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Abstract

In this paper, we obtain the Berry-Esseen bound for multivariate normal approxima-
tion for the Polyak-Ruppert averaged iterates of the linear stochastic approximation
(LSA) algorithm with decreasing step size. Moreover, we prove the non-asymptotic
validity of the confidence intervals for parameter estimation with LSA based on
multiplier bootstrap. This procedure updates the LSA estimate together with a set
of randomly perturbed LSA estimates upon the arrival of subsequent observations.
We illustrate our findings in the setting of temporal difference learning with linear
function approximation.

1 Introduction

Stochastic approximation (SA) methods are a central component for solving various optimization
problems that arise in machine learning |32} 26], empirical risk minimization [[72]] and reinforcement
learning [42] |67]. There is a vast number of contributions in the literature, which cover both
asymptotic [48, [53]] and non-asymptotic [45} |15} 136] properties of the SA estimates. The primarily
important property among the asymptotic ones of the SA estimates is their asymptotic normality [S3],
which is important due to its role in constructing (asymptotic) confidence intervals and hypothesis
testing [71]. However, a natural question of the rate of convergence in the appropriate central limit
theorems (CLT) is not well addressed in literature even in the relatively simple setting of the linear
stochastic approximation (LSA) [21]], [34]], [9].

Alternatively, confidence sets for SA algorithms can be constructed in a non-asymptotic manner based
on concentration inequalities [4]. These bounds are often regarded as loose [60]], yielding suboptimal
performance of the statistical procedures based on the latter estimates [28]]. In contrast, for statistical
inference procedures based on independent and identically distributed (i.i.d.) observations, such as
M -estimators [71]], there is a machinery of non-parametric methods for constructing confidence sets
with the bootstrap [[19}158]]. This approach is accompanied with theoretical guarantees, showing the
non-asymptotic validity of the bootstrap-based confidence intervals for parameters in linear regression
[64] and statistical tests [[12]. Extending theoretical guarantees to a non-classical situation with online
learning algorithms encounters serious problems, essentially related to the problem of obtaining rate
of convergence in the corresponding CLTs. At the same time, many phenomena arising in the analysis
of nonlinear SA algorithms already appear in the analysis of LSA problems.
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The LSA procedure aims to find an approximate solution for the linear system Af* = b with a
unique solution 6* based on a sequence of observations {(A(Z;),b(Zx))}ren. Here A : Z — R4*4
and b : Z — R? are measurable functions and (Zk)ken is a sequence of noise variables taking values
in some measurable space (Z, £) with a distribution 7 satisfying E[A(Z;)] = A and E[b(Zy)] = b.
We focus on the setting of independent and identically distributed (i.i.d.) observations {Zj }ren-
With a sequence of decreasing step sizes (v )ken and the starting point 6y € R?, we consider the
estimates {0, } nen given by

2n—1

O = Or1 — n{A(Ze)0k1 —b(Z)}, k=1, Op=n""> 6, n>1. (1)
k=n

Here, we have fixed the size of the burn-in period (see, e.g., 16}, 44]) to ng = n. Provided that
n is large enough, the burn-in size affects only a constant factor in the subsequent bounds. The
sequence {6y }ren corresponds to the standard LSA iterates, while {6, },en corresponds to the
Polyak-Ruppert (PR) averaged iterates [59} 53]]. It is known that 6,, is asymptotically normal with a
minimax-optimal covariance matrix (see [33] and [23]] for discussion). Specifically, under appropriate
technical conditions on the step sizes {«y, } and noisy observations { A (Zy,)}, it holds that

V0, — 0°) 5 N(0,25) |

where ¥ is the asymptotic covariance matrix defined later in Section[3.1] There is a long list of
contributions to the non-asymptotic analysis of 8,,, particularly [43] and [16], which study moment
and Bernstein-type concentration bounds for \/n(6,, — 68*). Unfortunately, such bounds do not imply
Berry-Esseen type inequalities for v/n(6,, — %), that is, they do not allow us to control the quantity

Conv
PRt = sup
BeConv(R%)

P(vn(8, — 0%) € B) — P(SY/2y € B)‘ , 2)

where Conv(R?) refers to the set of convex sets in R%. While the Berry-Esseen bounds are a popular
subject of study in probability theory, starting from the classical work [20], most results are obtained
for sums of random variables or martingale difference sequences [52} [8]. We can only mention a few
results for SA algorithms, see Section 2] for more details. This paper aims to provide the latter bounds
for the specific setting of the LSA procedure. Our primary contribution is twofold:

* We establish a BerryEsseen bound for accuracy of normal approximation of the distribution
of Polyak-Ruppert averaged LSA iterates with a polynomially decreasing step size. Our
results suggest that the best rate of normal approximation, in the sense of (@), is of order
n~1/% up to logarithmic factors in n, where n denotes the number of samples. Interestingly,
this rate is achieved with an aggressive step size, o, = ¢o/ k. Our proof technique follows
the Berry-Esseen bounds for nonlinear statistics provided in [63].

» We provide non-asymptotic confidence bounds for the distribution of the PR-averaged
statistic \/n (6, — 6*) using the multiplier bootstrap procedure. In particular, our bounds
imply that the quantiles of the exact distribution of \/n(6,, — 6*) can be approximated at a
rate of n =/, where n is the number of samples used in the procedure, provided that 7 is
sufficiently large (see AH]for exact conditions). To the best of our knowledge, this is the
first non-asymptotic bound on the accuracy of bootstrap approximation in SA algorithms.
We apply the proposed methodology to the temporal difference learning (TD) algorithm for
policy evaluation in reinforcement learning.

The rest of the paper is organized as follows. In Section 2] we provide a literature review on the
non-asymptotic analysis of the LSA algorithm and bootstrap methods. Next, in Section [3| we
analyze the convergence rate of Polyak-Ruppert averaged LSA iterates to the normal distribution. In
Sectiond] we discuss the multiplier bootstrap approach for LSA and establish bounds on the accuracy
of approximating the quantiles of the true distribution. Finally, we apply our findings to TD learning
and present numerical illustrations in Section [3]

Notations. For matrix A € R?*? we denote by ||A|| its operator norm. For symmetric matrix
Q=Q" =0, Q€ R™ and z € R? we define the corresponding norm ||z||qg = /=T Qz, and

define the respective matrix @-norm of the matrix B € R¥*< by || B||g = sup,. || Bz||q/ ||zl q-
For sequences a,, and b,,, we write a,, < b, if there exist a constant ¢ > 0 such that a,, < ¢b,, for

~

¢ > 0. For simplicity we state the main results of the paper up to constant factors.
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2 Related works

Among contributions to the analysis of the LSA algorithm, we should mention the papers [53}134, 9L 16].
These works investigate the asymptotic properties of the LSA estimates (such as asymptotic normality
and almost sure convergence) under i.i.d. and Markov noise. Non-asymptotic results for the LSA
and PR-averaged LSA estimates were obtained in [S5] 147, [7, 135} 144], where MSE bounds were
established, and in [43} [17, [16], which provided high-probability error bounds. The latter results
enable the construction of Bernstein-type confidence intervals for the error 6,, — 6*. Unfortunately,
the corresponding bounds typically depend on unknown problem properties of (IJ), related to the
design matrix A and the noise variables A (Zy), b(Z},). For this reason, applying these error bounds
in practice is complicated. Furthermore, concentration bounds for the LSA error [43,[17,116] do not
imply convergence rates of the rescaled error y/n(6,, — 6*) to the normal distribution in Wasserstein
or Kolmogorov distance. Non-asymptotic convergence rates were previously studied in [2] using the
Stein method, but the resulting rate corresponds to a smoothed Wasserstein distance. Recent work
[65] investigates convergence rates to the normal distribution in Wasserstein distance for LSA with
Markovian observations. Both papers yield bounds that are less tight with respect to their dependence
on trajectory length n than those presented in the present work, see a detailed comparison after
Theorem

A popular method for constructing confidence intervals in the context of parametric estimation is
based on the bootstrap approach ([19]). Its analysis has attracted many contributions, in particular a
series of papers [12] and [13]] that validate a bootstrap procedure for a test based on the maximum
of a large number of statistics. Their study shows a close relationship between bootstrap validity
results, Gaussian comparison and anticoncentration bounds for rectangular sets. The papers [64] and
[27] investigate the applicability of likelihood-based statistics for finite samples and large parameter
dimensions under possible model misspecification. The important step in proving bootstrap validity
is again based on Gaussian comparison and anticoncentration bounds, but now for spherical sets. The
bootstrap procedure for spectral projectors of covariance matrices is discussed in [46]] and [31]]. The
authors follow the same steps to prove the validity of the bootstrap.

Extending the classical bootstrap approach to online learning algorithms is a challenge. For example,
the iterates {0y }rcn determined by (I)) are not necessarily stored in memory, which makes the
classical bootstrap inapplicable. This problem can be solved by performing randomly perturbed
updates of the online procedure, as proposed in [22]] for the iterates of the Stochastic Gradient Descent
(SGD) algorithm. The authors in [56] used the same procedure for the case of Markov noise and
policy evaluation algorithms in reinforcement learning, but in both papers the authors only consider
the asymptotic validity. In our paper we use the same multiplier bootstrap approach (see Section d),
but we provide an explicit error bound for the bootstrap approximation of the distribution of the
statistics /n(6,, — 0*).

In addition to the bootstrap approach, one can also use the pivotal statistics [37, 40, 41]] or various
estimates of the asymptotic covariance matrix [73] to construct the confidence intervals for 6*.
The latter approach can be based on the plug-in estimators [39], batch mean estimators [11] or in
combination with the multiplier bootstrap approach [74]]. However, the theoretical guarantees for
mentioned methods remain purely asymptotic.

3 Accuracy of normal approximation for LSA

We first study the rate of normal approximation for the tail-averaged LSA procedure. When there is
no risk of ambiguity, we use simply the notations Ay, = A(Z) and by, = b(Zy). Starting from the
definition (I)), we get with elementary transformations that

O — 0" = (I — apAp)(Op—1 — 0%) — ey, 3)

where we have set ¢, = (7)) with

e(z) = A(2)0* —b(z), A(z)=A(2)—A, b(z)=b(z)—b .

Here the random variable (Z};) can be viewed as a noise, measured at the optimal point 6*. We now
assume the following technical conditions:

A1. Sequence {Zy}ren is a sequence of i.i.d. random variables defined on a probability space
(Q, F,P) with distribution .
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A2. [, A(z)dn(z) = A and [,b(z)dn(z) = b, with the matrix —A being Hurwitz. Moreover,
llelloe = sup,ez lle(2)|] < 400, and the mapping = — A(z) is bounded, that is,

Ca =sup||A(2)]| Vsup ||A(2)]| < oo . 4)
z€Z z€Z

Moreover, for the noise covariance matrix

e = Jze(2)e(2) Tdr(2) ®)
it holds that its smallest eigenvalue is bounded away from 0, that is,
)\min = )\min(za) >0. (6)

It is possible to change (@) to the moment-type bound as it was previously considered in [43]] and
[16]], see the detailed discussion after Theorem |2} The fact that the matrix —A is Hurwitz implies that
the linear system A = b has a unique solution §*. Moreover, this fact is sufficient to show that the
matrix I — A is a contraction in an appropriate matrix ()-norm for small enough « > 0. Precisely,
the following result holds:

Proposition 1. Let —A be a Hurwitz matrix. Then for any P = PT =1, there exists a unique matrix
Q = QT = 1, satisfying the Lyapunov equation AT Q + QA = P. Moreover, setting

Amin (P)

s and o = g A 19 (7)

2l ATS " Rin(P)

a =

where kg = Amax(Q)/Amin(Q), it holds for any a € [0, ao] that aa < 1/2, and

I-aAlj <1-aa. (®)

The proof of Proposition[I]is provided in Appendix Note that it is possible to set P = [ as in
[[L8]], yet it is possible that other choices of P could be more beneficial for particular applications.
Now consider an assumption on the step sizes oy, and number of observations n:

A3. The step sizes {ay }ren has a form a, = co /K7, where v € [1/2;1) and ¢y € (0; 00 A a A
(1 = ¥)]. Moreover, we assume that n > d, and

Vn corg Ch 4 . .
(1+logn)logn — a(lfﬁfg) v aco(1—v/2/2) lf’Y - 1/2 ) (9)
nl=7 2cokg C 8y(1—7) .
ogm 2 am D V s F1/2<y<1.

The main aim of lower bounding n is to ensure that the number of observations is large enough in
order that the LSA error related to the choice of initial condition 6, — 6* becomes small.

3.1 Central limit theorem for Polyak-Ruppert averaged LSA iterates.

It is known that the assumptions guarantee that the CLT applies to the iterates of f,,, namely,

VA(ln = 0%) 5 N(0,50) (10)
where the asymptotic covariance matrix ., has a form
Yoo = AN AT, (11

and Y. is defined in (5). This result can be found for example in [53]] and [23]]. We are interested
in the Berry-Esseen type bound for the rate of convergence in (T0), that is, we aim to bound p$°"

defined in @) w.r.t. the available sample size n. We control p$°"¥ using a method from [63]
based on randomized multivariate concentration inequality. Below we briefly state its setting and
required definitions. Let X, ..., X,, be independent random variables taking values in X and

T =T(Xy,...,X,) be a general d-dimensional statistics such that 7' = W + D, where

W=> & D=DXy,... X,)=T-W, (12)
(=1

https://doi.org/10.52202/079017-0396 12411



& =he(X¢)and hy : X — R4 is a Borel measurable function. Here the statistics D can be non-linear
and is treated as an error term, which is "small" compared to W in an appropriate sense. Assume that
E[f@] =0 and 22:1 E[f@fg—} = Id. LetY = Tn = Z?:l E[Hf@“za] Then, with nn~ N(O, Id),

SUP( )|]P(T € A)—P(n € A)| < 259d"/>T+2E[|WI[| D[]+2 > E[[|&ll| D—DO), (13)
BeConv (R (=1

where DY) = D(X1,..., X1, X}, Xe41,...,X,) and X is an independent copy of X,. This
result is due to [63, Theorem 2.1]. One can modify the bound (I3) for the setting when
Y1 E[&&)] = £ = 0. This result due to [63, Corollary 2.3]. Following the construction
(12), we set T = \/nA (0, — 6*) and consider it as a nonlinear statistic of i.i.d. random variables
Z1, ..., Zan, which drive the LSA dynamics (I). We can exactly represent T as a sum of linear (W)
and non-linear parts (D), where

2n—1 on

! L 0, —0" 1 6, —0" 1 _
W=—— D= — - L A AV(Or 0
Vvn 1; Ek+1; NS NS \/ﬁk:;-&-l( k )(0k—1 )

1 & 1 1
+— Z(ekl—e*)(— )
\/’E k=n+1 Ak Ak—1
The proof of this result can be bound in Proposition 3] To obtain a bound for the approximation
accuracy in (2) using the bound (T3], we need to upper bound EY/2[| D(Z1, . .., Z2,)||?] and E[|| D —
D)||]. The first result below provides a second moment bound on D:

Theorem 1. Assume All} AR| and Then we obtain the following error bound:

1/2 2] « \/HQHEHOO 1 co Ca
EV2[|D(Z, ..., Zon)|?] S Vi \ammr t

coan'=7 .
+ g e -2, — 7]

where < stands for inequality up to an absolute constant, and Ay = Aq(n,a,Ca, co) is a polynomial
function defined in Appendix[A.3] eq. (29).

The proof of Theorem [I]is provided in Appendix [A.3] Now it remains to upper bound the term
E[|D — D@||], which is done in Appendix using the synchronous coupling methods [10].
Combining these bounds, we obtain the following theorem:

Theorem 2. Assume All} AR| and Then the following bound holds:
d'/?|e|3 1 C C A coant =7
Conv 00 1 2 2 _ % g
NN T o <n(17)/2 + m/2> o eXP{ 2(1_7)}”90 0%, (14)

where Ay = Ag(n,a,Ca, Tr X., ¢o) is a polynomial function defined in (33)), and constants Cy, Ca,
depending upon a,Ca , kg, Tr X., co, are defined in Appendix@ eq. (36).

The proof of Theoremis provided in Appendix |B| Note that the assumption requires that (Z7)
is almost sure bounded. It is a strong assumption, but it can be partially relaxed. Following the
stability of matrix products technique, used in [17, Proposition 3], it is possible to consider the setting
when the random variable || A (Z;)]| has only finite number of moments. In particular, we expect
that assuming finite third moment of ||A (Z;)|| and ||(Z7)|| is sufficient to obtain a counterpart to
Theorem [I] However, this generalization requires non-trivial technical work on generalizing the
stability of matrix products result (see Corollary {]in Appendix [D]).

Note that the bound of Theorem [2] predicts the optimal error of normal approximation for Polyak-
Ruppert averaged estimates of order n~'/4, which is achieved with the aggressive step size aj, =
co/V'k, that is, when setting y = 1/2 in (T4). In this case we obtain the optimized bound

Conv C3 d1/2||5||§o + Al exp{—coa\/ﬁ} ”0 . 9*” (15)
" ~ >\minn1/4 )\1311/131\/7; )\min 0 ’

where C3 = C3(a, Ca, kg, TrX., ||¢]|« ) is provided in (36).
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Discussion. Our proof technique of Theorem [2] reveals an interesting feature: fastest rate of
convergence in the convex distance pcon" corresponds to the learning rate schedule that admits the
fastest decay of the second-order term in the MSE bound for remainder statistics D (see Theorem|T)).
Results similar to the one of Theorem E] have been recently obtained in the literature in [65] and
[2]. The author in [65]] considers the LSA problem specified to the temporal-difference learning (see
Section |5) with Markov noise and obtains convergence rate in Wasserstein distance of order n~1/4,
which corresponds to the "optimal" step size schedule ay, = ¢p/ k3/4. Using the bound of [49] eq.
(3)] (see also section 2 in [57]), this result yield a suboptimal bound of order n~1/8 for the convex
distance p5°™". Such an upper bound may be loose for some classes of distributions, but it is not clear
if in particular setting of LSA the bound of [65]] could imply scaling of order n '/ for p$°"v. At the
same time, in case of X1, ..., X, forming a Markov chain in (1];2]) there is no available counterpart
of the bound (T3)). Generalizing (T3] is an interesting research direction that would allow to obtain
a counterpart of Theorem [2]in case of Markovian dynamics. Similarly, the result of [2]] holds for
much stronger metrics, which controls the convergence of moments of twice differentiable functions.
We provide additional details about connections between this metric and pS°" in Appendix At
the same time, the authors in [2] cover the non-linear setting of PR-averaged iterates of stochastic
gradient descent algorithm under strong convexity.

Remark 1. The leading (with respect to n) terms of the bound from Theorem|[I| have an implicit
dependence on the problem dimension d due to the presence of Amin. Yet the result of Theorem|l|can

be improved in a sense of dependence in dimension if one is interested not in the rates of convergence
for \/n(0,, — 0%), but in the projected iterated \/nIl" (0,, — 0*) for some T1 € R™*™ m < d. If this
is the case, one may apply (13) for the class Conv,, = ConV(Rm) of convex sets in R™ and obtain,

setting step size a, = co/\/E, and Eén) =T 107, that
Co |, mPfefl, | Agecoavm
~ )\minnl/4 )\3/42 \/ﬁ )\min

min

and the constant C4 = C4(a,Ca, kg, Tr IS s ||€lloo) is provided in
Remark 2. Results similar to Theorem[I|can be obtained not only for the Polyak-Ruppert averaged
estimator 0.,,, but also for the last iterate 0,,. In particular, it is known (see e.g. [23]), that the last
iterate error 0, — 0* is also asymptotically normal:

% — N(Oa Zlast) 5
where the covariance matrix Y, is different from Y. In such a case X5t can be found as a
solution to appropriate Lyapunov equation, see [23]]. Then, we expect that it is possible to use the
perturbation-expansion approach from [1|] together with randomized concentration inequalities [63|]
(see (13)), in order to obtain the Berry-Esseen bound

_o* 1/2
(%25 € B) ~P(Siqn € B)| < V.

We leave the detailed derivation for future work.

Conv

pn

160 — 671,

SUP BeConv(R4)

4 Multiplier bootstrap for LSA

In order to perform statistical inference with the Polyak-Ruppert estimator 6,,, we propose an online
bootstrap resampling procedure, which recursively updates the LSA estimate as well as a large
number of randomly perturbed LSA estimates, upon the arrival of each data point. The suggested
procedure follows the one outlined in [22]]. It has the following advantages: it does not rely on
the asymptotic distribution of the error \/n(6,, — 8*), does not require to know the moments of
/n(0, — 6*) or its asymptotic covariance matrix ¥, and does not involve any data splitting.

We state the suggested procedure as follows. Let W™ = {W;}1<¢<2,, be a set of i.i.d. random
variables, independent of Z2" = {Z,}1<¢<on, with E[W;] = 1 and Var[W;] = 1. We write,

respectively, P° = P(-|2%") and E® = E(:|Z2") for the corresponding conditional probability
and expectation. In parallel with procedure (EI) that generates {Qk}1<k<2n and 6,,, we generate M

independent samples (w?, .. an) 1 < ¢ < M distributed as W?", and recursively update M

n’

randomly perturbed LSA estlmates that is,
O =00t — apwi{A(Z)0)" —b(Zw)}y, k=n+1, 025 =90,,

ebz_n_leH 1 b(7 nZl (16)
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We use a short notation 62 for 621, The key idea of the procedure (T6)) is that the "Bootstrap-world"
distribution (that is, the one conditional on Z2") of the perturbed samples /n (62 — 6,,) is close to
the distribution of the quantity of interest, that is, v/n(6,, — 6*). Precisely, the main result of this
section will show that the quantity

sup  [P*(vn(f;, — 0,) € B) — P(v/n(0, — 6") € B)| (17)

BeConv(R%)

is small. Although an analytic expression for P°(\/n(#2 — 6,,) € B) is not available, one can
approximate it from numerical simulations according to (T6) by generating sufficiently large number
M of perturbed trajectories. Standard arguments, see e.g. [62, Section 5.1] suggest that the accuracy
of Monte-Carlo approximation is of order M ~1/2. To analyze the suggested procedure, we shall
impose an additional assumption on the trajectory length n:

A4, Assumptionholds with~y = 1/2, and ¢y < 1/(C% kge). Moreover, setting

4Ca ,{gz ’ 4\\2
h(n) = m (1+210g (2n )) s (18)
it holds that o
a2 AV and phn > A v gga C) VL (19)

Moreover, we assume that for Ay defined in (0) it holds that

el 8(|12 21
i 2 Sy IE8T | SISl + el ogn o0)

Note that the new bound (T9) simply states that /n/ log?(n) is sufficiently large, since h(n) scales
as log® n. We discuss the assumption A@]in more details in the proof scheme. Now we formulate
the main result of this section. We analyze only the setting of polynomially decaying step size with
~ = 1/2, since decay rate of essentially depends on the approximation rate of Theorem with
the fastest rate achieved when v = 1/2. For other learning rates the decay rate of right-hand side in
Theorem 3] will be slower. For simplicity, we do not trace the dependence of the bound below on the
parameter cg.

Theorem 3. Assume All| AR| AB|with v = 1/2, and A4| Then with P - probability at least 1 — 6 /n it
holds that

. _ K3 (Ca V1)(1 + [|e]%) log n
sup  [P(Vn(8y, — 0) € B) — P(Vn(0n — 0%) € B)| § ——Loi—
BeConv(RY) a’/? Apinn

. Vi <|ago Viogn | rg(l+ ||g||go/Amm)1ogn> s Age—(co/2ava

+rglleflo 160 — 07| ,

\/H ?n/li Vv )\min \/ﬁ
where Az = As(n,a,Ca, ||| ) is a polynomial function defined in Appendix|Q] eq. [@6).

)\min

The proof of Theorem 3]is based on the Gaussian approximation performed both in the "real" world
and bootstrap world together with an appropriate Gaussian comparison inequality. The main steps of
the proof are illustrated by the following scheme:

Gaussian approximation, Th.

Real world: VA (0, —6%) &~ N(0,%,)

IGaussian comparison, Theorem

Gaussian approx. in Bootstrap world, Th.
Heo o v

Bootstrap world: /nA (62 —0,,) 0,%P)

In the above scheme we have denoted by ¥° = n~! Z?Z;l 5[52 the sample covariance matrix
approximating .. Gaussian approximation for the true distribution of \/nA(6,, — 6*) follows from
Theorem 2] Proof of Gaussian approximation in the Bootstrap world Theorem []is also based on
the inequality (I3), but is more complicated and involves the expansion analysis of the LSA error
from [[1]. This technique allows to separate the LSA error into different scales with respect to the
step sizes {ay }, see Appendix for details. However, this technique requires to impose additional
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assumption AH]- eq. (T9). Proof of the Gaussian comparison part of Theorem [5]is based on Pinsker’s
inequality and matrix Bernstein inequality. The latter result requires that n is large enough to ensure
that minimal eigenvalue of ¥ is close to Ay, justifying the assumption AE]— eq. (20). Detailed
proof if provided in Appendix [C}

Discussion. We emphasize that the Gaussian approximation result of Theorem [2| (with Bootstrap
world generalization in Theoremf)) is a key result to prove the above bootstrap validity. This argument
was missing in the earlier works studying confidence intervals for stochastic optimization algorithms
[L1L 731 [74], where the authors considered procedures to estimate >, in @ They combine non-
asymptotic bounds on the accuracy of recovering Y, with only asymptotic validity of the resulting
confidence intervals. We expect that our proof technique for Theorem [2]can be used to provide similar
non-asymptotic validity results for outlined approaches for constructing confidence intervals based
on the estimation of the asymptotic covariance matrix.

Corollary 1. (Set of Euclidean balls or ellipsoids) Suppose that we are interested in estimating
quantile of a given order o € (0, 1) and some matrix B € R?*9, that is, the quantity

to = inf{t > 0: P(v/n||B(6, — 0%)| >t) < a}.
We define its counterpart in the Bootstrap world, t2, as
2 =inf{t > 0: P°(Vn||B(02 — 0,,)|| > t) < a}.

Note that t° is defines with respect to the bootstrap measure, therefore, it depends on the data Z*".
This bootstrap critical value t°, is applied in the Bootstrap world to build the confidence set

E(@) = {0 € RY: V| B(6 - 0,)] < 5} .

Theorem 3] justifies this construction and evaluate the coverage probability of the true value 6* by
this set. It states that

P(0™ ¢ E(a)) = P(Vn|| B8, — %) > t2) = a,
with the error of order n='/* in the right-hand side. Although an analytic expression for t2 is not
available, one can approximate it by generating a large number M of independent samples of W,
and computing from them the empirical distribution function of \/n||B(62 — 0,,)||, following (T6).

Remark 3. A natural question that arises after Theorem[3]is whether it is possible to prove similar
bounds for the iterates of first-order stochastic optimization algorithms. There are several MSE
bounds for corresponding algorithms with explicit dependence on the step size oy, see, for example,
[4515]]. Therefore, we expect that it is possible to obtain a counterpart to Theorem|2| At the same
time, for general first-order stochastic optimization algorithms, unlike LSA, there are no counterparts
1o the precise error expansions of [1|]. Thus, proving the counterpart of Theorem3]in this setting is
more challenging. Similarly, we emphasize that generalizations of the procedure (L) to cases where
{Z}. }ren are dependent, for example, form a Markov chain, are complicated. The approach of [63]
is not directly applicable in this setting, and appropriate generalization of (13) is a separate and
challenging research direction.

S Applications to the TD learning and numerical results

We illustrate our findings for the setting of temporal difference (TD) learning algorithm [[66) 67 for
policy evaluation in RL. Non-asymptotic error bounds for this algorithm attracted lot of contributions
[43. 116, (30,511 38]. At the same time, confidence intervals for TD were studied in [22} 56]] only in
terms of their asymptotic validity. In the TD algorithm we consider a discounted MDP (Markov
Decision Process) given by a tuple (S, A, P, r,~). Here S and A stand for state and action spaces,
and v € (0,1) is a discount factor. Assume that S is a complete metric space with metric ds
and Borel o-algebra B(S). P stands for the transition kernel P(B|s,a), which determines the
probability of moving from state s to a set B € B(S) when action a is performed. Reward function
r: S x A —[0,1] is assumed to be deterministic. Policy 7 (+|s) is the distribution over action space
A corresponding to agent’s action preferences in state s € S. We aim to estimate value function

V7(s) = E[Z Yor (s, ar)|so = s,
k=0
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where ay, ~ 7(-|sg), and sp11 ~ P(:|sg, ax) for any k € N. Define the transition kernel under 7,
P.(Bls) = fA P(B|s,a)r(dals) , 21

which corresponds to the 1-step transition probability from state s to a set B € B(S). The state space
S here can be arbitrary. It is a common option to consider the linear function approximation for
V™ (s), defined for s € S, 6 € R%, and a feature mapping ¢: S — R% as V7 (s) = ¢ (s)6. Here d
is the dimension of feature space. Our goal is to find a parameter 8* which is defined as a unique
solution to the projected Bellman equation, see [[70]. We denote by u the invariant distribution over
the state space S induced by P™(-|s) in (ZI). We define the design matrix ¥, as

Y, =Eu[p(s)p(s) '] € RIX4 (22)
Consider the following assumptions on the generative mechanism and on the feature mapping ¢(-):
TD 1. Tuples (s,a,s’) are generated i.i.dwith s ~ i, a ~ w(:|s), s’ ~ P(:|s,a) .
TD 2. Matrix ¥, is non-degenerate with the minimal eigenvalue Amin(X,) > 0. Moreover, the
feature mapping () satisfies sup,cs ||¢(s)|| < 1.

In the setting of linear function approximation the estimation of V™ (s) reduces to estimating §* € R9,
which can be done via the LSA procedure. Here, the k-th step randomness is given by the tuple
Zi, = (g, ag, s},). Then, the corresponding LSA update can be written as

Ok = Or—1 — ar(Apbr_1 — by) , (23)
where Ay and by are given, respectively, by

A = p(si){p(se) —r19(si)} T, b= o(sk)r(sk, ar) -
We provide the expressions for the corresponding system matrix A = E[Aj] and the right-hand
side b in Appendix@ We verify that assumption A[2|holds and, furthermore, we provide a tighter
counterpart to the result of Proposition E} This result closely follows [51] and [61].

Proposition 2. Let {0} ey be a sequence of TD updates generated by 23) under T D and TD
Then this update scheme satisfies assumption AR|with

Ca=201+7), lello=200+n6"[+1),
moreover, one can check that ||I — aA||?> < 1 — aa with

a=(1=7Auin(Sp) ;o =(1-7)/1+7)?,
that is, Proposition[I| holds with ) = L

Proof of Proposition [2]is provided in Appendix [E] Since all the assumptions in AP]are fulfilled, we
can verify tightness of the bound Theorem [2|for different learning rate schedules cy, in (23).

Numerical results. Efficiency of the multiplier bootstrap approach to the problems of con-
structing confidence sets in online algorithms has been demonstrated in the works [22] and [56]. We
aim to illustrate the tightness of our bounds for normal approximation outlined in Theorem 2]in the
setting of TD learning with linear function approximation. To this end, we consider the classical
Garnet problem [3]], in the simplified version proposed by [25]. This problem is characterized by the
number of states N, number of actions a, and branching factor b (i.e. the number of neighbors of
each state in the MDP). We set these values to Ny, = 10, a = 2 and b = 3, and aim to evaluate the
value function of the randomly generated policy 7 (-|s). Details on the way the policy 7 is set can
be found in Appendix [F| We consider the problem of policy evaluation in this MDP using the TD
learning algorithm with identity feature mapping, that is, ¢(s) = e (that is, s-th coordinate vector)
fors € {1,..., N,}. We run the procedure (23)) with the learning rates a, = ¢o/k” and different
powers v € {0.5,0.65,0.7}. For each of the experiments we aim to estimate the supremum

A 1= sup,ex [B(v/alf, — 6] < 2) — B(ISL2] <o), 24

—1/4

n ~ N(0,Ix,), and show that this supremum scales as n when 7 = 1/2 and admits slower

decay for other powers of 7. We approximate true probability IP(||E§</>277|| < x) by the corresponding
empirical probabilities based on sample of size M > n. Second, for n € {1600, ...,1638400},
where next sample size is twice larger than the previous one, we generate N = 6553600 trajectories of
TD algorithm and approximate the distribution of /n|6,, — 6*| based on the corresponding empirical
distribution. We report our results in Figure [T} showing that the smallest values of A,, correspond
to the step size schedule v = 1/2, moreover, the decay rate n~'/* seems to be tight, otherwise one
should expect further decay of A, n'/%. Additional simulations are provided in Appendix @
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Figure 1: Subfigure (a): Rescaled error v/n|f,, — 0*||, averaged over N independent TD trajectories
for different trajectory lengths n. Subfigure (b): approximate quantity A,, from (24)) for different
powers ~ and n. Subfigure (¢): A,,, rescaled by a factor n'/4, predicted by Theorem

6 Conclusion

In this paper, we have established, to the best of our knowledge, the first fully non-asymptotic
confidence bounds for parameter estimation in the LSA algorithm using the multiplier bootstrap. This
result is based on a novel Berry-Esseen bound for the Polyak-Ruppert averaged LSA iterates, which
is of independent interest. Our paper suggests several interesting directions for further research. First,
our Berry-Esseen bounds are obtained using the randomized concentration inequality [[63], and it
would be valuable to generalize this approach to the setting of Markov chains. Second, it is natural to
extend our results to the first-order gradient methods, both for stochastic optimization and variational
inequalities. Third, it becomes possible to prove the fully non-asymptotic validity of confidence
intervals obtained with plug-in techniques or other estimators of the asymptotic covariance matrix of
0,,. These could then be compared with the multiplier bootstrap confidence intervals in terms of their
dependence on problem dimension d and other instance-dependent quantities.
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A Proofs for accuracy of normal approximation

A.1 Expansion of the error of LSA equipped with the Polyak-Ruppert averaging

Proposition 3. The following expansion holds:

nfﬁ* 1 6, — 0

nA(6, — 6* £ + -
VrA( kzn;rl k o N
W D1 D2
1 2n 1 2n 1 1
- — A —A) Oy — ")+ — Op_1—0") [ — — 25
\/ﬁk;l( ’ o ) \/rﬁkzzn;i-l( o )<O‘k akl) 2
D3 D4

Proof. We use the recurrence (3)) and rewrite it as
O — 0" = (I - apA) (01— 0") — ar(Ax — A)(O)—1 — 0%) — ayey -
The previous equation implies, after algebraic manipulation and division by oy, that

Op—1 — 0% O —0"

Al —07) = == -

— (Ak — A)(Qk_l - 0*) — &k .

Taking average for k from n + 1 to 2n and multiplying by 1/n, we obtain (23). O

A.2 Bounding the error of the LSA algorithm last iterate

We begin with of technical lemma on the behavior of the last iterate 8}, of the LSA procedure given
in (T). We aim to show that EY/?[||6; — 6*||P] scales as \/a, provided that k is large enough. This
result is classical and appears in a number of papers, e.g. [[7,[14} 43| [17]. We provide the proof here
for completeness. Our analysis of the bootstrap procedure and the last iterate error of LSA procedure
is based on the error expansion technique from [1]], see also [16]. Namely, to perform the expansion,
we decompose the LSA iterates 0}, defined in (1)) into a transient and fluctuation terms:

O — 0" =0 + 4"

where we have defined the quantities

0 =Ty {bo — 07}, 6" = Zaj 1kE (26)
setting
k
T = H I-a;A(Z;)), m,keNm<k, withthe conventionT',,., =1 ,m >k . (27)

The dependence of I',,,.;, upon the stepsizes (c;) is implicit in (27). Here the quantity é,(;r) is the
transient component of the error, which determines the rate at which the initial error 8y — 6* is
forgotten. The term 9,(;” corresponds to the fluctuation component of the error and is determined by
the oscillations of the last iterate 8, around 6*.

Proposition 4. Assume A[l| AD| and A[3| Then for any k > n, where n satisfies ), it holds for
2<p< logn that

k

* N de /EqQ| €]l ool
EY/?])|6) — 6*||P ] < Vrgeexp{—(a/2) Za£}||90—9 |+ \/Téﬂ [ Jax .
=1
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Proof. Expanding the decomposition (26), we obtain that
k

EVP(|[6x — 6*[[P] < EYP[|T1s{60 — 0 P + B[ Y ayTyprne; 7] (28)
j=1
and we bound both terms separately. Since the sample size n satisfies (9), we get applying Corollary ]
(see equation (71)), that for 2 < p < log n? it holds

k
E'P[||T {60 — 0°}|P) < Rgeexp{—(a/2) Y ar}lbo — 67| -

=1
Now we proceed with the second term in (28)). Applying Burholder’s inequality 50, Theorem 8.6]

and Lemmalw1th b = a/4, we obtain that
i /27N /2
<Zj_1 0‘?||Fj+1:k5j||2> D

E/7| ZOéijH:kEij] <p (Ez/p
k 1/2
<p (Zj_l a?EZ/p[FjH:kgj”p])

j=1
k aoz[ 1/2
Spme||e||oo<z 2 1 1—)

=341

_ dey/mglelep
e Y

Corollary 2. Under assumptions of Proposition[d} it holds that
P(3k € [n,2n — 1] : |0k — 07[| = g(k, [|60o — 67|, n)) <

:\H

where we have defined

N ) k . 8e?, /kq||e]|oo log n
9(k, 1160 — 07, n) = /Age® exp{—(a/2) Y _ au} 6o — 0%]| + Ja Ve
=1

Proof. We first note that Lemmaimplies, setting 6 = 1/n?, that for every fixed k € [n;2n — 1],

k 2
8e?, /kolle]|so log n 1
<||9/rC — 0*|| > \/Rge® exp{—(a/2) ;ag}ﬂﬁo — 0% + QJ/E g \/ozk> < 3

Application of the union bound concludes the proof. O
We conclude this part with a simple consequence of Markov’s inequality.
Lemma 1. Fix § € (0,1/e?) and let Y be a positive random variable, such that

EYP[Y?] < C1 + Cap
forany 2 < p <log (1/8). Then it holds with probability at least 1 — 0, that

Y <eCy +eCzlog(1/9) .
Proof. Applying Markov’s inequality, for any ¢ > 0 we get that
ElvP P
tp P
Now we set p = log (1/0), t = eC; + eCy log (1/4), and aim to check that
(Cy + Cylog (1/5))'08 (1/9)
(eCy + eCqlog (1/6))les (1/8) —
Taking logarithms from both sides, the latter inequality is equivalent to
Cy + Cylog (1/9)
log (1/9)lo <logd,
8 (1/0) o8 S Tog (1/8)) = %8

which turns into exact equality. O
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A.3 Proof of Theorem[l

We first define explicitly the remainder term outlined in the statement of Theorem [T}
n'yfl/Z Ca n2773/2

co n(1- 7)/21/0()@ act

Proof. Since both terms in the right-hand side of the error bound of Proposition ] scales linearly with
\/KQ, for simplicity we do not trace it in the subsequent bounds (i.e. assume kg = 1), and then keep
the required scaling with k¢ only in the final bounds. The decomposition is a key element of
our proof and allows to treat different error sources D — D, separately. For the last iterate we have,
using Proposition[d] that

Al(na a, CA7 CO) =

(29)

n

* Elleo *
]El/z[H@ —0 || ] ” ” \/@+exp{ a/2 Zae}ﬂeoe H

e

2n

E1/2[||92n —0*%] £ ”ilflwd —i—exp{—(a/Z) ag}||90 -0 .
=1
Thus, using that Y __; o > M and ¢y < 1 — «, we obtain that
y—1/2 1-
B2 £ e el -0 g, g
facon(l— et o 2(1 )
—-1/2 9 —y
1/2 llello ”7 _00‘1( n)! o
£ [”D | } Vacon(t= et o P 1—7 160 = &1 -

Now we proceed with Ds. Since it is a sum of a martingale-difference sequence w.r.t. Fj =
0(Zy, ¢ < k), we get using Proposition[4] that

2n—1
C2

E[|Ds|?] < =2 > E[|l6x — 6*]*]

n
k=n

02 2n HEH a C 2n k
o0 k *
o 5n Bl Ca 5 opd-aSarfitn -1
(=1

k=n-+1 k=n-+1

A

2n k

CQ c 2 o n 2n
=& Z lellocan + —= exp{ aZozg} Z ag exp{—a Z ag} 160 — 6%
n a nag, — W

k=n-+1 l=n+1

A

S1

2 llell? &) 1=y
< o Ca llell5 + A exp{ Colan }”90 _ 9*||2
Y

a(l—y)nr  nl=7¢a

where we additionally used that S; < 1/a due to Lemmal 3l Now it remains to bound the term D,
from the representation (25)). Using M1nkowsk1 s inequality and Proposition 4] we get that

2n—1 1 1
EV2 (| D4l ZEWW wm(— )

(7% Qf—1

2n—1

lelloo (K — (K —1)7)
N\fz CO\[ \/@

2n—1 k
>0 mﬂ(WE)}mww
CO\F =1
@ lefloe = n*—3/2 ,
S Jato/n & Z - 7/2 acl exp{ 2(1 }”90_9 I
lle]| oo n2v=3/2 cocml v
< 6, — 0% .
~ Jacon(t=)/2 + ack P 2(1—7) 10 |
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Here in (a) we additionally used that k¥ — (k — 1)7 < k=7 together with Lemma Combining the
estimates above yields the result of Theorem [I] O

‘We conclude this section with some technical lemmas.

Lemma 2 (Lemma 24 in [18]). Let b > 0 and (o) x>0 be a non-increasing sequence such that

ag < 1/b. Then
n+1 n+1 1 n+1
E:%‘Hml—mwzb{l—rhl—mw}

j=1 l=j+1 =1

Proof. The proof of this statement is given in [L8], we provide it here for completeness. Let us

denote uj.p 41 = H?:Jrjl(l —ayb). Then, for j € {1,...,n+1}, ujt1mt1 — Ujint1 = DU {1mt1.
Hence,
n+1 n+1 1 n+1
Z a; H 1- alb) = g Z(uj+1:n+1 - uj:nJrl) = b_l(l - Ul:nJrl) P
l=5+1 7j=1
and the statement follows. O

Lemma 3 (Modified Lemma 25 in [18])). Let b > 0 and let ay = co/07, v € [1/2;1), such that
co < 1/b. Then for any n satisfying

2 1/(1=) 1—v 27v(1 —
nzopa( 2 B (30)
cob 1+1log(n) — eob(1 — (1/2)t—
and any k > n, it holds that
k+1 k41
> o [ (1= aeb) < (4/b)agss -
j=1  t=j+1
Proof. From elementary algebra, we obtain that
Co Co co((1+1/6)7 —1) o v
— = _ = - 31
e e N (I SRS 6D
where we used the fact that (1 + )Y <1+ ~x fory € [1/2;1) and = € [0, 1]. Hence,
Y o<1 1.
Qpy1 Y4

Thus we obtain that, since k > n,

k41 k4l BHLRHL

2 -1
g aj H (1 — ayb) = agy g o H ( ” )(1 — ayb)
j=1  t=j+1 J=1  t=j+1

k+1 k+1

§a;€+12ag (1+1 (1 — ayb)
j=1  r=j+1

k41 k+1 k+1
< Qg1 Z ovj exp } exp Z agb p exp { Z -1 } exp { Z Oégb}

j=1 = j+1 {=j5+1 {=n+1 {=n+1
k+1 b k+1

<ak+1§ oj exp exp{ — ong exp —3 g agb p .
j=1 = j+1 = j+1 {=n+1

In the last identity we used the fact that, since n satisfies @]), it holds for ¢ > n/2 that

Ll < agb)2. (32)
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We will now prove that for j < n — 1, it holds

n

. E—l_ (b/2) Zag, (33)
l=j+1 l=j+1
For j > n/2, the bound (33) directly follows from (32). We now turn to the proof of (33) for
j < [n/2]. Note first that
> =X oy Sollogm+ 1)
e:j+1 =2

On the other hand, we get

"'de (n+D)7 =G+
Yo )

1—x

= j+1

Comparing the above bounds, to ensure that (33) holds, it is enough to check that

cob 1— 1—
+ log —(n "= (n/2) 7). 34)
(14 log () < 52 (017 = (n/2)!7)
Note that (34) is guaranteed by (30). Using that e=* < 1 — z/2 for z € [0, 1], we obtain that
k41 k+1 k+1 k+1
Za? H (1 — ayb) < agga Zaj exp{(b/Z) Z ag}
=1 f=j+1 j=1 £=j+1
k41 k41
< Og+1 Zaj H 1 — b/4)0(g)
l=j+1
< (4/b) 41 5
where the last inequality follows from Lemma 2] O

B Proof of Theorem

We first define explicitly the remainder term outlined in the statement of Theorem [2}

VIr S, (Ca \/1)2n7_1/2>

aco

Ag(n,a,Ca, Tr¥., c0) = kg (x/Tr YA+ (35)

and constants Cy, Cs, C3, C4 from Theorem@ optimized bound (T3)), and Remark respectively:
\/@”5”00 VIrd. i kQ(Tr¥. + Ca vTIr Y. |le] )

Cy =
! /aco aco ’
VEQlE|lcovV/Tr Xeco Ca
C,= V@ — ;) +1Q Ca VTIr S (Jlellos + VIr Ee + Ca Jle]loc)
o(1 —
(36)
. kq(co Ca VI)VTr X ([le]loo + vVIT E: + Ca [le]lo0)
3 — aco )
(Im)
o kQ(co Ca VIV Tr S ([l oo + Tre™ 4+ Ca llelloo)
4 aco '
To complete the proof we only need to combine (I3) with the bounds of Theorem[I] Note that we
apply (13) with
- &
&= N
Thus, for Y, defined in (T3) we have
o < el
= pl/2
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Applying the Cauchy-Schwartz inequality, we get
ellocv/Tr X 1
(D)W < B2 (DIPE 2] s Y2 ﬁ(m et )

it =2 T Tl
coan'™" .
+,/HQ\/’I‘I’25A1 exp —m ||90_9 H .

Now it remains to bound the last term in (T3). Using the Cauchy-Schwartz inequality and Lemma 4}
we obtain that

2n—1 2n—1
n=PELY el ID — DO < n T PEVR[llea]P] Y EV2[ID — DY
< kQ(TrX. + Ca VIr Xc|le]|oo) L fiQ CavVTrE (el + VIrZ: 4+ Ca |lelloo)
~ aconli=7 ny/2
Tr > 1)2 y—1/2 1—~
n koVTIrE.(Ca V1)*n exp _ coan 160 — 0%
aco 2(1—+)

and the statement follows from [63) Corollary 2.3].

B.1 Proof of auxiliary lemmas for Theorem [2}

Our proof of Theorem [2|is based on the key lemma below, which allows us to bound E'/2[|| D —
DO |2 fori € {n+1,...,2n}.
Lemma 4. Assume All| A2} and AB] Then

2n

S B 2(D - pop) g VIR ¥ Callello) 5o
' aco
i=n+1

+ 1 Ca (llelloc + /IrS: + Ca flefloc ) 7

1)2 y—1/2 1—v
n kg(Ca V1)*n exnd _ €09 100 — 6] .
aco 2(1—1)

Proof. Since both terms in the right-hand side of the error bound of Proposition @ scales linearly with
/K@, for simplicity we do not trace it in the subsequent bounds (i.e. assume kg = 1), and then keep
the required scaling with ¢ only in the final bounds. Consider the sequences of noise variables

(Z17 .- '7Z’i713 Zi7Zi+17 ceey Z2n) and (Zla .- ~7Zi717ZZ(7 Z’i+17 . ~>Z2n) )

which differ only in position i, n + 1 < ¢ < 2n, with Z/ being an independent copy of Z;. Consider
the associated SA processes

O, =01 — Oék{A(Z;c)ek,1 — b(Zk)} , k>1, 60y=0y€ R
0 =00, — an{A(VO, —bOR)}, k=1, 0)) =6 eR?,

(37

where Y, = Zj, for k # i and Y; = Z. From the above representations we easily observe that
0 = 0,(:) for k < i, moreover,

0 — 0" = a; {(A(Z]) — A(Z))8i-1 — b(Z)) +b(Z)}
= a;i(A(Z)) = A(Z;))(0i—1 — 0%) — ci(ei — €})

2

(38)

where ¢; = £(Z;) and €] = £(Z]). Representation (38) implies, together with Proposition 4] and
co < a, that

; N B a \
EV2[10; - 05]%) S s TS+ =R 25 ai Caexp —§;aj 160 — 6|
N (39)

J
i—1
=1

a
S/Oéi(\/ﬁ‘i’CA ||5||oo)+a¢CAexp{2 aj}”QOa*” )
J
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Moreover, for any j > i one observes, expanding @), that

0, -0 = { ﬁ I- akA(Zk))}(ei — o). (40)

k=i+1

We use the above representations to estimate E'/2[|| D — D ||?]. Using Minkowski’s inequality,

4
EV2[|D - DD < S EY?[|D; - DY) (41)
j=1

and bound the respective differences separately. Recall that here D; — D, are defined in (23)), and
DY) - fo) are their respective counterparts with Z; substituted with Z/. First we note that the term
Dy = D' forany n + 1 < i < 2n. Next, using (@0) and (39), we get

i 1 i
EY2[| Dy — DY %) = EY2[||63, — 65 1%]

\/HOQ
2n
< EV2[II TT (@ — cwAn)|ZJEY2])16; — 6112
fa27L [ kg—l }
(a) ) TS 2n
5 az(\/ T 5+CAHEHOO) exp{—g Z ak}
\/ﬁagn 2 k—itl

a; Ca a 2n N
+ N exp{—§;ak}||90 - 07 .

In the inequality (a) above we additionally used the stability of matrix product introduced from
Corollary ] Summing the above inequality for ¢ = n + 1 to 2n and applying Lemma[2] we get

2n n
VTIrY, 4+ Ca |lell o Ca a
E'/?[| D, — DS - 6y — 6*
> BV IS e e {5 oo =]

,S iV Tr 25 —+ CA ||€||Oon,y71/2 + CA n’Y*l/Q ox Coa,nl
aco aco 2(1

1=n+1

6y — 0" 42
w}'“ I @

Now we proceed with the difference D3 — D . Using (Z3), we get

2n
M _ LA _ AN 4 L A (i)
D = D3" = —2(Ai = A (0ia = 07) + == g;l(Ak — A)(Or-1 = 0,2,) -

The expression above is a sum of martingale-difference terms w.r.t. filtration 7}, = 0(Z], Zy, ¢ < k).
Hence, we get, using (@0) and Proposition[d] that

2n

7 C *
E[|Ds — D’|*) £ —2E[10i-1 — 6% Z [164—1 — 65”11 (43)
k=i+1
C2 llellZea | C4 1160 — 6]
< A oo A _ .
N na + n exp{ ajz::laj}
C 2n k—1
AIE[||9 — 02 S exp{-a > a;}.
k=i+1 j=i+1
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Using now the bound (39), we obtain that

2n k—1
Bll6,— 6017 Y exn{-a 3 o}
k=i+1 j=i+1
2n k—1 2n k—1
<a? (TrE. + C3 |lell%) Z exp{—a Z a;} +af Ch 60 — 6% Z exp{—aZai}
k=i+1 j=i+1 k=i+1 j=1
o2 2n k—1 02 C2
Sil(TrEE—l—Ci llelle) Z o exp{—a Z aJ}+ A||0 —0%)2 Z o exp{— azaz}
2n k—it1 j=itl k—it1
(a) AA(TrY. +C4 lel2) a2 C3
< olirRet Calell) | 20 Ba g, g e - az%

In the above formula in (a) we additionally used that, since ai;a < 1/2,

2n k 1 400
Z g eXp{—a aJ} / exp{—az}dr = —. (44)
k=i+1 j=i+1

Hence, combining everything in (@3), and using additionally that o; < a, we get

B0 - DY) A (feloy@ + SRR

CA (67 CA a =t %
% (1 N \/aOéQn) eXp{—ijz::lal}Hﬂo —0 ” '

Summing the above inequality for i = n + 1 to 2n, and using that ay, = co/k7, we get

1— 'y/2

2n
> Vi Syen' 2

1=n+1 1= n+1

and, hence, using again o; < a, we get

2n

S EY?[|Ds - DY

i=n+1

Caveo Lo (Ca V1?6 — 67|
S L (lelloo + VL + Ca flelloc ) 0+ Zazexp{_,zaj}

fa27z i=n+1
CA Co 1—~y n771/2(CA \/1) ||00 — 9*” coanl v
< Ay o+ /Tr Y OO) _Gan 71
S~ (||5|| +VTrE. +Ca lelloc ) n 2 + o~ exp 21— )

where for the last identity we used the fact that oy, = co/k”, and (@4). It remains to upper bound the
difference Dy — DA(1 ). Note first that, proceeding as in (31)), we get

¥ 1 1
-1 — < <
Ok—1 Ctk_k_lak_lw(k_l)l,,y

Using now the definition of Dy in (Z3)), we have that

; 1
E'/?[|| Dy — DV|] = IE”Q [ Z (01 — 03 )() 12

« Qe
k—it1 k k—1

2n k—1
i 1 1
TE”Q[H@ DY (ak— )exp{—‘; > o}

A —
k=it k=1 j=it+1
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Hence, using the bound (39) and taking sum for i = n + 1 to 2n,

2n k—1
i TrY. 4+ Ca |le]loo
> 521Dy~ D)) (* DS ep{-a 3 ay)
i=n+1 Vi i=ntl  k=itl oo j=it1 ’

CAHQU—@ | Z Z (Oék a_1> {——Zaj}.

i=n—+1 k=i+1 j=1
Changing now the summation order, we obtain that

Z a; Z ( )eXp{—akz_:lOéj}s i (alk_ : )

= a1
i=n+1 k=i+1 Jj=i+1 k=n-+2

_1 11y _ 1 .
Opy1  Qoan ) ™ aoog

2n 2n

VTr S, 4 Ca el »
D EVAIDy - DY) s e A - 3 EVAID - DY) 45)
1=n—+1 2n i=n+1

Tr > - y—1/2 1—
< VIrX. 4+ Ca ¢l p-1/2 4 Can - coan 100 — 0°]] .
acy aco 2(1 )

It remains now to combine @2)), @3), and (@3] in @T) and use that ¢y < a. O

SHE

Qf_—1

—_

Q

Hence, combining the above bounds, we get

B.2 Relations between p$°"" and integral probability metrics

In this section we closely follow the exposition outlined in [24]. Consider two R%-valued random
variables X and Y. Then the integral probability metric [[75]], associated with the class of functions
H={h:R?— R,E[h(X)|] < oo, E[|[A(Y)|] < oc}, is defined as

du(X,Y) = }flelg\E[h(X)] ~E[RY)]|.

Different choices of H induce different metrics, in particular, we mention the following:
Hi ={lo<u, u=(U1,...,uq) € Rd}
Hconw = {leep, B € Conv(R%)}
w={h:R'=R, [hllLip <1}
Him) = {h:R* - R, h™ 'isLipschitz with |h[; <1, 1<j<m},

1A =hWI a1 the

where Conv(RY) refers to the set of convex sets in R9, =]

quantity |h|; is defined as

& h(u)
Ihl; = i1 1171163?14 ..... d} ”auh - Ouy, loo -

In other words, for m € N, the class H,,) corresponds to the functions with bounded derivatives
up to the (m — 1)-th order. The class H  induces the Kolmogorov distance between distributions
[[75]], class Hcone induces the metric pgonv defined in (2), which is the main object of studies in
the current paper. Class Hyy induces the celebrated Wasserstein distance, and classes Hj,,) induce
smoothed Wasserstein distances. We will denote the respective metrics by d, pgon", dw, and d,,,
respectively. Then, obviously,

dK(X’ Y) < pgonv(Xv Y)
for any random vectors X and Y. Other relations are more involved. When Y is a multivariate
normal vector, it is known (see e.g. [49]) that

PO (X,Y) < CV/dw (X, Y)
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where the constant C' in the above inequality depends on the covariance matrix of vector Y. This
inequality justifies comparison of our bounds of Theorem [2] with the result of [65]. The authors in [2]
considered integral probability metric dj3; and obtained rate of convergence

Ch
V'
where Y ~ N(0,X,), and C; in the above inequality stands for a constant depending upon

problem dimension d and other instance-dependent parameters from Applying the result of [24]
Proposition 2.6] yields

dzy (Vn(, — 6%),Y) <

dic (il —0°),Y) £ (dpy (VB —0),) "7 < o

Thus, the result of [2] implies rate of convergence of /n(6,, — 6*) to normal law N(0, X,) of order
—1/6 in a sense of Kolmogorov distance d . Our result of Theoreml implies the respective rate of

order n~1/%. At the same time, it is not clear if pS°"" can be directly related to dpg.

C Bootstrap validity proof

C.1 Proof of Theorem[3|

We first define explicitly the remainder term A outlined in the statement of Theorem 3} that is,

kg (C4 V1) [l oon/*yTog n

Az(n,a,Ca, elloc) = a3/2

(40)

In the above bounds we do not trace the precise dependence on the constant ¢ from the definition of
the step size. We now define the following sets, with the convention cy = ¢o/+/¢:

k
0 = {Vk €n,2n—1]: (|0, — 0| > ,/nQe2 exp{—% ZOM}H@O — 6 47)
=1
8e2 /gllell log
+ \/a VO N
b ao;
D=(n+1<m<k<2n: |Thxl < KQeQH(l—TJ) ,
Jj=m
1 4(1 2 /o)1
0y {| S22 ) < ey 12 4 AOLE elBo/o?) og(n)} |
on n
2n 2
_ 8Ca /koe“/logn
Q4 = {Vf S TL 2n — 1] : Z (Ak — A)Ff-l-l:k—l S \/Eae +60A \/%elogn s
k=041 \
m-+h m+h
Qs =<Vhe[l;n],Vm e [n,2n—h]: | Z a(Ar—A)llg <2Ca /Rg Z Zlog(2n*) 3
{=m+1 l=m+1

Qg

el 4()1% 2)1
{Hzg_&”gngnm [Zllog(n) , 401 + i) og<n>}7

n n

Then, due to Corollary we have that P(Q;) > 1 — L. Similarly, due to Corollary SLP(Qe) >1— =
The bounds_on P(€23) and lP’(Q4) follows from Lemma 5| and Lemma [6] respectlvely Slmllarly,
Propos1t10n1mpl1es that P(Q5) > 1 — l . Hence, based on the sets above, we can construct

Q=0 NWN%NUNNQy,
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such that P(Qg) > 1 — %. All further on, we restrict ourselves to the event {2y. Restricting to this
event, we obtain that, with Minkowski’s inequality,

sup  |B*(Vn(0h, — ) € B) — P(vVn(f, — 6%) € B)|

BeConv(R%)
< sup |P°(vn(6h —0,) € B) —P°(¢® € B)|
BeConv(R4)
+ sup ‘ (e B)-— Pb(fb S B)|
BeConv(R%)
+ sup |[P(Vn(d,—0%) € B) -P(¢ € B)|,
BeConv(R%)

where we set £ ~ NV (0, A7'X2A~T), B2 =n~1 Y70 | pe/, and £ ~ N(0, X)), where Yo, =
A~13.A~T. Now we control the first supremum using Theorem second one using Theorem
and third with Theorem 2]

Lemma 5. Assume with v=1/2, and A Then
P(Q3) >1—1/n.

Proof. The proof follows directly from the matrix Bernstein inequality, e.g. [69]. We note that
1= Pe0e] ©2 T S 1+ |IZ71 2l -

and
2n

1> El(S2Y el 2212 17| < nEIIZ %%
k=n-+1

Lemma 6. Assume All] AR} AB|with~ = 1/2, and AH} Then

1
P(QNQ)>1— ~.
n

Proof. Denote -
X = (A = A)Tor1p-1-

andlet}'klﬂ =0{Z;,0+1<j <k} {+1<k<2n Then E[X|Fr_1¢41] = 0. Let
Sy = Zk —041 X. Note that on (25, quadratic variation of .S, can be controlled as

2n 2n
Var® := max(|| Y E[Xe X, | Fe-vralll | Y B Xkl Freorapal)
k=041 k=(+1
2n
4 C3
< rge' Ch Z H (1 — aa;/4)? HQe A
k—t1 j—l41 ace
Furthermore, on 5
k—1
Xkl < vAge® Ca ] (1—aa;/4) < /rge® Ca.
J=L+1

It remains to apply the Freedman inequality for matrix-values martingales [68]] and use the union
bound over ¢ € [n,2n — 1]. O

Lemma 7. Assume with v=1/2, and A Then
P(Qs) >1—1/n.
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Proof. We first fix b € [1;n], m € [n,2n — h], and consider the random variable

m-+h
o= Y arAr—A).
l=m-+1
Then we control its variance as
m-+h B B m-+h m-+h
max(| Y ofE[(A;—A) A~ AT DY ofE[(A—A)T(A-A))<Ch > of,
l=m-+1 l=m-+1 l=m-+1

(Ay— A)(A;, — A)T| < C4. Applying now the matrix Bernstein inequality [69], we
obtain that with probability at least 1 — 1/n3, we have

m—+h m-+h
2 Z aZv/log (2n3d) + mH Ca log (2n3d) < 2Ca Z a2 log (2n*)
l=m-+1 l=m+1

In the last line here we used that d < n. Rest of the proof follows by taking union bound over h and
m together with || B||3, < kql|B||? valid for any matrix B € R**¢., O

Lemma 8. Assume with v=1/2, and A Then
P(Q) > 1—1/n.

Proof. ltis easy to check that ||e;e] — .| < [|Z:] + ||€]|% . Moreover,

n
= 1Y _(eeef = TPl < mllellZ Izl
/=1
It remains to apply the matrix Bernstein inequality together with the bound n > d from O

C.2 Rate of Gaussian approximation in the bootstrap world

The main result of this section is the following theorem.

Theorem 4. Assume A A[Z] A withy = 1/2, and A Then, conditionally on the event ), the
following error bound holds:

dV2|el2, Ky (CA VD)l logn

sup  [PP(y(BE —,) € B) — P& B)\ <

BeConv(Re) )\fn/ii\/ﬁ a3/2 Apinnt/4
3/2/ 3 1/4 n
kg (Ca VD)|lg]|con'/*V/1Iogn a
¢ PRV, exp{—7 > _a;}lloo — 0" .
min ]:1

where £ ~ N(0,A71SPA"T) and 2 = n=1 3", &g/

Proof. Since both terms in the right-hand side of the error bound of Proposition ] scales linearly with
/K, for simplicity we do not trace it in the subsequent bounds (i.e. assume kg = 1), and then keep

the required scaling with k¢ only in the final bounds. Recall first that the quantities 02 and 6y, are
defined in (T6). We start from the following decomposition:

92—9;6 = (I—ozkA)(9,3_1—0k_1)—ak(wk—l)ek—ak(Ak—A)(Qz_l—Gk_l)—ak(wk—l)Ak(Qz_l—G*) .
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Taking average for k from n + 1 to 2n, we get after multiplying by /n that

2n
~ab 3 1 1 6°—9 1 65 — 6,
A b - _ -1 = ’n n - Yon n
VnA(#2 —6,) \/ﬁk;l(wk )er + = N
Wb DY D}
1 2n 1 2n 1 1
- wp — DAL(0°_, — ")+ — 6% — 6 (— )
\/ﬁgﬂ( k= DAKOR - —0) ﬁk:;l(kl e (oo
D} Db
1 2n
- (Ap — A —Or1) . (48)
NS
=n+1
Db

5

The formula (@) resembles the key representation 7° := /nA (62 — 6,,) = WP + DP, where
D° =D} +...+ D¢, (49)
and D® — D? are defined in [#8). Now we aim to apply the result of [63]:

sup  |PP(T° € B) — P(¢® € B)| < 259dY/2Y 4 2E°[||WP|||| D®||]
BeConv(R%)

+2 > Efll&ll|D° — DY), (50)
l=n+1

where &, = \}( ¢ — 1)e,. We finish the proof by the application of the formula (50). In order to

bound the quantities EP||DP||? and E°|| D®9)||2, we apply the respective results of Proposition I
and Proposition [6] respectively. Namely, applying the Cauchy-Schwartz inequality together with

Proposition[5] we get that on the event € it holds
2 b
1/2 A\/l le]l o v/ Tr 2 logn
EP(| D [WP])] < {EP[ID°)2} > ey 2 < 22 /a5

Ci v1)nlt/4 C4 V1)yIogn coar/n .
el (A 4 AV otV gy

Similarly, applying Minkowski’s inequality and Proposition [6] we obtain that

2n—1 2n—1
i 1/2 i 1/2
1Y &P = DD < {EP(& P Y {EIDY — D®™P)*)}
g2 (CA V1)fel|2, ) 204 rgl(CAVL Viylogn d
ORI ogn | rglllZ Ch | WA VDIl VIER s
~ a3/2n1/4 a2\/n a3/2 XP1™ 7 s Js1iivo :
j=
Now it remains to combine the bounds above in (50). O

Proposition 5. Assume with ~v=1/2, and AE] Then, conditionally on the event ), the
following error bound holds:

2 4
172 _ K (Ca V1)|le[loc log n
{Eb [”Db(wh"'7w271,7Z17"'aZQTL)||2:|} S 2 n1/4a5/2

372 (((CA VD)n'/4  (CY V1)y/Iogn _coay/n e
+ kg ( Ja + Jra eXpy ——5 — 160 — 6%,

where < stands for inequality up to an absolute constant.

Proof of Proposition [5is provided below in Appendix [C.5] The lemma below is a direct counterpart
of Lemma [l
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Proposition 6. Assume with v =1/2, and AE] Then, conditionally on the event €, the

following error bound holds:

2n 3 ,
S Eipb - Doy g CAYU ke 1/a g, o ol Ca
i=n+1 a3/ a

3 v1)n®/*/logn a4 — N
4 (CAVIVORT {23 it — 7]

3/2
a3/ ot
Proof of Proposition [6]is provided below in Appendix [C.6
Lemma 9. For any k > n on the set Qg the following inequality holds:

orllel%Ca | 2 T
— 5+ Cak [J (1 —aa; /)00 — 07 .

j=1

E°[I|6R - 6x11%] <

Proof. A direct application of Lemma [[T|with L = 0 yields that

2 k

bf||gb 21 < nllell3 Ca 2 2 |2

e (R ) R X0 | R D
i=

Now to complete the proof it remains to notice that Ca > a. O

Lemma 10. For any matrix-valued sequences (Up)nen, (Vn)nen and for any M € N, it holds that:

M M M M k—1
[Hoe- TV =>4 I] virwe —vi{]] Us}-
k=1 k=1 j=1

k=1 j=k+1

C.3 Gaussian comparison inequality

Theorem 5. Assume Allland AR} Then on the set Q3
[d1 AVA(1+ |22
sup |P(§ c B) —Pb(fb c B)| < 4“25—1/25”00 C:lgn 4 \f( + H € EHOO) ogn

BeConv(R?) n

Proof. We will use the following inequality

1,
IV, 31) = N0, Ba)llrv < 51572052 1], 61
Applying (31) we obtain
d
sup B¢ € )~ Po(e* e )| < Lz iamenie .
BeConv(R9) 2
It remains to apply definition of (23. O

C.4 Auxiliary technical results.

For the analysis of the difference term 92 — 0, we use the perturbation expansion technique introduced

in [1I], see also [16]. Within this approach, we represent the fluctuation component of the error éSf D
defined in (26) as
égl) - JT(LO) + HT(lO) ’

where the latter terms are defined by the following pair of recursions

JO = (1-a,A) IO — a,e(Z,) IV =0, (52)
HO = (1-a,A(Z,) HY, — a,A(Z,)7Y, | 7Y =o.
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Moreover, it is known that for L > 1 the term H,SO) can be further decomposed as follows:

L
HO =>"J"+HP .
/=1

Here the terms Jr(L ) and Hy, ) are given by the following recurrences:

JO = (1= ,h) 1)) —anA(Z) 150 5 =0, (53)
H = (1= anA(Z0) By — anA(Z0) T2 HP =0

The expansion depth L here controls the desired approximation accuracy. Informally, one can
show that El/p[HJr(f) 7] < alf™/? and similarly E'/?[|| H, © 7] < alf T2 . Using the outlined
expansion, we prove the followmg lemma

Lemma 11. Assume AIZI With v=1/2, and Then for any k > n and L € N the following
decomposition holds:

L
O — O = J° + > I + Hp, (54)
=1
where
k
J,?’O =— Z ag(we — D)Tpy1.4E0,
l=n+1
. k .
J,l:’] = - Z ap(wyp — 1)Fz+1:kAéJ;’,]1_17 JjelL L]
l=n+1
k
HY' = — Z ap(we — DB, Agdp (55)
l=n—+1

and the quantities €, are defined as
= A[(@g_l — 0*) + ey .
Moreover, on the event €,

1
o el CX

e e +CWH —aa; /42|60 — 0*|*, j€[0,L] (56)

L+1 CZA(LH) ”5”2

b, 00 2(L+1
B[l H M%) S A + A >1<:H(1—aaj/4)2||90—9*u2. (57)
j=1
Proof. We start from the decomposition
0% — 01, = (I — apwrAR) (03, — Or_1) — ag(wy, — 1)éy. (58)

Expanding the recurrence above till & = n, and using the fact that 2 = 6,,, we get running the
recurrence (58)), that
k

92 — 0 =— Z ay(we — 1)F2+1:k§g .
f=n+1

Hence, proceeding as in (32), we obtain the representation
b, b, ~ b,
J( 0) = (I—Oz]gAk) Jlif?) —Ozk(wk—l)&g s Jé 0) ZO7

H(b 0) (I - ozkkak) ( 72) — ak(wk — I)Ak-(]]gli?) s H(gbﬁ) =0.
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It is easy to check that J, (50) 4 H (b.0) = 0® — 0. Similarly, with further expansion of H lgb,o) along

the lines of (33)), we arrive at the decomposition (34). Since wy, fork =n+1,...,2n are i.i.d., we
get using the definition of the events €2; and (25, that on the event €)g:

—1 2 2
~ agllellz, log” n
el < el + Ch exp{—a 3"y} — %2 4 22lEleloB™m
j=1
-1 2 2
. avlle]|5, log™ n
< el + G TT — aoy/2)% 0 — 07 + 2l loE 59)
7=1

£—1
S llellZe + CA TT (@ — ac;/2)% 1160 — 672,

=1

where for the last bound we have additionally used that o log2 n/a < 1 for ¢ > n. The latter bound
is guaranteed by AEI Hence, using the bound (59) together with the definition of .J, ,S 0 we obtain that

k K
B[R0 = > aflTepanéel® = Y aflTern(Ar(Bo1 —0%) + o) |2
l=n+1 {=n+1
k k K k
Slelie D2 of TI (—aaj/0? +CR Y of [T —aay/9)?||0 — 07
l=n+1 j=0+1 {=n+1 j=1

k k
]2, CA log® n
++ > af [ (- aay/4)

f=n+1  j=L+1

)% a kY 1 of|le]|?, C4 log®n
< || Hzo k +Cilog (n) H(l_aaj/4)2||90_9*”2+ k” Hoo A 108

: a?
Jj=1

< llelZoen

211a- 4)2)|60 — 6*||?
S . CH ac; /4)?| =,

where we additionally used the fact that k € [n; 2n| and n satisfies AEI Assume now that the bound
on J27 ! has a form

HEH2 o

E°(l 7077 § ot 4 X H 1 —acy/4)*]|0p — 07|

Then, using the martingale property of .J b.J we write that

k
b,j b,j—1
B[P 1% = ) ofE°(ITesrAedp? %)
l=n+1
k 2 k k k
< J+ ||5||2 C 2j+2 12
< Z H —aa;/4)* + CY Z H 1 — aa;/4)?60 — 0%
l=n+1 j=0+1 £=n+1 j=1
1 y
- J+ ||5||2 +CQJ+2 H 17010[ /4) ”9 0*H2
~ a1 J o

J=1
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and thus the bound (36) is proved. Moreover, using (53)) and Minkowski’s inequality, we obtain that

k
EP[IHR IPDY2 < Ca D> ou(EP(ITE 44 12D 2 @[5 112]) /2
{=n+1
S 15 [F ¢
< Ca Z I+D/2 H —aoj/4)
{=n+1 j=0+1

k k

+CKM Y ar [T~ aa;/4)%)60 — 67

l=n+1 J=1

k
Elloo *
<l +CJLXH\/EH(1—aaj/4)2||90—9 I,
j=1
and (57) follows. O

a;gL+1)/2 Ci“

a(L+3)/2

C.5 Proof of Proposition 5]

Recall that the quantity D" is defined in (@9). Since 62 = 6,,, we conclude that D% = 0. To estimate
other terms we will use the main error decomposition outlined in Lemma TT] that is, the expansion

L
0 — 0= I+ HYT,
£=0

applied with different L > 0. To bound D5 we take L = 0 and obtain

; g||? C 3 & .
EPIDIP) S BUE P+ B P Lol (1 A) g | CREEUR

2n
el (4, Ca ; %16 — 6"
S gz (1472 )+ A TT0 - aci/02 00 — 07

j=1
To estimate DY we note that
1 2n
Dg \f Z k_l)Ak(ek 1 —07) = D31+D32»
k=n-+1
where we have set, respectively,
1 2n
Dg,l = % Z (wr — 1)Ak(91271 — k1),
k—n+1
DS, = Z wp — 1) Ag(Op—y — 0%) .
fk n+1
It follows from Lemma[9] that on the event €2 it holds
E°[| D3 4[I°] Ca Z E°[I6R -y — —1]l*)
k=n-+1
aclelle cA . o2
Z +Ch > Hl—aa]/ll 166 — 67
k=n+1 k=n+1j=1
C4 llel|? C
< Al (1 A) # A oxp coa b —
a\/n
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Moreover, on the set {2 it holds (since g C €24), that

1 2n
E°[| 1= - > Ak(Or-1 — )]
k=n-+1
2 2n k 2 2
< _ _ n*|2 akHEHoolOg n
S (exp{ @ ea}lfo 0|+ =R
k=n+1 /=1
2 2 2 2 2n
Ca llells; log™ n
< * 2 A [es)
S aa eXp{ aZag}H@O 0*1” + T Z Qg
k=n+1
2 2 Jog?n
< _ 0o — 0%||2 Callell3 log® n .
Nawem{cMJ}n P 22

Combining the above bounds, we get
E°[ D317 < E°[I1D3111%] + E°[| D3 o1%)
02 2 1 2 C2 C4
5 A”E”oo og n (1+)+ A\/ﬁexp{—coa\/ﬁ}||90—9*||2.
a/n a

Now we proceed with the term D%. Applying Minkowski’s inequality, we get

i 2 (e

<= Y o (Y (1 )thﬂrwwa%ww

k=n+

{E°[IDR)P2 < ) {E°[167_1 — Oua P13/

3\

Qp—1

Jj=1

€lloo Ca 2 *
< nl/ﬂf (1+> 253 H (1 — ac; /4)]|06 — 6%

k n+1j7=1

H5||oo CA Coa\/ﬁ
< - 2V —_Q*
~ n1/4f 1+ + Ca exp ||90 0 || .

It remains to upper bound the term D£. Using the decomposition, suggested by Lemma with
L = 2, we get that

2n 2n
1 _ 1 A 7b,0
De=— N (A AN )= > (A AP
\/ﬁ k=n+1 f k=n+1
D,
1 on 1 2n 1 2n
= S AR = S (A— AR = S (A - A)HD,
v k=n+1 VL n+l e ntl
ng2 Dg,s ng“

Here we have to consider expansion until H2, since dealing with the latter term (outlined as Dg 41N
the above expansion) is possible only with Minkowski’s inequality. Now we consider the summands
Dlg.l — Dl§7 4 separately. Consider first the term Dg,l. Changing the summation order, we obtain

2n k—1
1 < .
Dg, = VG Z (A —A) Z ag(we — 1)l ot16-180
k=n+1 l=n+1
1 2n—1 2n
=-—— avg(we — 1)( > (Ax - A)Fé+lzk1>5€ :
Vi k=t+1
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Then on the event 2y we get, since 2y C )4, and using that n satisfies AEI,

2n

logn
(A, — AT . 60
[ kz k v S acy (60)
£+1
Combining the above bound together with the one provided by (39), we obtain that
b |e€||OO i aglogn CA ozflogn 2 Yo
E°(IID2 1) Z Z . H(l —aa;/2)* 60 — 0"
l=n-+1 l=n+1 j=1
lel|3 logn |, CAlogn .12
< N + = exp{— azaj}neow 12
Similarly, for the term Dlg’2 we get, changing the order of summation, that
2n—1 2n
D, = \f > ou(we - 1)( > (Ax- A)F€+1:k1>A€J;7_01 :
f=n+1 k=41
Hence, using the bound (60) together with (56)), we get
EbH 2] < l an_:l aZIOgn OMHEHOO +C2 H — acus /4 He _9*||2
~n a / 0
l=n—+1
— n— -1
Chllellogn S~ ,  Chlogn = 210, _ g2
IS T Z e Z aeH(lfaaj/‘l) 160 — 07|
{=n+1 l=n-+1 j=1
2 2 4 n
allell3 logn  Cylogn .12
5 + === exp{—(a/2) Zlaj}nao —0*|%.
j:

We proceed with Dg,3~ We change the summation order and proceed exactly as with Dg,z. Indeed,
— 2n
Z e(we —1 ( Z (Ak — A)F€+1:k1>A€J§711 ;

k=0+1

and

b b 12 1 = aglogn o 0‘3H5||2 Ci 4 e 2 2
BlIDE I 5 5 30 200 o (YA o) T - aay/ap1on - 07 )
l=n+1 j=1

4 2 6
|z logn  Cj logn *
Bl A exp{—(a/2) E aj}Heo — 0"

~ n3/2q3 na

=1

It remains to upper bound Dg’ 4. Proceeding as above, we change the summation order, and obtain

2n—1 2n
1 —_
D}, = T E ap(wp — 1)( g (Ap — A)Fz-i-l:k—l)Aé‘]l?Ql :

l=n+1 k=(+1
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Applying Minkowski’s inequality, we get

2 2n—1
b,
(E°[I1D3 411*)) 1/2< Z ay Z Pt 12D 2 EP NI 2D
é n+1 k=(+1
2n—1

el CF
Z 5/2 Z exp{ Z } a3/2A
Z n+1 k=0¢+1 ] =(+1
2n—1 2n—1 —
Z a Y exp{—fZaj}Heo—e*n
Z n+1 k=0(+1
C4 - 2n—1 C5
S T 2 A (S

t=n+1

CA || HOO a § : *
4 2
nl/ ad/ fa 4j -

Now the result follows from the representation (@9) and combinations of the above bounds for D® —
Db,

C.6 Proof of Proposition[6]

Consider the sequences of weights
(W1, e ey Wi 1, Wiy Wig 1y -+, Wap) AN (W1, .+ oy Wi 1, Wy Wi 1y - -+ Wap) 61)
which differs only in position 4, n + 1 < i < 2n, with w] being an independent copy of w;. Consider
the associated SA processes
0> =6° | — akwk{A(Zk)Gk 1-b(Zy)}, k>n+1, 62 =0,cR?

. (62)
00 = 0 — ckwH{A 20 (20}, k=n+1, 6PD =0, R,

where w,(j) = wy, for k # i and wZ@ = w). Respective random variables D® and D(*%) are based on

the first and second sequences from (61)), respectively, and are constructed according to the equation

(@8). From the above representations we easily observe that 62 = 9,(€b’i) for k < ¢, moreover,

02 — 0> = —ai(w; — w)){A(Z:))07_, — b(Z:)}
= —oy(w; — w)){A(Z;))(00_, — 6:i—1) — b(Z;)}
= —a;(w; —w){A(Z:))(07_1 — 1) + &} -

where ¢; = €(Z;) and &} = £(Z]). From the above representation we get, applying Lemma [J]and

(39), that

{EP[[162 — 07 2}1/2 < cv; Ca {EP[||6° — 6;]12}1/2 + i Ca |IEi]| (63)
3/2 2 i
;" ||e|loo Ca
< 0 O Jelloe + Sl Ca 4 (03 )V TT (1~ oy /)10 — 07
j=1

aillelle Ca
a

<

+(Ca Vl)ﬁH(l —aa;/4)][60 = 07|,

where for the last line we have additionally assumed that «; < a for ¢ > n. Moreover, for any j > i
one observes, expanding (62), that

J
95»’—95-*”):{ 11 (1—akka<zk>)}<e$—95*”))= o, (6 — 6.
k=i+1
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Thus, similarly to (1)), we obtain that

5

{E°(|D° = D™V P}/2 < 3 {EP[||DF — DIV

and bound the respective differences separately. By the construction of the process above, we note
that D% = D%b’z). Proceeding further, and using the equation (48)), we obtain that

b,i (byi 1/2
{E*[|| D5 — D&V |12)31/2 = mﬂa—%ww

\F

SJh {EP[ITS, 120 W”WWW—%“WHW

2 2n
< GillelowCa  p @ 1 CAVIVE |y a e
SN exp{ 4j;1 oz]} + o { Zoz }”90 0| .

Thus, taking sum for ¢ from n + 1 to 2n, and applying Lemma[2] we get that

- (bai) o aille oo C @
bripb _ pb:d))2111/2 Zillclloo VA = ,
> {EIDS - DYy 5§j,ﬁmWem{4§:%}
1=n+1 1=n+1 Jj=i+1
2n C \/1 2n
+ 3 e e (-§ 5 e
t=n—+1 x/7a2
llelloo CA (CAvl
< — 0y — 0*
< A (S i
2n
lelloo C a X
S./ TA + (Ci \/1)713/2€Xp{_zzaj}“90 -0 ||
j=1
< lele Ca 2 yiysite {_ﬁzn:a-}ue —0*] . (64)
ST 2 A 1Ty ayivo '
j=1

Here in the last line above we used a particular form ay, = ¢o/ 'k, and relied on the bound
2n

/4exp{—% Y )<t

Jj=n-+1
which is guaranteed by the lower bound on the trajectory length n of the form
Vn S 3

logn = 2(v2 —1)acy
The latter condition is guaranteed by AI 4 Now we proceed with DS — D(b 2 . Using its definition in

@8), we get

2}.

bi 1 N bi
D5 — DY ):ﬁ(wi—wg)Ai(é- — 0% sz;l (wy, — 1) Ag(62_, — 7).
Since the latter term is a martingale-difference, we obtain that
2 2n
bi C )
E(1D§ — Dy ) < —AE0(l65-, — 0% AE:WWk1¢ iy
k=i+1
C C2 CQ 2n b
< AE[|6b me%ﬁmﬁmmquﬁwm—wm]
k=it1
C C 2n
—RE(107-1 = 05 l”) + ||9 e el S /1SR TY
k=i+1
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Hence we obtain, using (63) together with the definition of 24, that

2 4 2 2 2 2 1
by a;1]le]|5, C ai—1)ells, Calog®n  C )
v D — D ) 5 Ctlellm O aalels Calog n y O r 57,316y — 072

3
na an —~
2 20112 C4 2n k—1
+ =2 % (CA V1)i H (1 — aaj/4)%(|6p — 0% Z exp{—g Z o} .
n a j=1 k=i+1 j=i+1
T
(65)
Considering the latter term in the sum, we obtain
2 2n 2n k—1
gl|z, C C V1 a
Ty < 7!&||°°a2A Z ag, exp{—f Z o} + A )i Z exp{752aj}||0079*||2
2n h—it1 j=it1 k—it1 j=1
< oullelB O | (CAVDI e a5 g e
expy —— o - .
~ na3 noay, P 2 (A

Jj=1

Thus, summing the equations (63)) for ¢ from n + 1 to 2n, we obtain that

2n 2n
Z {Eb[HDb _ D(bﬂ')”2]}1/2 < Z \/O‘ileEHoo C2A n \/04141”5”00 Calogn \/az||5||oo CS
3 3 ~S \/ﬁa:s/z Vvan Vna3/?

1=n—+1 i=n+1

eXp{—* Zaz}ll% — 0%

i=n+1 (=1
< (CAVDe]l 1/4

V1 0 — N
S —Hnon!tlog ATexp{—§Zag}||90—9 I -

{=1
(66)

Using now the definition of DY in [#8)) and Minkowski’s inequality, we write

2n k—1
i 1 i 1 1 a
(B211D% = DI < o aEelley —0m P 3 ( ) )exp{‘4 2 ol

&75 Qf—1

k=i+1 j=i+1
_ aznench - -
~ Z (677 exp{—f Z Oéj}
k=i+1 j=i+1
CA VWi & =
( A Z akexp{—fZaj}HGO—H*H
k=i+1 j=1
illelloo C3 CA V1)Wi
<@ ”J;la? 2y vt p{—*zay}ueo — 6.

Thus, taking sum for ¢ from n + 1 to 2n, we get

2n 2n 2 2n 2 - [
br b _ y(bsi) 217 1/2 illelloo Ca (CAVDVi _a 4 .
D EUDE - DEIPS Y +_Z e (=7 2 as} o -
i=n+1 1=n+1 i=n+1 J=1
lelloo C (C Vl «
STt {”Zaz}lleofe I ©7
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Similarly, with the definition of D2 in (@8], we write

2n
i 1 A %
A)(Op_y - 0) = vn { > (A A)F?-i-l:k—l} (02 — ")

k=i+1

S\

Db — DY =

2n
Z (A -
+
1 2n B )
> (Ar- A)Fi+1:k—1} (07 — 0"
k=i+1

Bl

n
Ts
1 2n
= b,i
+ 7 { > (A - AP - Fi+1:k1)} (0% — 0> .
k=i+1

Ts

Now we bound the terms 75 and T3 separately. Indeed, for the term 75 we get, applying the definition
of the set €14, that

Cialogn byi
B3] S n(AaamAlog n) Bl - 6

C 1
N A OgnEb[Hgb 2} )
naoy;

In the above bounds we have used that oy < —-—. For the term T3 we get, applying Lemma.
that for any vector v € R9,

2n 2n —

D (Ar—A) Ty —Torie)o = Y Z (A = A)Tesriemr0e(we = DALY g0 v
k=i+1 k=i+1f=i+1

2n—1 2n
= Z ap(wy — 1){ Z (Ay — A)Fz+1:k—1}A£F?+1;e—1 v

l=i+1 k=0(+1

From the above representation we obtain, using the definition of the set €24, that

2 2n—1 -1
2 logn a b,i
BT S 2 Y o (AL L Rt ) {4 3 aj}EbmaE—ez? X5
1=i+1 j=i+1
ol logn a &2
0
Gy o{ =5 % o Il - 6
l=i+1 Jj=i+1
4 logn b.i
S A B0 - 6
a
Combining the above bounds, we obtain that
pei C3logn (1 CA b
B(IDS - DI 5 CAER (o A ) et - 6P
_ Cal ;
< A SRRl - 601
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where we have additionally used that a; < a/ C%. Thus, using the upper bound (63), we obtain that

2n
b,i
S {EP[DE — DY |23

1=n—+1

2n 2 2n i
Ca Viogn a;l|lcc Ca Ca Viogn , ,
Y + Y e (CRVIVI [ (1 = acy/4)]160 — 07
S, Jaan a S, Jaan e

Elloo
N% 4 logn
3 Vv1)y/Iogn N
+(Aal/23/;)gn {_75 a]}{ E (67} |I 1—(104]/4 }“90_9 ||

1=n+1 j=n+1

||€||oo 1/4
N a3/2

ci v n3/4\/10 n 0 N
Togn + (CaVl) & exp{—7 > a; oo — 6" . (68)

3/2
a =
Now it remains to combine the bounds outlined above in (64), (66), (67), and (68), and the statement
follows.

D Proof of stability of random matrix product

D.1 Proof of Proposition|[i]

The fact that there exists a unique matrix (), such that the following Lyapunov equation holds:
ATQ+QA=P, (69)
follows directly from [54, Lemma 9.1, p. 140]. In order to show the second part of the statement, we
note that for any non-zero vector x € R4, we have
T (I-aA)TQ(I - aA)z 4 amT(ATQ +QA)x La? T ATQAx
AROK T Qx T Qx
x! Pz , 2 ATQAz
T Qx @ 2T Qx
1o grmn(P) o 1A%
HQ” /\min(Q)

<1l-aa,

=1l—-«a

where we set
1 Amin (P)

T 2 A (Q)

and used the fact that & < «,, Where o is defined in (7).

D.2 Proofs for auxiliary results on products of random matrix

In order to bound the moment E[||6;, — 0*||?], we first prove a stability results on the products of
random matrices I',,.; arising in the LSA recursion. Towards this aim we first introduce some
notations and definitions. For a matrix B € R?*¢ we denote by (0¢(B))4_, its singular values.
For ¢ > 1, the Shatten g-norm of B is denoted by || B||, = {Z[ L0{(B)}Y9. Forq,p > land a
random matrix X we write ||X||4., = {E[[|X][?]}!/. Our proof technique is based on the stability
results arising in [29], see also [16]].

Lemma 12 (Proposition 15 in [16])). Let {Y¢}een be an independent sequence and P be a positive
definite matrix. Assume that for each { € N there exist my € (0,1) and oy > 0 such that |[E[Y]||% <
1—myand ||Y, — E[Y]|lp < o/ almost surely. Define Zj, = H?:o Y, =YyZy_q, fork > 1and
starting from Zg. Then, forany 2 < q <pand k > 1,

k
1Zkll} g < wp [T(1=me + (0 = Do) | P2 Zo P12

[ (70)
{=1
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where we recall that kp = At (P)Amax(P).

Now we aim to bound I',,,.;, defined in (]7_7[) using Lemma We identify the latter with ng:m Y,

where Y, = I — apAy,¢ > 1, and Y, = 1. Applying the bound (8), we get ||IE[Y¢]H22 =
11— agAH% < 1 — acy. Further, assumption implies that almost surely,

1Yo —E[Yilllg = cul|Ar — Allg < ary/Rg Ca = bga -
Therefore, (70) holds with m, = acay and o, = bgay. As ||I||, = d'/?, we obtain the following
corollary.
Corollary 3. Assume A andA@ Then, for any ay € [0, o), 2 < g < p, and 1 < m < k, it holds

k
EY4 T i) < ICmikllpg < AQd!? T (1 = ace + (p = 1)b3a) ,

{=m
where o, was defined in (1), and bg = /kg Ca.
Corollary 4. Assume A[l] and A3| Then for any 2 < q <logn, and any k > n, 1 <m <k, it

holds that
k
EY4 (Dt ] < /g exp {—<a/2> 3 Oée} , 1)
l=m
where o is defined in (7). Moreover,
k
ao
EY (|04 < vige [T (1 - =) (72)
l=m

Proof. We first apply the result of Corollary |3} Indeed, for £ > n, and any 2 < ¢ < p, it holds,
setting by = ,/kg Ca, that

k
BV D) < yigd? [] (1= act + (0 = 1)tod)

{=m
E k
< JRgd"? exp {a Z ar+ (p—1)bg Z a%} .
{=m =m
Note that, setting p = log n, and provided that n satisfies (9), we easily obtain that, for £ > n/2,
(log n)béaf <aay/2. (73)
Hence, for m > n/2, we have
0 F
EY4]|T s ||9] < \/HQeeXp{_§ Z o}
{=m

and the statement follows. Suppose now that m < n/2. In such a case we have, applying (73), that

k

k
EY ([T |7) < /Rge exp {_a > g+ (logn)bg > a?}
{=m

l=m
n n k
< (/Rgeexp {—a Z oy + (logn)bQQ Z ag} exp {—(a/Q) Z ag} , (14)
{=m l=m {=n+1
and we need to bound the first term in the product. We first consider ay = 006*1/ 2. and use the
inequalities
"1 "d "od
Z<(1+/ ac)/\(/ :E):(l—i—logn)/\(log n ), (75)
= 4 m X m_1 T m m—1
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and
n

>

l=m

n dx
z/mﬁﬂ(f—ﬁ). (76)

Sk

Thus, it is enough to satisfy the constraint
(logn)bgcg(1 +logn — logm) < aco(v/n — v/m) .

Since m < n/2, it is enough to ensure that

(1 + logn)(log )33 < aco(v/n — v/n/2)
or, equivalently,
Vi «b
(1+1logn)logn ~ a(1—1/v2)’
which is granted by A3} Combining the above bounds in (74}, we obtain that the lemma’s statement

holds for the step size ay = ¢o/¢'/2. Similarly, for ay = co/¢7 with y € (1/2;1), we get for
m > n/2 that

k
a
E'/4 [Hrm:kuq] < \/%eexp{_i E Oéé} s
l=m

since the relation holds. Similarly, for m < n/2, the desired upper bound would follow from the

inequality
"1 "odr  (m—1)17% —nl=> 1
> < i < )
ezmé“/ Lz 2y —1 2y —1

together with an inequality
log n)b2,c2
LD < (af2eotn' ™~ (/')

The latter inequality can be re-written as

ni=7 200()2@
>
logn = a(2y —1)(1 - (1/2)1-7

which is also granted by Combining the above inequalities implies that holds for ayy = ¢ /2.
The bound (72) can be immediately obtained from (71)) using the fact that e=* < 1 — z:/2 for
x € [0;1]. O

Corollary 5. Under conditions of Corollaryit holds with P — probability at least 1 — 1/n? that

k
[Tl < \/%62 exXp {—(a/Z) Z Ole} )

{=m

and

k
Il < vige? TT (1= =)

l=m

Proof. 1t is sufficient to choose ¢ = 2logn and use Markov’s inequality together with the union
bound. O

Proposition 7. Assume A[l} AR| AB|with v = 1/2, and AH| Then on the set Qs defined in @7), it
holds for anyn < m < k < 2n, that

k
bbb 2111/2 3/2 9/8 _a
(B[, |21} < w2 exp{ ¢ 5 a@}.

{=m-+1
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Proof. Our proof relies on the auxiliary result of Lemma [[3] below together with the blocking
technique. Indeed, let us represent
k—m=Nh+r,

where r < h and h = h(n) is a block size defined in (T8). Then we obtain, using the independence
of bootstrap weights w41, . . . , wg, that

(BT 1lPT}2 < RQ{EPIITY, 414 lIB]

N
1/2 1/2
= VvEkQ H{Eb[HFEHH(jﬂ)h;mﬂh||gg]} {Eb[HFEnJrlJrNh:k”g)]}
j=1
0 & 1o a k
gmexp{él > ae}{Eb[nrmHNmkzu eXP{4 3 }

l=m-+1 {=m+14+Nh:k

In the last inequality we applied Lemma[T3]to each of the blocks of length £ in the first bound. It
remains to upper bound the residual terms. Since the remainder block has length less then h, we have
due to (8T) (which holds according to AH), that

k

a oo 1/8

ex - oy p < ex {—} <e ,

P{4 E é}_, p 4 =
{=m+1+Nh:k

where the last inequality is due to Proposition[I] Next,

k
{Eb[”FEn+1+Nh:k”2Q}}1/2 < KQ H {E°[||(T — cewe Ag) [P}/
l=m+1+Nh:k
k
<whg ] {E°I(1 + culwe| Ca)?}?
l=m+1+Nh:k
k
<rg [ {E°[1+2as|w| Ca +afwi CX]}/2.
l=m+14+Nh:k

Since

Ellwel] < VERwe] < V/(E[wg])? + Varwe = V2,
we get from previous bound

k
1/2
(BN, ol 2} P < v [T (14220, Ca +203 C3)Y2
l=m-+1+Nh:k
k
S/@Qexp{\/iCA Z ae} SHQeﬁCAcoh/ﬁgﬁQe’
(=m+1+Nh:k

where in the last line we additionally used (T9). O

Lemma 13. Assume A AIZI with v=1/2 and On the set Q5 defined in @7)), it holds for
h = h(n) defined in (18) and any m € [n;2n — h|, that

+F
Eb Fb 2 1/2 < _g fasy
{ Hl m+1:m+h||Q]} = €xp 4 Z (67 .

l=m+1
Proof. Recall that we use the notation EP[-] = E[-|2%"], where Z%" = (Zy, ..., Zs,,) are the random
variables used in the construction of the iterates {0y }1<x<y in (I).
Let A € N be a block length, which value will be determined later, and consider a product

m—+h

FEn-Q—l:m-ﬁ—h = H (I - O‘waAf) . (77)
l=m-+1
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Expanding the product of matrices (77)), we obtain

m+h m+h m~+h
L in=1— > aA=S+R=I- > a/A- > o(Ar—A)-S+R, (78)
l=m-+1 l=m-+1 l=m+1

where S = Z/ el O[e(’u)z 1)A, is a linear statistics in {U}g}e m 1> and the remainder R collects
the higher-order terms in the products

h r
R = Z(—l)r Z H aiuwiuAiu .
r=2 (31 5--es i) €L u=1

with I = {(i1,...,i,) € {m+1,...,m+h}" : iy <--- < i,.}. We first consider the contracting
part in matrix -norm. Indeed, applying (8), we obtain that

m—+h m-+h
= > wAlp<1-a ) a,
l=m+1 {=m+1

provided that A is set in such a manner that Ze a1 Qe < oo, Where aio is defined in (7). Hence,
we get from the above inequality that for any u € RY, it holds that

m-+h B m-+h
T= > wAlg<1-(a/2) > .
l=m-+1 l=m-+1

Now we need to estimate the remainders in the representation (78). On the set s, it holds that

m-+h
[ Z ar(Ar— A)lg <2Ca Fg Z a7 log(2n*) .
{=m-+1 l=m-+1

Moreover, it is straightforward to check that

m+h
E°(|SI[3] < Cakg > of .
l=m-+1
In order to bound the remainder term R, we note that
h—2 L
r r/2 r r/2
*lIRq] <Z() N R R AN DY (R IACIOVE
a2 h%2(2CA)2%k
< -l (2 a)* QQXP{20¢m+1 CA%/Q}
a2, 1h?(2Ca)?kge
— 2 .

To complete the proof it remains to set the parameter & in such a way that we can guarantee

m-+h 2 2 M2 m-+h
4 a1 1h” Ca kge a
Cavigy| Y, a§<1+2log(2n )>+2§4 > ar, (79)
l=m+1 {=m+1
keeping at the same time the constraint
m-+h
> ar<as. (80)
l=m-+1
Recall that oy = ¢ /+/£. Thus, using the bounds (73) and (76)), we obtain that
g ac ac
3 agZ70(\/m+h—\/m+1)270(\/m+h—\/7n), (81)
{=m-+1
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and
m-+h m-+h 9

Z ol = Z %0 < cZ(log (m + h) —logm) . (82)
l=m+1 {=m+1
Hence, taking into account (8T)) and (82), and ﬁﬂ < L the inequality would follow from the

bound

Ca FgV/log(m + h) — 10g(m)<1 —l—2log(2n4)> t——, < g( m+h—+m).

Since log (1 4+ x) < « for > 0 and ¢q Ci ke < 1, the latter inequality is satisfied if
h h?
Ca ’/HQ\/\/T;n <1 + 210g(2n4)> ta- < g( m+h—+/m) .
Now we use one more lower bound

vVm+h—+vm=ym(y/1+h/m—1)> \/ﬁ(\/j—l)h = (ﬂ\/_ml)h ,

which follows from an elementary inequality v/1 + 2z > 1+ (\/5 — 1)a, valid for 0 < x < 1. Hence,
(83) would from the inequality

Vh h? a(\/§ —1)h
VEo——( 1+ 2log(2n* — s 4
Ca KQ\/E( + og(n))+2m_ 2\/7% &4
Setting h is such a manner that
h a(v2—1)

Ve 7
vm ~ 2 ’
inequality (84) would follow from

Ca \/%\/\/gn (1 + 210g(2n4)> < a(\{f\/—ﬁl)h .

The latter inequality is satisfied, if the block size h satisfies

4CAI€§9/2 2
h > <(\/§1)a) (1+2log (2n*))? .

Thus, setting h(n) as in (I8), all previous inequalities will be fulfilled, provided that

h(n) a(v/2-1)
Vr ST a2
co\f}(ﬁn) < a. .
Here last inequality follows from (80) and the following simple bounds, where we use that m > n
and v1+2 <1+ax/2:
m—+h n+h n+h 1 n+h dr coh
Soa< Y ame Y s<af L -2a(aihovi <G
L=m+1 L=n+1 l=n+1 \/Z n \/5 \/ﬁ

Now (78) implies that

m+h
1/2
{Eb[”F’Iran—&-l:m-‘rh”ZQ}} S 1 - (a’/4) Z Qy ,
{=m-+1
and the statement follows from an elementary inequality 1 + z < e”. O
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E Applications to the TD learning

Recall that the temporal difference learning algorithm in the LSA’s setting can be written as

Ok = Ok—1 — . (Arbr—1 — by) , (85)
where Ay and by are given by

Ar = o(si){e(sk) —ve(si)}

(86)

b = ¢(sk)r(sk, ax) .

Recall that our aim is to estimate the agent’s value function
V7 (s) = E[3 207" (sk, ax)lso = 5] ,

where ay, ~ 7(+|s), and sip1+1 ~ P(|sk, ax), for any k € N. We define the transition kernel under
policy 7

= [, P(Bls,a)m(dals) , (87)
which corresponds to the 1-step transition probablhty from state s to a set B € B(S). We denote by
w the invariant distribution over the state space S induced by the transition kernel P (-|s) in (87). In
this case the TD learnlng updates correspond to the approximate solution of the determlmstlc
system A#* = b, where we have set, respectively,

A =E oy onp(o)lo(s){e(s) = v0(s)}T] (88)
b= ESN“,GNW(.‘S)[QD(S)T(S, a)] .

E.1 Proof of Proposition 2]

We first need to check that the matrix A + AT, where A is defined in @, is positive-definite. In
order to show this fact we closely follow the exposition of [61, Lemma 18] and [51, Lemma 5].
Define a random matrix A as an independent copy of Ay, from (86), that is,

A = o(s){p(s) —vp(s)} T,

s). With the definition of A, we get that

where s ~ p, and s’ ~ P (-

A+ AT =0¢(s){e(s) —vo(s)}" + {p(s) = yo(s) ol
20(s)e(s) " —v{w( Jo(s") T+ o(s)e(s) "}
= (2= )e(s)e(s)T —ve(s)e(s) T,

where we used an elementary inequality uv " +vu' < (uu' +vv ") valid for any u, v € R%. Hence,
with the definition of X, in (22), we get

S)T

A+AT=EA+AT]=2(1-y)%,. (89)

Hence, A + AT is positive-definite, and we can set P = A + AT in the right-hand side of the
Lyapunov equation (69). Obviously, @ = I is a solution to the corresponding Lyapunov equation

ATQ+QA=A+AT.
Moreover, applying [61, Lemma 18], we obtain
ATA <E[ATA] =< (1+7)?%, . (90)
Hence, we get for a < (1 —v)/(1 + 7)?2, and applying and (90), that
I-aA) " I-aA)=1-a(AT +A)+a’ATA

<1-2a(1 —79)%, +a?(1+7)%%,

=I-a(l-7)%,

= (1=l =) Amin(Z))I.
Hence, the bound (8) holds with @ = (1 — ) Amin(Ey) and ase = (1 —7)/(1 + )%
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F Experimental details for the TD learning

Here we provide some details on numerical experiments. Code to run experiments is provided
in https://github.com/svsamsonov/BootstrapLSA. For the considered Garnet problem we
choose the policy 7 in the following way. For any a € A, we set

U
m(als) = S
A )
Z4 U
where the Ui(s) are independent random variables following uniform distribution /[0, 1]. Here we
assume that each action a € A can be selected at any state s € {1, ..., Ns}. We generate an instance

of Garnet problem with mentioned parameters, and find analytically the true parameter 6*. In order
to estimate the supremum

Ay = sup, ez [P(vallf, — 0*|| < ) - P(|Z%n]| < )| ,

n ~ N(0,1y,), and show that this supremum scales as =/ when = 1/2 and admits slower decay

for other powers of y. We first approximate true probability (| E%Qnﬂ < x) by the corresponding
empirical probabilities based on sample of size M > n. We fix M = 5 - 107. We choose trajectory
lengths

n € {1600, 3200, 6400, 12800, 25600, 51200, 102400, 204800, 409600, 819200, 1638400} ,

fix the length of burn-in period ng = 102400, and generate N = 6553600 independent trajectories
starting in the fixed point §, € R™=. We set the learning rate schedule as o, = cy/k” and try different
values v € {0.5,0.65,0.7}, and ¢g = 4.0. Unfortunately, even the chosen order of trajectory length
n seems to be insufficient in order to significantly distinguish, for example, between v = 0.5 and
~ = 0.65. However, learning rate schedule with faster decay performs worse in terms of A,,. Note
that the current experiment is already rather computationally intense for artificial problem and takes
about 12 hours of compute on a Core 19 - 10920x processor with 12 cores with 3.7 GHz.
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appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: All code is open source, link to a github repository is included.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The algorithm used in the numerical experiments are exactly the algorithms
described in the paper. The Garnet environements are given with the parameters used for
generation, and with reference to the original problem.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Unfortunately, error bars for computing the second-order terms in normal
approximation are quite computationally intense, moreover, tracing the terms of order n'/*
requires quick increase of trajectory length n.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: All necessary information to reproduce experiments is provided in Appendix [F]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

 The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper is of purely theoretical nature, and the proposed methods do not
deal with sensitive attributes that could induce unfairness or privacy issues.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: This paper is of purely theoretical nature. We do not foresee any societal harm
from the proof of non-asymptotic bootstrap validity and normal approximation bounds in
Kolmogorov distance.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Not applicable.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: Not applicable: no existing assets are used.
Guidelines:

* The answer NA means that the paper does not use existing assets.
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* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Not applicable: paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not applicable: paper does not involve crowdsourcing nor research on human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: Not applicable: paper does not involve crowdsourcing nor research on human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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