
EFFIBENCH: Benchmarking the Efficiency of
Automatically Generated Code

Dong Huang∗

The University of Hong Kong
dhuang@cs.hku.hk

Yuhao Qing∗
The University of Hong Kong

yhqing@cs.hku.hk

Weiyi Shang
University of Waterloo
wshang@uwaterloo.ca

Heming Cui
The University of Hong Kong

Shanghai AI Laboratory
heming@cs.hku.hk

Jie M. Zhang†
King’s College London
jie.zhang@kcl.ac.uk

Abstract

Code generation models have increasingly become integral to aiding software
development. Although current research has thoroughly examined the correctness
of the code produced by code generation models, a vital aspect that plays a pivotal
role in green computing and sustainability efforts — the efficiency of the generated
code — has often been neglected. This paper presents EFFIBENCH, a benchmark
with 1,000 efficiency-critical coding problems to assess the efficiency of code
generated by code generation models. EFFIBENCH contains a diverse set of
LeetCode coding problems. Each problem is paired with an executable human-
written canonical solution, which obtains the SOTA efficiency on the LeetCode
solution leaderboard. With EFFIBENCH, we empirically examine the ability of 42
large language models (35 open-source and 7 closed-source) in generating efficient
code. Our evaluation results demonstrate that the efficiency of the code generated by
LLMs is generally worse than the efficiency of human-written canonical solutions.
For example, GPT-4 generated code has an average 3.12 times execution time that
of the human-written canonical solutions. In the most extreme cases, the execution
time and total memory usage of GPT-4 generated code are 13.89 and 43.92 times
that of the canonical solutions. The source code of EffiBench is released on https:
//github.com/huangd1999/EffiBench. We also provide the LeaderBoard in
https://huggingface.co/spaces/EffiBench/effibench-leaderboard.

1 Introduction

Large language models (LLMs), such as GPT-4 [42] and Copilot [36], have become increasingly
popular for assisting software developers with various tasks such as program repair [18, 26], auto-
mated testing [29, 14], and code translation [44, 3]. LLMs generate code based on instructions and
offer intelligent recommendations, boosting developers’ productivity. Various benchmarks have been
proposed to evaluate the correctness of code generation. Notable examples include HumanEval [12],
APPS [21], BigCodeBench [62], and DS-1000 [28], which cover basic programming, competition-
level, and data science tasks. These benchmarks have been widely used to assess the code generation
capabilities of LLMs.

∗Equal Contribution.
†Corresponding Author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

11506 https://doi.org/10.52202/079017-0367

https://github.com/huangd1999/EffiBench
https://github.com/huangd1999/EffiBench
https://huggingface.co/spaces/EffiBench/effibench-leaderboard


Task Description

Write a function to merge two sorted arrays into a single sorted array.
Input: Two arrays, array1 and array2, each sorted in non-decreasing order.
Output: A single array that combines the elements of array1 and array2, sorted in
non-decreasing order.
Example: Given array1 = [2, 7, 11, 15], array2 = [5, 8, 15, 17], return [2, 5, 7, 8, 11,
15, 15, 17].

VS Code Copilot v1.156.683

def mergeArrays(array1, array2):
# Manually concatenating the two

arrays↪→
merged_array = []
for element in array1:

merged_array.append(element)
for element in array2:

merged_array.append(element)

n = len(merged_array)
for i in range(n):

for j in range(0, n-i-1):
if merged_array[j] >

merged_array[j+1]:↪→
merged_array[j],

merged_array[j+1] =
merged_array[j+1],
merged_array[j]

↪→
↪→
↪→

return merged_array

GPT-4

def mergeArrays(array1, array2):
# Merging two arrays efficiently
result = []
i, j = 0, 0
while i < len(array1) and j <

len(array2):↪→
if array1[i] < array2[j]:

result.append(array1[i])
i += 1

else:
result.append(array2[j])
j += 1

# Append remaining elements of array1
while i < len(array1):

result.append(array1[i])
i += 1

# Append remaining elements of array2
while j < len(array2):

result.append(array2[j])
j += 1

return result

Figure 1: Example codes with distinct time complexity generated by Copilot and GPT-4, respectively.
Code accessed on January 15, 2024.

Despite advancements in ensuring code correctness, there remains a significant gap in the literature
regarding the efficiency of code produced by LLMs [40, 50]. The importance of efficiency cannot
be understated, as it directly impacts the speed of execution and the utilization of memory, which
is especially important in resource-constrained environments such as mobile devices or embedded
systems [46]. Efficiency of code is crucial for building scalable and sustainable software to meet
the growing demands of the digital world. Furthermore, efficient code plays a pivotal role in green
computing and sustainability efforts. By optimizing algorithms and reducing computational overhead,
we can significantly lower energy consumption and carbon footprint. This is particularly relevant as
the global demand for digital services increases.

The efficiency of two correctly generated code snippets for the same task can vary significantly.
Consider the example in Figure 1, where Copilot and GPT-4 are tasked with merging two sorted
arrays. Copilot generates a function that concatenates the arrays and then applies a basic Bubble
Sort algorithm. While functionally correct, this approach suffers from sub-optimal time complexity
of O((n + m)2) and space complexity of O(n + m), where n and m are the array lengths. In
contrast, GPT-4 generates a function that efficiently merges the arrays by systematically comparing
and appending elements from each array in a single pass. This method achieves a time complexity
of O(n + m), exhibiting a linear relationship with the combined lengths of the arrays. Its space
complexity remains O(n+m). The disparity in efficiency highlighted in Figure 1 underscores the
critical need to benchmark code generation from the perspective of code efficiency.

While being intuitive, using existing code generation benchmarks like HumanEval [12] and MBPP [7]
to assess code efficiency has several limitations. These efforts primarily focus on correctness, often
featuring simple tasks solvable with short code snippets. This simplicity can lead to indistinguishable
efficiency across different LLMs, making it difficult to discern meaningful differences in their
performance. Furthermore, most tasks are not inherently efficiency-critical, making any observed
efficiency discrepancies less significant. Finally, these benchmarks lack comprehensive and diverse

2

11507https://doi.org/10.52202/079017-0367



test cases that can thoroughly evaluate code efficiency under varying and substantial computational
loads. Consequently, they are inadequate for assessing the efficiency of code generation.

This paper introduces EFFIBENCH, a benchmark specifically designed for evaluating the efficiency
of the code that is automatically generated. EFFIBENCH comprises 1,000 efficiency-critical code
generation problems selected from LeetCode. Each coding problem is paired with an executable
manually-written canonical solution which has been awarded the highest rating on LeetCode for its
optimal time and space efficiency. We also develop a test case generator to produce a vast number
of test cases for each problem to allow for an in-depth and comprehensive analysis of the code
efficiency. Moreover, EFFIBENCH integrates a diverse set of efficiency metrics, such as execution
time, maximum memory usage, and total memory usage during execution.

We conduct a comprehensive study to evaluate the efficiency of code generated by 42 LLMs. Our
findings reveal that among both open- and closed-source LLMs, StarCoder2-15B [34] and GPT-4
consistently produced the most efficient code. Nevertheless, even these top performers still lag behind
the efficiency of human-written canonical solutions. For instance, GPT-4 generated code exhibits an
average execution time that is 3.12 times that of the human-written canonical solutions. In the most
extreme cases, the execution time and total memory usage of GPT-4 code are 13.89 and 43.92 times
that of the canonical solutions, respectively. Furthermore, our analysis reveals that a high pass@1
score (indicating the LLM’s ability to generate correct code on the first attempt) does not necessarily
translate to more efficient code. For example, GPT-4-turbo-preview has a higher pass@1 score than
GPT-4, but lower code efficiency.

To conclude, this paper makes the following contributions:

• We introduce EFFIBENCH, the first benchmark specifically designed to assess the efficiency
of code generated by LLMs.

• We conduct an extensive evaluation of 42 LLMs on EFFIBENCH, revealing that even
state-of-the-art LLMs (e.g. GPT-4) exhibit significant inefficiencies compared to optimal
human-written solutions.

• We release an efficiency testing framework3, which enables evaluating the efficiency across
various code generation benchmarks (See Appendix A.9).

2 Related Work

2.1 LLMs for Code

The burgeoning interest in LLMs for code has coincided with the profusion of openly available code
repositories and the pressing need to enhance the productivity of software developers. Initial models
predominantly focused on code generation tasks have included AlphaCode [31], CodeGen [39],
CodeT5+ [52], InCoder [17], StarCoder [30], SantaCoder [5] and DeepSeek Coder [13], all of which
were trained on code. Contrastingly, models such as Codex [12], Astraios [63], and CodeLLaMA [45]
represent a subsequent stride, having been fine-tuned from foundation models [10, 49]. The evolution
continued as LLMs leveraged instruction-like datasets derived from GPT [41, 42] for fine-tuning.
Among these, WizardCoder [35] and Phi-3 [2] are notable examples. Across various coding applica-
tions, these code LLMs have set new standards of excellence, showcasing their prowess in domains
including program repair [18, 26], automated testing [29, 14, 22, 24, 23], code translation [44, 3],
type prediction [37, 54], and code summarization [20, 4].

2.2 Code Generation Benchmarks

Code generation [7, 12, 61, 55, 59] has emerged as a vital domain for evaluating LLMs, where
models generate code snippets based on natural language descriptions, often given in the form
of docstrings. Recent works try to improve HumanEval and MBPP from different perspectives.
For example, HumanEval+ [32] enhances HumanEval with improved test cases, remedying the
issue of mistakenly accepted faulty solutions. Meanwhile, ReCode [51] takes a different approach
by altering function names and docstrings within the HumanEval structure. Expanding the scope

3We also make Github Repo public and then researchers can create issues in Github to evaluate the efficiency.
Or they can directly use the docker and our public Hugging Face Server for efficiency calculation.

3

11508 https://doi.org/10.52202/079017-0367



Table 1: Statistics of EFFIBENCH with different algorithms.

Algorithm Greedy DP Backtracking Divide and Conquer DFS BFS Binary Search Two Pointers Sliding Window Bit Manipulation Sorting Total/Avg.

Number of problems 243 277 48 21 108 86 148 105 70 102 238 1000
Number of Easy problems 32 8 1 4 18 8 23 39 9 26 63 171
Number of Medium problems 170 151 37 8 72 52 75 59 47 58 133 589
Number of Hard problems 41 118 10 9 18 26 50 7 14 18 42 240

Avg. length of problem description 224.8 216.4 162.0 205.1 218.9 239.7 216.4 198.6 188.7 195.0 220.7 212.0
Avg. lines of Canonical Solution 12.6 15.1 19.3 18.2 20.8 22.7 14.4 13.0 14.6 12.8 12.0 14.6

beyond Python, HumanEval-X [60], MultiPLe [11], and MBXP [6] extend the HumanEval and
MBPP benchmarks to incorporate a variety of programming languages. The universe of code
generation benchmarks widens further when we consider the specialized needs of data science.
DS-1000 [28], ARCADE [56], NumpyEval [57], and PandasEval [25] focus on the generation of
code within this context. Beyond mere code creation, there are benchmarks like APIBench [43],
MTPB [38], RepoBench [33], ODEX [53], SWE-Bench [27], GoogleCodeRepo [47], RepoEval [58],
and Cocomic-Data [15], which ratchet up the complexity by evaluating a model’s prowess in utilizing
APIs or completing broader software engineering tasks. Recent studies [46, 40] have indicated that
code generated by LLMs tends to be less efficient in terms of execution time and memory usage
compared to canonical solutions. To bridge this gap, our benchmark EFFIBENCH is specifically
designed to evaluate the efficiency of code generation4.

3 Benchmark Construction

3.1 Efficiency-critical Problem Collection

Coding problem collection Inspired by the common practice [9, 19, 8] of using LeetCode problems
to evaluate human developers’ abilities in writing efficient algorithms, we collect the coding problems
that appear on LeetCode. Specifically, we collect all problems tagged with “LeetCode” on the
HuggingFace platform. We remove duplicate problems with identical problem IDs (each project has
a unique ID in LeetCode). We also remove problems whose interview frequencies are lower than
40% at LeetCode. In the end, we obtain 2,605 problems as initial problem candidates.

Efficiency-critical problem filtering This step selects efficiency-critical problems from the initial
2,605 problem candidates. The problems collected from HuggingFace are not tagged with algorithm
topics. Therefore, we map each problem in LeetCode and label the problem with the “Topic” tag
provided by LeetCode. We then choose typical algorithms (Table 1) that are introduced in common
algorithm textbooks [48], which are also the most widely covered in Leetcode. This yields 1,146
problems altogether.

3.2 Canonical Solution Construction

For each coding problem, EFFIBENCH provides an executable canonical solution to serve as a
baseline to calculate the normalised efficiency. Drawing inspiration from DS-1000 [28], which
collects canonical solutions based on the most starred responses on Stack Overflow, we begin with
collecting the top-starred solutions for each problem from the LeetCode Discussion Forum. For each
collected solution, we need to guarantee that they are executable in a non-Leetcode environment.
To this end, we manually fix the solutions that need to import extra classes such as TreeNode and
ListNode as well as extra packages such as List and Bisect. We also remove the solutions that require
specialized packages implemented only by LeetCode. In the end, we managed to map executable
canonical solutions for 1,000 coding problems, which then be regarded as our final efficiency dataset.

3.3 Test Case Generation

It is essential to have adequate and diverse test cases to evaluate a program’s efficiency across
various scenarios. Since directly generating test cases with LLMs (e.g., GPT-3.5) requires large
token overhead and has a low accuracy (See Appendix A.26), we develop a test case generator for
each coding problem as an integral part of our benchmark construction. In particular, we require
GPT-3.5-turbo to produce the test case generator, which is prompted to generate massive test cases
with different input sizes, data distribution, and edge cases. Users can decide how many tests they

4A parallel work, Mercury [16], is also used to measure the efficiency of LLM-generated code.

4

11509https://doi.org/10.52202/079017-0367



would like to generate for each problem. We also provide 100 tests within EFFIBENCH for users to
use directly, which also serve as the tests in our evaluation in this paper (Results with 10 tests and
1,000 tests are shown in Appendix Table 24).

3.4 Efficiency Metrics

Efficiency metrics are crucial for benchmarking code generation models automatically. Following
LeetCode, we design automatic efficiency metrics from two aspects: execution time and memory
usage. Specifically, we use the following metrics: Execution Time (ET), Normalized Execution Time
(NET), Max Memory Usage (MU), Normalized Max Memory Usage (NMU), Total Memory Usage
(TMU), and Normalized Total Memory Usage (NTMU) to measure the overall capability of a code
generation model in generating efficient code.

Execution Time (ET) Execution time (ET) measures the average time taken for code execution.
Mathematically, ET is defined as:

ET =
1

N

N∑
Tcode

where ET is the execution time metric, Tcode is the execution time of the code (with all the test cases),
and N is the number of codes generated by code generation models used for evaluation.

Normalized Execution Time (NET) Normalized Execution Time (NET)5 measures the execution
time required by generated code relative to that of a canonical solution. We define NET as:

NET =
1

N

N∑ Tcode

Tcanonical

where Tcode is the execution time of the generated code and Tcanonical is the execution time of the
canonical solution. A NET value greater than 1 indicates that the generated code is slower than the
canonical solution, while a value less than 1 suggests the generated code is faster.

Max Memory Usage (MU) Max Memory Usage (MU) measures the average max memory con-
sumption during code execution. Mathematically, MU is defined as:

MU =
1

N

N∑
Mcode

where MU is the memory usage metric, Mcode is the max memory consumption of the generated
code among all the test cases, and N is the number of code instances generated by code generation
models used for evaluation. This metric is critical to assess the resource efficiency of generated code,
particularly in environments with limited maximum memory capacity.

Normalized Max Memory Usage (NMU) Normalized Max Memory Usage (NMU) quantifies
how the max memory efficiency of the generated code compares to the canonical solution. We define
NMU as:

NMU =
1

N

N∑ Mcode

Mcanonical

where NMU is the normalized max memory usage metric, Mcode is the max memory usage of the
generated code, and Mcanonical is the max memory usage of the canonical solution. An NMU value
less than 1 indicates that the generated code is more memory-efficient than the canonical solution,
whereas a value greater than 1 suggests it is less efficient in terms of memory usage. This metric
provides a relative measure of the memory optimization in the generated code in comparison to a
standard baseline.

5To demonstrate code-level efficiency, we evaluate the normalized efficiency metrics in task level, rather than
total LLM-generated code / total canonical solutions. For the second calculation strategy, we also provide the
scripts in our Github Repo.

5

11510 https://doi.org/10.52202/079017-0367



Total Memory Usage (TMU) Total Memory Usage (TMU) assesses the efficiency of memory
usage throughout the execution of code, taking into account both the magnitude and duration of
memory utilization. To calculate TMU, first, monitor and record the memory usage at discrete time
intervals during the execution, resulting in a memory usage profile M(t), where t represents time.
Then, compute the area under the curve of M(t) over the total execution time, Ttotal, using numerical
integration methods such as the trapezoidal rule:

TMU =
1

N

N∑∫ Ttotal

0

M(t) dt

A lower TMU value indicates higher memory efficiency, reflecting an optimized balance between the
amount of memory used and the duration of its usage.

Normalized Total Memory Usage (NTMU) The Normalized Total Memory Usage (NTMU) offers
a comparison of the dynamic memory efficiency between the generated code and the canonical
solution. To determine NTMU, calculate the TMU for both the generated code and the canonical
solution. Normalize the TMU of the generated code by dividing it by the TMU of the canonical
solution:

NTMU =
1

N

N∑ TMUcode

TMUcanonical

where TMUcode is the TMU of the generated code and TMUcanonical is the TMU of the canonical
solution. An NTMU value less than 1 signifies that the generated code manages dynamic memory
more efficiently compared to the canonical solution, while a value greater than 1 indicates less
efficient management of dynamic memory. This metric provides insight into the relative use of
dynamic memory of generated code compared to an established benchmark.

4 Benchmark Statistics

We provide the detailed statistics of the dataset in Table 1. The coding problems in EFFIBENCH
have three difficulty levels (171 easy-level, 589 medium-level, and 240 hard-level problems), where
the difficulty of each problem is defined by LeetCode [1]. The table lists the number of problems
for each algorithm. Specifically, EFFIBENCH contains 243 problems for the greedy algorithm, 277
for dynamic programming (DP), 48 for backtracking, 21 for divide and conquer, 108 for depth-first
search (DFS), 86 for breadth-first search (BFS), 148 for binary search, 105 for two pointers, 70 for
sliding window, 102 for bit manipulation and 238 for sorting algorithm. The sum of problems in
different algorithms can be larger than the number of total problems because one problem in our
dataset may belong to two algorithm classes. On average, a problem description in EFFIBENCH
contains 212.0 words. The canonical solutions, which represent the baseline code against which the
generated code is compared, have 14.6 lines on average.

We provide a comparison of EFFIBENCH and other code generation datasets in Table 2. Specifically,
we compare EFFIBENCH with the five most widely used code-related datasets (i.e., HumanEval,
MBPP, APPS, DSP, and DS-1000). Different from the previous dataset that focuses on analyzing
whether the code passes all test cases, EFFIBENCH also analyzes the efficiency during the code
execution procedure. Although EFFIBENCH is primarily designed to assess the efficiency of generated
code, it can also serve to evaluate code correctness, akin to other code generation datasets.

5 Evaluation

By default, the experiments are conducted in an edge server with an Intel Xeon Platinum 8336C CPU
with 128 cores, 8 * NVIDIA A100-SXM GPUs, and a total memory capacity of 2.0TiB. We set the
timeout for each code execution as 10 (s). The main goal of our work is to provide a benchmark that
evaluates the efficiency of LLM-generated code within an identical environment, and we do expect
that with different environments, the absolute values of the efficiency metrics would be different.
We report results with different environments in Table 26, where our evaluation results demonstrate
that despite the differences in absolute values, the ranking of LLMs is rather stable (p-value>> 0.05
based on Kruskal-Wallis H tests). Besides, to provide a more reliable evaluation framework, we
have also provided a server in the Hugging Face Space, where users can directly upload the code

6

11511https://doi.org/10.52202/079017-0367



Table 2: Comparison of EFFIBENCH to other code generation benchmarks. In addition to test cases,
EFFIBENCH provides efficiency metrics and analysis for code generation models.

Dataset Number of Problems Evaluation Support Avg. Test Cases Avg. Lines of Canonical Solution Data Source Assessment

HumanEval 164 Test Cases 7.7 6.3 Hand-Written Correctness
MBPP 974 Test Cases 3.0 6.7 Crowd-sourced Correctness
APPS 10000 Test Cases 13.2 18.0 Competitions Correctness
DSP 1119 Test Cases 2.1 4.5 Notebooks Correctness
DS-1000 1000 Test Cases 1.6 3.6 StackOverflow Correctness

EFFIBENCH (Ours) 1000 Test Cases + Efficiency Self-defined 14.6 LeetCode Efficiency and
metrics and analysis 100 by default Correctness

generation JSON file and then the server will execute the code locally and report the efficiency results
with the same environment in the future.

Models: We evaluate both open- and closed-source LLMs in code generation. For open-source mod-
els, we evaluate EFFIBENCH with CodeLlama-hf family (i.e., 7B, 13b, 34b, and 70B), CodeLlama-
Instruct-hf family (i.e., 7B, 13b, 34b, and 70B), deepseek-coder-instruct (i.e., 1.3B and 6.7B) and
base models (i.e., 6.7B and 33B), Phind-CodeLlama-34B (i.e., v1 and v2), starcoder, starcoderbase,
and starcoder2 (i.e., 3B, 7B, and 15B), WizardCoder (i.e., 13B and 15B), XwinCoder (i.e., 13B and
34B), Yi models (34B, 34B-Chat, and 200K version), and five widely proposed SOTA models, i.e.,
Magicoder-6.7B, Mistral-7B, octocoder, Artigenz-6.7B, CodeFuse-33B, and codegemma-7b6 since
these open-source models have obtained SOTA pass@1 in the HumanEval and MBPP datasets. For
closed-source models, we evaluated EFFIBENCH with GPT-3.5, GPT-4 [42], and claude-3, since we
observe that these models obtain high pass@1 in code generation datasets (e.g., HumanEval [12],
MBPP [7]). For GPT-3.5 models, we experiment with GPT-3.5-turbo-0301, GPT-3.5-turbo-0613, and
GPT-3.5-turbo-1106 which represent three different versions of the GPT-3.5. For GPT-4 models, we
experiment with GPT-4-turbo and GPT-4 (GPT-4-0613). For the claude-3 model, we evaluate the
sonnet and haiku versions. For each LLM, we first collect the code that is correctly generated for
each coding problem (i.e., they can pass all test cases provided by the dataset), then execute these
correct code and calculate the efficiency metrics (See Section 3.4).

Prompt: Our prompt follows the MBPP code generation prompt, where the prompt first provides
the task description and then provides a few examples with input and output pairs. Each example has
an explanation of the rationality of the output. The prompt also has the assertion part, which intends
to constrain the function signature with the input and output format.

5.1 End2End Results

Open-source models The evaluation results of open-source models are illustrated in Table 3.
Our evaluation results demonstrate that all open-source models’ generated code requires more
overhead than the human-written canonical solutions. For example, StarCoder2-15B, the most
efficient open-source model in terms of NET, NMU, and NTMU, on average still needs 2.59x
execution time, 1.71x max memory usage (i.e., memory peak), and 4.83x total memory usage during
the code execution compared with the canonical solutions. We suspect that this is because human-
written canonical solutions, while optimal, are in the minority within the training data of these LLMs.
Consequently, the LLMs tend to learn non-optimal solutions, which are more frequently distributed
in the training data. In addition, our results demonstrate that open-source LLMs with lower pass@1
tend to have better efficiency. The key reason is that these LLMs can only generate correct code on
relatively simple problems, which makes it easier to achieve efficiency compared to more complex
and challenging problems (see Table 27-29).

Closed-source models The evaluation results of closed-source models are demonstrated in the
bottom part of Table 3. Our results illustrate that similar to open-source models, all closed-source
models generated code still need more overhead than the canonical solution on average. Despite
GPT-4 generated code obtaining the most efficient results for closed-source models, its generated
code still needs on average 3.12x execution time and 6.36x total memory usage during the code
execution compared with the canonical solution. In the worst case, the execution time is almost
14x that of the canonical solution. In addition, although consistent training can improve the

6The model names are extracted from Hugging Face model card.

7

11512 https://doi.org/10.52202/079017-0367



Table 3: Code efficiency of widely-studied LLMs reported by EFFIBENCH. In addition to the mean
values of the basic metrics introduced in Section 3.4, we also report the maximum normalised
execution time/memory among all the generated correct code (e.g., Column “max NET”) and the
ratio of problems with normalised metric value larger than 5 (e.g., Column “NET>5”) in the correct
code. The most efficient result for each metric is highlighted in grey.

Model max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s) Pass@1

Open-source models
CodeLlama-7b-hf 3.25 2.95 0.0 0.31 2.05 1.98 0.0 48.59 6.80 6.03 100.0 9.99 1.1
CodeLlama-13b-hf 3.21 2.71 0.0 0.40 2.05 1.85 0.0 104.42 6.53 5.32 81.8 43.83 1.1
CodeLlama-34b-hf 4.46 2.98 0.0 0.34 2.06 1.92 0.0 55.38 9.17 6.01 92.9 13.41 8.4
CodeLlama-70b-hf 13.92 3.19 4.4 0.42 2.06 1.90 0.0 62.41 32.04 6.47 87.8 22.27 9.0

CodeLlama-7b-Instruct-hf 17.26 3.44 4.2 0.46 3.59 1.94 0.0 77.87 56.61 7.65 87.5 32.14 4.8
CodeLlama-13b-Instruct-hf 4.46 2.93 0.0 0.35 2.48 1.92 0.0 65.96 10.22 5.94 91.6 18.74 8.4
CodeLlama-34b-Instruct-hf 13.66 3.04 0.9 0.37 2.56 1.93 0.0 61.31 31.46 6.16 87.4 18.53 11.1
CodeLlama-70b-Instruct-hf 14.60 3.07 1.4 0.38 2.06 1.93 0.0 54.04 33.69 6.27 90.3 18.27 7.2

deepseek-coder-1.3b-instruct 3.63 2.82 0.0 0.33 2.03 1.91 0.0 57.73 8.13 5.69 88.9 13.11 4.5
deepseek-coder-6.7b-instruct 5.59 2.89 1.4 0.38 2.57 1.90 0.0 73.73 13.81 5.86 88.4 26.84 6.9
deepseek-coder-6.7b-base 12.25 2.98 1.2 0.37 2.14 1.91 0.0 62.78 23.39 6.01 89.7 19.55 16.5
deepseek-coder-33b-base 19.54 3.14 1.3 0.38 37.39 2.08 0.4 60.30 604.13 8.76 91.9 22.05 23.5

OpenCodeInterpreter-DS-1.3B 3.93 2.89 0.0 0.35 2.05 1.91 0.0 68.25 8.44 5.82 87.0 21.88 5.5
OpenCodeInterpreter-DS-6.7B 6.03 2.95 1.5 0.37 2.37 1.91 0.0 63.41 14.14 5.96 87.9 19.17 13.2
OpenCodeInterpreter-DS-33B 26.06 3.15 1.7 0.39 2.43 1.91 0.0 59.37 66.25 6.48 88.2 18.34 23.7

Phind-CodeLlama-34B-v1 3.57 2.91 0.0 0.36 2.06 1.90 0.0 67.63 7.76 5.83 88.0 22.61 11.7
Phind-CodeLlama-34B-v2 53.08 3.28 1.0 0.42 2.60 1.89 0.0 70.53 139.88 6.80 86.4 26.24 19.1

starcoder 3.34 2.84 0.0 0.33 2.06 1.91 0.0 65.23 6.88 5.69 85.3 17.67 3.4
starcoder2-3b 3.13 2.90 0.0 0.31 2.04 1.94 0.0 51.58 6.61 5.87 92.3 10.55 1.3
starcoder2-7b 5.19 3.02 6.7 0.32 2.06 1.98 0.0 48.55 12.69 6.29 100.0 10.63 1.5
starcoder2-15b 3.20 2.59 0.0 0.43 2.01 1.71 0.0 122.52 6.59 4.83 57.1 47.39 0.7
starcoderbase 3.34 2.80 0.0 0.35 2.05 1.87 0.0 74.94 7.09 5.56 80.0 21.87 2.0

WizardCoder-13B 16.48 3.13 2.9 0.46 3.57 1.90 0.0 80.77 53.63 6.76 76.5 30.74 3.4
WizardCoder-15B 4.07 2.84 0.0 0.35 2.06 1.91 0.0 72.72 9.51 5.73 83.3 20.63 3.0

XwinCoder-13B 4.16 2.94 0.0 0.33 2.05 1.95 0.0 57.70 8.95 5.99 92.8 14.40 8.4
XwinCoder-34B 6.32 2.98 0.5 0.34 2.42 1.92 0.0 57.92 17.70 6.03 87.5 14.31 18.4

Yi-34B-200K 3.17 2.91 0.0 0.31 2.06 1.96 0.0 49.88 6.78 5.94 91.7 10.23 3.6
Yi-34B-Chat 3.15 2.77 0.0 0.34 2.05 1.89 0.0 68.99 6.69 5.52 89.3 19.09 2.8
Yi-34B 3.38 2.81 0.0 0.37 2.05 1.89 0.0 83.42 7.13 5.62 88.5 26.71 2.6

Artigenz-Coder-DS-6.7B 27.78 3.22 1.6 0.39 2.48 1.91 0.0 62.13 70.28 6.65 90.9 19.72 36.4
CodeFuse-DeepSeek-33B 6.10 3.07 0.3 0.36 2.06 1.91 0.0 58.30 15.19 6.21 87.6 16.45 29.2
codegemma-7b 8.09 3.02 0.8 0.34 2.06 1.93 0.0 55.68 20.96 6.15 92.2 13.78 12.8
Magicoder-S-DS-6.7B 6.73 2.99 0.6 0.35 2.61 1.91 0.0 60.12 14.24 6.05 89.0 16.84 36.3
Mistral-7B-codealpaca-lora 3.82 2.85 0.0 0.31 2.36 1.95 0.0 51.51 9.20 5.81 88.5 10.50 2.6
octocoder 2.99 2.67 0.0 0.32 2.02 1.84 0.0 58.98 6.20 5.07 75.0 11.52 0.4

Closed-source models
gpt-3.5-turbo-0301 27.70 3.18 1.4 0.39 2.05 1.91 0.0 60.53 70.62 6.50 89.1 19.06 42.3
gpt-3.5-turbo-0613 46.70 3.22 0.9 0.39 2.64 1.92 0.0 59.82 161.12 6.71 89.9 19.11 46.4
gpt-3.5-turbo-1106 68.71 3.40 1.6 0.40 9.12 1.94 0.2 59.34 182.63 7.24 90.9 19.39 49.3
gpt-4 13.89 3.12 1.0 0.37 2.25 1.92 0.0 58.85 43.92 6.36 91.1 17.69 50.8
gpt-4-turbo-preview 27.00 3.19 1.2 0.38 9.13 1.93 0.2 57.06 68.48 6.57 91.1 16.92 65.4
claude-3-haiku 28.75 3.28 0.7 0.39 2.05 1.91 0.0 59.15 72.87 6.71 90.0 17.99 42.9
claude-3-sonnet 17.43 3.22 0.9 0.40 2.06 1.91 0.0 60.22 50.78 6.57 90.5 23.29 43.2

Table 4: Efficiency results of closed-source LLMs with 210 problems correctly addressed by all
models in the Table. Although GPT-3.5-turbo models have the same ET (i.e., 0.37s), the NET is not
the same since the task level NET does not have the same distribution (e.g., the max NET of the 0301
model is 16.24x while it only requires 4.05x in 0613 model).

Model max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s)

gpt-3.5-turbo-0301 16.24 3.10 0.5 0.37 2.05 1.90 0.0 66.91 46.95 6.32 88.6 20.89
gpt-3.5-turbo-0613 4.05 3.05 0.0 0.37 2.64 1.90 0.0 66.99 10.21 6.18 89.5 20.92
gpt-3.5-turbo-1106 6.12 3.07 0.5 0.37 2.06 1.90 0.0 66.94 15.53 6.22 89.0 20.78
gpt-4 4.04 3.06 0.0 0.37 2.06 1.90 0.0 66.91 9.22 6.17 89.0 21.17
gpt-4-turbo-preview 4.09 3.10 0.0 0.37 2.05 1.90 0.0 66.92 8.92 6.28 89.0 20.78
claude-3-haiku 11.06 3.27 0.5 0.39 2.05 1.90 0.0 66.90 29.68 6.68 89.0 22.52
claude-3-sonnet 17.43 3.20 0.5 0.38 2.06 1.90 0.0 66.93 50.78 6.55 89.0 21.52

correctness of LLM-generated code, the efficiency of LLM-generated code may not improve.
For example, the pass@1 for GPT-3.5-turbo increases from 42.3% to 49.3% when the model version
is updated from 0301 to the 1106 version, the execution time of the code generated by GPT-3.5-turbo
increases from 3.18x to 3.40x.

Consistency of different metrics: When we compare the benchmarking results from different
efficiency metrics, we can observe that the rankings of different LLMs from the basic metrics
(highlighted in bold in the head row) maintain a general consistency. For example, in closed-source
models, GPT-4 obtains the most efficient results in the majority of metrics. Yet, for other metrics
where GPT-4 does not get the highest efficiency, the code generated by GPT-4 is also close to the
most efficient LLM-generated ones. This consistency across metrics reinforces their credibility in
assessing a model’s capability to generate efficient code.

Correctness: Although EFFIBENCH is designed to focus on benchmarking efficiency of LLM-
generated code, it can also be adapted to benchmark code correctness, as shown by pass@1 in the
last column of Table 3. For open-sourced LLMs, our results demonstrate that they have low pass@1:

8

11513https://doi.org/10.52202/079017-0367



Table 5: Efficiency results for different algorithm subsets with closed-source LLMs.

Model max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s) Pass@1

GPT-3.5-turbo-0301

greedy 3.63 3.02 0.0 0.35 2.03 1.92 0.0 59.42 7.51 6.14 90.7 16.75 39.9
dynamic_programming 27.70 3.64 4.5 0.46 2.05 1.93 0.0 55.25 70.62 7.73 89.3 21.44 40.4
backtracking 14.99 3.44 4.5 0.56 2.03 1.82 0.0 83.45 34.36 6.90 72.7 38.40 45.8
divide_and_conquer 3.53 3.00 0.0 0.34 2.02 1.89 0.0 53.42 7.00 5.96 87.5 11.41 38.1
dfs 3.47 2.91 0.0 0.35 2.05 1.81 0.0 59.62 6.82 5.68 85.2 13.60 25.0
bfs 6.35 3.17 4.2 0.41 2.05 1.90 0.0 55.10 13.56 6.43 91.7 15.99 27.9
binary_search 3.61 2.92 0.0 0.38 2.05 1.87 0.0 79.97 7.39 5.83 85.7 27.09 42.6
two_pointers 3.61 3.04 0.0 0.36 2.04 1.94 0.0 70.22 7.37 6.24 94.2 25.77 49.5
sliding_window 3.87 3.04 0.0 0.36 2.05 1.94 0.0 67.21 8.22 6.20 91.4 23.55 50.0
bit_manipulation 3.59 3.03 0.0 0.35 2.02 1.94 0.0 62.42 7.61 6.15 89.6 19.40 47.1
sorting 3.76 2.99 0.0 0.36 2.05 1.88 0.0 67.09 8.05 6.01 87.9 21.95 41.6

GPT-4

greedy 5.83 3.08 0.8 0.35 2.04 1.93 0.0 57.15 15.28 6.32 92.7 15.74 50.6
dynamic_programming 4.53 3.11 0.0 0.36 2.25 1.94 0.0 53.97 10.16 6.31 91.3 15.44 49.8
backtracking 4.53 3.01 0.0 0.44 2.03 1.84 0.0 81.67 10.16 5.89 77.3 32.23 45.8
divide_and_conquer 3.68 3.04 0.0 0.34 2.02 1.90 0.0 53.16 7.94 6.15 87.5 11.72 38.1
dfs 3.82 3.05 0.0 0.35 2.06 1.88 0.0 57.57 7.72 6.09 93.9 13.32 30.6
bfs 11.22 3.38 5.6 0.45 2.06 1.87 0.0 55.58 25.19 6.85 91.7 19.23 41.9
binary_search 3.69 2.96 0.0 0.38 2.04 1.88 0.0 75.09 7.78 5.92 89.3 25.24 50.7
two_pointers 3.94 3.09 0.0 0.36 2.04 1.94 0.0 66.90 8.90 6.36 95.2 23.65 59.0
sliding_window 8.46 3.23 2.5 0.39 2.06 1.92 0.0 66.36 17.85 6.60 95.0 25.41 57.1
bit_manipulation 4.53 3.12 0.0 0.36 2.03 1.95 0.0 60.22 10.16 6.39 92.6 18.60 52.9
sorting 13.89 3.11 1.5 0.38 2.25 1.89 0.0 63.62 43.92 6.40 90.0 21.09 54.6

Claude-3-sonnet

greedy 3.75 3.13 0.0 0.36 2.03 1.93 0.0 58.47 7.90 6.39 90.3 16.68 42.4
dynamic_programming 16.34 3.42 1.8 0.47 2.04 1.94 0.0 54.95 37.83 6.96 92.0 35.81 40.8
backtracking 17.43 4.92 13.3 0.75 2.04 1.89 0.0 89.79 50.78 11.28 86.7 53.91 31.2
divide_and_conquer 3.56 3.03 0.0 0.36 2.02 1.88 0.0 53.44 7.18 6.01 75.0 12.62 57.1
dfs 3.61 3.03 0.0 0.36 2.05 1.81 0.0 59.20 7.53 5.94 86.2 13.98 26.9
bfs 6.24 3.08 3.4 0.42 2.05 1.84 0.0 59.57 13.17 6.06 86.2 16.36 33.7
binary_search 3.61 2.99 0.0 0.40 2.04 1.87 0.0 80.89 7.60 5.98 83.6 28.93 41.2
two_pointers 3.61 3.18 0.0 0.38 2.05 1.94 0.0 70.62 7.53 6.54 94.1 27.10 48.6
sliding_window 3.69 3.13 0.0 0.36 2.06 1.95 0.0 64.09 7.77 6.41 95.2 22.12 60.0
bit_manipulation 17.43 3.51 2.4 0.40 2.02 1.95 0.0 63.19 50.78 7.56 92.9 22.32 41.2
sorting 4.98 3.10 0.0 0.37 2.04 1.89 0.0 64.34 11.81 6.27 89.2 20.90 50.4

many of their pass@1 are lower than 10% (i.e., 23 out of 35 models), which indicates that open-source
models still need to put a lot of effort into improving code generation correctness. For closed-sourced
LLMs, GPT-4-turbo-preview has the highest pass@1 of 65.4%.

5.2 Results with Identical Coding Problems

In Table 3, we directly calculate the efficiency of the correct code for each model. However, different
LLMs may have different correctness for the same coding problem. As a result, the results for
different LLMs in Table 3 are based on different coding problems. In this section, we mitigate such
threats by by analyzing the efficiency results with identical coding problems. In other words, we
focus on analyzing problems correctly addressed by all LLMs. Since open-source LLMs do not have
overlap for the tasks that are correctly generated, we only report results on closed-source LLMs only.
The evaluation results are shown in Table 4, which contains 210 problems that have been correctly
addressed by all closed-source LLMs. The evaluation results demonstrate that the results of each
metric are slightly different from those shown in Table 3. Overall, GPT models outperform Claude
models in code efficiency, with GPT-4 achieving the highest efficiency as measured by most
efficiency metrics.

5.3 Results for Different Algorithms

As shown in Table 1, EFFIBENCH is constructed with 11 different algorithms7. In this section,
we explore whether the LLMs have different code efficiency across different algorithm subsets.
Table 7 reports the results of three closed-source LLMs for different algorithm subsets. Our results
demonstrate that LLMs have different code efficiency for different algorithm subsets. For example,
GPT-3.5-turbo-0301 is less efficient for dynamic programming (DP), which requires 7.73x total
memory usage during the code execution procedure. In contrast, GPT-3.5-turbo-0301 demonstrated
higher efficiency in the DFS and binary search subset, which only requires 5.68x and 5.83x NTMU
compared with the canonical solution. We indicate that the observed differences come from the
availability of training data. Specifically, models tend to perform better on tasks for which their
training corpus contains abundant and varied examples with efficient solutions.

7Note that the task is classified as a specific algorithm but the code generated by LLMs may consider
addressing the task with other algorithms.

9

11514 https://doi.org/10.52202/079017-0367



Table 6: Evaluation results of Top-10 inefficient code generated by GPT-3.5-turbo-0301. We manually
analyze the algorithm of each code.

Metrics Greedy DP Backtracking Divide and Conquer DFS BFS Binary Search Two Pointers Sliding Window Bit Manipulation Sorting

NET 0 1 2 0 0 1 0 1 2 3 0
NMU 1 1 1 0 0 1 0 1 1 2 2
NTMU 3 4 1 0 0 1 0 0 0 1 0

5.4 Worst Case Analysis

In this section, we conduct a study to analyze the inefficient code generated by GPT-3.5-turbo-0301
(similar to the analysis in Section 5.3). Specifically, we collect the 10 most inefficient pieces of code
for NET, NMU, and NTMU metrics and then manually analyze the implementation algorithm used
by each code. The evaluation results are demonstrated in Table 6. The evaluation results demonstrate
that the majority of the inefficient pieces of code are associated with DP and backtracking algorithms,
with these categories showing the highest occurrences across the metrics. In particular, DP and
backtracking algorithms show the highest counts in NTMU, indicating that these algorithms tend
to generate code with higher memory consumption inefficiency, which highlights the areas where
GPT-3.5-turbo-0301 struggles the most, suggesting a need for further optimization in generating code
for complex algorithmic tasks.

To further understand the reasons for inefficiency in the LLM-generated code, we conduct a case
comparison of GPT-3.5-turbo-0301 generated code and canonical solution in DP subset to analyze
why LLM-generated code is inefficient. As shown in Figure 2, we can observe that the key reason
for GPT-3.5-turbo-0301 being less efficient than the canonical_solution is due to the code generated
by GPT-3.5-turbo-0301 first generating a 2-dimensional matrix which requires large overhead for
memory usage when the parameters n and k are very large. However, the canonical_solution
generates two lists, which significantly reduces the memory usage for the code. GPT-3.5-Turbo-0301
implements a straightforward dynamic programming approach with a complete matrix to keep track
of results for every possible pair of n and k, while the canonical solution optimizes by maintaining a
rolling sum, which helps to reduce the space complexity from O(n× k) to O(k), leading to a more
memory-efficient implementation. This optimization in the canonical solution results in a significant
performance improvement. Specifically, GPT-3.5-turbo-0301 generated code has 70.62x memory
usage during the code execution compared with canonical_solution.

6 Conclusion and Future work

In this paper, we introduce EFFIBENCH, a benchmark designed to evaluate the efficiency of code
generated by various code generation models. EFFIBENCH encompasses 1,000 problems and consists
of 11 distinct algorithmic subsets. Unlike previous benchmarks that primarily emphasize the correct-
ness of code generation, EFFIBENCH extends the evaluation criteria to include both execution time
analysis and memory usage analysis. We also provide the evaluation server in Hugging Face to allow
researchers to evaluate their methods with the same hardware and software. By incorporating these
metrics and the Hugging Face server, EFFIBENCH aims to inspire the research community’s focus
towards not only the correctness but also the efficiency and sustainability of code generated by code
generation models. In the future, we will consider extending EFFIBENCH with other programming
languages (e.g., C++, Java, JS, and Go).

7 ACKNOWLEDGMENT

The work is supported in part by National Key R&D Program of China (2022ZD0160201), HK RGC
RIF (R7030-22), HK ITF (GHP/169/20SZ), a Huawei Flagship Research Grant in 2023, HK RGC
GRF (Ref: 17208223 & 17204424), and the HKU-CAS Joint Laboratory for Intelligent System
Software.

10

11515https://doi.org/10.52202/079017-0367



References
[1] Leetcode. https://leetcode.com/. Accessed: January 31, 2024.

[2] Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat S. Behl, Alon Benhaim, Misha
Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Caio César Teodoro Mendes, Weizhu
Chen, Vishrav Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon,
Ronen Eldan, Dan Iter, Amit Garg, Abhishek Goswami, Suriya Gunasekar, Emman Haider,
Junheng Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann,
Nikos Karampatziakis, Dongwoo Kim, Mahoud Khademi, Lev Kurilenko, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Chen Liang, Weishung Liu, Eric Lin, Zeqi Lin, Piyush Madan, Arindam Mitra,
Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas
Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha Roy, Olatunji
Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang,
Hiteshi Sharma, Xia Song, Masahiro Tanaka, Xin Wang, Rachel Ward, Guanhua Wang, Philipp
Witte, Michael Wyatt, Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu,
Chengruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang,
Yunan Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable language model
locally on your phone. CoRR, abs/2404.14219, 2024. doi: 10.48550/ARXIV.2404.14219. URL
https://doi.org/10.48550/arXiv.2404.14219.

[3] Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat Chakraborty, and Kai-Wei Chang.
AVATAR: A parallel corpus for java-python program translation. In Anna Rogers, Jordan L.
Boyd-Graber, and Naoaki Okazaki, editors, Findings of the Association for Computational
Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, pages 2268–2281. Association
for Computational Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-ACL.143. URL
https://doi.org/10.18653/v1/2023.findings-acl.143.

[4] Toufique Ahmed and Premkumar T. Devanbu. Few-shot training llms for project-specific
code-summarization. In 37th IEEE/ACM International Conference on Automated Software En-
gineering, ASE 2022, Rochester, MI, USA, October 10-14, 2022, pages 177:1–177:5. ACM, 2022.
doi: 10.1145/3551349.3559555. URL https://doi.org/10.1145/3551349.3559555.

[5] Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Car-
los Muñoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Ku-
mar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy-Poirier, Hailey Schoelkopf,
Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni,
Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo,
Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Dan-
ish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel
Fried, Arjun Guha, Harm de Vries, and Leandro von Werra. Santacoder: don’t reach
for the stars! CoRR, abs/2301.03988, 2023. doi: 10.48550/ARXIV.2301.03988. URL
https://doi.org/10.48550/arXiv.2301.03988.

[6] Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming
Tan, Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla,
Hantian Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert Gi-
aquinto, Haifeng Qian, Murali Krishna Ramanathan, and Ramesh Nallapati. Multi-lingual
evaluation of code generation models. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/pdf?id=Bo7eeXm6An8.

[7] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program
synthesis with large language models. ArXiv, abs/2108.07732, 2021. URL https://api.
semanticscholar.org/CorpusID:237142385.

[8] Mahnaz Behroozi, Chris Parnin, and Titus Barik. Hiring is broken: What do developers say
about technical interviews? In 2019 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pages 1–9. IEEE, 2019.

11

11516 https://doi.org/10.52202/079017-0367

https://leetcode.com/
https://doi.org/10.48550/arXiv.2404.14219
https://doi.org/10.18653/v1/2023.findings-acl.143
https://doi.org/10.1145/3551349.3559555
https://doi.org/10.48550/arXiv.2301.03988
https://openreview.net/pdf?id=Bo7eeXm6An8
https://api.semanticscholar.org/CorpusID:237142385
https://api.semanticscholar.org/CorpusID:237142385


[9] Brian Alexander Bell. Understanding the Preparation Phase of Technical Interviews. PhD
thesis, Virginia Tech, 2023.

[10] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learn-
ers. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[11] Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q. Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. Multipl-e: A scalable and polyglot approach to
benchmarking neural code generation. IEEE Trans. Software Eng., 49(7):3675–3691, 2023. doi:
10.1109/TSE.2023.3267446. URL https://doi.org/10.1109/TSE.2023.3267446.

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[13] DeepSeekAI. Deepseek coder: Let the code write itself, 2023. URL https://deepseekcoder.
github.io/.

[14] Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang,
and Lingming Zhang. Large language models are edge-case fuzzers: Testing deep learning
libraries via fuzzgpt. CoRR, abs/2304.02014, 2023. doi: 10.48550/ARXIV.2304.02014. URL
https://doi.org/10.48550/arXiv.2304.02014.

[15] Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Murali Krishna Ramanathan, Ramesh
Nallapati, Parminder Bhatia, Dan Roth, and Bing Xiang. Cocomic: Code completion by jointly
modeling in-file and cross-file context. CoRR, abs/2212.10007, 2022. doi: 10.48550/ARXIV.
2212.10007. URL https://doi.org/10.48550/arXiv.2212.10007.

[16] Mingzhe Du, Anh Tuan Luu, Bin Ji, Qian Liu, and See-Kiong Ng. Mercury: A code efficiency
benchmark for code large language models, 2024. URL https://arxiv.org/abs/2402.
07844.

[17] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Scott Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling
and synthesis. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.
net/pdf?id=hQwb-lbM6EL.

[18] Md. Mahim Anjum Haque, Wasi Uddin Ahmad, Ismini Lourentzou, and Chris Brown. Fixeval:
Execution-based evaluation of program fixes for competitive programming problems. CoRR,
abs/2206.07796, 2022. doi: 10.48550/ARXIV.2206.07796. URL https://doi.org/10.
48550/arXiv.2206.07796.

[19] Jocelyn Harper. Interview insight: How to get the job. In A Software Engineer’s Guide to
Seniority: A Guide to Technical Leadership, pages 19–28. Springer, 2022.

[20] Masum Hasan, Tanveer Muttaqueen, Abdullah Al Ishtiaq, Kazi Sajeed Mehrab, Md. Mahim An-
jum Haque, Tahmid Hasan, Wasi Uddin Ahmad, Anindya Iqbal, and Rifat Shahriyar. Codesc:
A large code-description parallel dataset. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli, editors, Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021,
Online Event, August 1-6, 2021, volume ACL/IJCNLP 2021 of Findings of ACL, pages 210–218.
Association for Computational Linguistics, 2021. doi: 10.18653/V1/2021.FINDINGS-ACL.18.
URL https://doi.org/10.18653/v1/2021.findings-acl.18.

12

11517https://doi.org/10.52202/079017-0367

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1109/TSE.2023.3267446
https://deepseekcoder.github.io/
https://deepseekcoder.github.io/
https://doi.org/10.48550/arXiv.2304.02014
https://doi.org/10.48550/arXiv.2212.10007
https://arxiv.org/abs/2402.07844
https://arxiv.org/abs/2402.07844
https://openreview.net/pdf?id=hQwb-lbM6EL
https://openreview.net/pdf?id=hQwb-lbM6EL
https://doi.org/10.48550/arXiv.2206.07796
https://doi.org/10.48550/arXiv.2206.07796
https://doi.org/10.18653/v1/2021.findings-acl.18


[21] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding
challenge competence with apps. NeurIPS, 2021.

[22] Dong Huang, Qi Bu, and Heming Cui. Codecot and beyond: Learning to program and test
like a developer. ArXiv, abs/2308.08784, 2023. URL https://api.semanticscholar.org/
CorpusID:261030533.

[23] Dong Huang, Qingwen Bu, Jie Zhang, Xiaofei Xie, Junjie Chen, and Heming Cui. Bias
assessment and mitigation in llm-based code generation. arXiv preprint arXiv:2309.14345,
2023.

[24] Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck, and Heming Cui. Agentcoder:
Multi-agent-based code generation with iterative testing and optimisation. arXiv preprint
arXiv:2312.13010, 2023.

[25] Naman Jain, Skanda Vaidyanath, Arun Shankar Iyer, Nagarajan Natarajan, Suresh Parthasarathy,
Sriram K. Rajamani, and Rahul Sharma. Jigsaw: Large language models meet program
synthesis. In 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE
2022, Pittsburgh, PA, USA, May 25-27, 2022, pages 1219–1231. ACM, 2022. doi: 10.1145/
3510003.3510203. URL https://doi.org/10.1145/3510003.3510203.

[26] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. Impact of code language models
on automated program repair. In 45th IEEE/ACM International Conference on Software
Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023, pages 1430–1442. IEEE,
2023. doi: 10.1109/ICSE48619.2023.00125. URL https://doi.org/10.1109/ICSE48619.
2023.00125.

[27] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?
CoRR, abs/2310.06770, 2023. doi: 10.48550/ARXIV.2310.06770. URL https://doi.org/
10.48550/arXiv.2310.06770.

[28] Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-
Tau Yih, Daniel Fried, Sida I. Wang, and Tao Yu. DS-1000: A natural and reliable benchmark
for data science code generation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202
of Proceedings of Machine Learning Research, pages 18319–18345. PMLR, 2023. URL
https://proceedings.mlr.press/v202/lai23b.html.

[29] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha Sen. Codamosa:
Escaping coverage plateaus in test generation with pre-trained large language models. In
45th IEEE/ACM International Conference on Software Engineering, ICSE 2023, Melbourne,
Australia, May 14-20, 2023, pages 919–931. IEEE, 2023. doi: 10.1109/ICSE48619.2023.00085.
URL https://doi.org/10.1109/ICSE48619.2023.00085.

[30] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozh-
skii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier,
João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho
Yee, Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy V, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa-Fahmy, Urvashi Bhattacharyya, Wenhao
Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan
Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan
Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite,
Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and
Harm de Vries. Starcoder: may the source be with you! CoRR, abs/2305.06161, 2023. doi:
10.48550/ARXIV.2305.06161. URL https://doi.org/10.48550/arXiv.2305.06161.

13

11518 https://doi.org/10.52202/079017-0367

https://api.semanticscholar.org/CorpusID:261030533
https://api.semanticscholar.org/CorpusID:261030533
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.48550/arXiv.2310.06770
https://doi.org/10.48550/arXiv.2310.06770
https://proceedings.mlr.press/v202/lai23b.html
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.48550/arXiv.2305.06161


[31] Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,
Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. CoRR, abs/2203.07814, 2022. doi: 10.48550/ARXIV.2203.
07814. URL https://doi.org/10.48550/arXiv.2203.07814.

[32] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and LINGMING ZHANG. Is your code
generated by chatGPT really correct? rigorous evaluation of large language models for code
generation. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=1qvx610Cu7.

[33] Tianyang Liu, Canwen Xu, and Julian J. McAuley. Repobench: Benchmarking repository-level
code auto-completion systems. CoRR, abs/2306.03091, 2023. doi: 10.48550/ARXIV.2306.
03091. URL https://doi.org/10.48550/arXiv.2306.03091.

[34] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian,
Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov,
Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo,
Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yix-
uan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru
Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank
Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Can-
wen Xu, Julian J. McAuley, Han Hu, Torsten Scholak, Sébastien Paquet, Jennifer Robinson,
Carolyn Jane Anderson, Nicolas Chapados, and et al. Starcoder 2 and the stack v2: The
next generation. CoRR, abs/2402.19173, 2024. doi: 10.48550/ARXIV.2402.19173. URL
https://doi.org/10.48550/arXiv.2402.19173.

[35] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models
with evol-instruct. ArXiv, abs/2306.08568, 2023. URL https://api.semanticscholar.
org/CorpusID:259164815.

[36] Microsoft. The world’s most widely adopted ai developer tool., 2024. URL https://github.
com/features/copilot.

[37] Amir M. Mir, Evaldas Latoskinas, Sebastian Proksch, and Georgios Gousios. Type4py: Practical
deep similarity learning-based type inference for python. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, pages
2241–2252. ACM, 2022. doi: 10.1145/3510003.3510124. URL https://doi.org/10.1145/
3510003.3510124.

[38] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
pdf?id=iaYcJKpY2B_.

[39] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. ICLR, 2023.

[40] Changan Niu, Ting Zhang, Chuanyi Li, Bin Luo, and Vincent Ng. On evaluating the efficiency
of source code generated by llms. CoRR, abs/2404.06041, 2024. doi: 10.48550/ARXIV.2404.
06041. URL https://doi.org/10.48550/arXiv.2404.06041.

[41] OpenAI. GPT-3.5 Turbo, 2023. URL https://platform.openai.com/docs/models/
gpt-3-5.

[42] OpenAI. GPT-4 Technical Report. CoRR, abs/2303.08774, 2023. doi: 10.48550/arXiv.2303.
08774. URL https://doi.org/10.48550/arXiv.2303.08774.

14

11519https://doi.org/10.52202/079017-0367

https://doi.org/10.48550/arXiv.2203.07814
https://openreview.net/forum?id=1qvx610Cu7
https://doi.org/10.48550/arXiv.2306.03091
https://doi.org/10.48550/arXiv.2402.19173
https://api.semanticscholar.org/CorpusID:259164815
https://api.semanticscholar.org/CorpusID:259164815
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.1145/3510003.3510124
https://doi.org/10.1145/3510003.3510124
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
https://doi.org/10.48550/arXiv.2404.06041
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://doi.org/10.48550/arXiv.2303.08774


[43] Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language
model connected with massive apis. CoRR, abs/2305.15334, 2023. doi: 10.48550/ARXIV.2305.
15334. URL https://doi.org/10.48550/arXiv.2305.15334.

[44] Baptiste Rozière, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. Unsuper-
vised translation of programming languages. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.
cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html.

[45] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, I. Evtimov, Joanna Bitton,
Manish P Bhatt, Cristian Cantón Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre D’efossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. Code llama: Open foundation models for code. ArXiv, abs/2308.12950,
2023. URL https://api.semanticscholar.org/CorpusID:261100919.

[46] Jieke Shi, Zhou Yang, and David Lo. Efficient and green large language models for software
engineering: Vision and the road ahead. CoRR, abs/2404.04566, 2024. doi: 10.48550/ARXIV.
2404.04566. URL https://doi.org/10.48550/arXiv.2404.04566.

[47] Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. Repository-level prompt generation
for large language models of code. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202
of Proceedings of Machine Learning Research, pages 31693–31715. PMLR, 2023. URL
https://proceedings.mlr.press/v202/shrivastava23a.html.

[48] R. K. Shyamasundar. Introduction to algorithms. Resonance, 1:14–24, 1996. URL https:
//api.semanticscholar.org/CorpusID:123556377.

[49] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models. CoRR, abs/2307.09288, 2023. doi: 10.48550/ARXIV.2307.09288.
URL https://doi.org/10.48550/arXiv.2307.09288.

[50] Tina Vartziotis, Ippolyti Dellatolas, George Dasoulas, Maximilian Schmidt, Florian Schneider,
Tim Hoffmann, Sotirios Kotsopoulos, and Michael Keckeisen. Learn to code sustainably: An
empirical study on llm-based green code generation. arXiv preprint arXiv:2403.03344, 2024.

[51] Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun
Kumar, Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nallapati, Murali Krishna
Ramanathan, Dan Roth, and Bing Xiang. Recode: Robustness evaluation of code generation
models. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki, editors, Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pages 13818–13843. Association for
Computational Linguistics, 2023. doi: 10.18653/V1/2023.ACL-LONG.773. URL https:
//doi.org/10.18653/v1/2023.acl-long.773.

[52] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and Steven CH
Hoi. Codet5+: Open code large language models for code understanding and generation. arXiv
preprint arXiv:2305.07922, 2023.

15

11520 https://doi.org/10.52202/079017-0367

https://doi.org/10.48550/arXiv.2305.15334
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://api.semanticscholar.org/CorpusID:261100919
https://doi.org/10.48550/arXiv.2404.04566
https://proceedings.mlr.press/v202/shrivastava23a.html
https://api.semanticscholar.org/CorpusID:123556377
https://api.semanticscholar.org/CorpusID:123556377
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.18653/v1/2023.acl-long.773
https://doi.org/10.18653/v1/2023.acl-long.773


[53] Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham Neubig. Execution-based evaluation
for open-domain code generation. In Houda Bouamor, Juan Pino, and Kalika Bali, editors,
Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December
6-10, 2023, pages 1271–1290. Association for Computational Linguistics, 2023. URL https:
//aclanthology.org/2023.findings-emnlp.89.

[54] Jiayi Wei, Greg Durrett, and Isil Dillig. Typet5: Seq2seq type inference using static analysis.
In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?id=
4TyNEhI2GdN.

[55] Zhou Yang, Zhensu Sun, Terry Zhuo Yue, Premkumar Devanbu, and David Lo. Robustness,
security, privacy, explainability, efficiency, and usability of large language models for code.
arXiv preprint arXiv:2403.07506, 2024.

[56] Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua
Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, Oleksandr Polozov, and Charles
Sutton. Natural language to code generation in interactive data science notebooks. In Anna
Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pages 126–173. Association for Computational Linguistics,
2023. doi: 10.18653/V1/2023.ACL-LONG.9. URL https://doi.org/10.18653/v1/2023.
acl-long.9.

[57] Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu
Chen, and Jian-Guang Lou. CERT: continual pre-training on sketches for library-oriented
code generation. In Luc De Raedt, editor, Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages
2369–2375. ijcai.org, 2022. doi: 10.24963/IJCAI.2022/329. URL https://doi.org/10.
24963/ijcai.2022/329.

[58] Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pages 2471–2484. Association for Computational Linguistics, 2023.
URL https://aclanthology.org/2023.emnlp-main.151.

[59] Zhao Zhang, Yican Sun, Ruyi Ji, Siyuan Li, Xuanyu Peng, Zhechong Huang, Sizhe Li, Tianran
Zhu, and Yingfei Xiong. Asac: A benchmark for algorithm synthesis. In Companion Proceed-
ings of the 32nd ACM International Conference on the Foundations of Software Engineering,
pages 577–581, 2024.

[60] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model
for code generation with multilingual evaluations on humaneval-x. CoRR, abs/2303.17568,
2023. doi: 10.48550/ARXIV.2303.17568. URL https://doi.org/10.48550/arXiv.2303.
17568.

[61] Terry Yue Zhuo, Zhou Yang, Zhensu Sun, Yufei Wang, Li Li, Xiaoning Du, Zhenchang Xing,
and David Lo. Source code data augmentation for deep learning: A survey. arXiv preprint
arXiv:2305.19915, 2023.

[62] Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

[63] Terry Yue Zhuo, Armel Zebaze, Nitchakarn Suppattarachai, Leandro von Werra, Harm de Vries,
Qian Liu, and Niklas Muennighoff. Astraios: Parameter-efficient instruction tuning code large
language models. arXiv preprint arXiv:2401.00788, 2024.

16

11521https://doi.org/10.52202/079017-0367

https://aclanthology.org/2023.findings-emnlp.89
https://aclanthology.org/2023.findings-emnlp.89
https://openreview.net/pdf?id=4TyNEhI2GdN
https://openreview.net/pdf?id=4TyNEhI2GdN
https://doi.org/10.18653/v1/2023.acl-long.9
https://doi.org/10.18653/v1/2023.acl-long.9
https://doi.org/10.24963/ijcai.2022/329
https://doi.org/10.24963/ijcai.2022/329
https://aclanthology.org/2023.emnlp-main.151
https://doi.org/10.48550/arXiv.2303.17568
https://doi.org/10.48550/arXiv.2303.17568


A Appendix

A.1 Limiations

While EFFIBENCH represents a significant step towards evaluating code efficiency in code generation
models, it currently has several limitations:

Language Focus: The benchmark is currently limited to Python and does not encompass other
programming languages. This restricts the scope of the evaluation and prevents a comprehensive
understanding of efficiency across different language paradigms.

Dataset Scope: EFFIBENCH focuses solely on LeetCode problems, which primarily involve algo-
rithmic challenges. This excludes real-world applications and other coding scenarios that might
necessitate different efficiency considerations.

Environment Dependency: The efficiency results obtained using EFFIBENCH may vary across
different hardware and software environments. This highlights the need for standardized testing
environments to ensure consistent and reliable comparisons between models. To address this limita-
tion, we provide the request link in our Hugging Face Leaderboard for researchers to evaluate their
pre-trained LLMs generated code efficiency, which uses the same environment for efficiency testing.
In the future, we will also set up an efficiency testing server in Hugging Face Space for researchers to
automatically get the efficiency metrics for LLM-generated code.

A.2 Improvement Strategies

To address the limitations of EFFIBENCH, we propose several improvement strategies as follows:

Broadening Language Coverage: Recognizing the importance of a diverse range of programming
languages, we aim to expand the benchmark beyond Python in the future. This allows for a more com-
prehensive evaluation of code efficiency across different language paradigms, ultimately providing a
more holistic understanding of the performance of code generation models.

Enhancing Dataset Diversity: To ensure that EFFIBENCH is representative of a wide array of
coding scenarios, we plan to incorporate more diverse datasets into our evaluation framework. While
LeetCode problems offer valuable insights into algorithmic efficiency, we understand the need to
consider real-world applications and other coding contexts. As a starting step, we have provided
an efficiency testing framework that can be used with other datasets, such as HumanEval [12] and
MBPP [7]. Moving forward, we will continue to seek out and integrate datasets that can enrich our
understanding of code efficiency.

Standardizing Testing Environments: To address the variability in efficiency results due to different
hardware and software environments, we are committed to establishing more standardized testing
conditions. We have already taken a step in this direction by providing a request link in our Hugging
Face Leaderboard for researchers to evaluate their LLMs generated code efficiency, which ensures
that the same environment is used for testing. We also plan to set up an efficiency testing server,
potentially hosted on Hugging Face Space, where developers can automatically obtain efficiency
metrics for their LLM-generated code, which not only promotes consistency and reliability in our
results but also makes the testing process more convenient and accessible for our users.

A.3 Broader Impacts

We list the potential positive societal impacts as follows:

Improved Software Efficiency By benchmarking and improving the efficiency of code generated by
LLMs, we can develop software that runs faster, consumes less memory and processing power. This
can lead to more responsive applications, reduced operational costs, and a better user experience.

Environmental Sustainability More efficient code can contribute to reduced energy consumption,
which is beneficial for the environment. This aligns with global efforts to reduce carbon emissions
and promote sustainability.

Enhanced Developer Productivity LLMs can significantly augment developer productivity by
generating code snippets based on coding instructions and offering intelligent recommendations. This
can free up developers’ time to focus on more complex tasks.

17

11522 https://doi.org/10.52202/079017-0367



Scalable Software Development Efficient code is crucial for building scalable software to meet the
growing demands of the digital world. By improving the efficiency of code generated by LLMs, we
can develop software that can handle larger volumes of data and users.

On the other hand, we summarize the potential negative societal impacts as follows:

Job Displacement The increased use of LLMs in code generation could potentially lead to job
displacement for some software developers in the future, particularly those involved in more routine
coding tasks.

Over-reliance on AI Developers may become overly reliant on LLMs, which could lead to a lack of
understanding of the generated code and potential security or functionality issues.

Security Risks If not properly managed, the use of LLMs could introduce security risks. For
example, LLMs might generate code with vulnerabilities that could be exploited by malicious actors.

Quality Concerns While LLMs can generate efficient code, the quality of the code in terms of
readability, maintainability, and adherence to coding standards may not always meet the desired
levels. This could lead to difficulties in code maintenance and development in the long term.

A.4 Efficiency Metrics

Execution Time (ET) Execution time (ET) measures the average time taken for code execution.
Mathematically, ET is defined as:

ET =
1

N

N∑
Tcode

where ET is the execution time metric, Tcode is the execution time of the code (with all the test cases),
and N is the number of codes generated by code generation models used for evaluation.

Normalized Execution Time (NET) Normalized Execution Time (NET)8 measures the execution
time required by generated code relative to that of a canonical solution. We define NET as:

NET =
1

N

N∑ Tcode

Tcanonical

where Tcode is the execution time of the generated code and Tcanonical is the execution time of the
canonical solution. A NET value greater than 1 indicates that the generated code is slower than the
canonical solution, while a value less than 1 suggests the generated code is faster.

Max Memory Usage (MU) Max Memory Usage (MU) measures the average max memory con-
sumption during code execution. Mathematically, MU is defined as:

MU =
1

N

N∑
Mcode

where MU is the memory usage metric, Mcode is the max memory consumption of the generated
code among all the test cases, and N is the number of code instances generated by code generation
models used for evaluation. This metric is critical to assess the resource efficiency of generated code,
particularly in environments with limited maximum memory capacity.

Normalized Max Memory Usage (NMU) Normalized Max Memory Usage (NMU) quantifies
how the max memory efficiency of the generated code compares to the canonical solution. We define
NMU as:

NMU =
1

N

N∑ Mcode

Mcanonical

where NMU is the normalized max memory usage metric, Mcode is the max memory usage of the
generated code, and Mcanonical is the max memory usage of the canonical solution. An NMU value

8To demonstrate code-level efficiency, we evaluate the normalized efficiency metrics in task level, rather than
total LLM-generated code / total canonical solutions. For the second calculation strategy, we also provide the
scripts in our Github Repo.

18

11523https://doi.org/10.52202/079017-0367



less than 1 indicates that the generated code is more memory-efficient than the canonical solution,
whereas a value greater than 1 suggests it is less efficient in terms of memory usage. This metric
provides a relative measure of the memory optimization in the generated code in comparison to a
standard baseline.

Total Memory Usage (TMU) Total Memory Usage (TMU) assesses the efficiency of memory
usage throughout the execution of code, taking into account both the magnitude and duration of
memory utilization. To calculate TMU, first, monitor and record the memory usage at discrete time
intervals during the execution, resulting in a memory usage profile M(t), where t represents time.
Then, compute the area under the curve of M(t) over the total execution time, Ttotal, using numerical
integration methods such as the trapezoidal rule:

TMU =
1

N

N∑∫ Ttotal

0

M(t) dt

A lower TMU value indicates higher memory efficiency, reflecting an optimized balance between the
amount of memory used and the duration of its usage.

Normalized Total Memory Usage (NTMU) The Normalized Total Memory Usage (NTMU) offers
a comparison of the dynamic memory efficiency between the generated code and the canonical
solution. To determine NTMU, calculate the TMU for both the generated code and the canonical
solution. Normalize the TMU of the generated code by dividing it by the TMU of the canonical
solution:

NTMU =
1

N

N∑ TMUcode

TMUcanonical

where TMUcode is the TMU of the generated code and TMUcanonical is the TMU of the canonical
solution. An NTMU value less than 1 signifies that the generated code manages dynamic memory
more efficiently compared to the canonical solution, while a value greater than 1 indicates less
efficient management of dynamic memory. This metric provides insight into the relative use of
dynamic memory of generated code compared to an established benchmark.

A.5 Model

We study both open- and closed-source LLMs in code generation. For open-source models, we
evaluate9 EFFIBENCH with CodeLlama-hf family (i.e., 7B, 13b, 34b, and 70B), CodeLlama-Instruct-
hf family (i.e., 7B, 13b, 34b, and 70B), deepseek-coder-instruct (i.e., 1.3B and 6.7B) and base
models (i.e., 6.7B and 33B), Phind-CodeLlama-34B (i.e., v1 and v2), starcoder, starcoderbase, and
starcoder2 (i.e., 3B, 7B, and 15B), WizardCoder (i.e., 13B and 15B), XwinCoder (i.e., 13B and
34B), Yi models (34B, 34B-Chat, and 200K version), and five widely proposed SOTA models, i.e.,
Magicoder-6.7B, Mistral-7B, octocoder, Artigenz-6.7B, CodeFuse-33B, and codegemma-7b10 since
these open-source models have obtained SOTA pass@1 in the HumanEval and MBPP datasets. For
closed-source models, we evaluated EFFIBENCH with GPT-3.5, GPT-4 [42], and claude-3, since we
observe that these models obtain high pass@1 in code generation datasets (e.g., HumanEval [12],
MBPP [7]). For GPT-3.5 models, we experiment with GPT-3.5-turbo-0301, GPT-3.5-turbo-0613, and
GPT-3.5-turbo-1106 which represent three different versions of the GPT-3.5. For GPT-4 models, we
experiment with GPT-4-turbo and GPT-4 (GPT-4-0613). For the claude-3 model, we evaluate the
sonnet and haiku versions. For each LLM, we first collect the code that is correctly generated for
each coding problem (i.e., they can pass all test cases provided by the dataset), then execute these
correct code and calculate the efficiency metrics (See Section 3.4).

A.6 Generalizability for other Benchmarks

Since one of our contributions is that we provide an efficiency evaluation framework, in this section
we provide the generalizability of our framework on other benchmarks. Specifically, we evaluate

9The full evaluated model lists can be seen in our Hugging Face leaderboard.
10The model names are extracted from Hugging Face model card.

19

11524 https://doi.org/10.52202/079017-0367



Table 7: Efficiency results for different algorithm subsets with closed-source LLMs.

Model max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s) Pass@1

GPT-3.5-turbo-0301

greedy 3.63 3.02 0.0 0.35 2.03 1.92 0.0 59.42 7.51 6.14 90.7 16.75 39.9
dynamic_programming 27.70 3.64 4.5 0.46 2.05 1.93 0.0 55.25 70.62 7.73 89.3 21.44 40.4
backtracking 14.99 3.44 4.5 0.56 2.03 1.82 0.0 83.45 34.36 6.90 72.7 38.40 45.8
divide_and_conquer 3.53 3.00 0.0 0.34 2.02 1.89 0.0 53.42 7.00 5.96 87.5 11.41 38.1
dfs 3.47 2.91 0.0 0.35 2.05 1.81 0.0 59.62 6.82 5.68 85.2 13.60 25.0
bfs 6.35 3.17 4.2 0.41 2.05 1.90 0.0 55.10 13.56 6.43 91.7 15.99 27.9
binary_search 3.61 2.92 0.0 0.38 2.05 1.87 0.0 79.97 7.39 5.83 85.7 27.09 42.6
two_pointers 3.61 3.04 0.0 0.36 2.04 1.94 0.0 70.22 7.37 6.24 94.2 25.77 49.5
sliding_window 3.87 3.04 0.0 0.36 2.05 1.94 0.0 67.21 8.22 6.20 91.4 23.55 50.0
bit_manipulation 3.59 3.03 0.0 0.35 2.02 1.94 0.0 62.42 7.61 6.15 89.6 19.40 47.1
sorting 3.76 2.99 0.0 0.36 2.05 1.88 0.0 67.09 8.05 6.01 87.9 21.95 41.6

GPT-4

greedy 5.83 3.08 0.8 0.35 2.04 1.93 0.0 57.15 15.28 6.32 92.7 15.74 50.6
dynamic_programming 4.53 3.11 0.0 0.36 2.25 1.94 0.0 53.97 10.16 6.31 91.3 15.44 49.8
backtracking 4.53 3.01 0.0 0.44 2.03 1.84 0.0 81.67 10.16 5.89 77.3 32.23 45.8
divide_and_conquer 3.68 3.04 0.0 0.34 2.02 1.90 0.0 53.16 7.94 6.15 87.5 11.72 38.1
dfs 3.82 3.05 0.0 0.35 2.06 1.88 0.0 57.57 7.72 6.09 93.9 13.32 30.6
bfs 11.22 3.38 5.6 0.45 2.06 1.87 0.0 55.58 25.19 6.85 91.7 19.23 41.9
binary_search 3.69 2.96 0.0 0.38 2.04 1.88 0.0 75.09 7.78 5.92 89.3 25.24 50.7
two_pointers 3.94 3.09 0.0 0.36 2.04 1.94 0.0 66.90 8.90 6.36 95.2 23.65 59.0
sliding_window 8.46 3.23 2.5 0.39 2.06 1.92 0.0 66.36 17.85 6.60 95.0 25.41 57.1
bit_manipulation 4.53 3.12 0.0 0.36 2.03 1.95 0.0 60.22 10.16 6.39 92.6 18.60 52.9
sorting 13.89 3.11 1.5 0.38 2.25 1.89 0.0 63.62 43.92 6.40 90.0 21.09 54.6

Claude-3-sonnet

greedy 3.75 3.13 0.0 0.36 2.03 1.93 0.0 58.47 7.90 6.39 90.3 16.68 42.4
dynamic_programming 16.34 3.42 1.8 0.47 2.04 1.94 0.0 54.95 37.83 6.96 92.0 35.81 40.8
backtracking 17.43 4.92 13.3 0.75 2.04 1.89 0.0 89.79 50.78 11.28 86.7 53.91 31.2
divide_and_conquer 3.56 3.03 0.0 0.36 2.02 1.88 0.0 53.44 7.18 6.01 75.0 12.62 57.1
dfs 3.61 3.03 0.0 0.36 2.05 1.81 0.0 59.20 7.53 5.94 86.2 13.98 26.9
bfs 6.24 3.08 3.4 0.42 2.05 1.84 0.0 59.57 13.17 6.06 86.2 16.36 33.7
binary_search 3.61 2.99 0.0 0.40 2.04 1.87 0.0 80.89 7.60 5.98 83.6 28.93 41.2
two_pointers 3.61 3.18 0.0 0.38 2.05 1.94 0.0 70.62 7.53 6.54 94.1 27.10 48.6
sliding_window 3.69 3.13 0.0 0.36 2.06 1.95 0.0 64.09 7.77 6.41 95.2 22.12 60.0
bit_manipulation 17.43 3.51 2.4 0.40 2.02 1.95 0.0 63.19 50.78 7.56 92.9 22.32 41.2
sorting 4.98 3.10 0.0 0.37 2.04 1.89 0.0 64.34 11.81 6.27 89.2 20.90 50.4

Table 8: Efficiency results of different models on HumanEvalPlus and MBPPPlus dataset.

Model HumanEvalPlus MBPPPlus
ET (s) NET MU (Mb) NMU TMU (Mb*s) NTMU ET (s) NET MU (Mb) NMU TMU (Mb*s) NTMU

OpenCodeInterpreter-DS-1.3B 0.20 0.86 57.24 1.00 6.63 0.84 0.28 0.94 59.01 1.01 11.73 0.98
OpenCodeInterpreter-DS-6.7B 0.21 0.98 58.83 1.06 6.79 0.99 0.26 1.06 58.39 1.00 9.25 1.08
OpenCodeInterpreter-DS-33B 0.21 0.95 59.90 1.05 7.05 0.94 0.44 1.59 58.72 1.00 20.19 1.86

deepseek-coder-1.3b-instruct 0.23 0.90 62.80 1.00 7.85 0.87 0.63 1.68 354.01 6.05 1463.46 89.12
deepseek-coder-6.7b-instruct 0.22 0.76 59.57 1.00 7.34 0.77 0.76 3.62 58.44 1.00 39.11 5.69
deepseek-coder-33b-instruct 0.21 0.95 63.52 0.99 7.18 0.95 0.58 2.33 53.48 0.91 28.74 3.16

CodeLlama-7b-Instruct-hf 0.20 0.71 57.39 0.91 7.08 0.70 0.45 2.04 56.96 0.97 13.26 1.79
CodeLlama-13b-Instruct-hf 0.23 0.95 58.13 0.96 7.97 0.94 0.53 2.11 55.37 0.95 21.75 2.34
CodeLlama-34b-Instruct-hf 0.24 0.95 61.79 1.01 8.45 0.96 0.42 1.18 69.80 1.19 84.01 5.47
CodeLlama-70b-Instruct-hf 0.21 0.93 60.19 1.01 6.76 1.01 0.23 1.06 58.13 0.98 7.65 1.05

XwinCoder-13B 0.27 1.08 61.14 1.04 9.25 1.09 0.50 1.96 58.38 1.00 23.88 2.50
XwinCoder-34B 0.25 1.07 60.75 1.05 8.46 1.08 0.38 1.44 58.27 1.00 14.77 1.48

WizardCoder-7B 0.21 0.91 58.59 1.01 6.63 0.89 0.22 1.05 58.44 0.99 7.19 1.03
WizardCoder-13B 0.21 0.81 60.59 1.00 7.22 0.79 0.62 1.35 57.74 0.99 30.66 1.43
WizardCoder-34B 0.22 0.79 58.13 1.00 7.10 0.78 0.68 2.43 56.75 0.97 34.06 3.14

starcoder2-3b 0.24 1.02 62.45 1.00 7.73 0.89 0.17 0.83 45.82 0.79 5.10 0.77
starcoder2-7b 0.21 0.89 62.53 1.00 7.41 0.85 1.72 8.63 25.61 0.44 40.42 6.22

the efficiency of LLM-generated code on HumanEvalPlus and MBPPPlus11 [32]. The evaluation
results are demonstrated on Table 10. We can observe that EFFIBENCH’s framework can integrate
with other benchmarks and then be used to evaluate the efficiency of LLM-generated code. Besides,
we can also observe that the efficiency of LLM-generated code in this benchmark is close to the
canonical solutions and sometimes even better than the canonical solutions. For example, the NET of
OpenCodeInterpreter-DS-1.3B is 0.86, which is even lower than the canonical solutions. We can also
observe that this behavior also exists in the MBPPPlus, while different from these benchmarks, we
can observe that most of the code generated by LLMs is less efficient than the canonical solutions in
EFFIBENCH.

A.7 Efficiency metrics distribution

As shown in Table 3, we report the ratio of correct code with 5x efficiency metrics (i.e., NET,
NMU, and NTMU) in total correct code generated by LLMs. In this section, we further analyze

11HumanEval and MBPP datasets have a limited number of test cases (fewer than 10) for each task, which can
lead to highly random efficiency testing results due to the rapid execution of the code. To mitigate the impact of
randomness, we utilize the test cases provided by EvalPlus to ensure sufficient testing time.

20

11525https://doi.org/10.52202/079017-0367



GPT-3.5-Turbo-0301

class Solution:
def kInversePairs(self, n: int, k: int) ->

int:↪→
MOD = 10**9 + 7
# Initialization of a 2D matrix with

(n+1)x(k+1) dimensions↪→
# Memory-intensive: Utilizes a matrix

for storing all subproblem results↪→
dp = [[0 for _ in range(k+1)] for _ in

range(n+1)]↪→
for i in range(n+1):

dp[i][0] = 1 # Base case: one way
to have zero inverse pairs↪→

for i in range(1, n+1):
for j in range(1, k+1):

# Dynamic programming state
transition↪→

dp[i][j] = (dp[i-1][j] +
dp[i][j-1]) % MOD↪→

if j-i >= 0:
# Adjustment to avoid

overcounting,
demonstrates the
complexity of state
management

↪→
↪→
↪→
↪→
dp[i][j] = (dp[i][j] -

dp[i-1][j-i] + MOD) %
MOD

↪→
↪→

return dp[n][k] % MOD

Canonica Solution

class Solution:
def kInversePairs(self, n: int, k: int) ->

int:↪→
mod = 10**9 + 7
# f array represents current count of

inverse pairs at index k↪→
# Space optimization: Only one array of

size k+1 is used↪→
f = [1] + [0] * k
# s is a prefix sum array to optimize

the range sum calculation↪→
# Efficient rolling sum reduces space

complexity from O(n*k) to O(k)↪→
s = [0] * (k + 2)
for i in range(1, n + 1):

for j in range(1, k + 1):
# Utilizing prefix sum to

calculate range sums
efficiently

↪→
↪→
f[j] = (s[j + 1] - s[max(0, j -

(i - 1))]) % mod↪→
for j in range(1, k + 2):

# Update prefix sums after each
iteration↪→

s[j] = (s[j - 1] + f[j - 1]) %
mod↪→

return f[k]

Figure 2: A case illustration of GPT-3.5-turbo-0301 and canonica_solution. GPT-3.5-turbo-0301 gen-
erated code requires 70.62x memory usage compared with canonical_solution. GPT-3.5-turbo-0301
generated code employs a 2-dimensional matrix to manage state transitions, leading to substantial
memory overhead, particularly evident when the parameters n and k are large. In contrast, the canon-
ical_solution optimizes memory usage by utilizing a rolling sum technique and a single-dimensional
dynamic array, significantly reducing the space complexity from O(n× k) to O(k).

Table 9: Efficiency results of 7 different LLMs generated code. In this table, we focus on three
normalized metrics (i.e., NET, NMU, and NTMU). For each metric, we consider four different
scenarios. For example, For NET, we report the min NET, the ratio of NET<1 in corrected code, the
ratio of NET>=1 in corrected code, and max NET values.

Model min NET NET <1 NET >1 max NET min NMU NMU <1 NMU >1 max NMU min NTMU NTMU <1 NTMU >1 max NTMU

gpt-3.5-turbo-0301 1.09 0.00 100.00 27.70 0.82 2.13 97.9 2.1 0.98 0.47 99.5 47.0
gpt-3.5-turbo-0613 1.10 0.00 100.00 46.70 0.82 1.72 98.3 2.6 0.99 0.22 99.8 68.9
gpt-3.5-turbo-1106 1.11 0.00 100.00 68.71 0.82 1.83 98.2 9.1 1.01 0.20 99.8 68.8
gpt-4 1.10 0.00 100.00 13.89 0.82 1.57 98.4 2.2 1.01 0.00 100.0 15.3
gpt-4-turbo-preview 0.90 0.15 99.85 27.00 0.82 1.38 98.6 9.1 0.66 0.46 99.5 68.5
claude-3-haiku 0.94 0.23 99.77 28.75 0.82 1.86 98.1 2.1 0.68 0.23 99.8 72.9
claude-3-sonnet 0.98 0.23 99.77 17.43 0.50 1.62 98.4 2.1 0.94 0.46 99.5 24.0

the distribution of normalized efficiency metrics, i.e., whether there are cases where LLMs yield
more efficient code than the canonical solutions. The evaluation results are demonstrated in Table 11,
where we evaluated 7 LLMs based on following the setup of Table 4. We can observe that for all
evaluated LLMs, there are only a small of code generated by LLMs in Table 11 are more efficient
than the canonical solutions, while most of the code is less efficient. For example, we can observe
that only 0.23% code in Claude-3-sonnet generated correct code is more efficient than the canonical
solution, while 99.77% code’s NET is large or equal to the canonical solution generated code. We
suspect that the overall inefficiency of the code produced by LLMs when compared to canonical
solutions may be attributed to the distribution of the training data. Typically, these datasets prioritize
the correctness of code and collect code from repositories like GitHub where code is often correct
but not necessarily optimized for efficiency. Focusing primarily on correctness without adequate
attention to efficiency could result in neglecting efficiency in the code generated by LLMs.

21

11526 https://doi.org/10.52202/079017-0367



Prompt

Problem: Given a string s, find the length of
the longest substring without repeating char-
acters.

Example 1:
Input: s = "abcabcbb"
Output: 3
Explanation: The answer is "abc", with the
length of 3.

Example 2:
Input: s = "pwwkew"
Output: 3
Explanation: The answer is "wke", with the
length of 3.
Note: The answer must be a substring,
"pwke" is a subsequence and not a substring.

solution = Solution()
assert

solution.lengthOfLongestSubstring('abcabcbb')
== 3

↪→
↪→
assert

solution.lengthOfLongestSubstring('pwwkew')
== 3

↪→
↪→

Generated Code

class Solution:
def lengthOfLongestSubstring(self, s:

str) -> int:↪→
ss = set()
i = ans = 0
for j, c in enumerate(s):

while c in ss:
ss.remove(s[i])
i += 1

ss.add(c)
ans = max(ans, j - i + 1)

return ans

Prompt

Problem: Given two sorted arrays nums1 and
nums2 of size m and n respectively, return the
median of the two sorted arrays. The overall
run time complexity should be O(log (m+n)).

Example 1:
Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: Merged array = [1,2,3,4] and
median is (2 + 3) / 2 = 2.5.

solution = Solution()
assert solution.findMedianSortedArrays([1,

2], [3, 4]) == 2.50000↪→

Generated Code

class Solution:
def findMedianSortedArrays(self, nums1:

List[int], nums2: List[int]) ->
float:

↪→
↪→

def f(i: int, j: int, k: int) ->
int:↪→
if i >= m:

return nums2[j + k - 1]
if j >= n:

return nums1[i + k - 1]
if k == 1:

return min(nums1[i],
nums2[j])↪→

p = k // 2
x = nums1[i + p - 1] if i + p -

1 < m else inf↪→
y = nums2[j + p - 1] if j + p -

1 < n else inf↪→
return f(i + p, j, k - p) if x

< y else f(i, j + p, k - p)↪→

m, n = len(nums1), len(nums2)
a = f(0, 0, (m + n + 1) // 2)
b = f(0, 0, (m + n + 2) // 2)
return (a + b) / 2

Figure 3: Example problems synthesized (few-shot) by GPT-4-0613. The prompt is shown in purple,
and the model response is shown in blue. The prompt also typically contains several few-shot
examples in the same format, which are not shown here.

A.8 Case illustration for worst case

As shown in Table 7, we can observe that most of the three most inefficient pieces of code are
implemented by DP, backtracking, and BFS. In this section, we provide the comparison of GPT-
3.5-turbo-0301 generated code and canonical solution to analyze why LLM-generated code is
inefficient12.

BFS We provide the worst-case illustration for BFS in Figure 4. We can observe that the code
completed by GPT-3.5-turbo-0301 is less efficient in terms of memory usage compared to our
canonical_solution. Specifically, GPT-3.5-turbo-0301’s code employs a standard BFS with a list-
based queue, alongside a set for tracking visited states and deadends. The space complexity for
this solution includes O(N) for deadends and visited states, and potentially O(104) for the queue, as
it may store all possible lock combinations in the worst-case scenario. The breadth of the search
linearly expands with the number of steps, as each step introduces multiple neighbors into the queue.
Conversely, canonical_solution adopts a more sophisticated approach with a two-way BFS, utilizing
two dictionaries for tracking the search from both ends and two deques for managing the queues.
The space complexity remains O(N) for deadends, similar to Solution 1, but each dictionary and
deque can grow up to O(104) in the worst-case scenario. However, the two-way BFS approach

12We demonstrate DP example in Figure 2.

22

11527https://doi.org/10.52202/079017-0367



GPT-3.5-Turbo-0301

class Solution:
def openLock(self, deadends: List[str],

target: str) -> int:↪→
# Convert deadends into a set for

O(1) lookup times↪→
deadends = set(deadends)
head = '0000'
# Immediate check to avoid

unnecessary processing↪→
if head in deadends:

return -1

# Helper function to generate all
possible next states from a
given state

↪→
↪→
def _gen_neighbors(num):

for i in range(4):
x = int(num[i])
# Generate neighbors by

incrementing or
decrementing each wheel
digit

↪→
↪→
↪→
for d in [-1, 1]:

y = (x + d) % 10
yield num[:i] + str(y)

+ num[i+1:]↪→

# Initialize BFS with the starting
point↪→

stack = [head]
visited = set(stack) # Track

visited states to prevent
re-processing

↪→
↪→
steps = 0
while len(stack) > 0:

size = len(stack)
for i in range(size):

# Inefficient pop operation
due to list usage↪→

node = stack.pop(0)
# Check if the target has

been reached↪→
if node == target:

return steps
# Explore all neighboring

states↪→
for neighbor in

_gen_neighbors(node):↪→
if neighbor in deadends

or neighbor in
visited:

↪→
↪→

continue
# Add new state to

visited and queue
for further
exploration

↪→
↪→
↪→
visited.add(neighbor)
stack.append(neighbor)

# Increment the number of steps
after processing each
level

↪→
↪→
steps += 1

return -1 # If no solution is
found, return -1↪→

Canonica Solution

class Solution:
def openLock(self, deadends: List[str], target:

str) -> int:↪→
# Function to generate all possible next

states for a given state↪→
def next(s):

res = []
s = list(s)
for i in range(4):

c = s[i]
# Decrement the wheel value
s[i] = '9' if c == '0' else

str(int(c) - 1)↪→
res.append(''.join(s))
# Increment the wheel value
s[i] = '0' if c == '9' else

str(int(c) + 1)↪→
res.append(''.join(s))
# Restore original wheel value
s[i] = c

return res

# Function to expand the search frontier in
one direction↪→

def extend(m1, m2, q):
for _ in range(len(q)):

p = q.popleft() # Efficient pop from
deque↪→

step = m1[p]
for t in next(p):

if t in s or t in m1:
continue

# Check if paths meet; if so,
return the combined steps↪→

if t in m2:
return step + 1 + m2[t] #

Early termination when
paths intersect

↪→
↪→

# Record steps to reach new state
and add to the queue↪→

m1[t] = step + 1
q.append(t)

return -1

# Main function to perform bidirectional BFS
def bfs():

# Initial setups for BFS: maps and queues
for both directions↪→

m1, m2 = {"0000": 0}, {target: 0}
q1, q2 = deque(['0000']), deque([target])
while q1 and q2:

# Alternate between expanding the
front from start and target↪→

t = extend(m1, m2, q1) if len(q1) <=
len(q2) else extend(m2, m1, q2)↪→

if t != -1:
return t # Return the total

steps if a meeting point is
found

↪→
↪→

return -1

if target == '0000':
return 0

s = set(deadends)
if '0000' in s:

return -1
return bfs() # Start the bidirectional BFS

process↪→

Figure 4: A case illustration of GPT-3.5-turbo-0301 and canonical_solution. The left code is
completed by GPT-3.5-turbo-0301, which requires 50.1 MB*seconds, while the right result is our
canonical_solution, which requires 7.5 MB*seconds. The key advantage of the canonical_solution is
its use of bidirectional BFS, which significantly speeds up the search space reduction, resulting in a
more efficient computation.

23

11528 https://doi.org/10.52202/079017-0367



GPT-3.5-Turbo-0301

class Solution:
def restoreIpAddresses(self, s: str) ->

List[str]:↪→
result = []
n = len(s)

# Generate all possible segment splits
through iterative nested loops↪→

for i in range(1, min(4, n - 2) + 1):
for j in range(i + 1, min(i + 4, n -

1) + 1):↪→
for k in range(j + 1, min(j + 4,

n) + 1):↪→
s1 = s[:i]
s2 = s[i:j]
s3 = s[j:k]
s4 = s[k:]
# Delayed validation results

in more recursive stack
consumption

↪→
↪→
if self.isValid(s1) and

self.isValid(s2) and
self.isValid(s3) and
self.isValid(s4):

↪→
↪→
↪→

result.append(s1 + "." +
s2 + "." + s3 + "."
+ s4)

↪→
↪→

return result

def isValid(self, s: str) -> bool:
# Perform checks after generating all

combinations, less efficient in
pruning

↪→
↪→
if len(s) == 0 or len(s) > 3 or (s[0] ==

'0' and len(s) > 1) or int(s) > 255:↪→
return False

return True

Canonica Solution

class Solution:
def restoreIpAddresses(self, s: str) ->

List[str]:↪→
def check(i: int, j: int) -> int:

# Validate the segment early;
disallow leading zeros unless
the segment is '0'

↪→
↪→
if s[i] == "0" and i != j:

return False
return 0 <= int(s[i : j + 1]) <= 255

def dfs(i: int):
# Check for successful completion:

correct path found↪→
if i >= n and len(t) == 4:

ans.append(".".join(t))
return

# Early termination to prevent
unnecessary recursion↪→

if i >= n or len(t) >= 4:
return

# Dynamically manage segment
additions and pruning↪→

for j in range(i, min(i + 3, n)):
if check(i, j):

t.append(s[i : j + 1])
dfs(j + 1)
t.pop() # Efficient

backtracking by removing
last segment

↪→
↪→

n = len(s)
ans = []
t = [] # Temporary list to manage IP

segments↪→
dfs(0)
return ans

Figure 5: A side-by-side case illustration of GPT-3.5-turbo-0301 and canonical_solution in backtrack-
ing implementations. The left code by GPT-3.5-turbo-0301 employs a less efficient recursive method,
leading to high memory usage by exhaustively checking every possible segment combination. In
contrast, the canonical_solution on the right optimizes memory usage through effective backtracking
that prunes invalid paths early and dynamically manages segments with a list t, significantly reducing
memory overhead. This results in the GPT-3.5-turbo-0301 code requiring 34.36 times more memory
during execution compared to the canonical_solution.

significantly condenses the search breadth by converging from both ends, reducing the overall
memory consumption.

Backtracking We provide the worst-case illustration for Backtracking in Figure 6. We can observe
that GPT-3.5-turbo-0301 implementation requires substantially higher memory usage due to its
less optimized recursive exploration strategy. This version systematically checks every possible
combination of segments that could form an IP address by recursively calling the validation and
appending results for each possible segment split. This approach accumulates a significant memory
overhead as every recursive call consumes stack space and each path’s state is saved until the recursion
unwinds. Conversely, the canonical solution leverages a more refined backtracking mechanism that
strategically prunes invalid paths earlier through its check function and reduces unnecessary recursive
depth by verifying conditions upfront. Additionally, the canonical method uses a dynamic list t
to store temporary segments, effectively managing memory by adding and removing segments as
needed without redundantly holding onto unsuccessful paths, leading to a drastically reduced memory
footprint during execution. This optimization in the canonical solution translates into a significant
performance improvement. Specifically, GPT-3.5-turbo-0301 generated code has 34.36x memory
usage during the code execution compared with canonical_solution.

24

11529https://doi.org/10.52202/079017-0367



Table 10: Efficiency results of different models on HumanEvalPlus and MBPPPlus dataset.

Model HumanEvalPlus MBPPPlus
ET (s) NET MU (Mb) NMU TMU (Mb*s) NTMU ET (s) NET MU (Mb) NMU TMU (Mb*s) NTMU

OpenCodeInterpreter-DS-1.3B 0.20 0.86 57.24 1.00 6.63 0.84 0.28 0.94 59.01 1.01 11.73 0.98
OpenCodeInterpreter-DS-6.7B 0.21 0.98 58.83 1.06 6.79 0.99 0.26 1.06 58.39 1.00 9.25 1.08
OpenCodeInterpreter-DS-33B 0.21 0.95 59.90 1.05 7.05 0.94 0.44 1.59 58.72 1.00 20.19 1.86

deepseek-coder-1.3b-instruct 0.23 0.90 62.80 1.00 7.85 0.87 0.63 1.68 354.01 6.05 1463.46 89.12
deepseek-coder-6.7b-instruct 0.22 0.76 59.57 1.00 7.34 0.77 0.76 3.62 58.44 1.00 39.11 5.69
deepseek-coder-33b-instruct 0.21 0.95 63.52 0.99 7.18 0.95 0.58 2.33 53.48 0.91 28.74 3.16

CodeLlama-7b-Instruct-hf 0.20 0.71 57.39 0.91 7.08 0.70 0.45 2.04 56.96 0.97 13.26 1.79
CodeLlama-13b-Instruct-hf 0.23 0.95 58.13 0.96 7.97 0.94 0.53 2.11 55.37 0.95 21.75 2.34
CodeLlama-34b-Instruct-hf 0.24 0.95 61.79 1.01 8.45 0.96 0.42 1.18 69.80 1.19 84.01 5.47
CodeLlama-70b-Instruct-hf 0.21 0.93 60.19 1.01 6.76 1.01 0.23 1.06 58.13 0.98 7.65 1.05

XwinCoder-13B 0.27 1.08 61.14 1.04 9.25 1.09 0.50 1.96 58.38 1.00 23.88 2.50
XwinCoder-34B 0.25 1.07 60.75 1.05 8.46 1.08 0.38 1.44 58.27 1.00 14.77 1.48

WizardCoder-7B 0.21 0.91 58.59 1.01 6.63 0.89 0.22 1.05 58.44 0.99 7.19 1.03
WizardCoder-13B 0.21 0.81 60.59 1.00 7.22 0.79 0.62 1.35 57.74 0.99 30.66 1.43
WizardCoder-34B 0.22 0.79 58.13 1.00 7.10 0.78 0.68 2.43 56.75 0.97 34.06 3.14

starcoder2-3b 0.24 1.02 62.45 1.00 7.73 0.89 0.17 0.83 45.82 0.79 5.10 0.77
starcoder2-7b 0.21 0.89 62.53 1.00 7.41 0.85 1.72 8.63 25.61 0.44 40.42 6.22

A.9 Generalizability for other Benchmarks

Since one of our contributions is that we provide an efficiency evaluation framework, which raises one
question about whether we can use the framework of EFFIBENCH to measure the efficiency of LLM-
generated code for other benchmarks. In this section, we provide the generalizability of our framework
on other benchmarks. Specifically, we evaluate the efficiency of LLM-generated code on HumanEval+
and MBPPP+13 [32]. The evaluation results are demonstrated on Table 10. The evaluation results
demonstrate that EFFIBENCH’s framework can integrate with other benchmarks and then be used
to evaluate the efficiency of LLM-generated code. In addition, our results also demonstrate that
the efficiency of LLM-generated code in these two datasets is close to the canonical solutions and
sometimes even better than the canonical solutions. For example, the NET of OpenCodeInterpreter-
DS-1.3B is 0.86 in the HumanEval+ dataset, which is even lower than the canonical solutions.

A.10 Efficiency metrics distribution

As demonstrated in Table 3, the efficiency of LLM-generated code are lower than the efficiency of
the dataset provided canonical solution. To measure the ratio of the inefficient code generated by
LLMs in the total LLM-generated code, we provide the ratio of the code higher / lower than the
efficiency of the canonical solution provided by the dataset. The evaluation results are demonstrated
in Table 11, where we evaluated 7 LLMs based on following the setup of Table 4. The evaluation
results demonstrate that for all evaluated LLMs, there are only a small of code generated by LLMs
in Table 11 are more efficient than the canonical solutions, while most of the code is less efficient.
For example, only 0.23% code in Claude-3-sonnet generated correct code is more efficient than the
canonical solution, while 99.77% code’s NET is large or equal to the canonical solution generated
code. We suspect that the overall inefficiency of the code produced by LLMs when compared to
canonical solutions may be attributed to the distribution of the training data. Typically, these datasets
prioritize the correctness of code and collect code from repositories like GitHub where code is
often correct but not necessarily optimized for efficiency. Focusing primarily on correctness without
adequate attention to efficiency could result in neglecting efficiency in the code generated by LLMs.

A.11 Case study for efficient solution

A.12 Calculating the normalized metrics with task level

In Section 3.4, we define the normalized efficiency metrics at the dataset level. For example, NET is
defined as:

NET =
1

N

N∑ Tcode

Tcanonical

13HumanEval and MBPP datasets have a limited number of test cases (fewer than 10) for each task, which can
lead to highly random efficiency testing results due to the rapid execution of the code. To mitigate the impact of
randomness, we utilize the test cases provided by EvalPlus to ensure sufficient testing time.

25

11530 https://doi.org/10.52202/079017-0367



Table 11: Efficiency results of 7 different LLMs generated code. In this table, we focus on three
normalized metrics (i.e., NET, NMU, and NTMU). For each metric, we consider four different
scenarios. For example, For NET, we report the min NET, the ratio of NET<1 in corrected code, the
ratio of NET>=1 in corrected code, and max NET values.

Model min NET NET <1 NET >1 max NET min NMU NMU <1 NMU >1 max NMU min NTMU NTMU <1 NTMU >1 max NTMU

gpt-3.5-turbo-0301 1.09 0.00 100.00 27.70 0.82 2.13 97.9 2.1 0.98 0.47 99.5 47.0
gpt-3.5-turbo-0613 1.10 0.00 100.00 46.70 0.82 1.72 98.3 2.6 0.99 0.22 99.8 68.9
gpt-3.5-turbo-1106 1.11 0.00 100.00 68.71 0.82 1.83 98.2 9.1 1.01 0.20 99.8 68.8
gpt-4 1.10 0.00 100.00 13.89 0.82 1.57 98.4 2.2 1.01 0.00 100.0 15.3
gpt-4-turbo-preview 0.90 0.15 99.85 27.00 0.82 1.38 98.6 9.1 0.66 0.46 99.5 68.5
claude-3-haiku 0.94 0.23 99.77 28.75 0.82 1.86 98.1 2.1 0.68 0.23 99.8 72.9
claude-3-sonnet 0.98 0.23 99.77 17.43 0.50 1.62 98.4 2.1 0.94 0.46 99.5 24.0

Claude-3-Sonnet

class Solution:
def removeStones(self, stones:

List[List[int]]) -> int:↪→
def find(x):

if x != root[x]:
root[x] = find(root[x])

return root[x]

def union(x, y):
rootX = find(x)
rootY = find(y)
if rootX != rootY:

root[rootX] = rootY

root = {}
for i, (x, y) in enumerate(stones):

root[i] = i

# Union stones sharing the same row or
column↪→

for i in range(len(stones)):
for j in range(i+1, len(stones)):

if stones[i][0] == stones[j][0]
or stones[i][1] ==
stones[j][1]:

↪→
↪→

union(i, j)

# Count the number of distinct islands
islands = set()
for i in range(len(stones)):

islands.add(find(i))

return len(stones) - len(islands)

Canonica Solution

class Solution:
def removeStones(self, stones:

List[List[int]]) -> int:↪→
def find(x):

if p[x] != x:
p[x] = find(p[x])

return p[x]

n = 10010
p = list(range(n << 1))
for x, y in stones:

p[find(x)] = find(y + n)

s = {find(x) for x, _ in stones}
return len(stones) - len(s)

Figure 6: Case example for Claude-3-sonnet generated code which is more efficient than the canonical
solution for MU.

In this section, we further discuss the normalized efficiency metrics for LLM-generated code at the
dataset level. For example, we set NET* as the dataset-level normalized execution time metric. The
NET* is defined as: where Tcode is the execution time of the generated code, and Tcanonical is the
execution time of the canonical solution.

NET =

∑N
Tcode∑N

Tcanonical

We follow the setup of Table 4 to evaluate the efficiency of LLM-generated code in 9 open- and
closed-source models. The evaluation results are demonstrated in Table 23. We can observe that
with the dataset-level normalized metric calculation, the efficiency of LLM-generated code is closer
to the canonical solution. For example, GPT-3.5-turbo-0301 generated code required execution
time decreases from 3.18x to 2.92x compared to the canonical solution. The key reason is that
the dataset-level normalization aggregates the performance across all tasks, potentially masking
significant variations in efficiency on individual tasks. While the dataset-level normalized metric,
such as NET*, provides a broad overview of the model’s performance, it can obscure important details
about how well the model handles specific tasks. For example, this dataset-level calculation ignores

26

11531https://doi.org/10.52202/079017-0367



Table 12: Evaluation results of different LLMs efficiency results for EFFIBENCH. We use * to
represent the results with the new calculation type.

Model ET NET NET* MU NMU NMU* TMU NTMU NTMU*

gpt-3.5-turbo-0301 0.39 3.18 2.92 60.53 1.91 1.61 19.06 6.50 2.52
gpt-3.5-turbo-0613 0.39 3.22 2.96 59.82 1.92 1.64 19.11 6.71 2.68
gpt-3.5-turbo-1106 0.40 3.40 3.15 59.34 1.94 1.66 19.39 7.24 2.85
gpt-4 0.37 3.12 2.88 58.85 1.92 1.66 17.69 6.36 2.69
gpt-4-turbo-preview 0.38 3.19 3.02 57.06 1.93 1.71 16.92 6.57 3.02
claude-3-haiku 0.39 3.28 3.00 59.15 1.91 1.64 17.99 6.71 2.66
claude-3-sonnet 0.40 3.22 3.05 60.22 1.91 1.62 23.29 6.57 3.13

Table 13: Evaluation result of GPT-3.5-turbo-0301 with the different number of tests for EFFIBENCH.
“10” means the evaluation results are obtained with 10 tests.

number of tests max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s)

10 4.13 2.36 0.0 0.27 2.01 1.83 0.0 49.00 8.84 4.75 41.9 8.84
100 27.70 3.18 1.4 0.39 2.05 1.91 0.0 60.53 70.62 6.50 89.1 19.06
1000 66.68 3.95 4.6 0.56 11.91 2.84 5.0 162.11 436.11 10.08 66.6 340.51

the metrics evaluated in Table 11. This aggregation can lead to a situation where poor performance
on a few tasks is averaged out by better performance on others, giving a potentially misleading
impression of overall efficiency.

A.13 Efficiency distribution for the normalized metrics

As shown in Table 11, we report the efficiency distribution for normalized metrics of the LLM-
generated code. In this section, we further break down the efficiency distribution of GPT-3.5-turbo-
0301 generated code. Specifically, for each normalized metric, we collect all GPT-3.5-turbo-0301
generated code’s efficiency metric. Then we divide them into 100 buckets. Then, we report the
accumulated figures in Figure 8. We can observe that most of the GPT-3.5-turbo-0301 generated
code is less efficient than the canonical solution (i.e., value = 1).

A.14 Efficiency of Code with different number of tests

Our experiments in Table 3 only consider 100 tests for each problem, which inspires us to consider
how different numbers of tests affect the efficiency of code generated by code generation models.
To answer this question, we investigate how does different number of tests affects the efficiency
score for each metric. The evaluation results are shown in Table 24, where we can observe that once
we increase the tests from 10 to 1,000, the efficiency score for NET, NMU, and NTMU increase
for GPT-3.5-turbo-0301. For example, the GPT-3.5-turbo-0301’s NTMU increases from 4.75 to
10.08. We indicate that the key reason is once we increase the number of tests, more edge cases
would be covered (e.g., more length, data distribution). However, since the tests for the efficiency
experiments, the overhead such as memory usage increases largely. For example, when we increase
the tests from 100 to 1,000, the TMU increases from 8.84 MB*s to 340.51 MB*s, which requires
more computation resources for experiments. So in our experiments and Leaderboard, we focus on
studying the LLM-generated code efficiency in 100 tests.

A.15 Randomness

Seed We also evaluated the efficiency of the code generated by GPT-3.5-turbo-0301 five times in
the same environments to ensure the reliability of our results. As demonstrated in Table 25, perfor-
mance metrics such as ET, MU, and TMU show remarkable consistency across different executions.
Specifically, the standard deviations (std) for these metrics are exceptionally low, demonstrating
minimal variability and highlighting the stability of the code execution in our testing environment.
For example, the mean of the ET is 0.39 (s), while the std of the ET is 0 for the five times results.
This consistent performance underpins the robustness of our experimental approach, providing a solid
foundation for further analysis of the model’s operational characteristics.

Environment We also provide an analysis of the efficiency of the code generated by closed-source
models in different local environments. The results are shown in Table 26, where we can observe that

27

11532 https://doi.org/10.52202/079017-0367



Table 14: Evaluation result of GPT-3.5-turbo-0301 with five different executions. The mean and
standard deviation (std) values are reported to two decimal places.

number of tests max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s)

0 27.70 3.18 1.4 0.39 2.05 1.91 0.0 60.53 70.62 6.50 89.1 19.06
1 27.70 3.17 1.4 0.39 2.06 1.91 0.0 60.55 70.50 6.48 89.1 19.07
2 27.76 3.17 1.4 0.38 2.06 1.91 0.0 60.55 70.41 6.52 89.1 19.21
3 27.42 3.18 1.4 0.39 2.05 1.91 0.0 60.54 70.70 6.70 89.2 18.95
4 27.78 3.18 1.4 0.39 2.05 1.91 0.0 60.53 70.48 6.41 89.1 19.05

Mean 27.67 3.18 1.4 0.39 2.05 1.91 0.0 60.54 70.54 6.52 89.1 19.07
Std 0.13 0.00 0.0 0.00 0.00 0.00 0.0 0.01 0.10 0.10 0.0 0.09

Table 15: Evaluation result of closed-source models for different environments. Both the canonical
solution and LLM-generated code were executed in the same environments.

number of tests max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s)

8336C CPU|Python 3.11.2

gpt-3.5-turbo-0301 27.70 3.18 1.4 0.39 2.05 1.91 0.0 60.53 70.62 6.50 89.1 19.06
gpt-3.5-turbo-0613 46.70 3.22 0.9 0.39 2.64 1.92 0.0 59.82 161.12 6.71 89.9 19.11
gpt-3.5-turbo-1106 68.71 3.40 1.6 0.40 9.12 1.94 0.2 59.34 182.63 7.24 90.9 19.39
gpt-4 13.89 3.12 1.0 0.37 2.25 1.92 0.0 58.85 43.92 6.36 91.1 17.69
gpt-4-turbo-preview 27.00 3.19 1.2 0.38 9.13 1.93 0.2 57.06 68.48 6.57 91.1 16.92
claude-3-haiku 28.75 3.28 0.7 0.39 2.05 1.91 0.0 59.15 72.87 6.71 90.0 17.99
claude-3-sonnet 17.43 3.22 0.9 0.40 2.06 1.91 0.0 60.22 50.78 6.57 90.5 23.29

8336C CPU|Python 3.10.14

GPT-3.5-turbo-0301 22.92 2.77 1.7 0.34 2.07 1.91 0.0 60.65 58.28 5.69 73.7 17.07
gpt-3.5-turbo-0613 38.48 2.78 0.9 0.33 2.64 1.92 0.0 59.92 133.49 5.80 73.9 16.54
gpt-3.5-turbo-1106 53.63 2.84 1.2 0.34 9.03 1.94 0.2 59.43 142.42 6.04 68.3 16.38
gpt-4 10.01 2.71 1.6 0.32 2.33 1.92 0.0 58.96 31.21 5.57 70.1 15.05
gpt-4-turbo-preview 23.00 2.80 1.2 0.33 9.03 1.94 0.2 57.17 58.01 5.81 71.4 14.91
claude-3-haiku 22.38 2.76 0.7 0.33 2.06 1.91 0.0 59.22 56.46 5.66 75.5 15.15
claude-3-sonnet 14.97 2.70 0.7 0.33 2.06 1.92 0.0 60.30 43.86 5.51 73.3 19.29

8336C CPU|Python 3.9.19

GPT-3.5-turbo-0301 22.62 2.40 1.2 0.29 2.06 1.91 0.0 60.64 57.11 4.89 29.6 14.25
gpt-3.5-turbo-0613 39.71 2.80 0.9 0.33 2.64 1.92 0.0 59.90 137.14 5.85 73.7 16.65
gpt-3.5-turbo-1106 53.73 2.89 1.2 0.34 9.03 1.94 0.2 59.45 142.72 6.16 72.8 16.69
gpt-4 10.04 2.67 0.6 0.32 2.33 1.92 0.0 58.96 31.11 5.44 72.6 15.20
gpt-4-turbo-preview 22.25 2.78 1.4 0.33 9.04 1.94 0.2 57.16 56.62 5.73 72.9 14.84
claude-3-haiku 21.55 2.79 1.4 0.33 2.06 1.92 0.0 59.25 54.78 5.74 75.3 15.30
claude-3-sonnet 14.31 2.48 0.9 0.31 2.06 1.92 0.0 60.32 40.41 5.03 41.1 18.37

8336C CPU|Python 3.8.19

GPT-3.5-turbo-0301 19.04 2.36 1.2 0.29 2.08 1.92 0.0 60.94 48.50 4.84 24.6 14.21
gpt-3.5-turbo-0613 36.77 2.29 0.6 0.27 2.64 1.92 0.0 59.92 126.82 4.76 10.8 13.53
gpt-3.5-turbo-1106 53.30 2.93 1.4 0.35 9.04 1.94 0.2 59.43 141.23 6.23 74.4 16.88
gpt-4 9.04 2.69 0.8 0.32 2.33 1.92 0.0 58.96 27.48 5.49 74.6 15.33
gpt-4-turbo-preview 22.08 2.71 0.8 0.32 9.03 1.94 0.2 57.17 56.10 5.59 71.2 14.60
claude-3-haiku 22.10 2.77 0.7 0.33 2.06 1.92 0.0 59.25 55.93 5.73 72.3 15.39
claude-3-sonnet 15.91 2.76 0.7 0.34 2.06 1.92 0.0 60.29 46.86 5.68 74.2 20.17

4216 CPU |Python 3.11.2

GPT-3.5-turbo-0301 19.42 2.32 1.2 0.28 2.07 1.92 0.0 60.94 49.48 4.74 16.1 13.95
gpt-3.5-turbo-0613 39.10 2.44 0.6 0.29 2.65 1.92 0.0 59.94 134.30 5.08 26.7 14.10
gpt-3.5-turbo-1106 53.92 2.91 1.4 0.35 9.04 1.94 0.2 59.44 143.13 6.20 74.0 16.63
gpt-4 9.62 2.70 0.8 0.32 2.33 1.92 0.0 58.94 30.08 5.52 72.6 15.25
gpt-4-turbo-preview 22.71 2.76 1.1 0.33 9.03 1.94 0.2 57.17 57.82 5.68 72.0 14.87
claude-3-haiku 23.36 2.71 0.7 0.32 2.06 1.92 0.0 59.26 58.57 5.56 69.5 15.09
claude-3-sonnet 15.35 2.68 0.9 0.33 2.06 1.92 0.0 60.31 44.58 5.50 68.9 19.25

4116 CPU |Python 3.11.2

GPT-3.5-turbo-0301 19.08 2.27 1.2 0.28 2.06 1.91 0.0 60.65 48.41 4.63 11.8 13.82
gpt-3.5-turbo-0613 38.45 2.82 1.7 0.34 2.64 1.92 0.0 59.92 132.92 5.91 70.0 16.70
gpt-3.5-turbo-1106 54.70 2.97 1.6 0.35 9.04 1.94 0.2 59.41 145.30 6.32 75.0 16.82
gpt-4 9.68 2.70 1.2 0.32 2.33 1.92 0.0 58.94 29.62 5.47 72.8 15.20
gpt-4-turbo-preview 22.23 2.76 0.9 0.33 9.04 1.94 0.2 57.17 59.36 5.68 74.3 14.85
claude-3-haiku 23.12 2.70 0.5 0.32 2.06 1.92 0.0 59.27 58.72 5.54 70.2 15.02
claude-3-sonnet 16.98 2.66 0.9 0.33 2.06 1.92 0.0 60.29 48.34 5.45 65.0 19.28

in different environments, the efficiency changed slightly, which pushes us to consider how can we
avoid the bias for different users to use EFFIBENCH to quantify the efficiency of their pre-trained
code generation models. To avoid this problem, we provide two different solutions that can maintain
the same code execution environment. First, we provide Request efficiency evaluation form in
our Leaderboard and Github, by filling the request we will evaluate the efficiency of the request
pre-trained code generation model and then report it to the user. Second, we also provide a server
in the Hugging Face Space where users can directly upload the code generation JSON file and then
the server will execute the code locally and then report the efficiency results. The testing time in the
server only requires less than one minute for each model (See Appendix A.24).

28

11533https://doi.org/10.52202/079017-0367



Table 16: Overhead result of closed-source models efficiency testing time.

model time

gpt-3.5-turbo-0301 32s
gpt-3.5-turbo-0613 34s
gpt-3.5-turbo-1106 35s
gpt-4 37s
gpt-4-turbo-preview 34s
claude-3-haiku 17s
claude-3-sonnet 24s

Table 17: Efficiency results for different algorithm subsets with GPT-4-turbo-0613.

Model max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s) Pass@1

greedy 3.62 3.05 0.0 0.35 2.04 1.93 0.0 58.44 7.82 6.23 92.0 16.97 41.2
dynamic_programming 27.10 3.40 2.3 0.42 2.64 1.94 0.0 54.25 68.94 7.10 90.6 19.63 46.2
backtracking 16.27 3.61 4.2 0.57 2.04 1.85 0.0 78.83 37.56 7.38 79.2 38.25 50.0
divide_and_conquer 3.59 3.21 0.0 0.35 2.03 1.95 0.0 49.39 7.67 6.64 100.0 11.61 52.4
dfs 3.52 2.96 0.0 0.37 2.06 1.84 0.0 66.01 7.31 5.88 86.7 16.26 27.8
bfs 3.41 2.92 0.0 0.36 2.06 1.84 0.0 63.07 7.04 5.75 81.2 14.98 37.2
binary_search 3.54 2.92 0.0 0.38 2.04 1.87 0.0 79.10 7.62 5.83 87.5 27.21 43.2
two_pointers 3.58 3.08 0.0 0.37 2.04 1.94 0.0 68.99 7.52 6.33 92.9 25.72 53.3
sliding_window 3.60 3.07 0.0 0.35 2.05 1.95 0.0 64.08 7.71 6.29 95.2 21.68 60.0
bit_manipulation 46.70 3.97 2.0 0.46 2.18 1.96 0.0 60.87 161.12 9.42 94.1 25.09 50.0
sorting 5.58 3.03 0.9 0.36 2.04 1.89 0.0 65.15 13.79 6.12 88.3 21.50 46.6

A.16 Overhead

The overhead of the efficiency evaluation is important as if the overhead of the evaluation is very
long, the validity of the results will be questionable. To address this concern, we provide the overhead
report for the closed-source models in Table 30. We can observe that the overhead required by each
model for efficiency testing is lower than 1 minute. For example, the source code generated by
GPT-3.5-turbo-0301 only requires 32 (s) to finish the efficiency testing.

A.17 Discussion on Time and Space Complexity

In our experiment, we aim to quantify the efficiency of code generated by code generation models
with our efficiency metrics. While time and space complexity are conventional metrics in software
development for assessing code efficiency, we opted not to rely solely on these for several reasons.
Firstly, identical time and space complexity annotations do not guarantee equivalent performance
across different implementations. For instance, two algorithms with time complexities expressed as
T (2n) and T (n) might both be classified under the same complexity order O(n). However, their
practical execution times and resource utilization can vary significantly, underscoring the limitations
of using complexity classes as the sole measure of efficiency. Secondly, accurately determining the
time and space complexity of a given piece of code typically requires manual analysis and labeling.
This process is inherently subjective and prone to human error, making it less suitable for automated,
large-scale evaluation of code generation models. The necessity for manual intervention contradicts
our goal of automating the efficiency evaluation process as much as possible. Thirdly, although there
are models designed to predict the time and space complexity of code, these predictions are often
sub-optimal and can be inaccurate14. Relying on such models for critical evaluations might introduce
significant errors, leading to misleading conclusions about a code generation model’s efficiency. Given
these considerations, we chose to focus on direct measurements of execution time and memory usage
through our specified metrics. These measurements provide a more accurate, objective, and practical
assessment of the generated code’s efficiency, reflecting real-world performance more closely than
theoretical complexity classes. This approach allows for a nuanced analysis of the models’ output,
enabling a comprehensive evaluation of their practical utility in software development scenarios.

29

11534 https://doi.org/10.52202/079017-0367



Table 18: Efficiency results for different algorithm subsets with GPT-3.5-turbo-1106

Model max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s) Pass@1

greedy 6.12 3.10 0.9 0.35 2.04 1.94 0.0 57.27 15.53 6.37 91.4 15.98 47.7
dynamic_programming 68.71 3.95 3.0 0.48 9.12 1.99 0.7 55.24 182.63 8.68 91.8 21.89 48.4
backtracking 5.38 3.19 4.8 0.46 9.12 2.27 4.8 86.95 29.17 7.34 90.5 37.27 43.8
divide_and_conquer 3.99 3.08 0.0 0.35 2.02 1.91 0.0 51.97 8.68 6.21 92.3 11.69 61.9
dfs 3.47 2.86 0.0 0.35 2.06 1.83 0.0 63.32 7.09 5.63 85.7 14.98 32.4
bfs 6.82 3.02 3.2 0.41 2.06 1.87 0.0 62.10 14.60 6.01 83.9 17.41 36.0
binary_search 6.13 3.02 1.4 0.38 2.05 1.89 0.0 76.83 15.97 6.13 91.3 26.15 46.6
two_pointers 3.58 3.11 0.0 0.37 2.04 1.94 0.0 67.87 7.51 6.38 93.2 24.76 56.2
sliding_window 3.60 3.09 0.0 0.36 2.05 1.95 0.0 65.28 7.58 6.33 92.3 22.81 55.7
bit_manipulation 47.10 4.01 2.0 0.46 2.20 1.95 0.0 61.25 163.96 9.59 92.0 25.37 49.0
sorting 6.12 3.06 0.8 0.36 2.04 1.90 0.0 63.49 15.53 6.21 88.8 20.10 52.5

Table 19: Efficiency results for different algorithm subsets with GPT-4.

Model max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s) Pass@1

greedy 5.83 3.08 0.8 0.35 2.04 1.93 0.0 57.15 15.28 6.32 92.7 15.74 50.6
dynamic_programming 4.53 3.11 0.0 0.36 2.25 1.94 0.0 53.97 10.16 6.31 91.3 15.44 49.8
backtracking 4.53 3.01 0.0 0.44 2.03 1.84 0.0 81.67 10.16 5.89 77.3 32.23 45.8
divide_and_conquer 3.68 3.04 0.0 0.34 2.02 1.90 0.0 53.16 7.94 6.15 87.5 11.72 38.1
dfs 3.82 3.05 0.0 0.35 2.06 1.88 0.0 57.57 7.72 6.09 93.9 13.32 30.6
bfs 11.22 3.38 5.6 0.45 2.06 1.87 0.0 55.58 25.19 6.85 91.7 19.23 41.9
binary_search 3.69 2.96 0.0 0.38 2.04 1.88 0.0 75.09 7.78 5.92 89.3 25.24 50.7
two_pointers 3.94 3.09 0.0 0.36 2.04 1.94 0.0 66.90 8.90 6.36 95.2 23.65 59.0
sliding_window 8.46 3.23 2.5 0.39 2.06 1.92 0.0 66.36 17.85 6.60 95.0 25.41 57.1
bit_manipulation 4.53 3.12 0.0 0.36 2.03 1.95 0.0 60.22 10.16 6.39 92.6 18.60 52.9
sorting 13.89 3.11 1.5 0.38 2.25 1.89 0.0 63.62 43.92 6.40 90.0 21.09 54.6

Table 20: Efficiency results for different algorithm subsets with GPT-4-turbo-preview.

Model max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s) Pass@1

greedy 3.94 3.06 0.0 0.34 2.03 1.94 0.0 55.02 8.92 6.29 92.1 14.27 67.5
dynamic_programming 27.00 3.42 2.6 0.41 9.13 1.98 0.5 53.49 68.48 7.26 92.6 17.01 68.2
backtracking 5.03 3.17 3.7 0.47 9.13 2.15 3.7 79.98 27.42 6.98 81.5 33.79 56.2
divide_and_conquer 3.52 3.06 0.0 0.36 2.03 1.89 0.0 52.62 7.63 6.16 87.5 12.52 76.2
dfs 4.09 3.05 0.0 0.36 2.05 1.85 0.0 56.57 8.89 6.04 90.0 13.26 37.0
bfs 6.42 3.09 2.6 0.41 2.05 1.86 0.0 57.33 13.66 6.15 84.6 15.53 45.3
binary_search 3.77 3.00 0.0 0.37 2.04 1.90 0.0 69.90 8.01 6.06 90.4 22.14 63.5
two_pointers 3.74 3.10 0.0 0.36 2.04 1.95 0.0 65.53 8.30 6.37 94.0 22.56 63.8
sliding_window 8.54 3.20 1.8 0.38 2.05 1.93 0.0 61.46 17.89 6.56 92.7 21.28 78.6
bit_manipulation 19.79 3.39 1.5 0.43 2.03 1.95 0.0 58.06 44.72 7.02 93.9 20.90 64.7
sorting 10.40 3.07 0.6 0.37 2.04 1.89 0.0 61.40 19.63 6.20 88.1 19.34 66.8

Table 21: Efficiency results for different algorithm subsets with Claude-3-haiku.

Model max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s) Pass@1

greedy 4.09 3.22 0.0 0.36 2.03 1.94 0.0 53.85 8.71 6.62 91.8 13.99 40.3
dynamic_programming 28.75 3.47 0.9 0.40 2.02 1.94 0.0 52.55 72.87 7.23 92.2 15.82 41.9
backtracking 4.65 3.06 0.0 0.46 2.03 1.84 0.0 90.79 10.07 6.04 75.0 39.13 33.3
divide_and_conquer 3.90 3.31 0.0 0.35 2.03 1.94 0.0 49.75 7.78 6.77 100.0 11.71 42.9
dfs 4.22 3.02 0.0 0.39 2.05 1.77 0.0 69.36 8.36 5.84 80.0 18.01 23.1
bfs 6.69 3.12 3.6 0.46 2.05 1.81 0.0 67.97 14.20 6.14 78.6 20.31 32.6
binary_search 4.27 3.12 0.0 0.40 2.04 1.87 0.0 78.61 9.30 6.28 87.7 29.13 43.9
two_pointers 4.27 3.26 0.0 0.38 2.04 1.94 0.0 62.44 9.30 6.69 92.0 22.39 47.6
sliding_window 3.90 3.20 0.0 0.38 2.05 1.94 0.0 66.27 7.89 6.57 91.9 25.85 52.9
bit_manipulation 4.60 3.21 0.0 0.37 2.03 1.95 0.0 62.77 10.08 6.54 90.7 20.82 42.2
sorting 11.06 3.25 0.9 0.38 2.04 1.90 0.0 60.54 29.68 6.68 90.3 19.93 47.5

Table 22: Efficiency results for different algorithm subsets with Claude-3-sonnet.

Model max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s) Pass@1

greedy 3.75 3.13 0.0 0.36 2.03 1.93 0.0 58.47 7.90 6.39 90.3 16.68 42.4
dynamic_programming 16.34 3.42 1.8 0.47 2.04 1.94 0.0 54.95 37.83 6.96 92.0 35.81 40.8
backtracking 17.43 4.92 13.3 0.75 2.04 1.89 0.0 89.79 50.78 11.28 86.7 53.91 31.2
divide_and_conquer 3.56 3.03 0.0 0.36 2.02 1.88 0.0 53.44 7.18 6.01 75.0 12.62 57.1
dfs 3.61 3.03 0.0 0.36 2.05 1.81 0.0 59.20 7.53 5.94 86.2 13.98 26.9
bfs 6.24 3.08 3.4 0.42 2.05 1.84 0.0 59.57 13.17 6.06 86.2 16.36 33.7
binary_search 3.61 2.99 0.0 0.40 2.04 1.87 0.0 80.89 7.60 5.98 83.6 28.93 41.2
two_pointers 3.61 3.18 0.0 0.38 2.05 1.94 0.0 70.62 7.53 6.54 94.1 27.10 48.6
sliding_window 3.69 3.13 0.0 0.36 2.06 1.95 0.0 64.09 7.77 6.41 95.2 22.12 60.0
bit_manipulation 17.43 3.51 2.4 0.40 2.02 1.95 0.0 63.19 50.78 7.56 92.9 22.32 41.2
sorting 4.98 3.10 0.0 0.37 2.04 1.89 0.0 64.34 11.81 6.27 89.2 20.90 50.4

30

11535https://doi.org/10.52202/079017-0367



Table 23: Evaluation results of different LLMs efficiency results for EffiBench. We use “*” to
represent the results with the new calculation type.

Model ET NET NET* MU NMU NMU* TMU NTMU NTMU*

gpt-3.5-turbo-0301 0.39 3.18 2.92 60.53 1.91 1.61 19.06 6.50 2.52
gpt-3.5-turbo-0613 0.39 3.22 2.96 59.82 1.92 1.64 19.11 6.71 2.68
gpt-3.5-turbo-1106 0.40 3.40 3.15 59.34 1.94 1.66 19.39 7.24 2.85
gpt-4 0.37 3.12 2.88 58.85 1.92 1.66 17.69 6.36 2.69
gpt-4-turbo-preview 0.38 3.19 3.02 57.06 1.93 1.71 16.92 6.57 3.02
claude-3-haiku 0.39 3.28 3.00 59.15 1.91 1.64 17.99 6.71 2.66
claude-3-sonnet 0.40 3.22 3.05 60.22 1.91 1.62 23.29 6.57 3.13

A.18 Algorithm subsets

A.19 Calculating the normalized metrics with task level

In Section 3.4, we define the normalized efficiency metrics at the dataset level. For example, NET is
defined as:

NET =
1

N

N∑ Tcode

Tcanonical

. In this section, we further discuss the normalized efficiency metrics for LLM-generated code at
the dataset level. For example, we set NET* as the dataset-level normalized execution time metric.
The NET* is defined as: where Tcode is the execution time of the generated code, and Tcanonical is the
execution time of the canonical solution.

NET =

∑N
Tcode∑N

Tcanonical

We follow the setup of Table 4 to evaluate the efficiency of LLM-generated code in 9 open- and
closed-source models. The evaluation results are demonstrated in Table 23. We can observe that
with the dataset-level normalized metric calculation, the efficiency of LLM-generated code is closer
to the canonical solution. For example, GPT-3.5-turbo-0301 generated code required execution
time decreases from 3.18x to 2.92x compared to the canonical solution. The key reason is that
the dataset-level normalization aggregates the performance across all tasks, potentially masking
significant variations in efficiency on individual tasks. While the dataset-level normalized metric,
such as NET*, provides a broad overview of the model’s performance, it can obscure important details
about how well the model handles specific tasks. For example, this dataset-level calculation ignores
the metrics evaluated in Table 11. This aggregation can lead to a situation where poor performance
on a few tasks is averaged out by better performance on others, giving a potentially misleading
impression of overall efficiency.

A.20 Efficiency distribution for the normalized metrics

As shown in Table 11, we report the efficiency distribution for normalized metrics of the LLM-
generated code. In this section, we further break down the efficiency distribution of GPT-3.5-turbo-
0301 generated code. Specifically, for each normalized metric, we collect all GPT-3.5-turbo-0301
generated code’s efficiency metric. Then we divide them into 100 buckets. Then, we report the
accumulated figures in Figure 8. We can observe that most of the GPT-3.5-turbo-0301 generated
code is less efficient than the canonical solution (i.e., value = 1).

A.21 Efficiency of Code with different number of tests

Our experiments in Table 3 only consider 100 tests for each problem, which inspires us to consider
how different numbers of tests affect the efficiency of code generated by code generation models.
To answer this question, we investigate how does different number of tests affects the efficiency
score for each metric. The evaluation results are shown in Table 24, where we can observe that once
we increase the tests from 10 to 1,000, the efficiency score for NET, NMU, and NTMU increase

14https://community.ibm.com/community/user/ai-datascience/blogs/
sepideh-seifzadeh1/2021/10/05/ai-for-code-predict-code-complexity-using-ibms-cod

31

11536 https://doi.org/10.52202/079017-0367

https://community.ibm.com/community/user/ai-datascience/blogs/sepideh-seifzadeh1/2021/10/05/ai-for-code-predict-code-complexity-using-ibms-cod
https://community.ibm.com/community/user/ai-datascience/blogs/sepideh-seifzadeh1/2021/10/05/ai-for-code-predict-code-complexity-using-ibms-cod


Table 24: Evaluation result of GPT-3.5-turbo-0301 with the different number of tests for EFFIBENCH.
“10” means the evaluation results are obtained with 10 tests.

number of tests max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s)

10 4.13 2.36 0.0 0.27 2.01 1.83 0.0 49.00 8.84 4.75 41.9 8.84
100 27.70 3.18 1.4 0.39 2.05 1.91 0.0 60.53 70.62 6.50 89.1 19.06
1000 66.68 3.95 4.6 0.56 11.91 2.84 5.0 162.11 436.11 10.08 66.6 340.51

Table 25: Evaluation result of GPT-3.5-turbo-0301 with five different executions. The mean and
standard deviation (std) values are reported to two decimal places.

number of tests max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s)

0 27.70 3.18 1.4 0.39 2.05 1.91 0.0 60.53 70.62 6.50 89.1 19.06
1 27.70 3.17 1.4 0.39 2.06 1.91 0.0 60.55 70.50 6.48 89.1 19.07
2 27.76 3.17 1.4 0.38 2.06 1.91 0.0 60.55 70.41 6.52 89.1 19.21
3 27.42 3.18 1.4 0.39 2.05 1.91 0.0 60.54 70.70 6.70 89.2 18.95
4 27.78 3.18 1.4 0.39 2.05 1.91 0.0 60.53 70.48 6.41 89.1 19.05

Mean 27.67 3.18 1.4 0.39 2.05 1.91 0.0 60.54 70.54 6.52 89.1 19.07
Std 0.13 0.00 0.0 0.00 0.00 0.00 0.0 0.01 0.10 0.10 0.0 0.09

for GPT-3.5-turbo-0301. For example, the GPT-3.5-turbo-0301’s NTMU increases from 4.75 to
10.08. We indicate that the key reason is once we increase the number of tests, more edge cases
would be covered (e.g., more length, data distribution). However, since the tests for the efficiency
experiments, the overhead such as memory usage increases largely. For example, when we increase
the tests from 100 to 1,000, the TMU increases from 8.84 MB*s to 340.51 MB*s, which requires
more computation resources for experiments. So in our experiments and Leaderboard, we focus on
studying the LLM-generated code efficiency in 100 tests.

A.22 Difficulty

We also provide the efficiency results of all open- and closed-source models in the different difficulty
in Table 27-29. We can observe that the pass@1 of open-source LLMs is very low.

A.23 Randomness

Seed We also evaluated the efficiency of the code generated by GPT-3.5-turbo-0301 five times
in the same environments to ensure the reliability of our results. As shown in Table 25, we can
observe that performance metrics such as ET, MU, and TMU show remarkable consistency across
different executions. Specifically, the standard deviations (std) for these metrics are exceptionally low,
demonstrating minimal variability and highlighting the stability of the code execution in our testing
environment. This consistent performance underpins the robustness of our experimental approach,
providing a solid foundation for further analysis of the model’s operational characteristics.

Environment We also provide an analysis of the efficiency of the code generated by closed-source
models in different local environments. The results are shown in Table 26, where we can observe
that in different environments, the efficiency changed slightly, which pushes us to consider how can
we avoid the bias for different users to use EffiBench to quantify the efficiency of their pre-trained
code generation models. To avoid this problem, we provide two different solutions that can maintain
the same code execution environment. First, we provide Request efficiency evaluation form in
our Leaderboard and Github, by filling the request we will evaluate the efficiency of the request
pre-trained code generation model and then report it to the user. Second, we also provide a server
in the Hugging Face Space where users can directly upload the code generation JSON file and then
the server will execute the code locally and then report the efficiency results. The testing time in the
server only requires less than one minute for each model (See Appendix A.24).

A.24 Overhead

We provide the overhead report for the closed-source models in Table 30. We can observe that the
overhead required by each model for efficiency testing is lower than 1 minute.

32

11537https://doi.org/10.52202/079017-0367



Table 26: Evaluation result of closed-source models for different environments. Both the canonical
solution and LLM-generated code were executed in the same environments.

number of tests max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s)

8336C CPU|Python 3.11.2

gpt-3.5-turbo-0301 27.70 3.18 1.4 0.39 2.05 1.91 0.0 60.53 70.62 6.50 89.1 19.06
gpt-3.5-turbo-0613 46.70 3.22 0.9 0.39 2.64 1.92 0.0 59.82 161.12 6.71 89.9 19.11
gpt-3.5-turbo-1106 68.71 3.40 1.6 0.40 9.12 1.94 0.2 59.34 182.63 7.24 90.9 19.39
gpt-4 13.89 3.12 1.0 0.37 2.25 1.92 0.0 58.85 43.92 6.36 91.1 17.69
gpt-4-turbo-preview 27.00 3.19 1.2 0.38 9.13 1.93 0.2 57.06 68.48 6.57 91.1 16.92
claude-3-haiku 28.75 3.28 0.7 0.39 2.05 1.91 0.0 59.15 72.87 6.71 90.0 17.99
claude-3-sonnet 17.43 3.22 0.9 0.40 2.06 1.91 0.0 60.22 50.78 6.57 90.5 23.29

8336C CPU|Python 3.10.14

GPT-3.5-turbo-0301 22.92 2.77 1.7 0.34 2.07 1.91 0.0 60.65 58.28 5.69 73.7 17.07
gpt-3.5-turbo-0613 38.48 2.78 0.9 0.33 2.64 1.92 0.0 59.92 133.49 5.80 73.9 16.54
gpt-3.5-turbo-1106 53.63 2.84 1.2 0.34 9.03 1.94 0.2 59.43 142.42 6.04 68.3 16.38
gpt-4 10.01 2.71 1.6 0.32 2.33 1.92 0.0 58.96 31.21 5.57 70.1 15.05
gpt-4-turbo-preview 23.00 2.80 1.2 0.33 9.03 1.94 0.2 57.17 58.01 5.81 71.4 14.91
claude-3-haiku 22.38 2.76 0.7 0.33 2.06 1.91 0.0 59.22 56.46 5.66 75.5 15.15
claude-3-sonnet 14.97 2.70 0.7 0.33 2.06 1.92 0.0 60.30 43.86 5.51 73.3 19.29

8336C CPU|Python 3.9.19

GPT-3.5-turbo-0301 22.62 2.40 1.2 0.29 2.06 1.91 0.0 60.64 57.11 4.89 29.6 14.25
gpt-3.5-turbo-0613 39.71 2.80 0.9 0.33 2.64 1.92 0.0 59.90 137.14 5.85 73.7 16.65
gpt-3.5-turbo-1106 53.73 2.89 1.2 0.34 9.03 1.94 0.2 59.45 142.72 6.16 72.8 16.69
gpt-4 10.04 2.67 0.6 0.32 2.33 1.92 0.0 58.96 31.11 5.44 72.6 15.20
gpt-4-turbo-preview 22.25 2.78 1.4 0.33 9.04 1.94 0.2 57.16 56.62 5.73 72.9 14.84
claude-3-haiku 21.55 2.79 1.4 0.33 2.06 1.92 0.0 59.25 54.78 5.74 75.3 15.30
claude-3-sonnet 14.31 2.48 0.9 0.31 2.06 1.92 0.0 60.32 40.41 5.03 41.1 18.37

8336C CPU|Python 3.8.19

GPT-3.5-turbo-0301 19.04 2.36 1.2 0.29 2.08 1.92 0.0 60.94 48.50 4.84 24.6 14.21
gpt-3.5-turbo-0613 36.77 2.29 0.6 0.27 2.64 1.92 0.0 59.92 126.82 4.76 10.8 13.53
gpt-3.5-turbo-1106 53.30 2.93 1.4 0.35 9.04 1.94 0.2 59.43 141.23 6.23 74.4 16.88
gpt-4 9.04 2.69 0.8 0.32 2.33 1.92 0.0 58.96 27.48 5.49 74.6 15.33
gpt-4-turbo-preview 22.08 2.71 0.8 0.32 9.03 1.94 0.2 57.17 56.10 5.59 71.2 14.60
claude-3-haiku 22.10 2.77 0.7 0.33 2.06 1.92 0.0 59.25 55.93 5.73 72.3 15.39
claude-3-sonnet 15.91 2.76 0.7 0.34 2.06 1.92 0.0 60.29 46.86 5.68 74.2 20.17

4216 CPU |Python 3.11.2

GPT-3.5-turbo-0301 19.42 2.32 1.2 0.28 2.07 1.92 0.0 60.94 49.48 4.74 16.1 13.95
gpt-3.5-turbo-0613 39.10 2.44 0.6 0.29 2.65 1.92 0.0 59.94 134.30 5.08 26.7 14.10
gpt-3.5-turbo-1106 53.92 2.91 1.4 0.35 9.04 1.94 0.2 59.44 143.13 6.20 74.0 16.63
gpt-4 9.62 2.70 0.8 0.32 2.33 1.92 0.0 58.94 30.08 5.52 72.6 15.25
gpt-4-turbo-preview 22.71 2.76 1.1 0.33 9.03 1.94 0.2 57.17 57.82 5.68 72.0 14.87
claude-3-haiku 23.36 2.71 0.7 0.32 2.06 1.92 0.0 59.26 58.57 5.56 69.5 15.09
claude-3-sonnet 15.35 2.68 0.9 0.33 2.06 1.92 0.0 60.31 44.58 5.50 68.9 19.25

4116 CPU |Python 3.11.2

GPT-3.5-turbo-0301 19.08 2.27 1.2 0.28 2.06 1.91 0.0 60.65 48.41 4.63 11.8 13.82
gpt-3.5-turbo-0613 38.45 2.82 1.7 0.34 2.64 1.92 0.0 59.92 132.92 5.91 70.0 16.70
gpt-3.5-turbo-1106 54.70 2.97 1.6 0.35 9.04 1.94 0.2 59.41 145.30 6.32 75.0 16.82
gpt-4 9.68 2.70 1.2 0.32 2.33 1.92 0.0 58.94 29.62 5.47 72.8 15.20
gpt-4-turbo-preview 22.23 2.76 0.9 0.33 9.04 1.94 0.2 57.17 59.36 5.68 74.3 14.85
claude-3-haiku 23.12 2.70 0.5 0.32 2.06 1.92 0.0 59.27 58.72 5.54 70.2 15.02
claude-3-sonnet 16.98 2.66 0.9 0.33 2.06 1.92 0.0 60.29 48.34 5.45 65.0 19.28

A.25 Discussion on Time and Space Complexity

In our experiment, we aim to quantify the efficiency of code generated by code generation models
with our efficiency metrics. While time and space complexity are conventional metrics in software
development for assessing code efficiency, we opted not to rely solely on these for several reasons.
Firstly, identical time and space complexity annotations do not guarantee equivalent performance
across different implementations. For instance, two algorithms with time complexities expressed as
T (2n) and T (n) might both be classified under the same complexity order O(n). However, their
practical execution times and resource utilization can vary significantly, underscoring the limitations
of using complexity classes as the sole measure of efficiency. Secondly, accurately determining the
time and space complexity of a given piece of code typically requires manual analysis and labeling.
This process is inherently subjective and prone to human error, making it less suitable for automated,
large-scale evaluation of code generation models. The necessity for manual intervention contradicts
our goal of automating the efficiency evaluation process as much as possible. Thirdly, although there
are models designed to predict the time and space complexity of code, these predictions are often
sub-optimal and can be inaccurate15. Relying on such models for critical evaluations might introduce
significant errors, leading to misleading conclusions about a code generation model’s efficiency. Given
these considerations, we chose to focus on direct measurements of execution time and memory usage
through our specified metrics. These measurements provide a more accurate, objective, and practical
assessment of the generated code’s efficiency, reflecting real-world performance more closely than

15https://community.ibm.com/community/user/ai-datascience/blogs/
sepideh-seifzadeh1/2021/10/05/ai-for-code-predict-code-complexity-using-ibms-cod

33

11538 https://doi.org/10.52202/079017-0367

https://community.ibm.com/community/user/ai-datascience/blogs/sepideh-seifzadeh1/2021/10/05/ai-for-code-predict-code-complexity-using-ibms-cod
https://community.ibm.com/community/user/ai-datascience/blogs/sepideh-seifzadeh1/2021/10/05/ai-for-code-predict-code-complexity-using-ibms-cod


Table 27: Code efficiency of widely-studied LLMs reported by EFFIBENCH (Easy).

Model max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s) Pass@1

Open-source models
CodeLlama-7b-hf 3.09 2.93 0.0 0.30 2.05 2.00 0.0 48.10 6.39 5.97 100.0 9.81 0.7
CodeLlama-13b-hf 3.21 2.91 0.0 0.31 2.05 1.93 0.0 50.40 6.53 5.81 88.9 10.28 0.9
CodeLlama-34b-hf 3.34 3.00 0.0 0.32 2.06 1.95 0.0 50.13 6.93 6.09 94.6 10.47 3.7
CodeLlama-70b-hf 7.56 3.02 2.3 0.36 2.06 1.92 0.0 62.08 15.82 6.14 90.7 18.22 4.3

CodeLlama-7b-Instruct-hf 15.89 3.45 4.0 0.40 2.05 1.92 0.0 68.21 46.14 7.51 88.0 21.95 2.5
CodeLlama-13b-Instruct-hf 4.46 2.92 0.0 0.36 2.06 1.89 0.0 75.56 10.22 5.90 89.5 23.28 3.8
CodeLlama-34b-Instruct-hf 3.50 2.91 0.0 0.35 2.05 1.92 0.0 69.94 7.37 5.88 89.1 20.21 4.6
CodeLlama-70b-Instruct-hf 3.13 2.92 0.0 0.31 2.06 1.96 0.0 49.55 6.68 5.97 95.5 10.13 2.2

deepseek-coder-1.3b-instruct 3.11 2.89 0.0 0.31 2.03 1.92 0.0 50.52 6.41 5.85 90.0 10.22 1.0
deepseek-coder-6.7b-instruct 5.59 3.02 4.3 0.35 2.05 1.94 0.0 68.72 13.81 6.23 95.7 20.11 2.3
deepseek-coder-6.7b-base 12.25 3.10 2.0 0.40 2.14 1.90 0.0 61.01 23.39 6.23 88.2 19.92 5.1
deepseek-coder-33b-base 19.54 3.25 1.4 0.36 37.39 2.42 1.4 68.90 604.13 14.33 91.8 28.06 7.3

OpenCodeInterpreter-DS-1.3B 3.36 2.88 0.0 0.35 2.05 1.91 0.0 71.55 7.09 5.79 91.3 21.27 2.3
OpenCodeInterpreter-DS-6.7B 5.70 2.94 2.3 0.35 2.04 1.88 0.0 63.79 14.14 5.91 84.1 17.08 4.4
OpenCodeInterpreter-DS-33B 3.67 2.98 0.0 0.33 2.05 1.91 0.0 57.64 7.68 6.00 90.1 13.91 7.1

Phind-CodeLlama-34B-v1 3.51 2.96 0.0 0.34 2.06 1.93 0.0 62.33 7.76 6.01 91.7 16.52 3.6
Phind-CodeLlama-34B-v2 4.80 3.00 0.0 0.35 2.04 1.90 0.0 64.35 11.30 6.08 87.1 17.84 7.0

starcoder 3.22 2.77 0.0 0.37 2.06 1.87 0.0 88.70 6.57 5.47 84.6 29.48 1.3
starcoder2-3b 3.08 2.87 0.0 0.32 2.01 1.91 0.0 53.76 6.61 5.76 87.5 10.85 0.8
starcoder2-7b 5.19 3.18 14.3 0.34 2.06 2.00 0.0 48.15 12.69 6.78 100.0 11.47 0.7
starcoder2-15b 3.01 2.41 0.0 0.47 1.99 1.59 0.0 152.41 6.14 4.24 40.0 62.31 0.5
starcoderbase 3.34 2.77 0.0 0.38 2.04 1.81 0.0 91.97 7.09 5.44 75.0 29.75 1.2

WizardCoder-13B 3.20 2.81 0.0 0.35 2.05 1.87 0.0 77.99 6.51 5.58 82.4 23.33 1.7
WizardCoder-15B 3.17 2.78 0.0 0.36 2.04 1.89 0.0 82.49 6.61 5.55 85.7 25.89 1.4

XwinCoder-13B 3.25 2.91 0.0 0.33 2.05 1.94 0.0 61.49 6.71 5.92 92.3 16.25 3.9
XwinCoder-34B 4.45 2.97 0.0 0.34 2.05 1.91 0.0 62.77 10.42 6.01 88.2 16.80 7.6

Yi-34B-200K 3.17 2.89 0.0 0.31 2.04 1.94 0.0 50.86 6.78 5.87 85.7 10.36 2.1
Yi-34B-Chat 3.15 2.74 0.0 0.36 2.03 1.87 0.0 82.08 6.69 5.45 86.7 26.12 1.5
Yi-34B 3.17 2.77 0.0 0.38 2.04 1.84 0.0 92.73 6.77 5.43 83.3 30.39 1.2

Artigenz-Coder-DS-6.7B 15.96 3.26 1.9 0.37 2.21 1.91 0.0 59.91 46.16 6.80 91.5 16.75 10.6
CodeFuse-DeepSeek-33B 6.10 3.16 1.1 0.34 2.05 1.93 0.0 50.94 15.19 6.47 91.5 11.47 9.4
codegemma-7b 8.09 3.13 2.0 0.35 2.05 1.94 0.0 58.52 20.96 6.46 94.0 16.07 5.0
Magicoder-S-DS-6.7B 5.15 3.01 0.9 0.34 2.06 1.92 0.0 58.97 12.56 6.09 88.9 14.98 11.7
Mistral-7B-codealpaca-lora 3.11 2.81 0.0 0.31 2.04 1.92 0.0 52.51 6.45 5.68 90.9 10.47 1.1
octocoder 2.99 2.99 0.0 0.30 2.02 2.01 0.0 47.93 6.20 6.12 100.0 9.66 0.2

Closed-source models
gpt-3.5-turbo-0301 16.24 3.14 0.9 0.35 2.05 1.92 0.0 58.65 46.95 6.47 90.2 15.49 11.2
gpt-3.5-turbo-0613 5.58 3.07 0.8 0.34 2.05 1.93 0.0 57.70 13.79 6.28 93.3 15.00 12.0
gpt-3.5-turbo-1106 4.78 3.10 0.0 0.35 2.05 1.93 0.0 57.82 11.23 6.32 91.7 14.97 12.1
gpt-4 8.46 3.12 0.7 0.36 2.25 1.92 0.0 57.52 17.85 6.34 92.0 15.93 13.7
gpt-4-turbo-preview 10.40 3.18 1.2 0.37 2.05 1.92 0.0 56.58 19.63 6.49 92.5 16.17 16.1
claude-3-haiku 11.06 3.31 0.9 0.37 2.05 1.92 0.0 58.59 29.68 6.81 92.2 16.68 11.6
claude-3-sonnet 4.98 3.16 0.0 0.35 2.06 1.93 0.0 57.35 11.81 6.45 92.4 15.13 13.1

Table 28: Code efficiency of widely-studied LLMs reported by EFFIBENCH (Medium).

Model max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s) Pass@1

Open-source models
CodeLlama-7b-hf 3.25 2.50 0.0 0.31 1.99 1.71 0.0 49.34 6.80 4.87 75.0 10.23 0.4
CodeLlama-13b-hf 2.60 1.80 0.0 0.78 1.93 1.46 0.0 347.49 5.32 3.16 50.0 194.83 0.2
CodeLlama-34b-hf 4.46 2.98 0.0 0.35 2.06 1.91 0.0 59.86 9.17 6.00 93.0 16.15 4.3
CodeLlama-70b-hf 13.92 3.40 7.5 0.52 2.05 1.86 0.0 65.11 32.04 6.84 82.5 28.69 4.0
CodeLlama-7b-Instruct-hf 3.36 2.75 0.0 0.40 2.03 1.86 0.0 94.89 6.72 5.49 84.2 37.34 1.9
CodeLlama-13b-Instruct-hf 3.95 2.90 0.0 0.34 2.48 1.93 0.0 59.30 10.07 5.89 94.7 15.75 3.8
CodeLlama-34b-Instruct-hf 13.66 3.19 1.9 0.40 2.06 1.93 0.0 55.59 31.46 6.48 88.7 18.68 5.3
CodeLlama-70b-Instruct-hf 14.60 3.20 2.5 0.44 2.06 1.92 0.0 57.22 33.69 6.52 87.5 24.52 4.0
deepseek-coder-1.3b-instruct 3.63 2.80 0.0 0.34 2.03 1.91 0.0 61.17 8.13 5.61 90.3 14.45 3.1
deepseek-coder-6.7b-instruct 4.53 2.79 0.0 0.41 2.57 1.86 0.0 83.79 10.72 5.58 83.3 35.78 3.6
deepseek-coder-6.7b-base 6.63 2.94 1.2 0.37 2.06 1.92 0.0 67.61 14.18 5.93 91.9 21.92 8.6
deepseek-coder-33b-base 14.85 3.14 1.7 0.42 2.07 1.93 0.0 59.01 26.99 6.36 92.4 22.62 11.8
OpenCodeInterpreter-DS-1.3B 3.35 2.79 0.0 0.35 2.05 1.88 0.0 66.99 7.02 5.55 79.3 23.06 2.9
OpenCodeInterpreter-DS-6.7B 6.03 2.96 1.4 0.39 2.37 1.91 0.0 65.96 12.85 5.98 87.8 21.98 7.4
OpenCodeInterpreter-DS-33B 17.39 3.11 2.3 0.40 2.14 1.91 0.0 62.60 49.99 6.37 87.5 21.25 12.8
Phind-CodeLlama-34B-v1 3.57 2.87 0.0 0.39 2.06 1.87 0.0 74.39 7.36 5.67 85.1 28.43 6.7
Phind-CodeLlama-34B-v2 53.08 3.53 2.1 0.49 2.60 1.88 0.0 79.87 139.88 7.48 84.5 35.83 9.7
starcoder 3.34 2.91 0.0 0.31 2.04 1.96 0.0 49.06 6.88 5.94 88.2 10.17 1.7
starcoder2-3b 3.13 2.93 0.0 0.31 2.04 1.99 0.0 48.02 6.49 5.99 100.0 10.02 0.4
starcoder2-7b 3.01 2.86 0.0 0.30 2.03 1.97 0.0 48.94 6.17 5.82 100.0 9.89 0.7
starcoder2-15b 2.88 2.88 0.0 0.31 2.01 2.01 0.0 47.64 6.04 6.04 100.0 10.14 0.1
starcoderbase 2.95 2.87 0.0 0.31 2.05 1.94 0.0 49.43 5.84 5.77 100.0 10.04 0.4
WizardCoder-Python-13B-V1.0-GPTQ 3.16 2.55 0.0 0.40 2.03 1.76 0.0 98.77 6.45 4.85 72.7 32.50 1.1
WizardCoder-15B-V1.0 4.07 2.88 0.0 0.35 2.06 1.91 0.0 67.82 9.51 5.86 84.6 17.41 1.3
XwinCoder-13B 3.39 2.92 0.0 0.32 2.04 1.93 0.0 54.69 6.93 5.91 95.0 12.55 4.0
XwinCoder-34B 6.32 2.96 1.1 0.34 2.42 1.92 0.0 55.50 17.70 6.00 87.5 12.77 8.8
Yi-34B-200K 3.16 2.99 0.0 0.31 2.06 2.00 0.0 47.90 6.49 6.16 100.0 9.90 1.1
Yi-34B-Chat 2.98 2.76 0.0 0.32 2.05 1.89 0.0 55.22 6.16 5.44 90.0 11.22 1.0
Yi-34B 3.38 2.74 0.0 0.37 2.05 1.91 0.0 86.38 7.13 5.57 90.0 28.88 1.0
Artigenz-Coder-DS-6.7B 9.69 3.11 1.5 0.39 2.48 1.91 0.0 66.56 26.21 6.35 90.0 22.60 20.1
CodeFuse-DeepSeek-33B 3.80 2.99 0.0 0.37 2.06 1.89 0.0 64.54 7.75 6.00 84.7 20.30 16.3
codegemma-7b 3.40 2.94 0.0 0.34 2.06 1.92 0.0 54.46 7.14 5.93 90.5 12.60 6.3
Magicoder-S-DS-6.7B 6.73 2.98 0.5 0.37 2.33 1.90 0.0 63.72 14.24 5.99 88.0 19.55 19.2
Mistral-7B-codealpaca-lora 3.82 2.92 0.0 0.32 2.36 1.97 0.0 51.26 9.20 6.01 92.3 10.64 1.3
octocoder 2.78 2.35 0.0 0.34 1.99 1.66 0.0 70.03 5.60 4.02 50.0 13.37 0.2

Closed-source models
gpt-3.5-turbo-0301 17.25 3.12 1.7 0.40 2.05 1.89 0.0 64.74 43.96 6.34 88.5 22.27 23.5
gpt-3.5-turbo-0613 46.70 3.23 0.8 0.40 2.64 1.91 0.0 63.86 161.12 6.80 88.5 22.50 26.0
gpt-3.5-turbo-1106 68.71 3.45 2.1 0.42 9.12 1.94 0.4 63.09 182.63 7.46 89.7 22.55 28.2
gpt-4 13.89 3.14 1.4 0.38 2.16 1.91 0.0 62.30 43.92 6.43 90.3 20.56 27.9
gpt-4-turbo-preview 22.41 3.14 1.1 0.38 9.13 1.93 0.3 59.86 65.33 6.47 90.0 18.45 36.0
claude-3-haiku 6.69 3.17 0.4 0.38 2.05 1.90 0.0 62.02 14.20 6.42 88.4 19.45 24.2
claude-3-sonnet 17.43 3.26 1.7 0.44 2.05 1.89 0.0 64.31 50.78 6.64 89.1 30.72 23.9

34

11539https://doi.org/10.52202/079017-0367



Table 29: Code efficiency of widely-studied LLMs reported by EFFIBENCH (Hard).

Model max NET NET NET>5 ET (s) max NMU NMU NMU>5 MU (Mb) max NTMU NTMU NTMU>5 TMU (Mb*s) Pass@1

Open-source models
CodeLlama-7b-hf
CodeLlama-13b-hf
CodeLlama-34b-hf 3.10 2.77 0.0 0.32 2.00 1.84 0.0 55.74 6.51 5.37 75.0 11.15 0.4
CodeLlama-70b-hf 3.26 3.08 0.0 0.32 2.03 1.97 0.0 49.01 6.90 6.37 100.0 10.47 0.7
CodeLlama-7b-Instruct-hf 17.26 6.60 25.0 1.19 3.59 2.40 0.0 57.44 56.61 18.86 100.0 71.07 0.4
CodeLlama-13b-Instruct-hf 3.11 2.83 0.0 0.31 2.04 1.92 0.0 50.02 6.46 5.68 71.4 10.31 0.7
CodeLlama-34b-Instruct-hf 4.16 2.87 0.0 0.33 2.56 1.96 0.0 53.45 10.32 5.83 75.0 11.44 1.2
CodeLlama-70b-Instruct-hf 3.10 2.92 0.0 0.32 2.03 1.94 0.0 51.16 6.43 5.93 90.0 11.15 1.0
deepseek-coder-1.3b-instruct 3.07 2.87 0.0 0.30 2.01 1.96 0.0 49.12 6.40 5.91 75.0 10.00 0.4
deepseek-coder-6.7b-instruct 3.34 2.93 0.0 0.31 2.02 1.96 0.0 49.01 7.02 5.99 90.0 10.16 1.0
deepseek-coder-6.7b-base 3.50 2.92 0.0 0.34 2.04 1.90 0.0 51.17 7.44 5.85 85.7 11.60 2.8
deepseek-coder-33b-base 3.60 2.94 0.0 0.32 2.02 1.93 0.0 49.52 7.64 5.93 90.7 10.54 4.3
OpenCodeInterpreter-DS-1.3B 3.93 3.34 0.0 0.34 2.00 1.99 0.0 48.37 8.44 7.05 100.0 11.14 0.3
OpenCodeInterpreter-DS-6.7B 3.20 2.96 0.0 0.33 2.02 1.98 0.0 48.71 6.81 6.02 100.0 10.86 1.4
OpenCodeInterpreter-DS-33B 26.06 3.64 2.6 0.44 2.43 1.92 0.0 51.74 66.25 7.72 86.8 16.81 3.8
Phind-CodeLlama-34B-v1 3.35 3.00 0.0 0.32 2.02 1.97 0.0 48.88 6.95 6.09 92.9 10.40 1.4
Phind-CodeLlama-34B-v2 4.12 3.04 0.0 0.35 2.02 1.93 0.0 50.91 9.52 6.17 91.3 12.02 2.3
starcoder 2.92 2.67 0.0 0.32 2.00 1.78 0.0 60.88 6.01 4.98 66.7 11.53 0.3
starcoder2-3b 3.07 3.07 0.0 0.31 1.99 1.99 0.0 48.37 6.26 6.26 100.0 10.23 0.1
starcoder2-7b 3.01 3.01 0.0 0.30 1.98 1.98 0.0 48.59 6.13 6.13 100.0 9.83 0.1
starcoder2-15b 3.20 3.20 0.0 0.31 2.01 2.01 0.0 47.95 6.59 6.59 100.0 10.07 0.1
starcoderbase 3.01 2.78 0.0 0.31 2.00 1.94 0.0 49.68 6.17 5.57 66.7 10.22 0.3
WizardCoder-Python-13B-V1.0-GPTQ 16.48 5.06 16.7 0.87 3.57 2.21 0.0 55.67 53.63 13.64 66.7 48.55 0.6
WizardCoder-15B-V1.0 3.21 2.90 0.0 0.31 2.00 1.99 0.0 48.33 6.79 6.01 66.7 10.06 0.3
XwinCoder-13B 4.16 3.06 0.0 0.39 2.01 1.90 0.0 50.44 8.95 6.17 60.0 13.95 0.5
XwinCoder-34B 4.25 3.04 0.0 0.34 2.01 1.94 0.0 50.24 9.15 6.19 84.2 11.71 1.9
Yi-34B-200K 3.02 2.84 0.0 0.31 1.99 1.92 0.0 50.15 6.19 5.70 100.0 10.44 0.4
Yi-34B-Chat 2.98 2.93 0.0 0.31 2.01 1.93 0.0 50.04 6.36 6.01 100.0 10.40 0.2
Yi-34B 3.07 3.04 0.0 0.31 2.04 2.00 0.0 48.08 6.44 6.26 100.0 10.22 0.3
Artigenz-Coder-DS-6.7B 27.78 3.55 1.8 0.41 2.04 1.91 0.0 50.67 70.28 7.45 92.9 15.16 5.6
CodeFuse-DeepSeek-33B 4.24 3.12 0.0 0.35 2.03 1.94 0.0 48.71 9.10 6.36 88.6 11.74 3.5
codegemma-7b 3.43 2.99 0.0 0.33 2.02 1.91 0.0 51.34 7.25 6.04 93.3 11.06 1.5
Magicoder-S-DS-6.7B 4.16 3.03 0.0 0.34 2.61 1.94 0.0 49.86 10.77 6.19 92.5 11.28 5.3
Mistral-7B-codealpaca-lora 2.87 2.56 0.0 0.30 2.00 2.00 0.0 47.58 5.81 5.16 50.0 9.73 0.2
octocoder

Closed-source models
gpt-3.5-turbo-0301 27.70 3.36 1.3 0.40 2.03 1.93 0.0 50.19 70.62 6.98 88.0 14.33 7.5
gpt-3.5-turbo-0613 27.10 3.39 1.2 0.40 2.04 1.93 0.0 50.38 68.94 7.06 89.2 14.51 8.3
gpt-3.5-turbo-1106 27.12 3.63 2.2 0.42 2.04 1.94 0.0 49.54 68.84 7.70 92.1 15.39 8.9
gpt-4 4.53 3.06 0.0 0.34 2.04 1.92 0.0 50.40 10.16 6.18 92.3 11.64 9.1
gpt-4-turbo-preview 27.00 3.33 1.5 0.38 2.03 1.93 0.0 50.02 68.48 6.89 91.7 13.65 13.2
claude-3-haiku 28.75 3.61 1.4 0.42 2.02 1.92 0.0 50.34 72.87 7.57 91.4 15.20 7.0
claude-3-sonnet 3.75 3.17 0.0 0.35 2.03 1.93 0.0 50.35 8.20 6.45 90.2 11.71 6.1

Table 30: Overhead result of closed-source models efficiency testing time.

model time

gpt-3.5-turbo-0301 32s
gpt-3.5-turbo-0613 34s
gpt-3.5-turbo-1106 35s
gpt-4 37s
gpt-4-turbo-preview 34s
claude-3-haiku 17s
claude-3-sonnet 24s

theoretical complexity classes. This approach allows for a nuanced analysis of the models’ output,
enabling a comprehensive evaluation of their practical utility in software development scenarios.

A.26 Discussion Automatically-generated Test Cases

As discussed in Section 3.3, EFFIBENCH generated test cases by first developing a test case generator
for each coding problem, where we modify the test case generator to make sure the test cases
generated by the generator are correct. Then, we use the test case generator to generate test cases for

Table 31: Evaluation results of test case accuracy for canonical solutions. For each test case generated
by LLMs, we analyze whether the test case is accurate for the canonical solution. Then, we calculate
the accuracy based on the total correct test cases/total generated test cases.

Model accuracy

GPT-3.5-turbo-0301 5.9
GPT-3.5-turbo-0613 8.2
GPT-4-turbo 14.3
GPT-4 13.7

35

11540 https://doi.org/10.52202/079017-0367



each task. In this section, we discuss why do we not directly require LLM (e.g., GPT-3.5-turbo) to
generate test cases for each task. Specifically, we provide the experiment results of four closed-source
LLMs generated test cases’ accuracy. The evaluation results are demonstrated in Table 31, where we
can observe that the accuracy of the test cases generated by four LLMs is lower than 15%, which
explains why do we not use LLM to generate test cases for each task, i.e., the accuracy of test cases
are very low.

A.27 Case illustration of test case generator

We provide a case example to illustrate that how does test case generator generate test cases for
EFFIBENCH. Specifically, as shown in Figure 9, we can observe that the script is used to generate 100
tests for the function lengthOfLongestSubstring, where the test case generator randomly generates
input and then feeds into the canonical solution. Then, the canonical solution returns the output for
the given input.

36

11541https://doi.org/10.52202/079017-0367



1.09-1.35 27.43-27.70
Value Range

0

25

50

75

100

125

150

175

200

Co
un

t

746101014

52

202

92

14
32 11 1 1 1 1

Value Distribution

(a) Normalized execution time distribution.

0.50-0.52 1.00-1.01 2.04-2.05
Value Range

0

20

40

60

80

100

Co
un

t

1 1
7

21 1 1 1 233 1 1 231 31 21
5
1 132

10
14

79
14
1719

29

111

80

46

97

Value Distribution

(b) Normalized maximum memory usage distribution.

0.98-1.67 69.92-70.62
Value Range

0

25

50

75

100

125

150

175

200

Co
un

t

11
495813

31

197

116

18

211 1 1 1 1 1 1

Value Distribution

(c) Normalized memory usage distribution.

Figure 7: Various distributions of computational resources used by GPT-3.5 Turbo 0301 version. We
divided the metric value range into ten columns based on the minimum and maximum values for each
metric.

37

11542 https://doi.org/10.52202/079017-0367



1.09-1.35 27.43-27.70
Value Range

0

25

50

75

100

125

150

175

200

Co
un

t

746101014

52

202

92

14
32 11 1 1 1 1

Value Distribution

(a) Normalized execution time distribution.

0.50-0.52 1.00-1.01 2.04-2.05
Value Range

0

20

40

60

80

100

Co
un

t

1 1
7

21 1 1 1 233 1 1 231 31 21
5
1 132

10
14

79
14
1719

29

111

80

46

97

Value Distribution

(b) Normalized maximum memory usage distribution.

0.98-1.67 69.92-70.62
Value Range

0

25

50

75

100

125

150

175

200

Co
un

t

11
495813

31

197

116

18

211 1 1 1 1 1 1

Value Distribution

(c) Normalized memory usage distribution.

Figure 8: Various distributions of computational resources used by GPT-3.5 Turbo 0301 version. We
divided the metric value range into ten columns based on the minimum and maximum values for each
metric.

38

11543https://doi.org/10.52202/079017-0367



Test Case Generation

import random

class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:

ss = set()
i = ans = 0
for j, c in enumerate(s):

while c in ss:
ss.remove(s[i])
i += 1

ss.add(c)
ans = max(ans, j - i + 1)

return ans

def generate_test_case():
solution = Solution()

# Generate a random string
s = ''.join(random.choices('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789',

k=random.randint(0, 10)))↪→

# Calculate the expected result using the provided Solution class
expected_result = solution.lengthOfLongestSubstring(s)

return (s, ), expected_result

def test_generated_test_cases(num_tests):
test_case_generator_results = []
for i in range(num_tests):

inputs, expected_result = generate_test_case()
solution = Solution()
assert solution.lengthOfLongestSubstring(*inputs) == expected_result

test_case_generator_results.append(f"assert solution.lengthOfLongestSubstring({ ',
'.join(map(repr, inputs))} ) == { expected_result} ")↪→

return test_case_generator_results

if __name__ == '__main__':
num_tests = 100
test_case_generator_results = test_generated_test_cases(num_tests)

with open("./full_tmp/0.txt", "w") as f:
f.write("\n".join(test_case_generator_results))

print(len(test_case_generator_results))

Figure 9: A case illustration of the test case generation process for the LeetCode task. The test case
generator (function generate_test_case) generate 100 tests for the solution.

39

11544 https://doi.org/10.52202/079017-0367




