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Figure 1: LiveScene enables scene-level reconstruction and control with language grounding. Left:
Language-interactive articulated object control in Nerfstudio. Right: LiveScene achieves SOTA
rendering quality on OmniSim dataset and exhibits a significant advantage in parameter efficiency.

Abstract

This paper scales object-level reconstruction to complex scenes, advancing inter-
active scene reconstruction. We introduce two datasets, OmniSim and InterReal,
featuring 28 scenes with multiple interactive objects. To tackle the challenge of
inaccurate interactive motion recovery in complex scenes, we propose LiveScene,
a scene-level language-embedded interactive radiance field that efficiently recon-
structs and controls multiple objects. By decomposing the interactive scene into
local deformable fields, LiveScene enables separate reconstruction of individual ob-
ject motions, reducing memory consumption. Additionally, our interaction-aware
language embedding localizes individual interactive objects, allowing for arbitrary
control using natural language. Our approach demonstrates significant superiority
in novel view synthesis, interactive scene control, and language grounding perfor-
mance through extensive experiments. Project page: https://livescenes.github.io.

1 Introduction

Interactive objects are prevalent in our daily lives, and modeling interactable scenes from the
real physical world plays an essential role in various research fields, including content genera-
tion [33, 35, 52], animation [58, 37, 30], virtual reality [50, 9, 32], robotics [1, 61, 44], and world
understanding [16, 14, 53]. This paper tackles the challenging and rarely explored task of reconstruct-
ing and controlling multiple interactive objects in complex scenes from a single, casually captured
monocular video without previous independent modeling of geometry and kinematics. Prior research
on interactable scene modeling, such as CoNeRF [20] and K-Planes [10], typically adopts a joint
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modeling approach, combining spatial coordinates and all interaction variables as input and repre-
senting interactive scene by either implicit MLPs or feature planes. Meanwhile, CoGS [63] learns
parameter offsets for different scene parts using multiple independent MLPs after establishing a 3D
deformable Gaussian scene. However, these methods primarily focus on capturing interactions for a
single object within a clear background, such as a single drawer, toy car, or face [66, 20, 63, 68]. As
modeling extends from single objects to multiple objects in complex scenes, as shown in Figure. 1, the
interaction spaces become increasingly high-dimensional, complicating these methods for accurate
modeling and significantly increasing computational time and memory cost, e.g., 4× A100 GPU for
2 weeks to converge training in CoNeRF [20] and 500M Gaussian storage for a regular indoor living
room in CoGS [63]. Moreover, natural language is an intuitive and necessary interface for interacting
with 3D scenes, but language embedding of interactive scenes faces an even more daunting challenge:
interaction variation inconsistency. For instance, methods like LERF [23], and OpenNeRF [67],
which distill CLIP features into static 3D fields, suffer from significant failures when confronted with
scene topology structure changes induced by interactions, such as the distinct structures variation of a
cabinet before and after opening.

To address these challenges, we propose LiveScene, the first scene-level language-embedded radi-
ance fields, which compresses high-dimensional interaction spaces into compact 4D feature planes,
reducing model parameters while improving optimization effectiveness. LiveScene models multi-
ple object interactions via novel high-dimensional factorization, decomposing the scene into local
deformable fields that model individual objects with multi-scale 4D deformable feature planes. To
achieve independent control, we introduce a multi-scale interaction probability sampling strategy
for factorized local deformable fields. Our interaction-aware language embedding method generates
varying language embeddings to localize and control objects under arbitrary states, enabling natural
language control. Finally, we construct the first scene-level physical interaction datasets, OmniSim
and InterReal, featuring 28 scenes with 70 interactive objects for evaluation.

Experiment results show that our approach achieves SOTA novel view synthesis quality, outperform-
ing existing best methods by +9.89, +1.30, and +1.99 in PSNR on the CoNeRF Synthetic, OmniSim
#chanllenging, and InterReal #chanllenging subsets, respectively. Surpassing LeRF [23], LiveScene
significantly improves language grounding accuracy by +65.12 of mIOU on the OmniSim dataset.
Notably, our method maintains a lightweight, constant model parameter of 39M, scaling well with
increasing scene complexity, as shown in Figure. 1. Contributions can be summarized as:

• We propose LiveScene, the first scene-level language-embedded interactive radiance field, which
efficiently reconstructs and controls complex physical scenes, enabling manipulation of multiple
articulated objects and language-based interaction.

• We propose a factorization technique that decomposes interactive scenes into local deformable
fields and samples relevant 3D points, enabling control of individual objects. Additionally, we
introduce an interaction-aware language embedding method that generates varying embeddings,
allowing for language-based control and localization.

• We construct the first scene-level physical interaction dataset OmniSim and InterReal, containing
28 subsets and 70 interactive objects for evaluation. Extensive experiments demonstrate our SOTA
performance and robust interaction capabilities.

2 Related Work

Dynamic Scene Representation. Extending NeRF [38] to dynamic scene reconstruction has
made significant progress. Related methods can generally be categorized into time-varying methods,
deformable-canonical methods, and hybrid representation methods. The time-varying methods [7,
41, 54, 65] typically model the radiance field directly over time, but struggle to separate dynamic
and static objects. Deformable-canonical methods [11, 31, 42, 60] decouple dynamic deformable
field and static canonical space, modeling 4D by warping points with deformable field to query
the canonical features. However, these methods face challenges in scene topology changes [10].
Hybrid representation methods, on the other hand, have achieved high-quality reconstruction and
fast rendering by utilizing time-space feature planes [47, 10, 3], 4D hash encoding [56], dynamic
voxels [57], or triple fields [49]. Recently, several works [36, 62, 59, 27] have introduced 3D
gaussians [21] into dynamic scene reconstruction, achieving high-quality real-time rendering speeds.
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Figure 2: The overview of LiveScene. Given a camera view and control variable κ of one specific
interactive object, a series of 3D points are sampled in a local deformable field that models the
interactive motions of this specific interactive object, and then the interactive object with novel
interactive motion state is generated via volume-rendering. Moreover, an interaction-aware language
embedding is utilized to localize and control individual interactive objects using natural language.

However, these methods are limited to reconstructing dynamic scenes and lack the ability to control
and understand interactive scenes.

3D Vision-language Fields. Vision-language foundational models [45, 40, 25] with strong general-
izability and adaptability inspires numerous language embedded scene representation for 3D scene
understanding [2, 70], such as open-vocabulary segmentation [34, 13, 55, 24], 3D visual question
answering [15, 6, 19, 18], and 3D language grounding [17, 46, 5, 18]. LeRF [23] is the first to
achieve open-vocabulary 3D queries by combining CLIP [45] and DINO [4] with NeRF through
feature distillation. Open-NeRF [67] introduces an integrate-and-distill paradigm and leverages
hierarchical embeddings to address 2D knowledge-distilling issues from SAM. LEGaussians [48]
and LangSplat [43] integrate semantic features into 3D gaussians [21] and achieve precision language
query and efficient rendering. However, these methods are limited to static scene understanding and
fail to generalize when the interactive scene topology changes.

Controllable Scene Representation. Manipulating reconstructed assets or neural fields is of
significant importance for avatar and robotic tasks [8, 12, 20, 28]. CoNeRF [20] pioneered this
effort by extending HyperNeRF [42] and introduce a fine-grained controlable neural field with 2D
attribute mask and value annotations. CoNFies [64] proposes an automatic controllable avatar system
and accelerates rendering by distilling. More recently, CoGS [63] leveraged 3D Gaussians [21] to
achieve real-time control of dynamic scenes without requiring explicit control signals. However, these
methods typically lack natural language interaction capabilities, relying solely on manual control.
Furthermore, most works focus on single or few object interactions, disregarding the interaction
between different scene parts, limiting their real-world applications.

3 Methodology

We aim to establish a representation that models α interactive articulated objects in a complex
scene from a monocular video via a rendering-based self-supervised manner. Control variables
κ = [κ1, κ2, ..., κα] indicating object motion states and camera poses of each video frame are given.
The overview of LiveScene is shown in Figure. 2. Section. 3.1 introduces the high-dimensional
interactive space modeling and challenges. Section. 3.2 presents a multi-scale interactive space
factorization and sampling strategy to compress the high-dimensional interactive space into local
4D deformable fields, and model complicated interactive motions of individual objects. Section. 3.3
introduces an interaction-aware language embedding method to localize and control interactive
objects using natural language.

3.1 Interactive Space

Assuming a non-rigidly interactive scene with α control variables κ = [κ1, κ2, ..., κα] corresponding
to α objects, we delineate its representation by a high-dimensional function:

y = ρ(x,κ,H;θ), (1)

where ρ is the model of the representation, x ∈ R3 are spatial coordinates, κ ∈ Rα are control
variables, H is a set of optional additional parameters (e.g., the view direction), and θ stores the
scene information. The function outputs scene properties y for the given position x and κ sampling
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from a ray r, where y can be represented with color, occupancy, signed distance, density, and BRDF
parameters. This paper focuses on color, probability, and language embedding. Distinguishing
from 3d static scene or 4d dynamic scene modeling, the sampling point p = [x|κ] ∈ R3+α in the
interactive scene is high-dimensional and variable in topological structure, complicating the scene
feature storage and the optimization of representation model, leading to significant time-consuming
or memory-intensive training in [20, 63].

3.2 Multi-scale Interaction Space Factorization

For the (3 + α)-dimensional interactive space containing α control variables, we aim to explicitly
represent the high-dimensional space in a concise and compact storage, thereby reducing memory
usage and improving optimization. As illustrated in Figure. 2 and Figure. 10, objects exhibit mutual
independence, and interaction features are distributed in the (3 + α)-dimensional interactive space
and aggregate into cluster centers. Thus, there exists a set of hyperplanes that partition the space into
disjoint regions, with each region containing a local 4D deformable field, as shown in Figure. 3. Hence,
the interaction features at sampling point p ∈ R3+α can be projected into a compact 4-dimensional
space R4 in Figure. 3 by a transformation.

a) Local deformable fields b) Compact multiscale interaction

feature storage

ray samples 
retrieve 

projected samples 

Figure 3: Illustration of hyperplanar factorization for
compact storage. We maintain multiple local de-
formable fields for each interactive object region Ri,
and project high-dimensional interaction features into
a compact 4D space, which can be further compressed
into multiscale feature planes.

Multi-scale Interactive Ray Sampling.
We consider using ray sampling to per-
form the projection transformation. As
shown in Figure. 3, assuming a ray r(t) =
[ox|oκ] + t [dx|dκ] with origin ox ∈
R3,oκ ∈ Rα, and direction dx ∈
R3,dκ ∈ Rα, the ray intersects with the
interaction region at a point p = [x|κ] ∈
R3+α, where x ∈ R3 is the 3D position
and κ ∈ Rα is the interaction variables.
For a given intersection point p, the de-
formable features can be retrieved from the
corresponding local 4D deformable field
by maximizing sampling probability P:

pu = [x|κ(u)] , u = argmax
i

{Pi}, P = Θ(κ,θ), (2)

where pu and θ are the 4D sampling point and probability features at position x from 3D feature
planes. The maximum argument operation of probability decoder Θ(κ,θ) maps the interaction
variables κ to the most probable cluster region in the 4D space, and can be optimized by minimizing
the focal loss Lfocus of mask across all the training camera views:

Lfocus = β ·
(
1− e

∑α
i=1 Mi log(P̂i)

)γ
·

(
−

α∑
i=1

Mi log(P̂i)

)
, (3)

where M is the ground truth mask label, P̂ is the probability map rendering from the interactive
probability field, β is the balancing factor, and γ is the focusing parameter.

Next, the deformable features are used to render local deformable scene color at the sampling
point p. In this way, the high-dimensional interaction features are factorized into a 4D space by
a lightweight transformation modeling with interaction probability decoder and 3D feature planes
in Figure. 2, supervised by deformable masks M. Moreover, leveraging K-Planes [10], the multiple
4D local deformable space can be further compressed in only C2

4 = 6 feature planes. We iteratively
sample from coarse to fine within the multi-scale feature plane, retrieving the maximum probability
interaction variables κu and indices u at each scale.

Feature Repulsion and Probability Rejection. A latent challenge is that optimizing the interaction
probability decoder with varying masks can lead to blurred boundaries in the local deformable field,
further causing ray sampling and feature storage conflicts. As illustrated in Figure. 4(a), consider
two adjacent local deformable regions Ri and Rj , and a point p in high-dimensional space, suppose
p moves from the cluster center of Ri towards the cluster center of Rj , then the probability of p
belonging to Ri gradually decreases, while the probability of p belonging to Rj increases. To avoid
sampling conflicts and feature oscillations at the boundaries, we introduce a repulsion loss for ray

4
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pairs (ri, rj), and amplify the feature differences between distinct deformable regions, promoting the
separation of deformable field:

Lrepuls = ELU(K − ∥(Mi ⊙Mj)(Fi −Fj)∥), (4)

where K is a constant hyperparameter, Mi and Mj are the ground truth mask of rays. Fi and
Fj are the last-layer features of interaction probability decoder in Figure. 2. During training, we
randomly select ray pairs and apply Lrepuls to enforce the separation of interactive probability features
across local deformable spaces. The initiative is inspired by [24], which demonstrated the efficacy of
repulsive forces in disambiguating 3D segmentation results.

Additionally, the probability rejection is proposed to truncate the low-probability samples if the maxi-
mum deformable probability P at sample p is smaller than threshold s, and selects the background
feature directly. The operation is defined as:

u =

{
argmaxi{Pi}, if Pi ≥ s
−1, otherwise . (5)

As shown in Figure. 4(b), the proposed operations help the model achieve higher rendering quality,
demonstrating their effectiveness in alleviating boundary sampling conflicts.
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Figure 4: Illustration of a) boundary sampling conflicts, b) rendering quality comparison.

3.3 Interaction-Aware Language Embedding

Language embedding in interactive scenes is complex and storage-intensive, as 3D distillation faces
the dual challenges of high-dimensional optimization and interaction scene variation inconsistency,
such as the distinct topological structures of a transformer toy before and after transformation, leading
to the failure of SAM [25] segmentation or LERF [23] grounding. As shown in Figure. 2, leveraging
the proposed multi-scale interaction space factorization of 3.2, we efficiently store language features
in lightweight planes by indexing them according to maximum probability sampling instead of 3D
fields in LERF. For any sampling point p, we project it onto pu = [x|κ(u)], retrieving a local
language feature group by index d, and perform bilinear interpolation using κu to obtain a language
embedding that adapts to interactive variable changes from surrounding clip features. By interpolating
language embeddings, our method not only perceives topological structure changes but also achieves
a storage complexity of O(C × α × dim), much smaller than language distillation methods like
LERF that operate in 3D scenes, where dim is the dimension of CLIP feature.

4 Dataset

To our knowledge, existing view synthetic datasets for interactive scene rendering are primarily
limited to a few interactive objects [66, 20, 63, 68] due to necessitating a substantial amount of
manual annotation of object masks and states, making it impractical to scale up to real scenarios
involving multi-object interactions. To bridge this gap, we construct two scene-level, high-quality an-
notated datasets to advance research progress in reconstructing and understanding interactive scenes:
OmniSim and InterReal, as shown in Figure. 5. Besides, we use the CoNeRF Synthetic and Control-
lable [20] dataset for evaluation as well. 1) OmniSim Dataset is rendered through OmniGibson [29]
simulator, leveraging 7 indoor scene models: #rs, #ihlen, #beechwod, #merom, #pomaria,
#wainscott and #benevolence. By varying the rotation vectors of the articulated objects’
joints and the camera’s trajectory within the scene, we generated 20 high-definition subsets, each
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OmniSim Behavior Synthetic and InterReal Dataset

#28 Interactive Subsets with 2 Millions Sample including RGB, Depth, Segmentation, Camera Poses, Interaction 
Variables, and Object Captions Modalities

camera trajectory

“mechanical dog”
variable: 1.0
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“wardrobe”
Variable: 0.7

complex rotation and 
translation

#Beechwood0
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#Rs1

#Wainscott0

Figure 5: Overview of the OmniSim and InterReal datasets.

consisting of RGBD images, camera trajectory, interactive object masks, and corresponding object
state quantities at each time step. 2) InterReal Dataset is captured from 8 real Interactable scenes
and finely annotated with interaction variables and masks, camera poses encompassing multiple
objects, and articulated motion variables. More details can be found in the supplementary.

5 Experiment

Baselines. We compare LiveScene with the existing 3D static rendering methods [38, 39, 22, 21],
4D deformable methods [10, 42, 41], and controllable scene reconstruction methods [20, 63]. Note
that we reimplemented CoGS [63] based on Deformable Gaussian [62] since the official code is
unavailable. Additionally, we extended K-Planes [10] from C2

4 planes to C2
3+α planes, denoted as

MK-Planes, where α represents the number of interactable objects in dynamic scenes. By leveraging
the fact that each instance occupies a distinct region, we further compressed the model, denoted as
MK-Planes⋆, requiring only 3 + 3α planes.

Implementation. LiveScene is implemented in Nerfstudio [51] from scratch. We represent the field
as a multi-scale feature plane with resolutions of 512× 256× 128, and feature dimension of 32. The
proposal network adopts a coarse-to-fine sampling process, where each sampling step concatenates
the position feature and the state quantity as the query for the 4D deformation probability field, which
is a 1-layer MLP with 64 neurons and ReLU activation. We use the Adam optimizer with initial
learning rates of 0.01 and a cosine decay scheduler with 512 warmup steps for all networks. The
model is trained with an NVIDIA A100 GPU for 80k steps on the OmniSim dataset and 100k steps
on the InterReal dataset, using a batch size of 4096 rays with 64 samples. More implementation can
be found in the supplemental materials.

5.1 View Synthesis Quality Comparison

Evaluation on CoNeRF Synthetic and Controllable Datasets. We report the quantitative results on
CoNeRF Synthetic and Controllable scenes in Table. 1. LiveScene outperforms all the existing PSNR,
SSIM, and LPIPS metrics methods on CoNeRF Synthetic scenes with a large margin. In particular,
LiveScene achieves 43.349, 0.986, and 0.011 in PSNR, SSIM, and LPIPS, respectively, outperforming
the second-best method by 9.894, 0.009, and 0.053. On CoNeRF Controllable, LiveScene achieves
the best PSNR of 32.782 and comparable SSIM and LPIPS to the SOTA methods. According to the
novel view synthesis results in Figure. 6, LiveScene achieves more detailed and higher rendering
quality, demonstrating the effectiveness of LiveScene in modeling object-level interactive scenarios.

Evaluation on OmniSim Datasets. OmniSim dataset is categorized into 3 interaction level subsets:
#easy, #medium, and #challenging, based on the number of interactive objects in each scene. As
shown in Table. 2, LiveScene achieves the best PSNR, SSIM, and LPIPS on all interaction level
subsets of OmniSim, with average PSNR, SSIM, and LPIPS of 33.158, 0.962, and 0.074, respectively.
Notably, substantial performance degradation is observed across all methods as the quantity and
complexity of interactive objects increase, e.g., CoGS [63] experiences a 3.641 dB PSNR drop from
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Table 1: Quantitative results on CoNeRF synthetic and controllable datasets. LiveScene achieves
the best results in all metrics on synthetic scenes and the best PSNR on the controllable datasets.

Method
CoNeRF Syntetic CoNeRF Controllable

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NeRF [38] 25.299 0.843 0.197 28.795 0.951 0.210
InstantNGP [39] 27.057 0.903 0.230 26.391 0.884 0.278
3DGS [21] 32.576 0.977 0.077 25.945 0.834 0.414
NeRF + Latent [38] 28.447 0.939 0.115 32.653 0.981 0.182
Nerfies[41] — — — 32.274 0.981 0.180
HyperNeRF[42] 25.963 0.854 0.158 32.520 0.981 0.169
K-Planes [10] 33.301 0.933 0.150 31.811 0.912 0.262
CoNeRF-M[20] 27.868 0.898 0.155 32.061 0.979 0.167
CoNeRF[20] 32.394 0.972 0.139 32.342 0.981 0.168
CoGS [63] 33.455 0.960 0.064 32.601 0.983 0.164
LiveScene (Ours) 43.349 0.986 0.011 32.782 0.932 0.186

Table 2: Quantitative results on OmniSim Dataset. LiveScene outperforms prior works on most
metrics and achieves the best PSNR on the #challenging subset with a significant margin.

Method
#Easy Sets #Medium Sets #Challenging Sets #Avg (all 20 Sets)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NeRF [38] 25.817 0.906 0.167 25.645 0.928 0.138 26.364 0.927 0.128 25.776 0.916 0.153
InstantNGP [39] 25.704 0.902 0.183 25.627 0.930 0.140 26.367 0.920 0.143 25.706 0.914 0.164
HyperNeRF [42] 30.708 0.908 0.316 31.621 0.936 0.265 27.533 0.897 0.318 30.748 0.917 0.299
K-Planes [10] 32.841 0.952 0.093 32.548 0.954 0.100 29.833 0.937 0.118 32.573 0.952 0.097
CoNeRF [20] 32.104 0.932 0.254 33.256 0.951 0.207 30.349 0.923 0.238 32.477 0.939 0.234
MK-Planes⋆ 31.630 0.948 0.098 31.880 0.951 0.104 26.565 0.887 0.218 31.477 0.946 0.106
MK-Planes 31.677 0.948 0.098 32.165 0.952 0.099 29.254 0.933 0.119 31.751 0.949 0.099
CoGS [63] 32.315 0.961 0.108 32.447 0.965 0.086 28.701 0.970 0.073 32.187 0.963 0.097
LiveScene (Ours) 33.221 0.962 0.072 33.262 0.965 0.072 31.645 0.948 0.093 33.158 0.962 0.074

Table 3: Quantitative results on InterReal Dataset. Our method outperforms others in most settings,
with a significant advantage of PSNR, SSIM, and LPIPS on the #challenging subset.

Method
#Medium Sets #Challenging Sets #Avg (all 8 Sets)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NeRF [38] 20.816 0.682 0.190 21.169 0.728 0.337 20.905 0.694 0.227
InstantNGP [39] 21.700 0.776 0.215 21.643 0.745 0.338 21.686 0.769 0.245
HyperNeRF [42] 25.283 0.671 0.467 25.261 0.713 0.517 25.277 0.682 0.480
K-Planes [10] 27.999 0.813 0.177 26.427 0.756 0.331 27.606 0.799 0.215
CoNeRF [20] 27.501 0.745 0.367 26.447 0.734 0.472 27.237 0.742 0.393
CoGS [63] 30.774 0.913 0.100 ✗ ✗ ✗ 30.774 0.913 0.100
LiveScene (Ours) 30.815 0.911 0.066 28.436 0.846 0.185 30.220 0.895 0.096

#easy to #challenging. While LiveScene maintains a relatively stable high performance across all
subsets, demonstrating its robustness in modeling complex interactive scenarios.

Evaluation on InterReal Datasets. We divided InterReal dataset into #medium and #challenging
subsets. In Table. 3, CoGS [63] underperforms compared to LiveScene on the #medium subset
and fails to converge when faced with long camera trajectories and a large number of interactive
objects in the scene (#challenging), highlighting the limitation of existing methods in modeling
real-world interactive scenarios. In contrast, LiveScene achieves the highest PSNR of 28.436 and the
lowest LPIPS of 0.185 on the #challenging subset, indicating its superiority in modeling real-world
large-scale interactive scenarios.

View Synthesis Visulization. Figure. 7 presents the novel view synthesis results of LiveScene
and the SOTA methods on OmniSim dataset. The results reveal that LiveScene generates more
detailed results than SOTA methods, particularly in complex interactive scenarios. For instance,
on the #pomaria scene featuring an openable dishwasher, CoNeRF [20] fails to capture details,
while CoGS [63] and MK-Planes⋆ exhibit residual artifacts. In contrast, our method accurately
reconstructs the internal details. Another challenge arises in the #rs scene, where other methods
struggle to reconstruct distant and static objects. In comparison, our method not only overcomes the
challenging problem of dramatic topology changes in interactive scenes but also maintains the ability
to reconstruct high-quality static scenes.

7
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Figure 6: View Synthesis Visualization on CoNeRF Controllable Dataset. The proposed method
achieves higher-quality rendering results compared with the existing methods.
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Figure 7: View Synthesis Visualization on OmniSim Dataset. We compare our method with SOTA
methods on RGB rendering across three scenes: #rs, #ihlen, and #pomaria. Boxes of different colors
represent distinct interactive objects within the scene.

5.2 Language Grounding Comparison

We assess the language grounding performance on the OmniSim dataset using mIOU metric. Figure. 8
suggests that our method obtains the highest mIOU score, with an average of 86.86. In contrast,
traditional methods like LERF [23] encounter difficulties in locating objects precisely, with an average
mIOU of 21.74. Meanwhile, 2D methods like SAM [25] fail to accurately segment the whole target
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Figure 8: Language Grounding Performance on OmniSim Dataset left): Our method gains the
highest mIOU score. right): LiveScene’s grounding exhibits clearer boundaries than other methods.

under specific viewing angles, as objects appear discontinuous in the image. Conversely, our method
perceives the completeness of the object and has clear knowledge of its boundaries, demonstrating its
advantage in language grounding tasks.

GT #6 w/o interaction-relevant LiveScene LiveSceneGT #6 w/o interaction-relevant

GT #1 w/o multiscale factor LiveScene LiveSceneGT #1 w/o multiscale factor

Figure 9: Rendering and Grounding Performance for #1 and #6. above): Multi-scale factorization
greatly boosts the performance of RGB rendering and geometry reconstruction. below): Without
view consistency, the model struggles when objects have similar appearances.

step 100 step 250 step 500 step 1000Interactive Scene

Figure 10: Learning process of the probability fields from 0 to 1000 training steps. The model
progressively converges to the vicinity of the interactive objects, establishing interactive regions.

5.3 Ablation Study

In this section, we present ablative studies to investigate the effectiveness of each component in
LiveScene. We selected 1 scene from the #medium subset, 2 scenes from the #easy subset of
OmniSim dataset, and 1 scene each from the #medium and #challenging settings for InterReal.
Notably, ground-truth state quantities are only available in OmniSim, not in InterReal. Therefore, we
use GT quantities on OmniSim and introduce a learnable variable on InterReal to infer state changes.
Figure. 9 reports the rendering quality and grounding performance for #1 and #6.

Effectiveness of components. As illustrated in Table. 4, the multi-scale factorization significantly
improves the rendering performance on both datasets, with PSNR on OmniSim increasing from 31.74
to 35.094, shown in #1. Introducing learnable variables for each frame (#2) yields corresponding
improvements on InterReal dataset since this latent code can perceive the change in object states. The
feature repulsion loss and probability rejection (#3 and #4) together make rendering quality better in
InterReal as well as in OmniSim dataset. As for grounding, #5 shows that rendering embeddings
along a ray [26, 69] struggles to locate objects precisely. Ensuring view consistency further boosts
grounding performance on OmniSim, as demonstrated in #6.

Probability field training. We provide additional experiments in Figure. 10 of the disjoint
regions to illustrate the learning process of the probability field from 0 to 1000 training steps. The
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results demonstrate a clear trend that, as training advances, the proposed method can progressively
converge to the vicinity of the interactive objects, thereby establishing interactive regions. With the
establishment of the probability field, the model can focus on different interactive objects and guide
the sampling process by maximizing probability, thereby achieving disentanglement of interactive
scenes.

Table 4: Ablation Study on the subset of InterReal and OmniSim Datasets.
#exp #settings (rendering) InterReal OmniSim

I II III IV V VI PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ Depth L1↓
#0 25.329 0.731 0.329 31.740 0.938 0.118 0.238
#1 ✓ 28.289 0.819 0.226 35.094 0.969 0.059 0.086
#2 ✓ ✓ 29.577 0.865 0.162 — — — —
#3 ✓ ✓∗ ✓ 29.959 0.883 0.131 34.989 0.969 0.059 0.085
#4 ✓ ✓∗ ✓ 30.123 0.884 0.132 34.977 0.967 0.061 0.086

LiveScene ✓ ✓∗ ✓ ✓ 30.591 0.896 0.115 35.254 0.971 0.057 0.042
#settings (grounding) mIOU ↑ mIOU ↑

#5 ✓ ✓∗ ✓ ✓ ✓ 30.40 32.87
#6 ✓ ✓∗ ✓ ✓ ✓ 93.10 71.64

LiveScene ✓ ✓∗ ✓ ✓ ✓ ✓ 93.02 78.52

I: multi-scale factorization, II: learnable variable, III: feature repulsion Lrepuls, IV: probability rejection, V: maximum probability embeds retrieval,
VI: interaction-aware language embedding. ✓∗ denotes enable II for InterReal but disable for OmniSim.

6 Conclusion and Limitation

We present LiveScene, the first language-embedded interactive neural radiance field for complex
scenes with multiple interactive objects. A parameter-efficient factorization technique is proposed
to decompose interactive spaces into local deformable fields to model individual interactive objects.
Moreover, we introduce a novel interaction-aware language embedding mechanism that effectively
localizes and controls interactive objects using natural language. Finally, We construct two challeng-
ing datasets that contain multiple interactive objects in complex scenes and evaluate the effectiveness
and robustness of LiveScene.

Limitations: The control ability of LiveScene is limited by label density. Additionally, our natural
language control is currently restricted to closed vocabulary, and it is inherently tied to the capabilities
of the underlying foundation model, such as OpenCLIP. In future work, we plan to extend our method
to enable open-vocabulary grounding and control, increasing the model’s flexibility and range of
applications.

Acknowledgements. This work is partially supported by the Shanghai AI Laboratory, National Key R&D
Program of China (2022ZD0160101), the National Natural Science Foundation of China (62376222), and Young
Elite Scientists Sponsorship Program by CAST (2023QNRC001).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Both the abstract and introduction accurately reflect the contributions and
scope of LiveScene.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The paper includes theoretical results, assumptions, and proofs, additional
details can be found in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed information on the experimental setup and results in the
main paper and supplemental material, and provide a link to our project.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will provide open access to the data and code, and detailed instructions
to reproduce the main experimental results. But in the review process, we only provide a
anonymous link to our project.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed information on the experimental setup and results in the
main paper and supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars or statistical significance in the paper, but the
results are reproducible and the code will be released. Besides, we provide average results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed information on the experimental setup and results in the
main paper and supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: we have reviewed the NeurIPS Code of Ethics and believe that our research
conforms to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We focus on the interactive scene reconstruction and manipulation task, and
societal impacts can be ignored.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We focus on the interactive scene reconstruction and manipulation task, it is
safe for release.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use existing datasets and models, and properly credit the original owners
and respect the licenses. Besides, we reproduce the results with the released code, data and
paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We contribute a new dataset and code, and provide detailed documentation
in the supplemental material. In the future, we will release the dataset and code with clear
documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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