we propose a new task denominated Personalized Instance-based Navigation (PIN),
in which an embodied agent is tasked with locating and reaching a specific personal
object by distinguishing it among multiple instances of the same category. The task
is accompanied by # PInNED, a dedicated new dataset composed of photo-realistic
scenes augmented with additional 3D objects. In each episode, the target object
is presented to the agent using two modalities: a set of visual reference images
on a neutral background and manually annotated textual descriptions. Through
comprehensive evaluations and analyses, we showcase the challenges of the PIN
task as well as the performance and shortcomings of currently available methods
designed for object-driven navigation, considering modular and end-to-end agents.
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Figure 1: We introduce the PIN task, where the agent is asked to navigate toward a personalized
object instance using multimodal references and distinguish it from distractors (i.e., other objects of
the same category as the target or of other categories). The target object, same category distractors,
and other distractors are circled, respectively, in green, orange, and red. The total number of available
objects in the dataset is 338, corresponding to different instances of 18 object categories.
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1 Introduction

Imagine a scenario where your child wants his favorite teddy bear, and he lost it somewhere in your
house. In the foreseeable future, a “smart” domestic robot could be asked to find it. In that case,
the robot will start roaming through the environment searching for the teddy bear. However, prior
knowledge of the object category and visual cues related to the surroundings are not enough to solve
the task, as the teddy bear has no predetermined location in the scene, could be potentially situated
in several different places, and can be confused with other stuffed toys. While the recent advances
in Embodied Al have significantly fostered the development of autonomous agents that can locate
predefined target object categories, a benchmark that evaluates how agents tackle the challenges of
reaching personal object instances in a photo-realistic environment is absent.

Motivation. The majority of current object-driven navigation tasks in Embodied Al define their
goals as a general semantic category represented through text [2} 16} [70] (e.g., “chair”, “sofa”) or
as a specific target instance defined by an image or description including the surrounding context
in which the object can be found [9, (19, 32, 36, |82]. Moreover, these datasets rely on objects
which were present at the time of acquisition of the environment [8, [13} 20,132, 36| 45| 611 [711 [74]].
On the contrary, procedurally generated environments can freely contain additional objects and
annotations [21} 23 134, [41]]. However, the appearance discrepancy between these environments
and the real world or photo-realistic environments could affect the performance of the agents when
deployed on robotic platforms [31]. Previous work has proposed loading additional 3D objects
inside photo-realistic environments [46] to improve agent navigation performance, to allow object
interaction in static environments [[64], or to enable navigation towards multiple goals [70]. However,
no previous work has targeted loading objects that can be moved frequently and can appear in multiple
contexts since loaded 3D models are kept in their initial spawn position.

Overview of the dataset. To overcome these issues, we propose the novel task of Personalized
Instance-based Navigation (PIN), where the agent needs to locate and reach a specific personalized
target instance in the environment provided as reference images and textual descriptions, without
information about the surrounding context. An overview of PIN is shown in Fig.|l} In parallel with
the definition of the task, we release # PINNED (Personalized Instance-based Navigation Embodied
Dataset), a dedicated dataset of episodes for this setting that leverages the main advantages of both
photo-realistic and procedurally generated embodied environments. In each episode, along with
a unique target instance, distractors objects are placed in the scene to confound the navigation of
the agent. Specifically, we built the dataset on top of the semantic annotations [74] and scenes of
Habitat-Matterport3D Dataset (HM3D) [56] with the injection of additional photo-realistic 3D objects
accurately selected from Objaverse-XL [22]]. The objects are positioned in each environment through
a procedural spawning method on predefined suitable surfaces. PInNED comprises 865.5k training
episodes and 1.2k validation episodes built on top of 338 additional objects.

Finally, we adapt and test currently available navigation agents on the proposed dataset, showcasing
the shortcomings of relevant approaches. In particular, we compare the performance of the two main
categories of navigation agents for object-driven navigation, modular and end-to-end approaches,
where we demonstrate that the versatility of modular methods leads to superior performance compared
to the end-to-end counterparts; still, the task is far from being resolved. These experiments assess
the difficulties posed by PIN task, highlighting the need for further research on the topic. More
details and release information on the codebase for the task, accompanying dataset, and evaluation
benchmark are included in the Appendix.

Contributions. To sum up, our key contributions are threefold:

# We introduce the task of Personalized Instance-based Navigation (PIN). In this task, an agent
must find and navigate towards a specific object instance without using the surrounding context.
To increase the difficulty and compel the agent to learn to identify the correct instance, object
distractors belonging to the same or different categories of the target are also added.

# We build and release Personalized Instance-based Navigation Embodied Dataset (PInNED), a
task-specific dataset for embodied navigation based on photo-realistic personalized objects from
Objaverse-XL dataset injected in the environments of HM3D dataset. Overall, it comprises
338 object instances belonging to 18 different categories positioned within 145 training and 35
validation environments, for a total of approximately 866.7k navigation episodes.

# We evaluate currently available object-driven methods on the newly proposed dataset demonstrat-
ing their limitations in tackling the proposed PIN task.
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2 Related Work

Object-based Embodied Datasets. In recent years, research aimed at the development of intelligent
autonomous agents has acquired increasing interest with the release of simulation platforms like
Habitat 53,161 166]], AI2-THOR [34], RoboTHOR [21]], and ProcTHOR [23]], as well as datasets of
scenes for robotic navigation like Gibson [64, [71], Matterport3D [13], and Habitat-Matterport3D
(HM3D) [56]. The evaluation of the capabilities of such agents can be performed on multiple
embodied tasks [3l 58} 165] mimicking different real-world requirements. PointGoal Navigation
(PointNav) [2] requires the agent to reach specific relative coordinates to its starting position. In object-
oriented navigation, the agent is tasked to find any instance of an object category (ObjectNav) [2|
6], multiple objects in sequence (MultiON) [70], or a specific instance of a category (ION) [41].
Other embodied navigation tasks are ImageGoal navigation (ImageNav) [19! [82] that requires
the agent to reach the position where the goal image has been taken, and a more object-oriented
formulation of ImageNav called Instance-Specific Image Goal Navigation (InstancelmageNav) [36]
that requires to reach a precise object instance given a photo of it. Recently, the GOAT-Bench
benchmark has been introduced, which requires finding sequences of target objects using multimodal
references [32]. However, GOAT-Bench targets are constrained to the objects captured in the
environment at acquisition time. To the best of our knowledge, PInNED is the only dataset focused on
navigation toward personalized targets that uses multimodal references, injects additional objects into
photorealistic environments, and requires the agent to distinguish the correct instance from distractors
without relying on context.

Object-based Navigation Agents. Object-based methods for navigation agents can be divided into
two categories depending on their design: modular approaches and end-to-end approaches. Modular
approaches are composed of multiple components, usually a mapping module, an exploration
procedure, and an object detection method. Some approaches adapted the architecture proposed
by ANS [16] for object goal navigation by building semantic maps to locate the target [[15 39, 55}
81]. Following, Stubborn [44] proposed a strong baseline using a heuristic exploration method.
Among end-to-end methods, Mousavian et al. [S0|] and Yang et al. [/6] worked on improving visual
representations, Mayo et al. [47] used spatial attention maps, and Ye et al. [77] used auxiliary tasks.
Other related work leveraged object relation graphs [27, 128} 152]]. THDA [46], instead, used 3D scans
of objects from YCB dataset [[L1] to augment the training dataset. Recently, PIRLNav [57]] used a
two-stage learning strategy, Chen ef al. [18]] used a method based on recursive implicit maps, and
OVRL [72, 73] exploited self-supervised visual pretraining to boost agent capabilities. Additionally,
zero-shot object goal navigation has been recently explored by ZER [[1], ZSON [45], and ORION [20].

Personalized Instance Recognition. In recent years, foundation models have revolutionized the
Computer Vision field. CLIP [54] learned a multimodal embedding space by performing large-scale
contrastive training, demonstrating impressive capabilities in zero-shot classification. DINO [12, 51]]
is trained with a self-supervised paradigm achieving strong semantic correspondence properties
among features [4} |5, [79]. Segment Anything (SAM) [33]] has been trained to predict precise class-
agnostic masks given a prompt. The feature spaces learned by these models are semantically rich
and can be exploited in tasks that involve the recognition of general object categories. However,
adapting a model for recognizing personalized objects in images remains an open challenge. For
example, SuperGlue [60] leveraged an attention-based graph neural network on the local descriptors
extracted with the SuperPoint model [25]] to perform image matching and has been used in Mod-
IIN [35] and GOAT [14]] to tackle the InstancelmageNav task. IEVE [40]], instead, proposes an
Exploration-Verification-Exploitation framework that combines a segmentation model and a keypoint
matcher to recognize distant objects and confirm them when the agent is closer; while PerSAM [80],
performed personalized segmentation allowing SAM to localize a user-provided target. In the same
setting, Seglc [48] introduced a mask decoder with in-context instructions on top of the dense
correspondences from DINOv2 [51]], while Matcher [43]] leveraged DINOV2 to extract prompts for
SAM in a training-free paradigm.

3 Personalized Instance-based Navigation

In this section, we outline the Personalized Instance-based Navigation task, highlighting its key
characteristics and comparing it to existing embodied tasks. Following, we detail the composition
and generation process of the PInNED dataset.
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Table 1: Comparison of the different object-driven datasets for embodied navigation, considering
the photo-realism of scenes and targets, the availability of additional objects with variable spawn
locations, the modalities of the provided references, and whether the dataset is instance-oriented.

Photo-Realistic ~ Photo-Realistic ~ Additional Visual Descriptive ~ Variable  Instance
Dataset Scenes Targets Objects Reference  Reference  Placement Goal

MP3D [13]
AI2-THOR [34]
Gibson [71]
Robo-THOR [21]
MultiON* [70]
HM3D [56]
ProcTHOR

ION [41]

THDA [46]
ZSON [45]
InstanceImageNav [35]
ZIPON [20]
GOAT-Bench [32]

PInNED (Ours)

ANES NN RN R NN
ANEAS N R R N N
AN N R
NN 3% N X X X% X X X X X X X
NN XAUX NX XN\ X% XXX
N XXX XCCNIXCCX %
NSNS N %X % N % X% X X XXX

3.1 Task Definition

The PIN task requires the agent to navigate toward a predetermined specific object instance (e.g., “a
yellow backpack with red straps”) in an unexplored environment. Each target object needs to be found
in the environment, distinguishing it from multiple distractors of the same category and other objects
of different categories. In this setting, the target object can be provided to the agent in two different
modalities: (i) as a set of RGB images depicting the target object rendered in an isolated context on a
neutral background, and (ii) as a set of textual descriptions of the object instance appearance.

At the beginning of each episode of PIN, the agent is initialized at a random pose x( in an unseen
environment. A single target instance o’ is selected as the goal g, such that g € C* C O, where
C*® is a set of instances belonging to the same object category and O is the set of all available
objects. The goal g is placed in the environment at a position z. Additionally, n distinct instances
o’ (0 € C%Ni # j) are positioned in the environment, along with m distinct instances o*
(oF € (O\ C?)). At the end of the episode, the navigation is considered successful if the agent selects
the ‘stop’ action before the maximum allowed number of timesteps 7', with an Euclidean distance
between the position of the agent at the current timestep x; and the target position z lower than 1
meter. The action space of the agent for the task is defined by six possible actions, where at each
timestep ¢, the action a; € {‘stop’, ‘move ahead’, ‘turn left’, ‘turn right’, ‘tilt up’, ‘tilt down’ }.

3.2 Comparison with Other Tasks

The proposed task locates itself among PointNav [2], ObjectNav [2| 6], ImageNav [19]], and the
recently defined task of InstanceImageNav [36]. PIN exhibits similarities to ObjectNav, Instancelma-
geNav, and the recently introduced GOAT-Bench [32] (see Sec. [2)).

However, it diverges from the traditional ObjectNav task because, differently from the standard
objective of finding any instance of a general object category, PIN requires locating a specific
instance, such as “black and white striped trekking backpack™ instead of any “backpack”. PIN
leverages zero-shot properties at the instance level, as the object instances used for the training split
differ from those included in the validation episodes. This requires agents to focus on the specific
characteristics of the target object defined by the input references and avoid being misled by instances
of the same category that are not the actual target.

Furthermore, PIN differs from InstancelmageNav and GOAT-Bench in various aspects. First, the
target object is represented by a collection of images with neutral backgrounds, rather than being
shown in its current spatial context. InstancelmageNav and GOAT-Bench are based on a set of general
object categories that are included in the dataset of scenes and, therefore, these objects are static and
frozen in the 3D model of the environment. Instead, the peculiarity of PIN is that it is created using a
set of additional photo-realistic personal objects from a collection of 3D objects that can be placed
and moved in different locations of the environment between different episodes. Using additional
objects allows to avoid reconstruction errors and artifacts that can distort the appearance of the target.
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Figure 2: Comparison of observations depicting different targets in the embodied setting of our
PInNED dataset with the target objects of MultiON, InstancelmageNav, and GOAT-Bench datasets.

This unique characteristic compels the agent to discern and extract the defining features of the target
object while maintaining invariance to the surrounding context in which it is situated since personal
objects can be moved frequently and could be placed in multiple suitable locations.

Similarly to GOAT-Bench, PIN provides a multimodal input to the agent, including textual descrip-
tions of the target instances alongside the images. However, GOAT-Bench ignores the presence of
instances of the same category of the target in the scene, whereas this is the core challenge of PIN.
Additionally, it is worth noting that while text alone can sometimes provide precise identification of
the specific instance, it can also be ambiguous. Visual references, although generally clearer, are not
always available in real-world scenarios. Therefore, the two modalities cover different real-world
requirements and both deserve to be studied. An extensive comparison of current object-driven
dataset properties is reported in Table[I] which presents the following columns:

- Photo-Realistic Scenes: the presence of photo-realistic scans taken from real-world environments
(e.g. the scenes of HM3D are built from scans of real environments, while scenes in AI2-THOR
are hand-built by professional 3D artists);

- Photo-Realistic Targets: the availability of photo-realistic objects that can be used as navigation
targets. In PInNED we carefully selected objects with realistic appearances. Procedurally-
generated datasets, instead, tend to favor customizability over realism;

- Additional Objects: the inclusion of target objects that were not present at the time of capture.
Datasets like GOAT-Bench target objects which were already present in the acquired scene,
while PInNED targets objects injected in the scene afterward;

- Visual Reference: providing visual target references for each navigation episode;
- Descriptive Reference: providing natural language descriptions as targets for each episode;

- Variable Placement: the possibility of having variable spawning positions for the targets within
the dataset;

- Instance Goal: the inclusion of navigation episodes in which the goal is to reach the exact
instance indicated to the agent.

Moreover, a qualitative comparison of goal objects observed in their position in the environment from
different datasets is depicted in Fig.[2]

3.3 Dataset

Categories and Instances. We selected a pool of 18 object categories from the assets contained in
Objaverse-XL dataset [22): ‘backpack’, ‘bag’, ‘ball’, ‘book’, ‘camera’, ‘cellphone’, ‘eyeglasses’,
‘hat’, ‘headphones’, ‘keys’, ‘laptop’, ‘mug’, ‘shoes’, ‘teddy bear’, ‘toy’, ‘visor’, ‘wallet’, ‘watch’, for
a total of 338 additional objects. Each category contains an average of 18.8 objects, with a standard
deviation of 5.5. The 3D objects are selected with human supervision to ensure photo-realism and
uniqueness, which are critical requirements for tackling the PIN task. Finally, the 3D models of the
objects are manually rescaled to have comparable dimensions to their real-world counterparts. In this
procedure, we rendered each given object in a scene from HM3D and varied the scale of the object
until the result was realistic according to our judgment. Hence, each of the 338 additional objects has
a manually fixed scale that is adopted when the object is injected into the navigation episodes.

Input References. The input images for each target personalized object are generated by rendering
the 3D mesh of the object in an isolated setting. Specifically, the input images are not expected
to match the camera specification of the navigating agent [36]]. The digital camera undergoes a
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Figure 3: Sample input images of personalized targets from PInNED dataset. We include three
instances from various object categories within the dataset.
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Figure 4: Plots of the distance statistics for the splits of PINNED dataset. The episodes of the training
( ) and validation splits (blue) are presented in terms of geodesic distance from the start position
to the target object (left) and to all the distractors (right). All the distances are plotted in meters, and
the mean value of each plot is shown on top.

30-degree yaw rotation to capture a favorable perspective of the objects. Each instance is then
rotated 180 degrees in yaw to view its reverse side, followed by a 90-degree pitch rotation to observe
the object from above. This procedure produces a set of three input images for each target object.
An illustration of the acquired reference images is displayed in Fig. 3] Moving on to the textual
references, manually annotated descriptions are produced for each target personalized object with the
scope of highlighting the details that allow the agent to distinguish it from other instances of the same
category. Specifically, we provide three descriptions for each personalized object in the PInNED
dataset. To annotate the descriptions, we provided two object instances at a time to the annotators,
asking them to describe one of the two objects in such a way that it is distinguishable from the other.
This procedure results in a total of 960 unique words and an average of 10.7 words per description.
Additional samples of input references are included in the Appendix.

Scenes. The benchmark defined by the PIN dataset is situated in the indoor photo-realistic scenes (e.g.,
apartments, offices, houses) within the semantically-annotated subset of Habitat-Matterport3D
(HM3D) [56] which consists of 145 environments for the training split and 36 for validation set.
However, one validation scene is ignored as it represents an art gallery and has no suitable spawnable
surfaces. HM3D was selected due to its status as the largest publicly available dataset of semantically
annotated indoor spaces with photo-realistic quality for embodied navigation.

Episode Generation. During the generation of the dataset, the bounding boxes of the surfaces in
the environment are extracted using the semantic annotations of the scene. To obtain the bounding
box from the texture, we extracted the point cloud 3D model of each scene and ensured that each
point retained its associated annotation color. Subsequently, points were clustered by annotation color
to create the bounding box associated with each piece of furniture. The spawning position of each
object is selected by sampling from the positions of a curated set of suitable surface macro-categories
included in the semantic annotations of HM3D. The surface categories selected for the creation of the
dataset are: armchair, bed, bench, cabinet, piano, rug, sofa, table. These specific surfaces are chosen
because of the high probability of personalized objects being positioned on top.

In each episode of the PINNED dataset, a single instance of a specific category is chosen as the
target object. Consequently, up to 6 instances belonging to the same category, and up to 13 objects
from other categories, are added to the environment as distractors. All additional objects placed in
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Figure 5: Overview of the baselines designed for the PIN task: modular agent (on the left) and
end-to-end agent based on a monolithic reinforcement learning-based policy (on the right).

the environment are constrained to be on the same level/floor as the agent by selecting spawnable
surfaces with a bounding box position within 0.5 meters from the starting position of the agent along
the vertical axis. For each environment in the training split a set of 400 episodes is sampled for each
one of the possible categories. For the generation of the validation split each target category is used
twice. Finally, episodes where the target object is not reachable by an agent following the shortest
path are removed from the dataset. Refer to the Appendix for more details on dataset generation.

The resulting dataset for PIN is defined by a total of 865, 519 generated episodes for the training
split, while the validation split contains 1, 193 episodes. The geodesic distances of the target and
distractors from the starting position of the agent in the episodes of PINNED are shown in Fig. [} In
the figure, the distribution of the distances of targets and distractors significantly overlap, hence prior
information on the target object distance is hardly exploitable.

4 Baselines

In this section, we present the set of approaches that are revisited and tested on our introduced
PInNED dataset. These methods are recent object-driven methods and can be grouped into two
categories: (i) modular agents that decouple the navigation task into specialized sub-modules and
(ii) end-to-end agents based on a monolithic policy trained using reinforcement learning. Fig.[3]
shows an overview of these two approaches. We refer to the Appendix for more details on the
implementation of the baselines.

4.1 Modular Agents

In recent years, modular agents gathered an increasing interest in various embodied settings. These
agents tackle the high-level navigation tasks by decoupling them into a chain of specialized sub-
modules, each of which handles a smaller task. Specifically, Chaplot et al. [[15] proposed SemExp,
a modular agent designed for the ObjectNav task composed of three main modules: exploration,
object detection, and exploitation. The core idea is that the agent explores as much as possible
the unseen environment while the detection module localizes the semantic objects in the acquired
observations. Inspired by this approach, Mod-IIN [35] and CLIP on Wheels (CoW) [29] adapt the
detection module to handle specific instances and open-vocabulary targets, respectively. For our
modular agent baselines, we consider the same exploration and exploitation modules used in these
previous works, while changing and adapting the object detection module for the PIN task.

Exploration Module. The exploration module is entitled to explore the unseen areas of the envi-
ronment with the scope of encountering the target object. As in Mod-IIN and CoW, we adopt a
frontier-based exploration (FBE [75]) approach. The agent builds an occupancy map of the environ-
ment during navigation, and at every time step, if the goal is not detected, the unexplored frontier on
the map which is closest to the agent is selected as the current goal.
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Object Detection Module. The object detection module receives the visual or textual references and
the current RGB observation of the agent. Then, it is tasked with providing (i) a matching score that,
whether it exceeds a certain matching threshold o, determines that the goal has been recognized; and
(ii) a series of coordinates on the observation which correspond to where the goal is located, that
are used by the exploitation module to project the goal on a 2D map. We select three categories of
approaches to implement this module:

# Keypoint Matching: In this category, the visual target references and the current RGB obser-
vation are provided to a keypoint matching method. We tested SuperGlue [60], following the
approach proposed by Mod-IIN [35]], and the framework introduced in IEVE [40]. In particular,
SuperGlue outputs a confidence score for each matched keypoint pair. We use the sum of these
confidences as the matching score and the keypoints that exceed a given confidence threshold 7
as the localization coordinates. Regarding the Exploration-Verification-Exploitation framework
proposed in IEVE, we adapted some components to match the different requirements of our
task. Specifically, we first collected an auxiliary dataset, which includes, for each goal in the
training set, 10 positive samples and one negative sample containing a distractor from the same
category as the goal. We trained InternImage [69]] to classify the 18 categories of our dataset
using the goal images of the training set. Instead of the InternImage segmentation model, since,
to the best of our knowledge, no segmentation dataset contains all our categories, we adopted
the open-vocabulary segmenter GroundedSAM [39]. For the image-matching step, we exploited
LightGlue [42] on the keypoints extracted with DISK [67] as in the original IEVE paper.

# Patch-level Matching: A Vision Transformer (ViT [26]]) encoder divides an image into patches
and extracts patch-level embeddings. Hence, we extract a goal embedding from each reference
and compute the cosine similarity with the patch-level feature vectors of the RGB observation.
If at least a patch has a similarity that exceeds the matching threshold o, the goal is considered
detected. The center coordinates of these patches are used as the goal localization result. For
the visual references, we employ DINO [12], DINOv2 [51], and CLIP [54] performing a region
pooling over the reference objects to obtain goal feature vectors. For the textual references, a
text-aligned multimodal encoder is required. Hence, we employ CLIP and, inspired by [29],
CLIP with gradient relevance [17] (CLIP-Grad). We assume the mean embedding of the set of
prompt templates used in CoW applied to the target descriptions as the target feature vector.

# Detection Model: We consider detection models that produce output regions according to a given
reference. Specifically, we consider PerSAM [80] (both in the standard and one-shot finetuned
versions) and OWL [49], which localize regions according to, respectively, visual and textual
references. As in CoW, we exploit the output confidence to determine whether the goal has been
detected and return the central coordinates of the region as the goal localization result.

Exploitation Module. The exploitation module takes control of the navigation when the goal is
recognized in the current observation. After detecting the target object at a given location, the
exploitation module is triggered and computes the route to reach the target object. The goal position
provided by the object detection module is projected into an occupancy map, and the Fast Marching
Method [[16}162] is used to plan the path from the current position of the agent to the detected goal
position. When the agent reaches the goal position, the ‘stop’ action is called to conclude the episode.

4.2 End-to-End Agents

In contrast to modular agents, end-to-end approaches train a neural network policy to process sensor
input and predict the atomic actions needed to complete the required task. We consider two recent
approaches for embodied navigation and adapt them for the Personalized Instance-based Navigation
task: (i) ZSON [45]], which pre-trains an ImageNav agent and evaluates downstream on ObjectNav
leveraging the capabilities of CLIP multimodal embeddings; and (ii) RIM [18]], which employs a
Transformer-based architecture [68]] that is trained using auxiliary tasks and uses a recursive implicit
map that is updated during the navigation for the ObjectNav task. We finetune both approaches
on PInNED dataset. Specifically, ZSON is adapted to use image references as input during its
ImageNav pretraining phase. While, for RIM, we employ two finetuning strategies: conditioning
the navigation on textual features extracted from the reference descriptions and conditioning on
visual features extracted from the image references. The features produced using both modalities of
PInNED references are extracted using CLIP.
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Table 2: Navigation results on PInNED on the environments of HM3D dataset, considering the
presence of distractors from the same category. Bold text denotes the best performance among each
category of approaches.

Navigation Metrics Detection Metrics
Backbone Modality SRt SPLt CE| D2G| Steps %Matcht TMT CM| NM|

Modular Agents
CLIP [54] ViT-B/16  Textual 3.10 1.82 931 7.94 503.1 62.95 20.07 22.07 57.86
CLIP-Grad [29] ViT-B/32  Textual 453 242 695 794 4658 7795 465 721 84.14
OWL [291149] ViT-B/32  Textual 729 336 12.66 7.90 871.7 2297 62.60 32.88 4.52
SuperGlue [35][60] - Visual 327 128 7.38 836 804.0 2942 1696 3.44 79.60
IEVE [40] - Visual 352 3.07 1225 7.73 7121 30.03  32.39 16.01 51.60
PerSAM [80] ViT-B/16  Visual 277 181 6.53 820 362.5 8198 1.15 10.43 88.42
PerSAM-F [80] ViT-B/16  Visual 193 128 563 8.12 3213 36.13  0.60 13.48 85.92
DINO [12] ViT-B/16  Visual 4.02 1.71 6.88 8.28 826.0 2389  62.73 1.36 35091
CLIP [54] ViT-B/16  Visual 9.64 539 1333 7.79 6235 58.51 32.53 16.35 51.12
DINOV2 [51] ViT-B/14  Visual 14.84 7.94 26.15 7.28 658.7 5574  55.33 42.00 2.67

End-to-end Agents
RIM [[18] ResNet-50 Textual 7.12  6.67 1044 8.43 409.3 - - - -
RIM [18] ResNet-50  Visual 8.80 6.80 13.41 8.48 402.1 - - - -
ZSON [45] ResNet-50  Visual 9.14 7.18 21.12 7.00 389.9 - - - -

5 Experimental Evaluation

In this section, we present an experimental analysis of the selected baselines on the PIN task,
discussing the set of metrics used to effectively evaluate the performances and the obtained results.

5.1 Evaluation Metrics

Traditional metrics for object-driven embodied navigation are success rate (SR) and success rate
weighted by path length (SPL). SR is the ratio between the number of episodes where the agent
successfully reaches the target object within a maximum distance of 1 meter and the total number of
episodes, while SPL weighs the success rate with the length of the path taken by the agent. Moreover,
we report the average number of steps taken by the agent and the average distance from the goal
(D2G) at the end of each episode. The agent designed for tackling the PIN task should be able
to distinguish whether the target object is present in the current observation while exploring the
unseen environment and correctly localize it, within the timesteps budget 7" (set to 1,000). The main
challenge is represented by distractor instances belonging to the same category as the target object.
Hence, we introduce the category error (CE) metric, which measures the percentage of episodes in
which the agent stopped within one meter from instances belonging to the same category of the goal.

In modular agents, the ability to detect the correct instance resides in having large matching scores
when the target is present in the observation and small scores when the target is absent. Since in these
agents it is possible to determine whether a given observation matches, we compute four additional
metrics: the percentage of episodes with at least a detected match (%Match), the percentage of
matched observations that contain the target object (TM), an instance of the same category of the
target (CM), or no relevant objects (NM).

5.2 [Experimental Results

Personalized Instance-based Navigation Experiments. In Table[2] we present the results on the
PIN task. Among modular agents, DINOv2 performs best according to SR and SPL. The high
values of TM, CM, and CE show that the obtained matches usually refer to the same category of the
target instance. The same reasoning can be applied to OWL for the modular agents using textual
references. However, OWL produces fewer matches as can be noted from the %Match metric.
Models such as SuperGlue, PerSAM, and PerSAM-F, which exhibit low SR and TM, have also
a corresponding high NM, demonstrating that they are not able to provide significant matching
scores for distinguishing the correct instances or even the correct categories. It is noteworthy
that SuperGlue struggles to match the instances of PInNED, which are represented on a neutral
background, contrary to InstancelmageNav [35]], where the reference image is a photo of the object
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Table 3: Navigation results on PInNED on the environments of HM3D dataset, without considering the
presence of distractors from the same category of the target. Bold text denotes the best performance
among each category of approaches.

Navigation Metrics Detection Metrics
Backbone Modality SRT SPLT D2GJ Steps %Matcht TM{T NMJ

Modular Agents
CLIP [54] ViT-B/16  Textual 335 1.86 8.01 5165 61.86 22.83 77.17
OWL [29]149] ViT-B/32  Textual 822 3.18 7.88 9299 13.83 9391 6.09
CLIP [54] ViT-B/16  Visual 11.15 592 7.65 666.2 52.56  35.57 64.43

DINOv2 [51] ViT-B/14  Visual 23.13 11.61 6.62 784.5 38.64 96.09 3.91
End-to-end Agents

RIM [18] ResNet-50 Textual 746 6.87 794 487.1 - - -
RIM [18] ResNet-50  Visual 10.35 7.53 775 4759 - - -
ZSON [45] ResNet-50  Visual 10.39 8.00 6.91 460.1 - - -

in the same context in which it is located. Regarding PerSAM and PerSAM-F, the results show
that the feature space of SAM [33] is not informative enough to understand whether an instance is
present in an observation. IEVE shows an improvement with respect to the other image-matching
modular agent, based on SuperGlue. This is motivated by the fact that IEVE, differently from other
image-matching approaches, combines LightGlue with a semantic detector, allowing the agent to
focus only on observations that contain objects of the target category. This behavior is confirmed by
the increased numbers of target matches, category matches, and category errors.

Moreover, end-to-end agents tend to perform worse than modular agents. This can be attributed to
the imitation training performed using the ground-truth trajectory to the goal. Since in the PIN task
the target instances can be placed in multiple locations, it is not possible to exploit prior semantic
knowledge about the estimated location of the target instance. Moreover, end-to-end agents tend to
struggle in backtracking and in recovering the navigation when moving in the wrong direction. This
behavior can also be noted from the path length, which for end-to-end agents is shorter than modular
agents, that continue the exploration until the whole environment is observed.

Ablation on Category Distractors. In Table 3] we introduce an ablation study in which we remove
the distractors belonging to the same category of the target instance. Overall, metrics for all the
agents improve because the presence of these distractors represents the core challenge of the PIN task.
In particular, DINOv2 improves by 8.29 with respect to the main experiments, demonstrating that it
embeds strong semantic correspondence properties among the same category, but that it is not trivial
to identify a threshold that clearly distinguishes specific instances. The impact of same-category
distractors on end-to-end agents is minor since they are finetuned to identify the correct instance.

6 Conclusion

In this work, we presented the task of Personalized Instance-based Navigation (PIN) in which the
agent is required to locate and navigate toward a specific target instance. Additionally, we release
PInNED, a task-specific dataset built by injecting a set of additional photo-realistic objects in the
scenes of HM3D. Finally, we perform an extensive analysis of recent navigation methods adapted for
the proposed task. Experimental results demonstrate that the new challenges in the recognition of
specific instances introduced in our proposed task are still far from being addressed. This benchmark
sets a novel testbed for future work on embodied navigation toward personalized instances.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims are (i) the introduction of the novel Personalized Instance-based
Navigation task, (ii) the build and release of Personalized Instance-based Navigation Em-
bodied Dataset, and (iii) the evaluation of object-driven approaches on this task. Refer to
Sec.[3.1]and Sec. [3.2]for tasks definition, to Sec. [3.3|for dataset presentation, to Sec. 4] for
the introduction of the baselines and to Sec. [5| for experimental analysis.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations of the current dataset and the approaches used to perform the
experiments on the task are discussed in the supplemental material.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors

should reflect on how these assumptions might be violated in practice and what the

implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [N/A]

Justification: The paper proposes a dataset and a benchmark for embodied navigation and
does not include theory assumptions and proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The codebase along with the dataset is linked in the supplemental mate-
rial. Moreover, implementation details to reproduce the results are also available in the
supplemental material.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The codebase along with the dataset is linked in the supplemental material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details in Sec.[d]and Sec. [5|are sufficient to understand the experimental
results and the dataset contribution. Additionally, more implementation details are available
in the supplemental material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The main experiments that support the claims of this paper do not require
reporting error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources used to evaluate the proposed baselines on the task are
presented in the supplemental material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This research is compliant with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential societal impacts of ours work are discussed in the supplemental
material.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [N/A]
Justification: The release of the codebase and dataset does not present risks of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original owners of the data used in the paper are properly credited, and
details on the licenses and terms of use of such data is mentioned in the supplemental
material.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The assets introduced in the paper are described in Sec.[3.3] and further details
are included in the supplemental material.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [N/A]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
The authors of the paper acted as annotators for textually describing the objects selected for
the dataset (Sec. [3.3).

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [N/A]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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