Scaling the Codebook Size of VQGAN to 100,000
with a Utilization Rate of 99 %

Lei Zhu' Fangyun Wei?* Yanye Lu! Dong Chen?
1peking University ~ 2Microsoft Research Asia
zhulei@stu.pku.edu.cn fawe@microsoft.com yanye.lu@pku.edu.cn doch@microsoft.com

Generation-DiT |

Ours

1.0 Oe< O o —0
ol Sso Best-rFID: 2.62
< ~<

Best-rFID: 3.41
%08 sy
o \
= \
g N
= 0.61 N
§ \
V7

~ 04 h\\OC‘//V .
g ~<Zluy,
o ~q
2 0.2
=)
O

0.01_, ‘ : ‘

1024 16384 50000 100000
Codebook Size

Generation-GPT {

(a) Codebook size v.s. utilization rate. (b) Evaluation on downstream tasks.

Figure 1: (a) Two enhanced versions of VQGAN [[1], namely VQGAN-FC (Factorized Codes) and
VQGAN-EMA (Exponential Moving Average), experience a decline in codebook utilization rate
and performance as their codebook sizes expand. In contrast, our method, VQGAN-LC (Large
Codebook), effectively leverages an extremely large codebook, persistently maintaining a utilization
rate of up to 99% and achieving higher performance. We highlight the best reconstruction rFID for
each model. (b) Comparison among three models across various tasks. For image generation, we
evaluate the applications of these three VQGAN variants to GPT [2], LDM [3], DiT [4] and SiT [J5].

Abstract

In the realm of image quantization exemplified by VQGAN, the process encodes
images into discrete tokens drawn from a codebook with a predefined size. Recent
advancements, particularly with LLAMA 3, reveal that enlarging the codebook
significantly enhances model performance. However, VQGAN and its derivatives,
such as VQGAN-FC (Factorized Codes) and VQGAN-EMA, continue to grapple
with challenges related to expanding the codebook size and enhancing codebook
utilization. For instance, VQGAN-FC is restricted to learning a codebook with
a maximum size of 16,384, maintaining a typically low utilization rate of less
than 12% on ImageNet. In this work, we propose a novel image quantization
model named VQGAN-LC (Large Codebook), which extends the codebook size to
100,000, achieving an utilization rate exceeding 99%. Unlike previous methods
that optimize each codebook entry, our approach begins with a codebook initialized
with 100,000 features extracted by a pre-trained vision encoder. Optimization then
focuses on training a projector that aligns the entire codebook with the feature
distributions of the encoder in VQGAN-LC. We demonstrate the superior perfor-
mance of our model over its counterparts across a variety of tasks, including image
reconstruction, image classification, auto-regressive image generation using GPT,
and image creation with diffusion- and flow-based generative models.

*Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

12612 https://doi.org/10.52202/079017-0401

Table 1: We conduct a comparative analysis of our VQGAN-LC against two advanced variants
of VQGAN [l1]], namely VQGAN-FC and VQGAN-EMA, focusing on the effects of enlarging
their codebook sizes from 1,024 to 100K. The only difference among the three models lies in the
initialization and optimization of the codebook. The evaluation covers both reconstruction and
generation using the latent diffusion model (LDM) [3]] on the ImageNet dataset.

Method Reconstruction (rFID) Generation with LDM [3]] (FID)

1,024 16,384 50K 100K | 1,024 16,384 50K 100K
VQGAN-FC 4.82 4.29 496 4.65 | 10.81 9.78 10.37 10.12
VQGAN-EMA 493 341 3.88 3.46 | 10.16 9.13 9.29 9.50

VQGAN-LC (Ours) | 4.97 3.01 275 262 | 9.93 8.84 8.61 8.36

1 Introduction

Image quantization [} |6l [7]] refers to the process of encoding an image into a set of discrete
representations, also known as image tokens, each derived from a codebook of a pre-defined size.
VQGAN [1] stands out as a prominent architecture, with an encoder-quantizer-decoder structure,
playing a pivotal role in various applications, including: (1) training a GPT [2} 8,19} [10L[11]] on image
tokens to create images; (2) serving as an autoencoder in latent diffusion models (LDMs) [3) 4]]
and generative models [[12} [13| [14]], with flow matching [3} [15]; and (3) functioning within large
multi-modality models [[16, [17, 18] [19], where its encoder processes input images and its decoder
assists in image generation.

In contrast to natural languages, which typically maintain a static vocabulary, image quantization
models necessitate a codebook of a pre-defined size to convert images into discrete image tokens.
The nature of image signals—complex and continuous—makes translating images into token maps a
form of lossy compression that is generally more severe than converting them into continuous feature
maps. The capability of these models to represent images largely depends on the codebook size.
Previous studies, such as VQGAN [, its improved versions, including VQGAN with exponential
moving average (EMA) update (VQGAN-EMA) and VQGAN using factorized codes (VQGAN-FC),
and its predecessors, like VQVAE [6] and VQVAE-2 [[7], have demonstrated that they can only
learn a codebook with a maximum size of 16,384. These models often face unstable training or
performance saturation issues when the codebook size is further increased, as shown in Table [T}
Additionally, they typically exhibit a low codebook utilization rate—for instance, under 12% in
VQGAN-FC, as shown in Figure[I[a)—indicating that a significant portion of the codebook remains
unused, thereby diminishing the model’s representational capacity. Furthermore, studies on large
language models suggest that employing a tokenizer with an expanded vocabulary significantly
enhances model efficacy. For example, the technical report for LLAMA 3E] shows, "LLAMA 3 uses
a tokenizer with a vocabulary of 128K tokens that encodes language much more efficiently, which
leads to substantially improved model performance."

In this study, we investigate the scalability of codebook size in VQGAN and the improvement of
its codebook utilization rate, thereby substantially enhancing the representational capabilities of
VQGAN. Typically, as shown in Figure[J(a), image quantization models like VQGAN are structured
with an encoder-quantizer-decoder architecture, where the quantizer is connected to a codebook. For
a given image, the encoder produces a feature map that the quantizer then converts into a token map.
Each token in this map corresponds to an entry in the codebook, based on their cosine similarity. This
token map is subsequently used by the decoder to reconstruct the original image.

Generally, the codebook in VQGAN begins with a random initialization. Each entry (a.k.a. a token
embedding) in the codebook is designated as frainable and undergoes optimization through either
gradient descent [6} [1} 20, 21] (Figure Ekb)) or an exponential moving average (EMA) update [7} 22]
(Figure[2[c)) during the training phase. Nevertheless, in each iteration, only a small amount of token
embeddings, corresponding to the token maps of the current training batch, are optimized. As training
progresses, these frequently optimized token embeddings gradually align more closely with the
distributions of the feature maps generated by the encoder, compared to those less frequently or never
optimized (referred to as inactive token embeddings). Consequently, these inactive token embeddings

https://ai.meta.com/blog/meta-1lama-3/

https://doi.org/10.52202/079017-0401 12613

https://ai.meta.com/blog/meta-llama-3/

are excluded from the training process and subsequently remain unused during the inference phase,
resulting in poor codebook utilization.

Our approach deviates from conventional image quantization models by initiating with a codebook
composed of N frozen features, sourced from a pretrained image backbone like the CLIP-vision-
encoder [23]], and utilizing datasets like ImageNet [24]]. A projector is then employed to transition
the entire codebook into a latent space, producing token embeddings. During the training process,
it is the projector that is optimized, not the codebook itself, which distinguishes our method from
traditional models. By optimizing the projector, we adapt the aggregate distribution of the codebook
entries to align with the feature maps generated by the encoder. This contrasts with methods like
VQGAN [1]], where adaptations are made to a limited number of codebook entries to match the
feature map distributions during each iteration. Our simple quantization technique ensures that almost
all token embeddings (over 99%) remain active throughout the training phase. The process is depicted
in Figure [2(d).

Our newly developed quantizer can be integrated directly into the existing VQGAN architecture,
replacing its standard quantizer without requiring any changes to the encoder and decoder. This
innovative quantizer enables the expansion of the codebook to sizes up to 100,000, while maintaining
an impressive utilization rate of 99%. By comparison, the conventional VQGAN is limited to a
codebook size of 16,384 with a utilization rate of only 11.2% when applied to ImageNet. The advan-
tages of a larger codebook with enhanced utilization are demonstrated across various applications,
including image reconstruction, image classification, auto-regressive image generation using GPT,
and image creation with diffusion models and flow matching. Figure [I)illustrates the performance of
our improved VQGAN, termed VQGAN-LC (Large Codebook), compared to its counterparts.

2 Related Work

Image Quantization. Image quantization focuses on compressing an image into discrete tokens
derived from a codebook [6} [1} 22| 20} 25| 261 27]. VQVAE [6]] introduces a method of quantizing
patch-level features using the nearest codebook entry, with the codebook learned jointly with the
encoder-decoder structure through reconstruction loss. VQVAE2 [7]] enhances this by employing
exponential moving average updates and a multi-scale hierarchical structure to improve quantization
performance. VQGAN [1]] further refines VQVAE by integrating adversarial and perceptual losses,
enabling more accurate and detailed representations. ViT-VQGAN [21] replaces the CNN-based
encoder-decoder [28]] with a vision transformer and shows that using a factorized code mechanism
with [o regularization can improve codebook utilization. Reg-VQ [29]] introduces prior distribution
regularization to prevent collapse and low codebook utilization. Additionally, some approaches
use codebook reset strategies to reset unused codebook entries during training [26} 30, 31} [32] or
utilizing stochastic quantization to enhance utilization rates [26} 29]]. In contrast to these methods,
the proposed VQGAN-LC initializes codebook entries using a pre-trained vision encoder on target
datasets, ensuring nearly full codebook utilization throughout the training process and allowing for
scaling up the codebook size to more than 100K.

Tokenized Image Synthesis. Substantial advancements have been achieved in the realm of image
synthesis, particularly through image quantization techniques. Initial efforts such as PixelRNN [33]]
employs LSTM networks [34] to autoregressively model dependencies between quantized pixels.
Building upon this, the groundbreaking VQVAE [6]] introduces the quantization of image patches
into discrete tokens, significantly enhancing generation capabilities when paired with PixelCNN [335].
The iGPT [36] further advances the field by leveraging the powerful Transformer [37] for sequence
modeling of VQ-VAE tokens. Recently, there has been a shift towards using non-autoregressive
Transformers for image synthesis [[12, [13| [14} [11]], which provide efficiency improvements over
traditional raster-scan-based generation methods. Innovative approaches such as discrete diffusion
models, including D3PMs [38]] and VQ-Diffusion [39], utilize discrete diffusion processes to model
the distribution of image tokens. Additional diffusion-based techniques [3} 15} 4} |5, 40} 41]] compress
images into latent representations using quantizers, thereby reducing both training and inference
costs. Moreover, image quantizers can enhance large language models for both image synthesis and
understanding [17} 16} 1842} [19]]. Our work introduces a superior image quantizer, further refining
the image synthesis process.

12614 https://doi.org/10.52202/079017-0401

VQGAN

G = @
\WE Encoder |—» — + —bﬁ—b Decoder A
& — A v

Feature Map Token Ma
Codebook P Reconstruction
(a) Architecture of VQGAN.
Gradient Descent EMA Update
A‘r'éh",‘;{"_;__|* e T Argmin T
: [| Gradient ﬁ : EMA El E
Update
: | i
— s ~— ==
Random Initialization ~""Random Initialization
(Trainable) (Updateable)
(b) Codebook optimization in VQGAN(-FC). (c) Codebook update in VQGAN-EMA.
Ours Class Centers | ["Z;'Féa','e},'t"

. Trainable
Patch-Level ‘—' ,,,,,,,,,,,,,,,,,,,,

Image Dataset Feature Clustering Frozen
(d) Codebook initialization and quantization process in our VQGAN-LC.

iﬁ 34 Pre-trained e [— I_l
By —_ . —_ 3 g Projector |=== -~

*(& Vision Encoder R

~ R

Figure 2: (a) The encoder-quantizer-decoder structure of VQGAN, with a codebook linked to the
quantizer. (b) The codebook optimization strategy employed in VQGAN and VQGAN-FC. (c)
The codebook update mechanism utilized in VQGAN-EMA. (d) The codebook initialization and
quantization process implemented in our VQGAN-LC.

3 Method

3.1 Preliminary

VQGAN. Let B = {b,, € RP}]V_, denote a codebook containing IV entries, with each entry b; being
a D-dimensional trainable embedding with random initialization. As shown in Figure2Ja), VQ-GAN
adopts an encoder-quantizer-decoder structure. In this setup, an encoder processes an image X of
height H and width W to generate a feature map Z € R"*“*P with (h,w) representing the latent
dimensions. Subsequently, the quantizer maps Z to a token map Z, where each token in Z is an
entry in 3 based on the cosine distance between Z and 5. Finally, the decoder reconstructs the
original image from the token map Z. The entire network is optimized using a combination of losses,
expressed as follows:

L=|1X - X|? +allsg(Z) - Z|| + Bllsg(Z) = Z|| +Lp + Laan, M

Lr ‘CQ

where sg(-) denotes the stop-gradient operation. The terms Lg, Lg, Lp and Lg 4 represent the
reconstruction loss, quantization loss, VGG-based perceptual loss [[1], and GAN loss [1], respectively.
Hyper-parameters o and /3 are set to 1.0 and 0.33 by default. As shown in Figure 2{b), we refer to the
codebook optimization strategy used in the original VQGAN as “gradient descent”.

VQGAN-FC. VQGAN faces significant challenges with inefficient codebook utilization. To address
this issue, the factorized code (FC) mechanism, initially proposed by ViT-VQGAN [21]], is employed.
We refer to VQGAN integrated with the FC mechanism as VQGAN-FC. The key differences between
VQGAN and VQGAN-FC are two-fold: 1) a linear layer is added to project the encoder feature

Z € R wxD jnto a low-dimensional feature Z’ € RM*w*D’ where D' < D; 2) the codebook B,
consisting of N' D’-dimensional trainable embeddings, is randomly initialized. Consequently, the

https://doi.org/10.52202/079017-0401 12615

=)

VOGAN-LC (Ours)
08

o
0

VQGAN-LC (Ours)

o
o

VOGAN-EMA

-——.——----o——-—---—--—i—-ﬂ

VOGAN-FC

e ol ol e e sk sk sk e e e e e e e ek A

VQGAN-EMA

o
o

- - - - - - - .-

Codebook Utilization Rate
(=1
IS

o
=)

0 2 4 6 8 10 12 14 16 18
Training Epoch VQGAN-FC

0.0

Figure 3: (Left) The codebook utilization rate over the training epoch. A codebook entry is considered
utilized for the epoch if it is used at least once. (Right) The average utilization frequency of each
codebook entry over all epochs, with each pixel representing a single entry. All models adopt a
codebook with a size of 100K and use images with a resolution of 256 x 256 on ImageNet.

quantization loss in Eq. []is reformulated as:
Lo = ollsg(Z) - Z'|| + Bllsg(Z") — Z||.)

However, as illustrated in Figure[T|a), the utilization rate of VQGAN-FC is only 11.2% on ImageNet
when the codebook size is configured to 16,384, and increasing the size of the codebook fails to
enhance performance as demonstrated in Table[T]

VQGAN-EMA. As depicted in Figure[2{c), this variant of VQGAN adopts an exponential moving
average (EMA) strategy to optimize the codebook. Specifically, Let B C B denote the set of token
embeddings used for all token maps in the current training batch. The set Bis updated through the
EMA mechanism using the corresponding encoder features Z in each iteration. As a result, the
codebook does not receive any gradients. Therefore, the quantization loss in Eq.[T]is defined as:

Lo =allsg(Z) - Z||. 3)

Our results, highlighted in Figure[T] indicate that VQGAN-EMA outperforms VQGAN-FC on various
downstream tasks, leading to enhanced utilization of the codebook. However, expanding the codebook
size continues to pose a significant challenge for VQGAN-EMA, as detailed in Table [T}

3.2 VQGAN-LC

Analysis of VQGAN-FC and VQGAN-EMA. In these enhanced versions of VQGAN, the codebook
is initialized randomly. During each iteration, only a small subset of entries related to the current
training batch are optimized. As a result, the frequently optimized entries become more aligned with
the feature map distributions generated by the encoder, while the less frequently optimized entries
remain underutilized. Consequently, a significant portion of the codebook remains unused during
both the training and inference stages. Figure [3|shows the codebook utilization rate over the training
epoch and visualizes the utilization frequency of each codebook entry once training is completed.

Overview. We present VQGAN-LC (Large Codebook), which allows for the expansion of the
codebook to sizes of up to 100,000 while achieving a remarkable utilization rate of 99%. As
illustrated in Figure [2{d), our method diverges from VQGAN-FC and VQGAN-EMA in its design
of the quantizer. We maintain a static codebook and train a projector to map the entire codebook
into a latent space, aligning the distributions of the feature maps generated by the encoder. This
approach allows us to scale the codebook size effectively without modifying the encoder and decoder,
achieving an extremely high utilization rate and resulting in superior performance across various
tasks, as shown in Figure[T] Table[T]and Figure[3] It is important to note that increasing the codebook
size incurs almost no additional computational cost.

Codebook Initialization. To initialize a static codebook, we first utilize a pre-trained vision encoder
(e.g., CLIP with a ViT backbone) to extract patch-level features from the target dataset (e.g., ImageNet)

containing M images. This extraction results in a set of features denoted as F = {F%J) €

12616 https://doi.org/10.52202/079017-0401

RPYED | s
1=1,7=1,m=1" -
the m-th image, and (h, @) indicate the spatial dimensions of F'. Subsequently, we apply K-means
clustering to JF, resulting in IV cluster centers (with a default value of N = 100, 000). These cluster
centers form the set C = {¢, € RP }nNzl, where ¢, is the n-th center. Our codebook B is then
initialized using C.

Quantization. Unlike VQGAN, VQGAN-FC and VQGAN-EMA, which optimize the codebook
directly, our approach involves training a projector P(-), implemented as a simple linear layer, to
align the static codebook B with the feature distributions generated by the encoder E(-) of our
VQGAN-LC. Let B = P(B) = {b/, € RP'}N_, denote the projected codebook. For a given input
image X, the quantizer transforms the feature map Z = E(X) € Ri>xwxD " into a token map Z.
This quantization process can be expressed as Z := argmin||Z®) — b/ ||.

b eB’

’
n

where stﬂ) represents a D-dimensional patch-level feature at location (i, j) in

Loss Function. We employ the same loss function as specified in Eq[I] However, the key distinc-
tion is that our codebook B remains frozen, while the newly introduced projector P(-) undergoes
optimization.

3.3 Evaluation of Image Quantization Models

We evaluate the performance of VQGAN-FC, VQGAN-EMA, and our proposed VQGAN-LC across
image reconstruction, image classification and image generation tasks.

Image Reconstruction. Images are processed through the encoder, quantizer, and decoder to produce
reconstructed images. These reconstructed images are then compared to their original images using
the rFID metric as the evaluation criterion.

Image Classification. Initially, the encoder and quantizer convert each image into a token map.
Subsequently, we utilize a ViT-B model [37]], pre-trained with MAE [43]], to train on all token maps
for the purpose of image classification. Top-1 accuracy is used as the evaluation metric.

Image Generation. Image quantization models can be integrated with different image genera-
tion frameworks, such as auto-regressive causal Transformers (GPT [2]), latent diffusion models
(LDM [3])), diffusion Transformers (DiT [4]]), and flow-based generative models (SiT [5]), to facilitate
image creation.

GPT. The encoder and quantizer transform each image into a token map Z, which is then flattened
into a token sequence. Ultimately, GPT is trained on the collection of these token sequences.

LDM. Tt progressively adds noise onto the encoder feature Z. The training objective is to denoise and
reconstruct Z. During the inference phase, the output from LDM is inputted into the quantizer and
decoder of image quantization models to generate images.

DiT. This model is a variant of LDM, distinguished by its use of a Transformer architecture as the
backbone. The incorporation of image quantization models into DiT follows the same approach as
their integration into LDM.

SiT. This method presents a flow-based generative framework utilizing the DiT backbone. The
integration of image quantization models in SiT follows the same methodology as in LDM and DiT.

4 Experiments

4.1 Setup

Implementation Details of Image Quantization. All image quantization models, including VQGAN,
VQGAN-FC, VQGAN-EMA, and our proposed VQGAN-LC, utilize the same encoder and decoder
of the original VQGAN. The input images are processed at a resolution of 256 x 256 pixels. The
encoder (U-Net [28]]) downsamples the input image by a factor of 16, yielding a feature map Z
with dimensions of 16 x 16. The quantizer then converts this feature map into a token map Z of
the same size, which is subsequently fed into the decoder (U-Net) for image reconstruction. In our
observations, the optimal codebook size for VQGAN, VQGAN-FC, and VQGAN-EMA is 16,384,
whereas for our VQGAN-LC, the optimal codebook size is 100,000. Training is conducted on the

https://doi.org/10.52202/079017-0401 12617

Table 2: Reconstruction performance on ImageNet-1K. The term “# Tokens” refers to the number
of tokens used to represent an image. The codebook utilization rate is computed across all training
images. The FC and EMA mechanisms are originally introduced by ViT-VQGAN [21]] and VQVAE [6,
71, respectively. It is important to note that increasing the codebook size incurs almost no additional
computational cost.

Method # Tokens Codebook Size Utilization (%) rFID LPIPS PSNR SSIM
DQVAE [20] 256 1.024 - 408 - - -
DF-VQGAN [46] 256 12,288] 516 -]]
DIiVAE [@7] 256 16,384] 407 -]]
RQVAE [27] 256 16,384] 320 -]]
RQVAE [27] 512 16,384] 269 -]]
RQVAE [22] 1,024 16,384] 183 -]]
DF-VQGAN [46] 1,024 8.192] 138 -]]
256 16,384 34 596 017 233 524
VQGAN [I] 256 50,000 1.1 544 017 225 525
256 100,000 05 544 017 223 525
256 16,384 112 429 017 228 545
VQGAN-FC [21] 256 50,000 3.6 496 015 231 547
256 100,000 1.9 465 015 229 551
256 16,384 83.2 341 014 235 566
VQGAN-EMA [7] 256 50.000 402 388 014 232 559
256 100,000 242 346 013 234 562
256 16,384 99.9 301 013 232 564
256 50.000 99.9 275 013 238 584
VQGAN-LC (Qurs) 556 100,000 99.9 262 012 238 589
1,024 100.000 99.5 129 007 270 7.6

ImageNet-1K [24] and FFHQ [44] datasets, utilizing 32 Nvidia V100 GPUs. For ImageNet-1K, we
train for 20 epochs, whereas for FFHQ, we train for 800 epochs. The Adam optimizer [45] is used,
starting with an initial learning rate of 5e~*. This learning rate follows a half-cycle cosine decay
schedule after a linear warm-up phase of 5 epochs.

Codebook Initialization of Our VQGAN-LC. Unless otherwise specified, we use the CLIP image
encoder [23]] with a ViT-L/14 backbone, adding an additional 4 x 4 average pooling layer, to extract
patch-level features from images in the training split of the target dataset (either ImageNet or FFHQ).
These features are then clustered into NV groups using the K-Means algorithm with CUDA acceleration.
The cluster centers constitute the codebook. By default, IV is configured to 100,000. We specify the
codebook entries to have a dimension of 8.

Image Generation Models. For LDM [3]], DiT [4] and SiT [5]], we adopt their original architectures.
For generation using GPT [2], we follow VQGAN [1]], using a causal Transformer decoder with
24 layers, 16 heads per attention layer, a latent dimension of 1,024 and a total of 404M parameters.
For ImageNet, we employ class-conditional generation, whereas for FFHQ, we use unconditional
generation. In LDM, DiT, and SiT, classifier-free guidance [3] is implemented for class-conditional
generation. More implementation details can be found in Section[A]

Evaluation. In the image reconstruction task, we evaluate performance using rFID, LPIPS, PSNR,
and SSIM metrics on the validation sets of ImageNet and FFHQ. For image classification, we measure
the top-1 accuracy on ImageNet. For image generation, we calculate the FID score on ImageNet
using 50K generated images compared against the ImageNet training set. For FFHQ, the FID score is
determined using 50K generated images in comparison with the combined training and validation
sets of FFHQ. The codebook utilization rate is also reported for comparison, which is calculated as
the ratio of active entries (tokens/codes) to the total size of the codebook.

4.2 Main Results

Image Reconstruction. Tables [2| and |3| present the reconstruction performance for ImageNet
and FFHQ, respectively. We make three key observations: 1) Our method consistently achieves a

12618 https://doi.org/10.52202/079017-0401

Table 3: Reconstruction performance on FFHQ.

Method # Tokens Codebook Size Utilization (%) rFID LPIPS PSNR SSIM
RQVAE [22] 256 2,048 - 7.04 0.13 22.9 67.0
VQWAE [48]] 256 1,024 - 4.20 0.12 22.5 66.5
MQVAE [49]] 256 1,024 78.2 4.55 - - -
VQGAN [1] 256 16,384 2.3 5.25 0.12 24.4 63.3
VQGAN-FC [21] 256 16,384 10.9 4.86 0.11 24.8 64.6
VQGAN-EMA [7]] 256 16,384 68.2 4.79 0.10 25.4 66.1
VQGAN-LC (Ours) 256 100,000 99.5 3.81 0.08 26.1 69.4

Table 4: Image generation on ImageNet-1K.

Method # Tokens Codebook Size Utilization (%) FID
RQTransformer (GPT-480M) [22]] 256 16,384 - 15.7
ViT-VQGAN (GPT-650M) [21]] 256 8,192 - 11.2
DQTransformer (GPT-355M) [20]] 640 1,024 - 7.34
DQTransformer (GPT-655M) [20] 640 1,024 - 5.11
ViT-VQGAN (GPT-650M) [21]] 1,024 8,192 - 8.81
Stackformer (GPT-651M) [49]] 1,024 1,024 - 6.04
LDM [3]] 1,024 16,384 - 8.11
with GPT-404M [2)]

VQGAN-FC [21]] 256 16,384 11.2 17.3
VQGAN-EMA [7] 256 16,384 83.1 16.3
VQGAN-LC (Ours) 256 16,384 99.9 16.1
VQGAN-LC (Ours) 256 100,000 97.0 15.4
with SiT-XL [5]]

VQGAN-FC [21] 256 16,384 11.2 10.3
VQGAN-EMA [7] 256 16,384 83.1 9.31
VQGAN-LC (Ours) 256 16,384 99.9 9.06
VQGAN-LC (Ours) 256 100,000 99.6 8.40
with DiT-XL [4]

VQGAN-FC [21]] 256 16,384 11.2 13.7
VQGAN-EMA [7] 256 16,384 85.3 13.4
VQGAN-LC (Ours) 256 16,384 99.9 11.2
VQGAN-LC (Ours) 256 100,000 99.4 10.8
with LDM [3]]

VQGAN-FC [21] 256 16,384 11.2 9.78
VQGAN-EMA [[7] 256 16,384 83.1 9.13
VQGAN-LC (Ours) 256 16,384 99.9 8.36
VQGAN-LC (Ours) 256 100,000 99.4 8.36
VQGAN-LC (Ours) 1,024 100,000 99.4 4.81

codebook utilization rate of over 99% across all codebook sizes on both datasets. 2) The reconstruction
performance improves consistently with the scaling of codebook size using our method. 3) Increasing
the codebook size (e.g., VQGAN-LC with a codebook size of 100,000 and 256 tokens), and the
number of tokens to represent an image (e.g., RQVAE with a codebook size of 16,384 and 512
tokens) both enhance performance, with the former introducing almost no additional computational
cost compared to the latter.

Image Generation. Table [shows the results of class-conditional image generation on ImageNet.
All models (GPT, LDM, DiT, and SiT) demonstrate improved performance with the integration of
our VQGAN-LC, regardless of their underlying architectures, which include auto-regressive causal
Transformers, diffusion models, diffusion models with Transformer backbones, and flow-based
generative models. The diversity of the generated images increases due to the utilization of a large
codebook, which has a size of up to 100,000 and a utilization rate exceeding 99%. Table [5|displays
the unconditional generation results on the FFHQ dataset. Notably, DiT and SiT, which use the
Transformer architecture, require more extensive training data for optimizing diffusion- and flow-

https://doi.org/10.52202/079017-0401 12619

Table 5: Image generation on FFHQ.

Method # Tokens Codebook Size Utilization (%) FID
Stackformer (GPT-307M) [49] 256 1,024 - 7.67
DQTransformer (GPT-308M) [20] 640 1,024 - 491
Stackformer (GPT-307M)[49] 1,024 1,024 - 6.84
Stackformer (GPT-651M) [49] 1,024 1,024 - 5.67
ViT-VQGAN (GPT-650M) [21]] 1,024 8,192 - 3.13
LDM [3] 4,096 8,192 - 4.98
with LDM [3]]

VQGAN-FC 256 16,384 11.2 13.2
VQGAN-EMA 256 16,384 68.2 12.5
VQGAN-LC (Ours) 256 100,000 99.7 12.3
with GPT (404M) [2)]

VQGAN-FC 256 16,384 10.9 3.23
VQGAN-EMA 256 16,384 68.2 4.87
VQGAN-LC (Ours) 256 100,000 99.1 2.61

Table 6: Ablation study of using various codebook initialization strategies on ImageNet.

Strategy Dataset Model Utilization (%) rFID LPIPS PSNR SSIM
Random Initialization - - 54 108.7 0.46 18.2 36.4
Random Selection ImageNet ViT-L 99.8 2.95 0.12 23.8 58.9
K-Means Clutering ImageNet ResNet-50 99.8 2.71 0.12 23.7 58.3
K-Means Clutering ImageNet ViT-B 99.9 2.70 0.12 23.8 58.7
K-Means Clutering ImageNet ViT-L 99.9 2.62 0.12 23.8 58.9

based generative models. Given that FFHQ is significantly smaller than ImageNet, we limit our
training on FFHQ to GPT and LDM.

Image Classification. In Section[3.3] we discuss the training of an image classifier on a dataset
containing tokenized images. We fine-tune three ViT-B [37] models, pre-trained by MAE [43],
using the tokenized images produced by the top-performing VQGAN-FC, VQGAN-EMA, and
our proposed VQGAN-LC, on ImageNet. Both VQGAN-FC and VQGAN-EMA demonstrate
optimal reconstruction performance when utilizing a codebook with 16,384 entries. As illustrated in
Figure[I|b), our method achieves a top-1 accuracy of 75.7 on ImageNet, surpassing VQGAN-FC and
VQGAN-EMA by margins of 1.6 and 1.9, respectively.

Visualizations. Section@]presents images generated by GPT [2], LDM [3], DiT [4], and SiT [3],
incorporating our VQGAN-LC.

4.3 Ablation Studies

Unless otherwise specified, we evaluate reconstruction performance on ImageNet across all studies.

Codebook Initialization. In Section[3.2] we describe the default codebook initialization approach.
This involves using a CLIP vision encoder with a ViT-L backbone to extract patch-level features
from ImageNet, followed by a K-means clustering algorithm to generate N cluster centers, resulting
in the static codebook B. In Table[6} we evaluate two factors: 1) employing a CLIP vision encoder
with different backbones (e.g., ViT-B [37] and ResNet-50 [50]) to extract patch-level features; and 2)
utilizing non-clustering strategies to initialize the static codebook, including random initialization and
random selection, where N features are randomly chosen from all patch-level features of ImageNet.
Our findings are threefold: 1) random initialization leads to extremely poor performance since the
codebook remains frozen in our VQGAN-LC; 2) using a CLIP vision encoder with a ViT-L backbone
outperforms those using ViT-B and ResNet-50 backbones; and 3) K-means clustering produces a
more robust codebook.

Codebook Size. In Table [/, we incrementally increase the codebook size in our VQGAN-LC
from 1,000 to 200,000. The performance shows minimal improvements beyond a codebook size of

12620 https://doi.org/10.52202/079017-0401

Table 7: Ablation study of using different codebook sizes on ImageNet.

Codebook Size Utilization (%) rFID LPIPS PSNR SSIM

1,000 100.0 4.98 0.17 229 553
10,000 99.8 3.80 0.14 233 572
50,000 99.9 2.75 0.13 23.8 58.4
100,000 99.9 2.62 0.12 23.8 58.9
200,000 99.8 2.66 0.12 23.9 59.2

Table 8: The computational cost of VQGAN-LC with different codebook sizes.

Codebook Size MACs Model Size

16,384 195.08G 71.71M
100,000 195.70G 71.72M

Table 9: Ablation study on codebook transferability. The term ‘“‘source dataset—target dataset”
indicates that the codebook is initialized using the source dataset, while our VQGAN-LC is trained
on the target dataset.

Setting Utilization (%) rFID LPIPS PSNR SSIM
FFHQ—FFHQ 99.5 3.81 0.08 26.1 69.4
ImageNet—FFHQ 99.4 4.08 0.08 26.1 69.4
ImageNet—ImageNet 99.9 2.62 0.12 23.8 58.9
FFHQ—ImageNet 99.9 291 0.12 23.8 58.9

100,000—specifically, only 0.01 PSNR and 0.03 SSIM gains are observed, when the codebook size
reaches 200,000. Therefore, we consistently use a codebook size of 100,000 in all experiments. The
codebook utilization rate consistently exceeds 99% across all configurations.

Computational Cost. The primary inference cost of VQ-GAN is attributed to the encoder and decoder.
Increasing the codebook size NV incurs minimal additional cost since the matrix multiplication between
F and B is negligible compared to the encoder and decoder processing time. Table[8] we present the
multiply-accumulates (MACs) and model sizes for our VQGAN-LC models with codebook sizes of
16,384 and 100,000, respectively, when inferring an image of size 256 x 256.

Codebook Transferability. In our standard setup, both the codebook initialization and the VQGAN-
LC training are conducted using the same dataset, either ImageNet or FFHQ. In Table 0] we examine
the transferability of the codebook by initializing it with one dataset and training our VQGAN-LC on
a different dataset. Our findings indicate that our method exhibits significant codebook transferability,
highlighting the robustness of our codebook initialization process.

5 Conclusion

In this work, we introduce a novel image quantization model, VQGAN-LC, which extends the
codebook size to 100,000, achieving a utilization rate exceeding 99%. Our approach significantly
outperforms prior models like VQGAN, VQGAN-FC and VQGAN-EMA, across various tasks
including image reconstruction, image classification and image synthesis using numerous generation
models such as auto-regressive causal Transformers (GPT), latent diffusion models (LDM), diffusion
Transformers (DiT), and flow-based generative models (SiT), while incurring almost no additional
costs. Extensive experiments on ImageNet and FFHQ verify the effectiveness of our approach.

6 Acknowledgements

This work was supported in part by the Natural Science Foundation of China under Grant 623B2001,
Grant 62394311, and Grant 82371112; in part by Beijing Natural Science Foundation under Grant
7210008; and in part by the High-Grade, Precision and Advanced University Discipline Construction
Project of Beijing under Grant BMU2024GJJXKO004.

https://doi.org/10.52202/079017-0401 12621

References

[1] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
12873-12883, 2021.

[2

—

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

[3

—

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10684—10695, 2022.

[4

—

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 4195-4205, 2023.

[5

—

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Saining Xie.
Sit: Exploring flow and diffusion-based generative models with scalable interpolant transformers. arXiv
preprint arXiv:2401.08740, 2024.

[6

—_

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in neural
information processing systems, 30, 2017.

[7

—

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vg-vae-2.
Advances in neural information processing systems, 32, 2019.

[8

—

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding
by generative pre-training. 2018.

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877-1901, 2020.

[10] OpenAl. Gpt-4 technical report, 2023.

[11] Yutong Bai, Xinyang Geng, Karttikeya Mangalam, Amir Bar, Alan Yuille, Trevor Darrell, Jitendra Malik,
and Alexei A Efros. Sequential modeling enables scalable learning for large vision models. arXiv preprint
arXiv:2312.00785, 2023.

[12] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative image
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11315-11325, 2022.

[13] Tianhong Li, Huiwen Chang, Shlok Mishra, Han Zhang, Dina Katabi, and Dilip Krishnan. Mage: Masked
generative encoder to unify representation learning and image synthesis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2142-2152, 2023.

[14] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. arXiv preprint arXiv:2404.02905, 2024.

[15] Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. arXiv preprint
arXiv:2307.08698, 2023.

[16] Lijun Yu, Yong Cheng, Zhiruo Wang, Vivek Kumar, Wolfgang Macherey, Yanping Huang, David A Ross,
Irfan Essa, Yonatan Bisk, Ming-Hsuan Yang, et al. Spae: Semantic pyramid autoencoder for multimodal
generation with frozen llms. arXiv preprint arXiv:2306.17842, 2023.

[17] Hao Liu, Wilson Yan, and Pieter Abbeel. Language quantized autoencoders: Towards unsupervised
text-image alignment. arXiv preprint arXiv:2302.00902, 2023.

[18] Lei Zhu, Fangyun Wei, and Yanye Lu. Beyond text: Frozen large language models in visual signal
comprehension. arXiv preprint arXiv:2403.07874, 2024.

[19] Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh Mottaghi, and Aniruddha Kembhavi. Unified-io: A
unified model for vision, language, and multi-modal tasks. In The Eleventh International Conference on
Learning Representations, 2022.

[20] Mengqi Huang, Zhendong Mao, Zhuowei Chen, and Yongdong Zhang. Towards accurate image coding:
Improved autoregressive image generation with dynamic vector quantization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 22596-22605, 2023.

12622 https://doi.org/10.52202/079017-0401

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong Xu,
Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan. arXiv preprint
arXiv:2110.04627,2021.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11523-11532, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pages 8748-8763. PMLR,
2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248-255.
Ieee, 2009.

Chuanxia Zheng, Tung-Long Vuong, Jianfei Cai, and Dinh Phung. Movq: Modulating quantized vectors
for high-fidelity image generation. Advances in Neural Information Processing Systems, 35:23412-23425,
2022.

Will Williams, Sam Ringer, Tom Ash, David MacLeod, Jamie Dougherty, and John Hughes. Hierarchical
quantized autoencoders. Advances in Neural Information Processing Systems, 33:4524-4535, 2020.

Jialun Peng, Dong Liu, Songcen Xu, and Hougiang Li. Generating diverse structure for image inpainting
with hierarchical vq-vae. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10775-10784, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention-MICCAI 2015: 18th
international conference, Munich, Germany, October 5-9, 2015, proceedings, part Il 18, pages 234-241.
Springer, 2015.

Jiahui Zhang, Fangneng Zhan, Christian Theobalt, and Shijian Lu. Regularized vector quantization for
tokenized image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18467-18476, 2023.

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever.
Jukebox: A generative model for music. arXiv preprint arXiv:2005.00341, 2020.

Chuanxia Zheng and Andrea Vedaldi. Online clustered codebook. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 22798-22807, 2023.

Minyoung Huh, Brian Cheung, Pulkit Agrawal, and Phillip Isola. Straightening out the straight-through
estimator: Overcoming optimization challenges in vector quantized networks. In International Conference
on Machine Learning, pages 14096-14113. PMLR, 2023.

Adron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In
International conference on machine learning, pages 1747-1756. PMLR, 2016.

Alex Graves and Alex Graves. Long short-term memory. Supervised sequence labelling with recurrent
neural networks, pages 37-45, 2012.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional
image generation with pixelcnn decoders. Advances in neural information processing systems, 29, 2016.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In International conference on machine learning, pages 1691-1703.
PMLR, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing Systems,
34:17981-17993, 2021.

https://doi.org/10.52202/079017-0401 12623

[39] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and Baining Guo.
Vector quantized diffusion model for text-to-image synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10696—10706, 2022.

[40] Zhicong Tang, Shuyang Gu, Jianmin Bao, Dong Chen, and Fang Wen. Improved vector quantized diffusion
models. arXiv preprint arXiv:2205.16007, 2022.

[41] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 22563—
22575, 2023.

[42] Chen Wei, Chenxi Liu, Siyuan Qiao, Zhishuai Zhang, Alan Yuille, and Jiahui Yu. De-diffusion makes text
a strong cross-modal interface. arXiv preprint arXiv:2311.00618, 2023.

[43] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Doll4r, and Ross Girshick. Masked autoencoders
are scalable vision learners. arXiv:2111.06377,2021.

[44] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
4401-4410, 2019.

[45] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[46] Minheng Ni, Xiaoming Li, and Wangmeng Zuo. Nuwa-lip: language-guided image inpainting with defect-
free vqgan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14183-14192, 2023.

[47] Jie Shi, Chenfei Wu, Jian Liang, Xiang Liu, and Nan Duan. Divae: Photorealistic images synthesis with
denoising diffusion decoder. arXiv preprint arXiv:2206.00386, 2022.

[48] Tung-Long Vuong, Trung Le, He Zhao, Chuanxia Zheng, Mehrtash Harandi, Jianfei Cai, and Dinh Phung.
Vector quantized wasserstein auto-encoder. arXiv preprint arXiv:2302.05917, 2023.

[49] Mengqi Huang, Zhendong Mao, Quan Wang, and Yongdong Zhang. Not all image regions matter: Masked
vector quantization for autoregressive image generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2002-2011, June 2023.

[50] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770778, 2016.

12624 https://doi.org/10.52202/079017-0401

Table 10: The impact of maintaining a static codebook and incorporating a projector on ImageNet.

Static Projector Utilization (%) tFID LPIPS PSNR SSIM

v 39 18.6 0.36 19.2 40.4
v 99.1 265 0.12 23.7 58.0
v v 99.9 2.62 0.12 23.8 58.1

Table 11: Ablation study on the dimension of the projected codebook on ImageNet.

Dimension Utilization (%) rFID LPIPS PSNR SSIM

8 99.8 2.66 0.12 239 59.2
16 99.8 2.36 0.12 23.8 58.8
32 99.8 2.75 0.13 23.6 58.7
128 99.8 2.37 0.12 23.6 58.3
256 99.8 2.49 0.12 239 594
512 99.9 2.76 0.12 23.5 58.1

A More Implementation Details

GPT. We train GPT with a batch size of 1024 across 32 Nvidia V100 GPUs. The Adam optimizer is
employed with an initial learning rate of 4.5¢ %, and the model is trained for 100 epochs. Moreover,
a linear decay schedule is used for adjusting the learning rate. A 5-epoch linear warm-up phase is
adopted. Top-k sampling is adopted for auto-regressive generation, where k is set as 10% of the
vocabulary size.

LDM. The implementation utilizes four UNet layers with channel dimensions of
{256,1024,1024,256}. Conditions are integrated through a cross-attention mechanism at
each UNet layer. The model is trained using the Adam optimizer with an initial learning rate of
4.5e~* and a batch size of 448, distributed across 8 Nvidia V100 GPUs. The training process is
conducted over 100 epochs. The classifier-free guidance scale is set as 1.4 for class-conditional
generation.

DiT. We employ the 28-layer DiT-XL model with a patch size of 2, consisting of 675 million
parameters. The model features 16 attention heads and an embedding dimension of 1152. To handle
class conditions, we utilize the AdaLLN-Zero block. For optimization, the Adam optimizer is used
with an initial learning rate of 4.5¢=%, and the model is trained for 400,000 iterations on the ImageNet
dataset. The training is performed with a batch size of 256 across 8 Nvidia V100 GPUs. The
classifier-free guidance scale is set as 8 for class-conditional generation.

SiT. We utilize SiT-XL as our flow-based generative model, mirroring the architecture of DiT-XL.
For optimization, the Adam optimizer is employed with an initial learning rate of 4.5e ~*. The model
undergoes training for 400,000 iterations on the ImageNet dataset. The training process is conducted
with a batch size of 256, distributed across 8 Nvidia V100 GPUs. The classifier-free guidance scale
is set to 8 for class-conditional generation.

B More Experiments

Projector and Static Codebook. As described in Section[3.2] the codebook is initialized using a
CLIP vision encoder to extract patch-level features on ImageNet. During the training of our VQGAN-
LC, we optimize a projector to map the entire codebook to a latent space. Table[I0]illustrates the
significance of tuning the projector on the static codebook by comparing our default strategy with two
alternatives: 1) omitting the projector; and 2) making each entry in the initialized codebook trainable.
Our results show that incorporating the projector markedly improves performance, whereas making
the codebook entries trainable has minimal impact.

Dimension of the Projected Codebook. In our VQGAN-LC, the projector transforms the codebook
B into a latent codebook 3/, with each entry in B’ having a dimension denoted as D’. Table
shows the results of varying D’ from 8 to 512. We find that our model’s performance remains stable
regardless of the value of D’, consistently achieving a codebook utilization rate of over 99% in all
configurations.

https://doi.org/10.52202/079017-0401 12625

Codebook Size (1024) Codebook Size (16384) Codebook Size (50,000) Codebook Size (100,000)

Q
=
Z
<
Q
o
>
100% Utilization Rate 11.2% Utilization Rate 3.6% Utilization Rate 1.9% Utilization Rate
<
=
)
Z
<
Q
o
>
100% Utilization Rate 83.2% Utilization Rate 40.2% Utilization Rate 24.2% Utilization Rate
0
3
e
Q
=
Z
<
8
> 100% Utilization Rate 99.9% Utilization Rate 99.9% Utilization Rate 99.9% Utilization Rate

Figure 4: Visualization of the active and inactive codes for three models (VQGAN-FC, VQGAN-
EMA, and our VQGAN-LC) using t-SNE.

Visualization of Active and Inactive Codes. Figure[d]|shows the distribution of the active and inactive
codes for three models: VQGAN-FC, VQGAN-EMA, and our VQGAN-LC. The visualization is
created using t-SNE. Active codebook entries are highlighted in green, while inactive ones are shown
in blue. As the codebook size increases, more codes tend to be inactive in both VQGAN-FC and
VQGAN-EMA models.

Token Replacement. VQGAN, VQGAN-FC, and VQGAN-EMA all utilize a codebook of 16,384
entries to achieve optimal performance. In contrast, our VQGAN-LC can scale the codebook size
up to 100,000 while maintaining an exceptionally high utilization rate of over 99%, allowing each
token to represent more detailed visual elements. This is verified through an ablation study: for each
input image, we use VQGAN-FC (-EMA/-LC)’s encoder to convert the image into a token map. We
then replace each token in the map with the M*" nearest entry from its codebook. The modified
token map is fed into the decoder for reconstruction. Figure[5|shows the PSNR results on a subset
of ImageNet, using images from 100 randomly selected categories, and visualizes the results of our
VQGAN-LC, VQGAN-FC, and VQGAN-EMA when M is set to 1, 50, 100, and 1000.

C Visualizations

In Figures[6}{0] we present the class-conditional generation results at a resolution of 256 x 256 for our
VQGAN-LC with GPT [2], LDM [3]], DiT [4], and SiT [3], respectively, using 256 (16 x 16) tokens
on ImageNet. Additionally, Figure[I0]illustrates the results of VQGAN-LC with LDM using 1024
(32 x 32) tokens on ImageNet. Figure [[T|shows the unconditional generation results at a resolution
of 256 x 256 for VQGAN-LC with LDM on the FFHQ dataset, utilizing 256 (16 x 16) tokens.
The introduction of a large-scale codebook facilitates the generation of images with diverse poses,
intricate textures, and complex backgrounds.

D Limitations and Broad Impacts

We present a new image quantization technique called VQGAN-LC, which expands the codebook
size to 100,000 with a utilization rate of 99%. This approach has the potential to enhance any
downstream applications that involve image quantization models. However, VQGAN-LC is trained
on the ImageNet and FFHQ datasets, which restricts downstream applications, like image generation,
to producing images from the limited categories found in these datasets. While training VQGAN-LC
on larger datasets like LAION-5B may improve its utility in downstream applications, it would also
be more costly and computationally demanding. Furthermore, please refrain from using this model
to generate malicious or inappropriate content. It is intended solely for positive and constructive
purposes in research and creativity.

12626 https://doi.org/10.52202/079017-0401

24-
22
20- T~ ~~<ocy,
% \.*. STV,
2 ~. -
= 181 N 2
Lo
N,
161 N
N
14{ , , , , , , A
1 2 4 8 20 50 100 1000

Replacement with the M" Nearest Entry

Raw Image M=1 M=50 M=100 M=1000
) <
2 E
g : z
& o
> B a
< - <
2 8
3 >
Z z
< f
g =
> >

Ours
smQ

VQGAN-EMA VQGAN-FC
VWH'NVDO;X Dd-NVDOA

Ours
no

VINE-NVDOA DA-NVOOA

Figure 5: For a given image, we employ an image quantization model (VQGAN-FC, VQGAN-EMA,
or our VQGAN-LC) to transform it into a token map. Each token in this map is then substituted with
the M*" nearest entry from the codebook. This altered token map is subsequently fed into the decoder
for reconstruction. (Top) PSNR for each configuration. (Bottom) Reconstruction visualizations for
the three models.

https://doi.org/10.52202/079017-0401 12627

Australian terrier (193) Rapeseed (984) Agaric (992)

N

Figure 6: Qualitative results of class-conditional generation using our VQGAN-LC with GPT [2] on
ImageNet, utilizing 256 (16 x 16) tokens. We display the category name and corresponding category
ID for each group.

Volcano (980)

Arctic Fox (279) Pug (254)

Figure 7: Qualitative results of class-conditional generation using our VQGAN-LC with LDM [3]] on
ImageNet, utilizing 256 (16 x 16) tokens and a classifier-free guidance scale of 1.4. We display the
category name and corresponding category ID for each group.

Geyser (974) Space Shuttle (812)

B) ==

Figure 8: Qualitative results of class-conditional generation using our VQGAN-LC with DiT [4]] on
ImageNet, utilizing 256 (16 x 16) tokens and a classifier-free guidance scale of 8.0. We display the
category name and corresponding category ID for each group.

12628 https://doi.org/10.52202/079017-0401

Balloon (417)
ol |

Guinea Pig (338)

Cliff (972)

Figure 9: Qualitative results of class-conditional generation using our VQGAN-LC with SiT [3] on
ImageNet, utilizing 256 (16 x 16) tokens and a classifier-free guidance scale of 8.0. We display the
category name and corresponding category ID for each group.

Valley (979) ~ Red Panda (387)

Figure 10: Qualitative results of class-conditional generation using our VQGAN-LC with LDM [3]
on ImageNet, utilizing 1024 (32 x 32) tokens and a classifier-free guidance scale of 1.4. We display
the category name and corresponding category ID for each group.

Figure 11: Qualitative results of unconditional generation using our VQGAN-LC with LDM [3]] on
FFHQ, utilizing 256 (16 x 16) tokens.

https://doi.org/10.52202/079017-0401 12629

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This paper introduces a novel approach named VQGAN-LC, which scales the
codebook size of VQGAN to 100,000, with a utilization rate of 99%.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in the appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

12630 https://doi.org/10.52202/079017-0401

Justification: No theory assumptions and proofs are introduced in this work.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the information including training and inference to reproduce
the main experimental results.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

https://doi.org/10.52202/079017-0401 12631

Answer: [Yes]
Justification: The code will be made publicly available.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: we specify the training and test details, hyperparameters, optimizers and other
implementation details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: we report rFID, LPIPS, PSNR and SSIM for image reconsturction, top-1
accuracy for image classification, and FID for image generation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

12632 https://doi.org/10.52202/079017-0401

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We use Nvidia V100 GPUs across experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: we strictly comply with the Neur[PS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: we discuss the societal impacts in the appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

https://doi.org/10.52202/079017-0401 12633

https://neurips.cc/public/EthicsGuidelines

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: this is discussed in the appendix.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: we use public datasets like ImageNet and FFHQ.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

12634 https://doi.org/10.52202/079017-0401

paperswithcode.com/datasets

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: no new assets are introduced.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing experiments and research with human subjects are included
in this work.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No such potential risks in this work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

https://doi.org/10.52202/079017-0401 12635

