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Abstract

Speculative decoding has demonstrated its effectiveness in accelerating the infer-
ence of large language models (LLMs) while maintaining an identical sampling
distribution. However, the conventional approach of training separate draft model
to achieve a satisfactory token acceptance rate can be costly and impractical. In
this paper, we propose a novel self-speculative decoding framework Kangaroo with
double early exiting strategy, which leverages the shallow sub-network and the
LM Head of the well-trained target LLM to construct a self-drafting model. Then,
the self-verification stage only requires computing the remaining layers over the
early-exited hidden states in parallel. To bridge the representation gap between
the sub-network and the full model, we train a lightweight and efficient adapter
module on top of the sub-network. One significant challenge that comes with
the proposed method is that the inference latency of the self-draft model may no
longer be negligible compared to the big model. To boost the token acceptance rate
while minimizing the latency of the self-drafting model, we introduce an additional
early exiting mechanism for both single-sequence and the tree decoding scenarios.
Specifically, we dynamically halt the small model’s subsequent prediction during
the drafting phase once the confidence level for the current step falls below a certain
threshold. This approach reduces unnecessary computations and improves overall
efficiency. Extensive experiments on multiple benchmarks demonstrate our effec-
tiveness, where Kangaroo achieves walltime speedups up to 2.04×, outperforming
Medusa-1 with 88.7% fewer additional parameters. The code for Kangaroo is
available at https://github.com/Equationliu/Kangaroo.

1 Introduction

Large Language Models (LLMs) [1, 2, 3, 4, 5, 6] have demonstrated remarkable performance across
various natural language processing tasks, such as chain-of-thought reasoning [7] and agents [8].
Beyond model performance, recent research has also focused on inference efficiency [9, 10], particu-
larly in scenarios involving the deployment of LLMs for service applications. However, constrained
by the bottleneck of memory bandwidth [11], the primary latency for autoregressive decoding of
LLMs arises mainly from memory read/write operations rather than arithmetic computations, leading
to inadequate parallelism. For instance, decoding Vicuna-33B [12] on four NVIDIA V100 GPUs
yields a throughput of only seven new tokens per second.

To address this challenge, Speculative Decoding (SD) techniques [13, 14] have been developed,
aiming to accelerate autoregressive decoding by verifying multiple tokens generated by a draft model
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(a) Token acceptance rate on the mathematical
reasoning subtask. Token position “2" denotes
the task to predict the next-next-token.
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(b) End-to-end speedup ratio on four subtasks in Spec-
Bench. “Math" and “RAG" denote mathematical reason-
ing and retrieval-augmented generation, respectively.

Figure 1: Comparison of various self-drafting speculative decoding methods without tree mask on
Spec-Bench [22] for Vicuna-7B [12]. Kangaroo outperforms all other methods w.r.t. end-to-end
speedup ratio across all the four subtasks. Specifically, Kangaroo (without tree) achieves speedups of
1.68× on MT-bench [23], outperforming Medusa with 88.7% fewer additional parameters.

in parallel. Given γ draft tokens, SD can generate 1 to γ + 1 new tokens within each forward pass
of the big LLM. Most of existing SD methods typically train a tiny draft model from scratch on a
large corpus to accelerate LLMs from the same series, e.g., LLaMA-68M [15] for LLaMA-7B [2].
Distillspec [16] uses knowledge distillation to better align the draft model with the target model.
However, the training of such task-specific models can be costly [16, 17], limiting its application in
real-world scenarios.

To mitigate these costs, several studies have proposed self-drafting methods that do not rely on
external drafter models. LLMA [18] and REST [19] generate draft tokens by selecting text spans
from references or retrieving relevant tokens from a database. Notably, Medusa [20] trains multiple
time-independent Feed-Forward neural Network (FFN) heads on top of the last decoder layer.
Although Medusa and REST could generate draft tokens efficiently, however, the token acceptance
rate is not always satisfactory (see Figure 1(a)). On the other hand, focusing exclusively on the token
acceptance rate without considering the latency of generating draft tokens can lead to suboptimal
speedup ratio. For instance, as shown in Figure 1, Lookahead [21] achieves a significantly higher
token acceptance rate than Medusa in the mathematical reasoning subtask. However, due to its lower
efficiency in the drafting phase when compared to Medusa, its end-to-end speedup ratio is slightly
lower than that of Medusa (see Figure 1(b)).

In this paper, we propose a novel self-speculative decoding framework based on a double early-exiting
mechanism. Rather than training the draft model from scratch, we enhance efficiency by inheriting
part of the target model’s knowledge through parameter sharing. Specifically, Kangaroo utilizes both
the shallow sub-network and the LM Head of the target LLM to construct a self-drafting model.
However, there is a natural discrepancy in the representation capabilities between the shallow network
and the final layer of the model. To bridge this gap, we incorporate a lightweight and efficient adapter
module trained on top of the sub-network. Kangaroo’s adapter network is streamlined yet effective,
comprising only one multi-head attention layer [24] and two normalization layers [25], utilizing just
11.3% of the parameters used by Medusa’s heads. This layer-level early-exiting strategy significantly
reduces both the training and deployment costs typically associated with traditional self-speculative
decoding methods that necessitate separate draft model.

Moreover, to achieve an optimal balance between token acceptance rate and drafting efficiency,
Kangaroo introduces an additional token-level dynamic drafting strategy via early exiting. Unlike
existing methods that rely on a fixed drafting step and a predefined static token tree, our approach
dynamically adjusts the depth and width of the token tree based on the conditional probability
distribution of the self-drafting model. In the case of single-sequence decoding, which is a specific
scenario within the token tree, the drafting phase is immediately halted if the top-1 probability of
the current sample token (in the self-drafting model) falls below a predefined threshold. Extensive
experiments conducted on the Spec-Bench demonstrate the effectiveness of our approach. Kangaroo
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achieves speedups of up to 2.04×, significantly outperforming Medusa-1 while using 88.7% fewer
additional parameters (67M compared to 591M.). These results highlight the efficiency and potential
of Kangaroo in improving decoding processes without compromising performance.

2 Related Work

Inference Acceleration of Large Language Models With the rapid development of large language
models, significant research effort has been dedicated to accelerating their inference speed [26].
Techniques such as knowledge distillation [27], model compression [28], and quantization [29]
have also been widely applied in this area. However, these approaches often require additional
training of the backbone or substantial modifications to the model architecture. FlashAttention [9]
and vLLM [10] frameworks accelerate the inference speed of large language models by optimizing
memory management. Recent efforts have explored early exiting on models like the T5 series [30,
31, 32] and decoder-only architectures [33]. However, since early exiting accelerates inference by
saving subsequent computations, it inevitably incurs the issue of performance degradation [30].

Speculative Decoding Speculative decoding has gained significant attention due to its ability to
accelerate the inference of LLMs while maintaining the same sampling distribution. Generally,
speculative decoding [13, 14] involves finding or training [16, 34] a small draft model closely aligned
with the target LLM. Consequently, recent research has focused on more convenient self-drafting
methods. For instance, approaches like blockwise parallel decoding [35] and Medusa [20] expedite
the generation of draft tokens by training multiple time-independent Feedforward Neural Networks at
the second top layer. Several self-drafting acceleration techniques are inspired by early exiting. Draft
& Verify [36], for example, generates draft tokens by skipping intermediate redundant layers of the
target LLM. While this approach could achieve a high token acceptance rate, the inference latency
of the “small model” is exceptionally high, which can hinder end-to-end acceleration efficiency.
SPEED [37] adapts early exiting to pipelined speculative execution for transformer decoders that
employ parameter sharing. There are also several works [38, 39, 40] that make improvement on
Medusa by introducing time dependency among the draft tokens. Unlike our approach, which utilizes
early exiting from shallow layers, these methods typically extrapolate directly from the features of
the penultimate layer. For more related works on speculative decoding, we refer readers to a recent
survey [22] for a detailed summarization.

3 Preliminaries

In this section, we introduce background and the formulations of standard speculative decoding
under greedy decoding. We use xt to denote the discrete token sequence (x1, · · · , xt) and xi:j

to represent sequence (xi, · · · , xj). Let X be a discrete space over all possible tokens x in the
LLM’s vocabulary, we model the autoregressive process of a language model M by the conditional
distributions M(· | xt) ∈ R|X | where |X | is the vocabulary size. We denote the big target language
model and the speculative small model as Mb and Ms, respectively.

Single-Sequence Decoding Due to the memory bandwidth [11] limitations of autoregressive decod-
ing in large language models, the latency to generate one new token is approximately the same as the
time required to parallelly infer γ tokens. Based on this characteristic, speculative decoding [13, 14]
leverages a low-cost small model to quickly generate γ candidates

x̂t+i = argmax
x∈X

Ms(x | x̂t+i−1), i = 1, 2, · · · , γ, (1)

where x̂t = xt. Subsequently, the big model Mb only needs one forward pass over
(x̂t, x̂t+1, · · · , x̂t+γ) to generate γ + 1 tokens (xt+1, · · · , xt+γ+1). The accept length over this
single-sequence verification is

max
i=0,··· ,γ

{i | x̂t+i = xt+i}+ 1, (2)

ranging from 1 to γ + 1.

3
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Figure 2: The framework of Kangaroo under single-sequence verification. The adapter network A
consists of only one multi-head attention and two normalization layers. The self-drafting model
Ms = A ◦ Mb[: l] will reuse the LM Head of the target LLM Mb for better alignment, where
l denotes the early exit layer. To avoid unnecessary costs on more difficult tokens, Ms stops
drafting once the top-1 probability of the current sampled token falls below a certain threshold, e.g.,
Ms(x̂3 | x̂0:2) ≤ η. Note that we will concatenate the stopped token’s next early feature f3 with all
previous exited features into a parallel compute unit [f0, f1, · · · , f3], which will be verified by the
remaining layers Mb[l :] in parallel. Once all drafted tokens are accepted (x̂i = xi for i = 1, 2, 3),
we could start the next round with x4 rather than x3 if we have not calculated f3 in advance. The
decoding on parallel unit [f3, f4] could save the latency for a single forward pass of A.

4 Kangaroo

In this section, we present Kangaroo, a novel self-speculative decoding framework based on a double
early-exiting mechanism. We leverage the shallow sub-network and the LM Head of the target LLM
to construct a self-drafting model. Subsequently, the self-verification stage only requires computing
the remaining layers over the early-exited hidden states in parallel.

4.1 Early Exiting as Self-Drafting Model

Training an additional small model from scratch is often costly and impractical, thus it is worth
considering sharing a portion of the parameters from the target LLM. Drawing inspiration from early
exiting, we directly extract hidden states from a fixed shallow sub-network of the target LLM

ft = Mb[: l](xt), l ∈ {1, 2, · · · , L},

where Mb[: l] denotes the first l layers from the target model Mb. Note that there is a natural
representation gap between the shallow sub-network and the full model. Therefore, we train a
lightweight and efficient adapter A to bridge this gap. As shown in Figure 2, the architecture of the
adapter A consists of only one multi-head attention and two normalization layers. Given an exited
hidden states ft, the forward pass of the adapter model A can be represented as

f ′
t = ft + MultiHead (LayerNorm(ft)) ,

where we keep the residual connection and the multi-head attention module but remove the FFN in a
standard transformer block. Besides the shallow sub-network, Kangaroo also reuses the LM Head
of the target model to get the final conditional distribution, i.e.,

Ms(x | xt) = Softmax
(
W⊤LayerNorm(f ′

t)
)
,
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Figure 4: The density of top-1 conditional proba-
bility on the mathematical reasoning subtask.
“Accept” denotes the top-1 confidence of ac-
cepted draft tokens while “Reject” denotes the
corresponding confidence of rejected tokens.

where W ∈ RN×|X| is the frozen LM Head and N denotes the dimension of hidden states. The total
parameters of A comes from the four projection matrix in the MultiHead layer and two vectors in
the LayerNorm layers, i.e., 4N2 + 2N = 67.1M when N = 4096.

Single-Sequence Self-Speculative Decoding In the drafting phase, the self-drafting model Ms

generates γ new tokens autoregressively. Similar to the standard speculative decoding in Equation (1),
we have x̂t+i = argmaxx∈X Ms(x | x̂t+i−1) and the exited hidden states

ft+i = Mb[: l](x̂t+i), i = 1, 2, · · · , γ,

Subsequently, the remaining layers Mb[l :] will in charge of verifying the concatenated early-exited
hidden features in parallel, i.e.,

f t:t+γ def
= Concat ([ft, ft+1, · · · , ft+γ ]) ∈ RN×(γ+1),

Mb(x
t+1:t+γ+1 | xt) = Softmax

(
W⊤LayerNorm

(
Mb[l :](f

t:t+γ)
))

,

where W is the frozen LM Head. In the verification procedure, we keep the same as the conventional
speculative decoding by comparing the top-1 candidates of Mb(x

t+1:t+γ+1 | xt) and x̂t+i for
i = 1, 2, · · · , γ, following Equation (2).

Training of the Adapter A To bridge the representation gap between the self-drafting model Ms

and the full model Mb, we train the adapter A with the conventional cross-entropy loss, i.e.,

A∗ = argmin
A

∑
t

∑
x∈X

−Mb(x | xt) logMs(x | xt),

where the token positions t is averaged over the whole training set and the condition probability
distribution of the target LLM Mb serves as a distillation for the self-drafting model Ms’s.

4.2 Dynamic Drafting Steps via Token-Level Early-Exiting

Speculative decoding typically employs a fixed drafting step γ during the drafting phase, but this often
leads to local optima. Fixed-step drafting can result in unnecessary time spent on more challenging
samples or missed opportunities to speculate on simpler tokens. As shown in Figure 3, the difficulty
of predicting the next token varies across different contextual scenarios, necessitating the design of a
token-wise dynamic drafting strategy.

Single-Sequence Decoding During drafting phase, we do not have access to the full target model
Mb and must rely solely on the information from the self-drafting model Ms, to determine whether
to continue or terminate the drafting process. Fortunately, we observe a strong correlation between
the small model’s confidence level for the current sampled token and the likelihood that the token
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Figure 5: Comparison of various speculative decoding methods on Spec-Bench [22] for Vicuna-7B,
where Kangaroo outperforms other approaches in most subtasks, especially in mathematical reasoning
and retrieval-augmented generation.

will be accepted by the big target model. In Figure 4, all conditional probability values of the tokens
are divided into two groups. The peak values for tokens accepted by the large model skew to the
right, while the conditional probability values for tokens rejected by the large model cluster at lower
confidence levels. This indicates that the top-1 probability on the Kangaroo’s small model is a reliable
metric for determining when to stop drafting. Therefore, we stop drafting once the top-1 probability
on the self-drafting model falls below a predefined threshold η, i.e.,

max
x∈X

Ms(x | xt) ≤ η. (3)

Extension to Tree Decoding Based on the single-sequence verification procedure, the big model
Mb can only verify one feasible path, composed of the top-1 candidates generated by the small
model Ms. Tree verification technology [15, 20] enhances parallelism and improves GPU utilization
by designing a sparse token tree to simultaneously verify multiple feasible paths. Most current works
that adopt token tree verification rely on handcrafted or pre-searched [41] static tree. We generalize
the early stopping mechanism of Kangaroo in single-sequence decoding to tree decoding, where both
the tree depth and node selection at each level of the tree are token-wise dynamic.

We define the first draft token from Ms as the root2 node. To increase the token acceptance rate, we
feed the Top-K3 most probable tokens into the draft model Ms in parallel at each drafting step. The
confidence score of a child node is computed as the product of its conditional probability in Ms and
its parent’s conditional probability, Formally,

c(xi) =
∏

xj∈Path(root,xi)

c(xj) ,

where Path(root, xi) denotes the path from root to node xi, c(xi) is the probability confidence on
Ms and c(root) = 1. At the first level, we begin with Top-Kx∈XMs(x | root). For level ≥ 2, we
consider the Top-K child nodes for each token in the previous level’s Top-K tokens. In this way, the
tokens with the Top-K largest confidence score will be selected from Top-K × Top-K candidates.
For the selected Top-K tokens, their parent nodes will be added into the token tree T directly. For
tokens in the previous level’s Top-K set without any child node selected, half of those with the lowest
confidence scores are pruned from T . This process continues until the tree size |T | surpasses a
predefined maximum or the highest confidence score at the current level falls below a threshold η.

2The zero level of the token tree.
3Single-sequence decoding is a special case when Top-K equals to 1.
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Table 1: Speedup comparison of various speculative decoding methods on Spec-Bench [22] for
Vicuna [12]. Speedup is the walltime speedup ratio and CR denotes the compression rate.

Size Method
Translation QA Summarization Math RAG MT Bench

Avg.
CR Speedup CR Speedup CR Speedup CR Speedup CR Speedup CR Speedup

7B

Lookahead [21] 1.24 1.15× 1.56 1.21× 1.53 1.27× 1.96 1.51× 1.49 1.19× 1.70 1.40× 1.29×
Medusa w/o Tree 1.58 1.41× 1.50 1.34× 1.49 1.32× 1.73 1.54× 1.51 1.29× 1.76 1.55× 1.41×
REST [19] 1.54 1.26× 1.91 1.63× 1.64 1.33× 1.53 1.23× 1.92 1.46× 2.00 1.58× 1.43×
Kangaroo w/o Tree 1.41 1.24× 1.87 1.43× 1.87 1.50× 2.14 1.61× 2.05 1.52× 2.22 1.68× 1.50×
SpS [13] 1.45 1.17× 2.16 1.55× 2.43 1.76× 2.06 1.51× 2.31 1.67× 2.33 1.69× 1.56×
Medusa [20] 2.12 1.60× 2.08 1.64× 2.01 1.41× 2.48 1.87× 2.09 1.37× 2.51 1.84× 1.63×
Kangaroo 1.76 1.43× 2.32 1.71× 2.31 1.68× 2.76 2.04× 2.37 1.75× 2.67 1.93× 1.72×

13B

Lookahead [21] 1.25 1.02× 1.39 0.99× 1.50 0.98× 1.94 1.24× 1.52 0.94× 1.68 1.08× 1.04×
REST [19] 1.53 1.07× 1.92 1.41× 1.66 1.14× 1.55 1.06× 1.87 1.34× 1.98 1.36× 1.23×
Medusa [20] 2.19 1.21× 2.11 1.17× 2.08 1.21× 2.59 1.41× 2.12 1.12× 2.58 1.38× 1.24×
Medusa w/o Tree 1.61 1.33× 1.49 1.25× 1.53 1.25× 1.80 1.48× 1.53 1.23× 1.82 1.48× 1.34×
Kangaroo w/o Tree 1.45 1.18× 1.79 1.34× 2.00 1.41× 2.42 1.63× 2.16 1.40× 2.44 1.66× 1.44×
SpS [13] 1.44 1.21× 1.83 1.49× 2.32 1.62× 2.15 1.63× 2.43 1.61× 2.25 1.65× 1.54×
Kangaroo 1.79 1.39× 2.25 1.66× 2.41 1.57× 2.82 1.87× 2.49 1.68× 2.71 1.79× 1.65×

5 Experiments

Models and Benchmarks We conduct experiments on Vicuna [12] models with size of 7B and
13B. We select several speculative decoding approaches for comparison including Lookahead [21],
Medusa [20], REST [19] and SpS [13] using Vicuna-68M [17] as the draft model. For fair and
comprehensive comparison, we evaluate the acceleration performance with the recently proposed
Spec-Bench [22], which consists of six subtasks including Multi-turn Conversation, Translation,
Summarization, Question Answering, Mathematical Reasoning and Retrieval-augmented Generation.

Evaluation Metrics Speculative decoding is often evaluated using two primary metrics: walltime
speedup ratio and compression rate. Given a speculative decoding algorithm, we execute it to
generate T new tokens and record the accepted tokens per forward pass of the big model as a list
S = [s1, s2, · · · , s|S|] where

∑
k sk = T . The Compression Rate (CR) is defined as

CR =
1

|S|
∑
k

sk, (4)

which does not accurately reflect the acceptance levels of the drafting algorithm for tokens at varying
distances. Thus, we propose a new metric consistent token acceptance rate CTAR(w), given a prefix
and a following window with size w, is the probability that the w guessed tokens from the draft model
are all accepted by the target model:

CTAR(w) =
1

|S|
∑
k

I(sk − w > 0), (5)

which is a decreasing function w.r.t. the window size w. We plot the empirical CTARs of several
self-drafting speculative decoding algorithms on the mathematical reasoning subtask of Spec-Bench
in Figure 1, where we observe a trade-off between the token acceptance rate and drafting efficiency.

Training and Inference As shown in Figure 2, the big target model is frozen and the trainable
parameters are the multi-head attention and two normalization layers. For Kangaroo, we train
the adapter A for 10 epochs with the AdamW [42] optimizer on the ShareGPT dataset following
Medusa [20]. The training of the adapter A for Vicuna-7B takes around 24 hours on 8 NVIDIA V100
GPUs. During the inference stage, we set ℓ = 2 for Vicuna-7B and ℓ = 3 for Vicuna-13B. For the
single-sequence decoding in Kangaroo, we set γ = 6 and η = 0.6. For the dynamic tree decoding
scenario, we set Top-K as 10, and η = 0.4.

5.1 Effectiveness: Comparison with other Speculative Decoding Methods

The Spec-Bench results for Vicuna families4 are available at Figure 5 and Table 1, where we can
conclude that:

4Additional result for Llama2-13B-Chat [2] is available at Table 4.
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• For both 7B and 13B model sizes, Kangaroo achieves the highest average speedup across
all tasks, with 1.72× and 1.65× respectively. Furthermore, at both model sizes, Kangaroo
with dynamic tree verification demonstrates approximately a 12% improvement in speedup
compared to its single-sequence decoding version, indicating its effectiveness.

• In both single-sequence and tree verification scenarios, Kangaroo outperforms Medusa
across most datasets, despite Kangaroo’s additional parameters comprising only 11.3% of
Medusa’s heads. Kangaroo shows consistent high performance across different tasks such
as QA, Math, and MT Bench, indicating its robustness and versatility.

• Under single-sequence decoding, Kangaroo (67M) achieves comparable results to the SpS
method using Vicuna-68M, which is specifically pre-trained from scratch. Furthermore,
with tree verification, Kangaroo significantly outperforms SpS across most datasets.

5.2 Ablation Studies

To fully explore the sensitivity of different hyperparameters in the Kangaroo framework, we conducted
comprehensive ablation experiments focusing on aspects such as the depth of shallow sub-Network ℓ,
the early stopping threshold η, and the architectural choices of the adapter network A. In the settings
of the ablation experiments described below, we focus on single-sequence decoding scenario.
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Figure 6: The optimal early-exit ratio ℓ
N .

The Depth of Shallow Sub-Network. The
capacity of the self-drafting model Ms highly
depends on the depth of the shared shallow sub-
network. However, selecting deeper early ex-
iting layers, such as half layers of Mb, would
result in excessively high inference latency. As
shown in Figure 7(a), the choice of the opti-
mal early exitlayer l significantly influences the
trade-off between token acceptance rate and
drafting efficiency. For Kangaroo, we set l = 2
for Vicuna-7B and l = 3 for Vicuna-13B. In
general cases, the early exit layer ℓ can be set
based on an empirical ratio derived from the
target model’s depth N . To determine the optimal depth for shallow sub-networks relative to the
full model depth, we conducted multiple comparative experiments across models with different
architectures and sizes. Figure 6 records the average speedup achieved on Spec-Bench with early
exits at various depths. We recommend setting ℓ

N between 1
16 and 1

10 in practical applications.

The Architecture of the Adapter Module. In a transformer block, the Feed-Forward Network
(FFN) component counts for 67% of the whole parameters. As shown in Table 2, removing the
FFN component and sharing the LM Head from the target Large Language Model (LLM) has been
proven to be highly effective and efficient. Specifically, Kangaroo’s adapter module A for Vicuna-7B
achieves a higher “Speedup” of 1.50 ×, compared to 1.41 × for Medusa, while using only about
one-tenth of the additional parameters as Medusa.

Table 2: Ablation studies on the architecture of the adapter module A for Vicuna-7B. “Speedup“
denotes the average speedup ratio on Spec-Bench [22].

Architecture Input LN Attention Post LN FFN Linear Last LN Head # Parameters Speedup

Medusa × 4 × 4 591M 1.41 ×
Kangaroo 67M 1.50 ×

Kangaroo + Head 198M 1.44 ×
1-Layer Transformer 202M 1.37 ×

MLP Only × 2 165M 1.22 ×

Dynamic Exiting v.s. Fixed Step Drafting. Kangaroo uses a static threshold to determine the
timing of the second early stopping, based on the observation that the confidence of draft tokens
in the small model is strongly correlated with their acceptance by the large model. To validate the
effectiveness of dynamic drafting steps with fixed threshold, we plot the comparison for various η
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Figure 7: Ablation studies on hyper-parameters. The compression rate and walltime speedup is
averaged across all sub-benchmarks in Spec-Bench [22]. It can be seen that there is a trade-off
between token acceptance rate and drafting efficiency. While deeper early-exit layer ℓ can enhance
the expressive power of the equivalent draft model in Kangaroo, the increased inference latency can
actually hinder the overall acceleration performance of the system.

in Figure 7(b). The fixed step strategy (η = 0) achieves the maximum compression rate, however,
leading to sub-optimal end-to-end walltime speedup. Overall, the optimal threshold η is consistent
across different maximum steps. For Kangaroo, we set γ = 6 and η = 0.6. Besides, the static
threshold is also robust across different subtasks and architectures. We visualized the conditional
distributions of the small model’s Top-1 confidence across different model architectures and subtasks
in Figures 8 and 9 in the appendix, where the thereshold is stable, ranging from 0.6 to 0.8.

Temperature Sampling It’s well known that speculative sampling suffers from decreased speedup
ratio when increasing the sampling temperature [22]. We consider two sets of comparative ex-
periments ion Kangaroo for the temperature sampling case. One strategy uses the original top-1
confidence as a stopping criterion, while the other uses an adjusted top-1 confidence which is com-
puted by applying softmax to adjusted logits with a temperature scaling factor. As shown in Table 3,
it can be seen that Kangaroo still achieves a speedup effect very similar to that of greedy decoding
when T = 0.2. Moreover, the top-1 confidence used for the second early stopping mechanism should
remain unadjusted because when T < 1, the adjusted top-1 confidence tends to be overestimated,
making it more difficult to trigger the early stopping mechanism.

Table 3: Speedup comparison of various temperature T on Spec-Bench [22] for Vicuna [12]. Speedup
is the walltime speedup ratio and CR denotes the compression rate.

T Confidence
Translation QA Summarization Math RAG MT Bench

Avg.
CR Speedup CR Speedup CR Speedup CR Speedup CR Speedup CR Speedup

0.0 Original 1.41 1.24× 1.87 1.43× 1.87 1.50× 2.14 1.61× 2.05 1.52× 2.22 1.68× 1.50×
0.2 Original 1.41 1.23× 1.88 1.41× 1.88 1.48× 2.19 1.58× 2.01 1.50× 2.21 1.67× 1.48×
0.2 Adjusted 1.45 1.04× 1.90 1.25× 2.00 1.31× 2.32 1.48× 2.18 1.40× 2.41 1.53× 1.34×
0.5 Original 1.41 1.18× 1.86 1.38× 1.88 1.43× 2.21 1.55× 2.01 1.46× 2.23 1.62× 1.43×

6 Conclusion

In conclusion, Kangaroo presents a novel self-speculative decoding framework that significantly
enhances the efficiency of autoregressive decoding for large language models. By leveraging a double
early-exit mechanism, Kangaroo achieves remarkable speedups compared to existing methods, even
with significantly fewer additional parameters. Experimental results demonstrate the effectiveness
of Kangaroo in balancing the token acceptance rate and drafting efficiency, making it a promising
approach for accelerating inference of LLMs in real-world scenarios.

Limitations Although we introduce a lightweight adapter module to bridge the gap between the
shallow network and the final layer of the model, the effectiveness of Kangaroo relies on the target
model and the specific task. In certain complex tasks, this representation gap may still persist.
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A Appendix

Table 4: Speedup comparison of various speculative decoding methods on Spec-Bench [22] for
Llama2-13B-Chat [2]. Speedup is the walltime speedup ratio and CR denotes the compression rate.

Method
Translation QA Summarization Math RAG MT Bench

Avg.
CR Speedup CR Speedup CR Speedup CR Speedup CR Speedup CR Speedup

Draft&Verify [36] 2.61 1.22× 2.36 1.02× 2.84 1.13× 2.47 1.08× 2.44 1.15× 2.46 1.12× 1.12×
SpS [13] 1.63 1.26× 1.69 1.34× 1.47 1.14× 1.77 1.34× 1.81 1.32× 1.67 1.28× 1.28×
Medusa w/o Tree 1.85 1.53× 1.55 1.27× 1.48 1.19× 1.76 1.36× 1.54 1.25× 1.72 1.43× 1.34×
Kangaroo w/o Tree 1.97 1.46× 1.87 1.40× 1.97 1.35× 2.22 1.52× 2.05 1.36× 2.28 1.58× 1.45×
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Figure 8: The density of top-1 conditional probability on various subtasks for Vicuna-7B [12].
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Figure 9: The density of top-1 conditional probability on various subtasks for Llama2-13B-Chat [2].
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Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction reflect the paper’s contributions
and scope accurately.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed in the Conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
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that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimen-
tal results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the information needed to reproduce the main experimental results are provided in
the Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions to
provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The data is open-sourced and the code implementation will be released upon accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The details are provided in the Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.
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7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The error bar is not provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer re-
sources (type of compute workers, memory, time of execution) needed to reproduce the experiments?
Answer: [Yes]
Justification: The details are provided in the Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: It is conformed.
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Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strate-
gies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer:[NA]

Justification: There is no risk in the paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?
Answer: [Yes]
Justification: CC-BY 4.0 is included for each asset
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details
about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?
Answer:[NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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