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Abstract

The learnware paradigm aims to help users leverage numerous existing high-
performing models instead of starting from scratch, where a learnware consists
of a well-trained model and the specification describing its capability. Numerous
learnwares are accommodated by a learnware dock system. When users solve tasks
with the system, models that fully match the task feature space are often rare or even
unavailable. However, models with heterogeneous feature space can still be helpful.
This paper finds that label information, particularly model outputs, is helpful yet
previously less exploited in the accommodation of heterogeneous learnwares. We
extend the specification to better leverage model pseudo-labels and subsequently
enrich the unified embedding space for better specification evolvement. With label
information, the learnware identification can also be improved by additionally
comparing conditional distributions. Experiments demonstrate that, even without a
model explicitly tailored to user tasks, the system can effectively handle tasks by
leveraging models from diverse feature spaces.

1 Introduction

The current machine learning paradigm has achieved remarkable success across various domains.
This success, however, hinges on several critical factors: access to abundant high-quality labeled data,
expensive computational resources, and deep expertise in feature engineering and algorithm design.
These requirements pose a significant challenge for ordinary individuals aiming to build high-quality
models from scratch. Moreover, issues such as data privacy, the difficulty of model adaptation, and
catastrophic forgetting complicate the reuse or adaptation of trained models across different users.

Indeed, most efforts have focused on these issues separately, paying less attention to the fact that
these problems are entangled. To address these challenges simultaneously, the learnware paradigm
was proposed by [Zhou| [2016]]. The learnware paradigm [Zhou and Tan|, [2024]] aims to assist users in
solving their tasks by leveraging existing high-performing models, through the establishment of a
learnware dock system. One important purpose of learnware paradigm is to enable high-performing
models, submitted by developers, to be used "beyond-what-was-submitted." This means that models
can be repurposed to assist with tasks not originally targeted by developers. To achieve this, learnware
is designed as a high-performing model with a specification describing its capability and utility. The
specification, a central component for learnware management and identification, can be implemented
by sketching the data distribution in which the model is proficient [Zhou and Tan| [2024]]. Recently,
to facilitate research on the learnware paradigm, the learnware dock system, Beimingwu, has been
released [Tan et al., [2024al].

Previous research [Liu et al.| 2024, [Xie et al.l 2023} [Zhang et al.| 2021]] focuses on the homogeneous
case where models and user tasks share the same feature space. However, in real-world scenarios,
the feature spaces of models often differ due to varied feature engineering. As an example, we
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consider the widely used clinical database, the OMOP Common Data Model [Biedermann et al.|
2021]], as illustrated in Figure|l] This model manages healthcare data from various sources through
several standardized tables, such as demographic information, diagnoses, laboratory results, and
medications. Experts across different hospitals often use different tables for feature engineering, even
when working on the same clinical task, leading to the development of heterogeneous models.

In order to manage and exploit models developed from het-

erogeneous feature spaces, it is essential to build connections Clugjeaistylanalysis
between these different spaces. Existing related techniques iy Tt

for exploiting relationships between feature spaces either rely ® h @ I

on raw data [Wang and Sun| [2022] |Zhu et al., |2023]] of the

model or utilize additional co-occurrence data [Xu et al., 2013 I I I e I O
Huang et al., 2023]]. However, with model specifications, the 4} feature engineering

learnware dock system can determine the relationships through | 1 T 1]
subspace learning without the need for raw data or extra aux- ,

iliary data [Tan et al.| [2023]. To effectively accommodate PR R0 by dn{rg
heterogeneous learnwares, a unified subspace is constructed e

based on specifications of all submitted models, which helps standard tables from database

to evolve the specification to have the capabilities of meeting

requirements across different feature spaces. This paper finds Figure 1: Heterogeneous feature
that, without label information, subspace learning tends to space models in real-world scenario.
yield suboptimal results, causing embeddings with entangled

class representations in the subspace, or even rendering them meaningless when feature spaces are
only weakly correlated. Additionally, without exploiting label information, the system can only
identify models with marginal distributions similar to the user’s task, ignoring models’ capabilities.

This paper explicitly leverages label information for managing and utilizing heterogeneous models.
We extend the specification to better incorporate model pseudo-labels, enabling the transition from
unsupervised to supervised subspace learning for better specification evolvement. The extended
specification also allows for additional comparison of conditional distributions using label information,
thereby improving the learnware identification. The contributions are as follows:

* This paper proposes to exploit the model outputs to evolve specifications into a unified
space during heterogeneous learnware accommodation. Specifically, the unified space is
constructed based on the specifications of all models. By exploiting model outputs encoded
in the specification, the resulting subspace exhibits improved properties, with less entangled
class representations and more coherent embeddings.

* This paper extends the specification implementation to more effectively leverage label infor-
mation by encoding both marginal and conditional distributions. This extended specification
provides more accurate label information during subspace learning to better evolve specifi-
cations. Additionally, it also allows for additional comparison of conditional distributions,
thereby improving the learnware identification.

» Experiments demonstrate that, even without a model explicitly tailored to the user’s task,
the system can effectively handle the task by leveraging models from diverse feature spaces.

2 Preliminary

Specification is the central part of the learnware, capturing the model ability. This section briefly
introduces the Reduced Kernel Mean Embedding (RKME) specification [Zhou and Tan}2024], which
sketches the joint distribution of task features and model outputs with kernel methods.

We start by introducing the Kernel Mean Embedding (KME) [Scholkoptf and Smola, [2002f], which
offers a novel representation for distributions. KME transforms a distribution into a reproducing
kernel Hilbert space (RKHS). Given a distribution D defined over a space &X', the KME is defined
as fix(D) := [, k(x,-)dD(x), where k : X x X — R is a symmetric and positive definite kernel
function, and its associated RKHS is H. For a data set {wl}?il sampled from D, the empirical
estimate of KME is given by (D) := £ 3"k (x;, ).

m

KME is considered as a potential specification due to several favorable properties. Accessing
the raw data, however, compromises the necessary privacy concerns of the specification. Based
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on KME, the RKME specification is proposed to use a reduced set of minor weighted samples

{85, tj)}?zl ,n < m to approximate the empirical KME of the original dataset with model

pseudo-outputs {q;};~, = {(x;, 9:)} i, where §; = f(z;) is the model prediction. The reduced

set is generated by:

2
m n

. 1
HL}}? EZk(qi,')—] 16jk(tj7') 5 )]

H

with the non-negative coefficients {/;}7_,. The RKME ®(:) = > ", B;k (t;,-) € H acts as the
specification, and the RKHS #H is referred to as the specification space. This specification effectively
captures the major information of the distribution D without exposing raw data and explicitly encodes
the model capability based on its outputs. Notably, in simple cases where the features are sufficient
to represent the model capability, the sketch solely on the features {z;}/; can also be used as the
model specification [Wu et al.| |2023]]. In this paper, we further extend the specification generation
process to more effectively encode the model’s outputs.

3 Problem setup

This paper addresses the challenge of constructing a o x
heterogeneous learnware dock system and leverag- |:1|:|:|:Q| learnware dock
ing it to assist users who have only limited labeled system
data such that training a model by themselves will — TN
lead to poor performance. Without loss of general- developer i | submit <
et : GRS

Aan model & specification

ity, we consider the underlying full feature space, task 1 1 =

denoted as Xy, as a composite of ) distinct blocks, 11 & st (fr.51)
ie., Xy = Xy x --- x Xy. The feature spaces :

for developers, X9, and for users, X', are rep- developer (\a fy | submit ((\aﬂ@)
resented as Cartesian products of specific blocks taskN = = !
X;coX;, where C refers to block indices. T 11 ) s (fnysn)
The overall procedure consists of two stages: A J] recommend
the submission stage and the deployment stage. user task

In the submission stage, the developer trains a ] = (‘a
well-performing model f; on the dataset D; := task requirement

T, vyi5) L, and generates a developer-level
(@ y”)}j =1 y P Figure 2: An illustration of the learnware

paradigm with heterogeneous feature spaces

specification sfev, which captures the model’s per-

formance without exposing raw data. After receiv-
ing all heterogeneous models and their developer-
level specifications, the learnware dock system assigns a system-level specification s; to each model
[, based on all submitted specifications {89V} . The heterogeneous learnware dock system is then
constructed as {(f;, s;)} Y. In the deployment stage, the user has unlabeled data DY = {z¢; }1,
and a limited amount of labeled data D}, = {(Zo;, yo;) }L, (the unlabeled data cover labeled data
features, i.e., {Z;}; C {x;};). The user generates a user-level task requirement s{**" and submits it to
the learnware dock system. The system then identifies the most helpful model(s) for reuse to tackle
the user task.

4 Methodology

This section outlines our methodology for accommodating heterogeneous models under the learnware
paradigm and assisting user tasks, emphasizing the importance and utilization of label information,
which remains unexplored in learnware paradigm when dealing with heterogeneous feature spaces.

4.1 Improve managing heterogeneous models with label information
To handle learnwares with heterogeneous feature spaces, it is helpful to exploit the relationships

between these spaces. A common approach is to learn a unified subspace. However, without label
information, the resulting subspace may produce entangled embeddings of samples from different
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classes, and when feature blocks are weakly correlated, the subspace may become meaningless (see
Section[B.2]for detailed discussion). Since subspace learning is based on all learnware specifications,
incorporating label information into the model specification is highly beneficial.

We rewrite the RKME specification represented by R = (3,T) = {(5;, tj)};n:l to RKME;, represented
by R;, = (B,2,Y) = {(8;, zj,yj)};n:l by splitting the sample ¢; into the feature z; and the
pseudo label y;, emphasizing label information. Given existing model specifications {sdev =
{(Bij» Zij> yij) Y721}y, the learnware dock system can learn a unified subspace X, with encoding
functions {hy : X — Xsub},?:l and decoding functions {gr : X — Xk}gzl by optimizing
L = o Lreconstruction + @2 Liimitar + @3 Lsupervisea OVer mapping functions {hy, gk}szl. The objective
function has three components: the reconstruction loss, which trains mapping functions (hy, gi) to
map and reconstruct data in Xy ; the similarity loss, which makes embeddings of different slices of
z; similar; and the supervised loss, which uses label information to improve subspace learning by
making class embeddings more separable or aligning samples within the same class. After subspace
learning, the mapping functions {Ay, gk}gzl can project data from any combination of feature space
blocks to the subspace. When reusing heterogeneous models, these functions can also fill in missing
parts needed for model predictions. Such a framework can be implemented by existing subspace
learning methods, such as self-supervised learning [[Ucar et al., [2021} |Bahri et al., [2022], matrix
factorization [Xu and Gong}, 2004, Wang et al.| 2016]. When the system receives learnwares from
unseen feature spaces after subspace generation, the system can update the subspace during idle time.

4.2 TImprove matching model and user task with label information

Matching with only marginal dis-

tribution Px is not enough. We
first review previous methodolo-
gies for matching a user’s task with fi f2 fs fa
a model in the homogeneous case, (a) model 1 (bymodel2 (¢ model 3 (d) model 4 (¢) user task
where all models and user tasks IR " P )
uniform distribution (positive class) uniform distribution (negative class)

share the same feature space [Wu

et al., 2023} [Zhang et al. [2021]. Figure 3: Label information is beneficial for matching.
These methods recommend the

model with the most similar marginal distribution Px. To avoid exposing raw data, they use
RKME to sketch the marginal distributions of the model task and user task, serving as the model
specifications and user requirements. To illustrate the deficiency, we refer to Figure [3] which presents
five tasks with uniform distributions. Among these tasks, four have circular support sets and one has
a square support set. The two problems are: 1) Models with the same Px but different Py y are
indistinguishable. In Figure 3] Models 1, 2 and 4 are all recommended, but model 2 is unsuitable for
the user task. 2) Models with different Px are rarely considered, despite their potential usefulness.
Model 3 in Figure[3] though suitable, are excluded because its Px is square instead of circle.

Enhance matching by incorporating the conditional distribution Py |y. Matching solely on the
marginal distribution is insufficient for model identification. To better recommend models to user
tasks, we propose additionally considering the conditional distribution Py |y, which helps exclude
the model with dissimilar conditional distributions (Model 2) and include the model with similar
ones (Model 3). While the user’s task can estimate the conditional distribution from labeled data, a
key question arises for the model task: should we use true labels or model-generated pseudo labels?
Using True labels results in comparing the user’s task distribution P(X,Y") with the model’s original
task distribution, while pseudo labels results in comparing the model-generated joint distribution
P(X, Y) with new tasks, allowing the model to be reused beyond its original purpose. As shown
in Figure |3] Model 4 would be recommended using pseudo labels but not using true labels. In
conclusion, considering both marginal and conditional distributions improves model identification,
with model-generated pseudo labels being helpful for encoding model capabilities.

4.3 Summary

To accommodate and identify models developed from heterogeneous feature spaces, it is advantageous
to utilize pseudo-label information generated by the models. To better incorporate this information,
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we propose to integrate both marginal and conditional distributions into the model specification and
user requirements, represented as {(5;, z;, y;) } 7. By comparing these distributions, we improve
learnware identification. The inclusion of labe17 information enhances subspace learning, and the
framework can be applied across various subspace learning methods.

5 Detailed solution

In this section, we provide the detailed procedure for the heterogeneous learnware problem based on
the aforementioned methodology, which consists of model specification generation, heterogeneous
learnwares accommodation by the system, and system exploitation for solving new user tasks.

5.1 The developer generates the model specification

The model specification sketches task distribution and model capabilities with a reduced set. Instead
of sketching the joint distribution of task features and outputs (Eq. (I)), we propose to generate
feature and label part separately to balance label and feature information. This includes a unified
mechanism for classification and regression, and a specialized mechanism for classification.

Unified mechanism for classification and regression tasks. Given a dataset D = {(z;, y;)}"
and a model f trained on it, we first generate a reduced set {(3;, z;) } 7., solely on {z;}_, based on
RKME via Eq. (1)) with q; = x;, which sketches the marginal distribution of the task feature. To encode
the model’s ability, pseudo labels can be assigned to the reduced set using y; = f(z;), resulting in
the labeled reduced set Ry, = (8, 2,Y) = {(8;,2;,v;)} serving as the developer-level model

specification 5%,

m
j=1

Specialized mechanism for classification tasks. For classification problems, given the finite label
space ), we propose the mechanism to directly sketch the model’s capacity, characterized by the
conditional distribution P(X|Y") of the model f. We first obtain the model predictions {¢;}_, on
its "skilled" marginal distribution, i.e., its training data {:I:Z}?:l Then, the pseudo-labeled dataset
{(z;,9:)}7_,, which encodes the model’s conditional distribution, can be sketched by a labeled
reduced set Ry, = (3, Z,Y) = {(B;, 2, y])};n:1 using the following objective:

2 2
n

m C
Z%k<mi,->—2/3jk<zj,-> +6 Z%k(wi,»—zﬂjk(zj,-) )

P —_ y . /
=1 ., c=1 ||i€eZ, JET, He

where Z. and I; represent the indices of samples x; and z; belonging to class c, respectively. 6
is the parameter used to balance the marginal distribution distance and conditional distribution
distance. The labeled reduced set Ry, should approximate both the marginal distribution >, %5%
with 37" | 3., and the conditional distribution given the ¢ class 3,7 5 dq, With Y-, ez’ Bjdz,
simultaneously. Here, 6(+) is the Dirichlet function, which describes the probability mass at a single
point. The objective Eq. (Z) can be optimized by alternating optimization, the details are showed in
The optimized reduced set R, is served as the developer-level model specification s,

The first unified mechanism sketches the marginal distribution and then encodes the model informa-
tion, while the second specialized mechanism directly sketches the model’s conditional distribution.

5.2 The system accommodates heterogeneous learnwares

After the developer-level specification s%¢ is generated, the developer submits the model f with

specification 5% to the learnware dock system. The system exploits the relationship of different
feature spaces and manages heterogeneous models by assigning system-level specification s%*.

Subspace learning After the learnware dock system receives heterogeneous models with their
developer-level specifications, it generates a unified subspace Xy, to connect different feature

blocks {Xi}?:l based on all developer-level specifications {s3 := {(8;;, 24, Yij) e }N . During
subspace learning, the learnware dock system learns 2¢) mapping functions: {hy : Xx — Xsub}szl
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and {gx : X — Xk} _,. For a particular sample z,;, it can be split into several blocks {z } keC;
according to the feature split Ay = Xy X --- x Xg. The encoding function hy, produces the
(k) (k) 5 (k)

as v;’, and the decoding function g; reconstructs it to X, as z

embedding of sample slice z; i

The loss for subspace learning is implemented as follows: 1) The reconstruction loss, Ereconmm =
ZZ 1 Zml Bij||2<.’.“) - (k)||12:, penalizes the difference between the original sample zl(-f)

( )

ij
involves building a simple classifier on {{(vs;,i;)} ]2, }/Y,, where v;; = mean({vgf)}keci), and
calculating the prediction loss to make the embeddings of different classes more separable. 3) The
contrastive loss aims to make the embeddings {'v }keC of a single sample z;; similar, while
ensuring that embeddings of different samples are d1ss1mllar The contrastive 1088 Leontrastive =
ZN l; includes N terms, each term being a weighted loss extended from the Self-VPCL loss [Wang

and Sun, 2022], calculated on the embeddings {{v }keC }™i of one specification s¥V: [; =

S Bij Ykec, log () D)
F— . . ./ Lt . T
=1~ keC; k'€Ci k' #k Zt 1ZkTec expw( 5;)’ Eic )

function. In the logarithm term, the numerator represents the similarity of the positive pair, while the
denominator is the sum of all pairs. The loss L is optimized with gradient descent.

and

the reconstructed sample z;.”, weighted by the sample importance 3;;. 2) The supervised loss

) where v is the cosine similarity

Heterogeneous learnware accommodation. After subspace learning, the learnware dock system
builds a unified subspace and corresponding mapping functions {g;, hi}iQ:l. The dock system then
assigns a system-level speciﬁcation 8i = {(Bij,vij, yij) }j=, for each model based on its developer-
level specification & := {(5;;, zij, Yij)};=,. During the system-level specification generation, the
sample z;; is prOJected to the unified subspace as v;;, while the coefﬁment Bi; and the label y;;

remain unchanged. The projection v;; is calculated as follows: v;; = IC P 2kec, (z 5])) The
whole procedure of learnware dock system construction is described in Algorithm 3]

5.3 The user exploits the learnware dock system

After the learnware dock system accommodates heterogeneous learnwares, users can submit their
task requirements to receive recommended models and the toolkit used for feature transformation.
They can then directly reuse the model or combine it with a self-training model.

User requirement generation. As described in Section comparing both the marginal distribu-
tion Px and conditional distribution Py y- based on the model specification and user requirement
helps better learnware identification. Similar to RKME}, specification encoding both distributions, the
RKME; requirement of the user is generated similarly to reflect both. In details, given the unlabeled
data D" = {z;}!"*, and some labeled data D' = {(&;,y;)}", (the unlabeled data cover labeled
data features, i.e., {&;}; C {@;}:), the user can generate RKME;, requirement presented by labeled
reduced set Rz, = {(8}, 2, y;)} -, to sketch the task distribution.

For the classification case, the reduced set R, can be generated by minimizing the following distance:

2 2
> k() Zﬁj T > k(@) - X Ak ®)
=1 u Ha c=1 ||i€Z, jET. Hoe

This equation is similar to specification generation in Eq. (2)), where the specification sketches the
pseudo-labeled dataset, while the requirement sketches semi-supervised data. The first term calculates
the distance between the marginal distributions of the unlabeled dataset Y| -1, and the reduced

set Z;" 1 Bj0z,. The second term calculates the distance between the conditional distributions of the

labeled dataset ;.7 m 0z, and the reduced set > jer' Bj0z;, where Z. and I; denote the sample

indices of the labeled dataset and the reduced set with label c, respectively. The optimized reduced
set Ry, becomes the user-level requirement s{**'. The optimization is described in[E.2]

For regression, the requirement is generated by sketching the marginal distribution and applying a
self-trained model for pseudo-labeling, similar to unified specification generation in Section[5.1]
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Learnware identification. After the user submits the user-level task requirement sf'" =
{(Bok, Zok» Yok) } 2, to the dock system, the dock system transforms it into the system-level task
requirement so = {(Bok, Vok, Yok ) } ny by projecting zoy, into the subspace as voy. The dock system
then calculates the distance between the system-level specification s; = {(Bijsvij, viz) i<, and the
system-level task requirement sg as follows:

Zﬁ%k(’vom')—iﬁijk(vijw) +042 Z Bork(vok, ) — Z Bijk(vij, )|, (@)
k 7 C

keZo.c jEIiYC

which measures both the conditional distribution distances and marginal distribution distances. Where
1; ¢ represents the indices of v;; with the class c. The learnware dock system then recommends the

learnware with a minimal distance.

Learnware reuse. Once the user receives the recommended model f; and the dock system toolkit

{h, gk}szl, they can apply the model to their task. The toolkit helps bridge the gap between different
feature spaces. For example, if the user’s task is on A} x A5 and the model is on X5 x X5 x X}y, the
user can project their data using h; and ho, then decode it to X3 and Xy with g3 and g4. The user can
use the recommended model’s predictions directly or ensemble them with a self-trained model.

5.4 Overall procedure

In the submission stage, the dock system receives models with developer-level specifications that
sketch model capabilities and assigns system-level specifications by a learned unified subspace. In
the deployment stage, users submit task requirements detailing marginal and conditional distributions
to receive recommended learnware. This learnware can be integrated with their self-trained models
to significantly enhance performance. The overall process is summarized in Appendix [D.T}

6 Experiments

6.1 Experiment setup

Datasets. We tested our methods on 30 datasets from the Tabzilla benchmark [McElfresh et al.|
2023|], excluding tiny datasets. These include 23 classification tasks and 7 regression tasks. For
classification tasks, the sample sizes range from 1,000 to 58,310, feature space dimensions from 7 to
7,200, and the number of classes from 2 to 10. For regression tasks, the sample sizes range from 418
to 108,000, and feature space dimensions from 8 to 128.

Compared methods. As the heterogeneous learnware problem, where the user has some labeled
data, is a new problem, we first compare our approach with two basic methods that train models
from scratch: 1ightgbm [Ke et al.l 2017]], a widely used tree-based method for tabular datasets, and
TabPFN [Hollmann et al.||2023], a recently proposed prior-data fitted network capable of training and
inference on small classification datasets in less than one second. When seeking assistance from the
model repository, one simple but inefficient approach is to fetch all models, conduct heterogeneous
transfer learning, and select the best one. Align ..., [Tan et al.l|[2024a| aligns the feature space
and uses the aligned model directly, while Align, . ., [Tan et al.,[2024a]] goes a step further by fine-
tuning through training a new model with augmented features that include aligned model predictions.
Another method for reusing knowledge from heterogeneous tasks involves pre-training a unified
tabular network on different tables and fine-tuning on the downstream user tasks: Transtab [Wang
and Sun, [2022] and Xtab [Zhu et al., [2023]]. However, these methods require access to raw task
data, whereas our method protects user privacy. Next, we compare with Hetero [Tan et al.| 2023]],
an initial attempt to address the heterogeneous learnware problem without using label information.
Finally, we substitute the specification in our method with the RKME specification from [Zhou and
Tan|, |2024]] as Ourpasic and conduct a comparison with the proposed method.

Experiment configuration. The feature space is randomly divided into four equal blocks, creating
feature spaces from three-block combinations for developer tasks and two-block combinations for
user tasks. For user tasks, 100 labeled data points are sampled from the training set. All experiments
are repeated five times. For more details, please see Appendix [F.1]
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Table 1: Accuracy (%) (mean =+ std) on user data true labels. The best performance is in bold.

Dataset name Lightgbm TabPFN Align, Align,,;, Transtab Xtab Hetero  Ourp,gic ‘ Ourypity Our

unlabel

credit-g 674 +21 705 o4 583 +24 69.1+16  69.6+10 70306 675100 T1.2zx07 | 71.0+10 714 +07
semeion 548 +49 634 +16 6.8 19 59.6 +57 521 x84 27.0+34 402x00 532zx08 | 599 +16 63.7 £
mfeat-karhunen 66.1 +14 726 +18 7.1 +32 733 +12 672+10 360+19 594 +00 T71.7+28 | 73.5+02 77.6 +13
splice 64.9 + 11 63.2 +o08 42.5 +31 562 +s6 72.8+16 56.0+12 684 +00 722420 | 73.5+09 73.6 09
gina agnostic 755+15s 766 +17 451 +12 745+10 784 +s52 67.8+23 820400 889 +o0s | 873 +25 899 +os
Bioresponse 642 +s7 574 +24 48.4 +23 640+16  51.6+38 564 +20 66.7+00 67.1+1s | 67.9+26 TLS5 oo
sylvine 68.6+20 Tl4+os 472 +43 692 +16  69.6+09 66.6+22 75.1+00 T48+17 | T45+18 76,9 +o01
christine 61.7 +o4 654 +13 46.6 +47 66.9 +os 546 49 61.8+12 722400 720402 | 72.6 £o2 727 100
theorem-proving 421 +18  425+10 27016 395+12 42006 40.8+02 443100 51.2xo00 | 504 £07 51.0 +os
satimage 80.5+1s 833 +os 6.3 +44 81.4+09 835+18 754 +23 488 +o00 828113 | 869100 87.1 +o2
fabert 234 +00  24.0 104 14.0 +35 320+s56 284 +s56 229 +05 342100 412416 | 41.0 100 46.0 +21
gesture segmentation | 40.7 +14  43.1 23 142 16 377 +34 397 +s54 38.6+27 37.6+00 53.6+00 | 52.8 £07 52.1 +os
robert 225+13 243 +10 94 +o7 246 +os  12.0+20 134 +13 455400 448 +00 | 453 02 457 102
artificial-characters 250+29 31.6 +os 8517 202 +27 212+18 21.1+17 414100 401 +16 | 41412 418 £o0
eye_movements 42.8 +29 42.1 +os 319 +12 39.7 +16 41.0 +39 392 +15 469 100 549 109 | 542 +07 558 £o00
nursery 591+ 603 +09 204 +76 579+ 602+13 584 +10 579 +00 62200 | 605112 62.0+00
eeg-eye-state 592 £22 628 +20 47.2 +25 553 +03 537 +24 584110 632100 644 +00 | 63.1 £18 659 +o0
magic 73.6 47 762 +10 48.3 +49 721 +25  73.6+35 724 +20 625400 70.6+13 | 759 o1 76.8 £o2
riccardo 73.1+15  752+0a 749z 723 +20 74902 750 +00 832:+00 81.8xo0s | 831xo1 81.9zos
guillermo 577 +44 599 toa 58.6 £ o6 60.0+00 58907 599+01 63.6+00 63.0x00 | 62.5+46 68.4 +£19
nomao 858 £29  86.3 +o09 57.5 +10 86.7 34  89.0x04 822+10 799zx00 89.6x01 | 90.0 o1  89.5 o2
click prediction 80.2+14 83.2+00 80.1 +26 83.0+04 832:00 82.6+04 824+00 80.8:+20 | 832100 83200
volkert 393 +17 43.0+o0s 11.4 +22 42,1 +20 381 +23 374110 409 +00 47905 | 490111 460 +15
Avg 0.577 0.599 0.353 0.581 0.572 0.530 0.593 0.652 0.661 0.674
Our ity W/t/l 23/0/0 20/1/2 23/0/0 23/0/0 22/1/0 23/0/0 17/1/5 13/0/10 - 4/1/18
Ourg, w/t/l 23/0/0 22/1/0 23/0/0 23/0/0 23/0/0 22/1/0 22/0/1 18/0/5 18/1/4 -
Avg. rank 6.826 4.826 9.826 6.565 6.174 7.696 5.261 3.391 2.522 1.435

Table 2: RMSE (mean =+ std) on user data true labels. The best performance is emphasized in bold.

Dataset name  Lightgbm  Align, .. Aligny,, Transtab Xtab Hetero Ourpasic | Ourupity
pbc 0.411 o041 0.507 +o0o1 0.402 £o0039 0.491 £o0003  0.434 £o010  0.396 +0000 0.396 +0.003 | 0.395 =+ 0.005
colleges 0.194 0006  0.234 £000s  0.194 £0007  0.249 £o00s  0.199 £o00s  0.232 £0000  0.196 +0.004 | 0.188 =+ 0.001
cpu-small 0.172 +0021 0.229 +0006  0.168 +0022  0.238 £000s  2.614 £4923  0.211 £0000  0.132 +0.003 | 0.152 + 0,035
kin8nm 0.178 +o0014  0.204 0007 0.170 0014  0.242 £0006  0.179 0002 0.170 0000  0.172 + 0001 | 0.170 =+ 0.001
dataset-sales 0.072 0006 0.086 +000s 0.068 £oon1  0.464 £o004 0.079 £0003  0.103 £0000 0.061 +0.003 | 0.058 = 0.001
california 0.172 +0021 0.251 +000s  0.163 £0020 0.217 £000s  0.169 £0004 0.197 £0000  0.190 + 0023 | 0.163 + 0.022
aloi 0.303 0003 0.327 +000s  0.301 £0006 0.322 £0004 0.301 £000s 0.249 +0000  0.224 + 0011 | 0.233 + 0.008
Avg 0.215 0.263 0.209 0.318 0.568 0.223 0.196 0.194
Ourypigy W/t/l 7/0/0 7/0/0 5210 7/0/0 7/0/0 6/1/0 5/0/2 -

Avg. rank 4.286 7.143 2.571 7.429 5.286 4.286 2.714 1.286

6.2 Performance on user tasks

Tables [T]and [2] compare the performance of our proposed methods with other contenders on classifica-
tion and regression tasks. Ouryyiy refers to the performance of the overall procedure with the unified
specification, while Our.; s refers to the specialized specification designed for classification tasks.
Our approach, Oury; ¢y, outperforms the competitors in most cases. While Lightgbm and TabPFN
use self-training, their performance is limited by the small amount of labeled data. It is showed that
TabPFN performs better than Lightgbm under these conditions. This highlights the importance of
leveraging well-trained models, even with heterogeneous feature spaces, to improve performance.

Examining Align ..., shows that heterogeneous transfer learning with only aligning feature spaces
without labels is less effective than self-training. However, further fine-tuning enables Align, ., .
to outperform self-training methods. Nevertheless, without leveraging knowledge across different
tasks, Align,,, ., still performs worse than our approach. Transtab and Xtab attempt to create
a unified backbone across different tables to leverage cross-task knowledge, but they fail to reuse
the high-performing model on each developer task, leading to worse performance than ours. These
methods also require training on raw developer data, whereas our method only accesses model
specifications without exposing raw data.

Hetero performs worse than our methods due to its lack of modeling the conditional distribution of
submitted models and its reliance on unsupervised subspace learning. Compared to Ourpasic, our
proposed specification outperforms the RKME specification, as it alleviates the issue of label infor-
mation being overshadowed by feature information during specification generation and comparison.
Notably, for classification tasks, our specialized model Our.;s outperforms Our,,;¢y due to its ability
to encode conditional distribution of the model more effectively.
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Figure 4: User performance curve for classification tasks.
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Figure 5: User performance curve for regression tasks.

6.3 Evaluation on users with different size of labeled data

In the previous section, we showed that using a single learnware with heterogeneous feature spaces
outperforms training models from scratch when labeled data is limited. Now, we analyze how
performance changes as users train models and ensemble their predictions with learnware across
different amounts of labeled data. Figures[]and[5|display these trends for classification and regression
tasks. These figures indicate that ensemble methods consistently outperform self-training with 100
labeled data points. With 500 labeled data points, the ensemble method still performs better in nearly
80% of cases. Additionally, learnware continues to enhance performance even with 5000 labeled
samples, improving 21% of classification cases and 50% of regression cases. For certain datasets
like kin8nm in regression tasks, even when users use their entire training dataset, the recommended
heterogeneous learnware can still significantly boost performance.

7 Conclusion

This paper evolves specifications to a unified subspace with explicit exploitation of model outputs
under the heterogeneous learnware scenario. The specification is extended by additionally encoding
conditional distribution to better encode the model capability, which can be further evolved by more
effective subspace learning enriched by label information. The extended specification also improves
learnware identification by additionally matching conditional distributions. We present the complete
workflow of the learnware dock system accommodating heterogeneous learnwares and validate the
effectiveness of the proposed methods through extensive experiments.
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Table of contents

* Section [A] presents the key notations used throughout this work.

* Section [B]offers an in-depth discussion on the proposed methods.

* Section [Clreviews the related literature and techniques.

* Section|D|describes the detailed algorithm of the overall procedure.

* Section[E]explains the optimization during specification generation and user requirement
generation.

* Section [F provides additional information on the experiments.

A Notations

The major notations of this paper are summarized in Table 3]

Category | Notations | Description
Xai = &1 X --- x Xg | the overall feature space and its @ blocks, the corresponding dimen-
sions are d,dy,- -+ ,dq.
Xfev .. , ey T kinds of feature spaces for developers’ task, each of them is the
Cartesian product of several feature blocks. The index set of blocks
basic that X% has is Cy, i.e., X* = X;ec, X
Auser the feature space of the user’s task, it is the Cartesian product of
several feature blocks, the corresponding index set of blocks is Cy,
i.e., e = XieCy Xz
Yy the label space.
D; = {(xi;, yij)};”’zl the labeled dataset of the i-th developer defined on X(gfv x Y where
¢; € [1,---,T)] represents the developer feature space index.
developer fit X3 =Y the model of the i-th developer trained on D;.
88 = {(Bij, zij)}]2y | the developer-level specification of the i-th model generated from D;
via RKME;.
D§ = {zoi iy the unlabeled dataset of the user.
user D} = {(&0i,y0i)}, | the user’s labeled dataset, which is of limited size
s := {(Boj, zoj)}}”;l the user-level requirement of the user generated from Dg via RKMEL.
si == {(Bijsviz)}[21 | the system-level specification of the i-th model assigned by the learn-
ware dock system, which is generated by adjusting the developer-
Jearnware level specification s§".
dock system li .= (fi,8:) the ¢-th learnware accommodated by the learnware dock system.
N
{l;}iy the heterogeneous learnware dock system.
80 := {(Boj,v0;)}2, | the system-level requirement of the user task generated by the learn-
ware dock system.
Xsup the learned subspace with dimension dgyp,.
hi @ X = Xau the mapping function which projects the data on the k-th feature
subspace block X}, to the subspace Xgyp.
g+ Xaub — X the mapping function which reconstructs the data on the subspace
Xup to the k-th feature block A,

Table 3:

B More discussion

Major notations of this work.

B.1 Superiority of the learnware paradigm for handling heterogeneous models

Difficulties of managing models with heterogeneous feature spaces. To manage models de-
veloped from heterogeneous feature spaces, it is essential to exploit the relationship among the
corresponding feature spaces { X%} | . While multi-view learning [Xu et al., 2013] can be benefi-
cial if co-occurrence data across the entire feature space Xy is available, obtaining such data is nearly
impossible in real-world scenarios. Alternatively, if the raw data of the model task is accessible,
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training a unified tabular network on heterogeneous tables [Wang and Sun, 2022| Zhu et al.|[2023|
Yang et al., 2023 offers another approach to reusing knowledge from heterogeneous tasks. However,
a unified model often struggles to perform well across all source tasks due to complex and sometimes
conflicting internal patterns. Additionally, in sensitive areas like medicine, data sharing is restricted,
and privacy concerns prevent access to raw data. In our problem, raw data is inaccessible to protect
the model provider’s privacy, and we do not use hard-to-collect auxiliary data.

Exploit feature space relationship with model specifications. Under the learnware paradigm,
each model is submitted with a specification that describes its abilities. This specification can be
naturally used to explore the relationships between feature spaces. [Tan et al., 2023|] generates a

unified subspace Xy, and linear projection functions linking it to all feature blocks {Xi}?:l by
leveraging model RKME specifications generated solely on features. However, the specification lack
of label information often leads to unsatisfactory performance of subspace learning, like entangled
classes of embeddings, it also performs poorly when feature blocks are weakly dependent. This paper
better incorporates label information into the specification to improve subspace learning for better
heterogeneous learnware accommodation.

B.2 Exploit label information to handle models with heterogeneous feature spaces

To handle learnwares with heterogeneous feature spaces, it’s crucial to exploit the relationship between
different feature spaces. When the overall feature space is divided into disjoint blocks and each task
data is an arbitrary Cartesian product of several blocks, this exploitation can be divided into two parts:
learning relationships between co-occurring feature spaces using data of specific specification, and
learning relationships between non-co-occurring feature spaces across all specifications. The first part
involves subspace learning to identify a unified subspace, while the second ensures that embeddings
of heterogeneous data with intersecting features are closely aligned in the subspace. The first part
lays foundation for the second, which is key to managing models with heterogeneous feature spaces.

For the foundational step of subspace learning, if label information is not available, the embeddings
of different slices of the same data may not align correctly within the subspace. This misalignment
can result in embeddings from different slices having entangled or mixed classes. Furthermore, in
extreme cases where feature blocks are jointly independent, subspace learning becomes meaningless
due to the irrelevance of features. However, when label information is available, the feature blocks
are no longer independent, as all information is used to generate the labels. More discussion that the
label information is useful for building connections between independent feature blocks can be found
in [Guo et al.,[2024]].

In summary, label information is essential for subspace learning, as it mitigate entangled classes
of embeddings, which critically affects the learnware identification and reuse. It also help ensure
performance even when feature blocks are weakly dependent.

C Related work

The learnware paradigm. The learnware paradigm [Zhou, 2016} Zhou and Tan, [2024] offers a
systematic approach to managing well-trained models and leveraging their capabilities to assist users
in solving their tasks, rather than training a model from scratch. A learnware consists of a well-trained
model accompanied by a specification that describes its capabilities, with this specification being the
central component of the learnware. [Wu et al.| [2023]] proposed the RKME specification, which uses
a reduced set to sketch the distribution of the task data. Based on the RKME specification, [Wu et al.
[2023]] proposed to match the data distribution for learnware identification, while Zhang et al.| [2021]
extended it to handle user tasks with unseen parts. To efficiently recommend learnwares among
numerous learnwares, |[Liu et al.| [2024]] suggested evolving the specification with other learnwares
for more accurate identifications and construct the specification index for managing learnwares
for efficient learnware search, Xie et al.|[2023]] proposed using minor representative learnwares as
anchors to speed up learnware identification without traversing the whole system.

Previous research has primarily focused on the homogeneous case, where all models and user tasks
share the same feature space. However, in real-world applications, the feature spaces of developer
models and user tasks often differ. [Tan et al.|[2024b] was the first to consider the heterogeneous
feature space scenario, but it assumes that the original training data is accessible, and auxiliary data
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across the entire feature space is collected. To relax this strong assumption of data accessibility,
Tan et al.|[2023] investigated the organization and utilization of a heterogeneous learnware dock
system without requiring access to the original data or auxiliary data across the feature space. While
this approach is more realistic, its lack of effective use of label information leads to unsatisfactory
performance. This paper examines the importance of label information and integrates it throughout
the entire process of the heterogeneous learnware dock system. As a broader impact, the detailed
implementation of incorporating label information into the learnware specification can help enhance
various aspects of the learnware paradigm. In addition to research on heterogeneous feature spaces,
Guo et al.[[2023]] considered scenarios involving heterogeneous labels.

Based on above research, the first learnware docking system, Beimingwu [Tan et al. [2024a]], was
recently released. The system streamlines the entire learnware process and provides a highly scalable
architecture, facilitating future algorithm implementation and experimental research.

Related techniques. To measure the distance between two labeled datasets in the same feature
space,|Alvarez-Melis and Fusi|[2020] proposed the Optimal Transport Dataset Distance (OTDD). This
approach separately calculates feature and label distances using optimal transport and then combines
them. The label distance is derived from the feature distances of partial samples with specific labels.
This method aligns with the proposed loss for sketching the labeled dataset to generate specifications
and requirements, where the loss consists of feature and label components based on MMD, with
the label loss defined by the conditional distributions P(X|Y"). Comparing simply concatenating
feature and label, separately tackling feature and label can better measure the distance without label
information overwhelmed by the longer feature information. For measuring the distance between
two distributions in different feature spaces, Mémoli [2011]] proposed the Gromov—Wasserstein
distance, which aggregates all distances of tetrads to measure the distances between two points. In our
work, we introduce a method to measure the distance between two labeled datasets in heterogeneous
feature spaces using subspace learning and maximum mean discrepancy (MMD) over marginal and
conditional distributions.

Existing studies on heterogeneous feature spaces, such as heterogeneous domain adaptation [Duan
et al.l 2012, 'Wang and Mahadevan, 2011]], heterogeneous transfer learning [Day and Khoshgoftaar,
2017]], and heterogeneous model reuse [Ye et al., 2018} 2020], generally map different feature spaces
to an intermediate subspace. This process typically requires original data from both domains or
co-occurrence data to establish the relationship between different spaces. However, in the learnware
paradigm, managing models developed from different feature spaces without auxiliary data becomes
feasible due to the existence of RKME specifications associated with each model. Based on this
paradigm, we can accommodate, identify, and reuse heterogeneous models of any type without
accessing original data or additional co-occurrence auxiliary data. Recently, |Guo et al.| [2024]]
explored the relationship between two intersecting feature spaces from a causal perspective, showing
that residuals from model predictions can provide information into unobserved variables, specifically,
the partial derivative of the true generating function with respect to these unobserved variables. This
finding aligns with our approach, where we leverage label information to explore the relationship of
different feature spaces.

Recently, some works have focused on identifying and reusing models from a model hub. Ding
and Zhou|[2020] select models based on an anomaly detector associated with each model, which
helps determine whether a feature sample is appropriate for prediction with that model. |[Ding et al.
[2022] propose selecting models using a task-model metric that requires only minimal interaction
with data providers. [Zhang et al.|[2023]] propose selecting pre-trained models by calculating the
similarity between learned model embeddings and task embeddings, both of which are obtained
through the ranking loss. [Yi et al.|[2024] explore the model selection specifically for visual language
models. However, it is important to note that none of these approaches can directly address scenarios
involving heterogeneous feature spaces.

D Algorithm details

D.1 Summary of overall procedure

The overall procedure of the heterogeneous learnware dock system consists of two stages. In the
submission stage, the dock system receives models with developer-level specifications sketching
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model capabilities and assigns system-level specifications using a learned unified subspace. In the
deployment stage, users submit task requirements detailing marginal and conditional distributions
to receive the recommended learnware. This learnware can be integrated with their self-trained
models to significantly enhance performance. The detailed procedures for each stage are outlined in
Algorithm [T and 2] respectively.

Algorithm 1 Submitting stage (learnware accommodation by the system)

1: Each developer trains a model f; and generates the developer-level specification s?ev on the
dataset D; defined on XV x V.

2: Each developer submits both the model and the developer-level specification (f;, s¢) to the
learnware dock system.

3: The learnware dock system generates the projection function h; : X; — Xy, reconstruction
function g; : Xy — X for each feature block X; and the system-level specification s; for each
model f; based on all developer-level specifications {sdV} ¥ ;.

4: The model f; is accommodated by the learnware dock system with system-level specifications as
learnware 1; := {f;, s;}.

5: The heterogeneous learnware dock system is established as {I;}¥ ;.

Algorithm 2 Deploying stage (system exploitation by the user)

1: The user generates the user-level task requirement sg*" based on the unlabeled data Df and

limited labeled data D} defined on A3 x V.
2: The user submits the user-level requirement si*' to the learnware dock system.

3: The learnware dock system uses the projection functions {hl}zQ to generate the system-level
requirement Sg.
4: The learnware dock system recommends one learnware [; based on the system-level requirement

so and the system-level specifications {s; })¥, and provides the toolkit {g;, 7;}& to the user.
5: The user reuses recommended learnware [; with the toolkit {g;, hL}ZQ on the task.

D.2 Subspace learning and system-level specification generation

After the developer-level specification s% generation, the developer submits the model f with
specification 5% to the learnware dock system. The system exploits the relationship of different
feature spaces and manages heterogeneous models by assigning system-level specification s%°. The
details of subspace learning and system-level specification generation are described in Algorithm 3]

E Optimization
E.1 Optimization of specification generation specialized for classification tasks
The RKME;, specification represented by Ry, = (3, Z,Y) = {(Bm, 2m. ym)}ﬁf:l sketches both the

marginal distribution Px of the training data and the conditional distribution Px |y of the model
prediction, which is obtained through minimizing the following objective over R :

N M 2 c 1 2
Dok @)= D Bk (|| 0D | Y ok @nn) = D Bk (2 )| )
n=1 m=1 Hi c=1 ||n€eZ, MEIL Ha

This objective consists of two parts: the first term sketches the marginal distribution Px of the training
data, while the second term sketches the conditional distribution Py of the model prediction. This
objective can be optimized by iterative optimization, which is detailed in the following.
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Algorithm 3 System-level specification generation

Input: All developer-level specifications { s zN:r

Hyper-Parameters: batch size B, temperature 7, corruption rate ¢, max iteration 7', trade-off
parameters o, &g, 3, iy

Output: System level specifications {s;
system engine F(-)

1: while Max epoch is not achieved do

sys

N |, learnware dock system toolkit {t; := (h;, g;)}%,,

2:  Initialize the system engine F(-) and dock system toolkit {t; := (h;, g;)}<,.
3:  for each specification s in all developer-level specifications {3V} | do
4: for sampled mini-batch {3, z; := (x;,y;)} 7., do
5 split &, according to the feature blocks {X;}%;: {m( )}keC
6 let v(k) = hi(x (k)). # embeddings of each blocks.
ex 111( B ,vk,> .
7: define £ =5 i K K o ° where v is the
cont Zz—l p Zk_l Zk #1108 JB:1 Zi(i=1 cxpw(v;c,vft) ¥
cosine similarity function.
8: let ﬁcg ) = 9i(v; (* )) and concatenate them as & ;. # reconstructed samples.
9: define Ereconstructed = E?:l ZkGC 5j ||£L'§k) - i’;k) ||2
10: let §; = F(v;) where v; = mean({vg.k)}kec) # simple classifier prediction.
11: define Lgupervised = Zle B;1(y;,7;) where [ is cross entropy for classification problem
and mean squared error for regression problem.
12: L = L+ ai Leeconstruct + 2 Leontrastive + a3£supervised
13: update the encoder networks {h; }_,, decoder networks {g; }2_, and system engine F(-)
according to £ using gradient descent.
14: end for
15:  end for
16: end while
17: generate system-level specification s?° := {8;, (v;, y;)}72, based on the developer-level spec-
ification s := {g;, (x;, y;)}is, by replacmg the raw sample «; with the embedding v ;.
18: return System-level specifications {s;}}; with corresponding toolkit {t; := (h;, gi)}?zl

consists of encoder networks and decoder networks, system engine F(+).

Denote 3 = (81, ,Bm). Z ={z1,--+ ,zmtand Y = {y1,--- ,yn}, expanding Eq. (3) gives

N
FB.2Y)= Y 1@ wm) £ S Bk () 2zzﬁm (@, 2m)
n,m=1

n,m=1 n=1m=1

+92 Z %k (Tp, Tm) Z BBk (Zn, Zm 722 Z 5m k (@, )

c=1 \n,meZ, n,meZ, ne€l. meZ,

The distance F'(3, Z,Y) can also be rewritten as

C
o Kt + K28 = 20" KB40 (ol Kywooe + BT K2 Be — 20 K2 Be)

c=1
=" (Kpo + 0K, )+ BT (K., + 0K2,)8 — 20" (K,. + 0K).)pB
=K a+ TK..5 — 27K,
where « is the vector containing N elements of 1.

Next, we address the optlmlzatlon of Eq. (9). First, we generate Y while preserving the class ratio of
the original labels {y,, }_;. Then, we proceed to optimize 3 and Z.
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DF(ﬁ 7) _

Fix Z and update 3. Suppose vectors in Z are fixed, setting = 0 obtains the closed-form

solution of 3 using pseudo-inverse of K :

’

ﬂ = (KZZ)TK;(EQ'

Fix § and update Z. When 3 is fixed, {#1, - , zas} in Z are independent in Eq. (3), therefore we
can iteratively run gradient descent on each z,, as

F(8,7
20 a0 9FBZ)

" 0zm
We first review the gradient 8G(ﬁ Z).
N
aG zn,zm) ﬁm 8k(mnvzm)
Z Bun =G —2 ) B

M 1 nN:
= _4’Yﬂm(z Bnk(z'ru zm)(zm - Zn) - Z k(wn; zm)(zm - wn))

n=1 n=1

5F(ﬁ‘ Z)

then, we consider the gradient in our problem , which is calculated as follows:

N

zn,zm) B Ok(xr, 2m)
QZﬁnﬁm - - 2; N oz,
Mmiz”’z’” 2y O OHn 2n)
,%; 7; 6'27”

M N ﬂ
=2 Z ﬁnﬁm(_27k('zn7 zm)(zm - zn)) -2 Z - (—Q’ij(:l:n, zm)(zm - xn))
n=1

2D BubBm(=27k(zn, 2m) (2 = 2n)) =2 Y S (=27h(@n, 2m) (2 — T0))

nEIL nel.

M 1 N
- 4’Yﬂm (Z 6nk(zn; zm)(zm - zn) - N Z k(wna zm)(zm - mn)
n=1

+ 0 Buk(zn, 2m) (zm — 20) —

neZ, n€l.

M
- 47ﬂm (Z 6n(1 + H]I(yzn = C))k(zna zm)(zm - zn)

N
1+ 0l(ya, = c)
e S k@, ) (2~ @) |
n=1
where Z. is the sample indices of class ¢ of sample z,,.

E.2 Optimization of user requirement generation

When the user has major unlabeled data D* = {a;}¥', and limited labeled data D! = {(&;, )}
(We adjust the notation slightly for a clearer description of the optimization process), we can also
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find a weighted labeled set of points R = (3, Z,Y) = {(Bm, 2m, ym)}ﬂn/[:1 to sketch the user data
as task requirement.

The weighted labeled set can be generated by minimizing the following distance:

1 M 2 2
k (l‘n, ) - Z Bmk (Zma )
m=1

c

c=1 €7,
Hr n mGI He

which can be optimized by iterative optimization. The details are described as follows.

Denote,@ = (617"' 7BM) Z = {zla"' zM} andY = {yla"' 7yJV1} CXPanding Eq @gives

N.
51 B
F(ﬂ,Z,Y) = Z W mnawm Z Bnﬁm zn;zm 22 Z L n:zm)
n,m=1""4" n,m=1 n=1m= 1
1
+Gz_: Z Wk xnymrn Z Bnﬁm z'mzm _2 Z Z 7k' mnazrn)

c= n,meZL, n, mGI nel. mGI
The distance F'(3, Z,Y) can also be rewritten as
C

OéTsza + ﬂTKzzﬂ - 204TK$Z6 +0 Z (dZKic:Ecdc + 5?chzcﬂc - deKi?(:ZcBC)

c=1

= (" Ky + 06" K za) + BT (K.. + 0K",)B — 2(a” K,. + 06" K2.)
= (TK pa +0aTK2za) + BT(K.,)B — 2(aT K, + 06T K2,)B
where « is the vector containing [V,, elements of 1, & is the vector containing N; elements of 1.

Then, we discuss the optimization of Eq. (). We first generate Y, which will keep the class ratio of
{yn})_,. Then we optimize 3, Z.

Fix Z and update 5. Suppose vectors in Z are fixed, setting 8F(ﬁ Z) — () obtains the closed-form

solution of 3 using pseudo-inverse of K s
p= <K;Z>T<Kma +0K5).

Fix 0 and update Z. When 3 is fixed, {21, - , 2z} in Z are independent in Eq. (6)), therefore we
can iteratively run gradient descent on each z,, as

20 = (=) _ 7]3F(5, Z)’
0zm

or(e.7)

The gradient in our problem can be calculated as:

5 QZﬂnﬂm zn,zm 722 Bmak wn,zm)
= —4yBp (Z Bn(1 4 01(yz, = ))k(Zn, Zm)(Zm — 2n)
n=1
1
_FZk(mn,zm)(zm— Z k(Zn, 2m)( m—a:n)>
U p=1 nEI

where Z, represents the indices of labeled samples «,, belonging to the same class as z,,.

E.3 Summary

The generation mechanism for model specification and user requirement is summarized in Figure [6]
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Figure 6: summarized mechanisms for RKME; generation.
F Experiments
F.1 More details for basic information

Dataset details. The basic information of used datasets is summarized in Table 4 and Table [3l

Table 4: Details for classification tasks

Dataset name #iclasses #features #instances
openml__credit-g__31 1 20 1000
openml__semeion__9964 10 256 1593
openml__mfeat-karhunen__16 10 64 2000
openml__splice__45 3 60 3190
openml__gina_agnostic__3891 1 970 3468
openml__Bioresponse__9910 1 1776 3751
openml__sylvine__168912 1 20 5124
openml__christine__168908 1 1636 5418
openml__first-order-theorem-proving__9985 6 51 6118
openml__satimage__ 2074 6 36 6430
openml__fabert__168910 7 800 8237
openml__GesturePhaseSegmentationProcessed__ 14969 5 32 9873
openml__robert__168332 10 7200 10000
openml__artificial-characters__14964 10 7 10218
openml__eye_movements__3897 3 27 10936
openml__nursery__9892 4 8 12958
openml__eeg-eye-state__14951 1 14 14980
openml__magic__146206 1 10 19020
openml__riccardo__168338 1 4296 20000
openml__guillermo__168337 1 4296 20000
openml__nomao__9977 1 118 34465
openml__Click_prediction_small__190408 1 11 39948
openml__volkert__168331 10 180 58310

Experiment configuration. Each dataset is split into training and test sets with a 4:1 ratio [McEl-
fresh et al.| 2023]]. The output of regression tasks is scaled to [0,1]. The feature space is randomly
divided into four equal blocks. We create four feature spaces for developer tasks from all three-block
combinations and six feature spaces for user tasks from all two-block combinations. Our encoder,
decoder, and system classifier are two-layer ResNets [He et al.,|2016| for tabular data, with subspace
and hidden layer dimensions set to 16 and 32, respectively. We optimize using Adam [Kingma and
Bal 2015]]. For user tasks, we sample 100 labeled data points from the training set, using stratified
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Table 5: Details for regression tasks

Dataset name #classes #features #instances
openml__pbc__4850 1 19 418
openml__colleges__359942 1 44 7063
openml__cpu_small__4883 1 12 8192
openml__kin8nm__2280 1 8 8192
openml__dataset_sales__190418 1 14 10738
openml__california__361089 1 8 20640
openml__aloi__12732 1 128 108000

sampling for classification and binning for regression. The coefficients for contrastive, reconstruction
and supervised losses are set to 100, 1, and 1, respectively. Developers or users train the model using
LightGBM [Ke et al., 2017 with grid search. All experiments are repeated five times.

Model training details. Tree-based models provide strong performance and high efficiency for
supervised tabular tasks, so we use the popular efficient tree ensemble method LightGBM [Ke et al.,
2017] to train developer models and include it as a comparative method. The hyper-parameter search
space used for the developer and user LightGBM models consists of a list of specific combinations
over parameters learning_rate, num_leaves and max_depth: (0.015, 224, 66), (0.005, 300, 50),
(0.01, 128, 80), (0.15, 224, 80), and (0.01, 300, 66).

Baseline details. More details of deep tabular network are described as follows:

» TabPFN: For TabPFN, we use the official checkpoint as a pre-trained model and further fine-tune
it on downstream datasets. When testing TabPFN on datasets with more than 1,000 instances or
100 features, we randomly sample up to 1,000 instances and 100 features from the full training set,
repeating this process three times. The final output is obtained by averaging the predictions from
these trials.

* Xtab: We utilize the pre-trained backbone with the most iterations from XTab’s official implemen-
tation. Since this model is based on the FT-Transformer from AutoGluon, which currently does
not support fine-tuning on tasks with more than 300 features, we generate random subsets of up
to 300 features from the overall training dataset, repeating this procedure three times. The final
prediction is derived by averaging the results across three evaluations on the target datasets, using
XTab’s lightweight fine-tuning approach over 15 epochs.

* Transtab: We employ the official version of TransTab v0.0.5, testing it in a contrastive learning
setting. This involves initial contrastive pre-training on the developers’ training data, followed by
fine-tuning on user tasks. We adopt a supervised contrastive learning objective during pre-training,
which has been shown to outperform the unsupervised version as noted in [Wang and Sun| [2022].
For regression tasks, a linear regressor is integrated during the fine-tuning phase. To manage
memory constraints with large datasets, we subsample the developers’ training sets to 20,000 data
points and 100 features.

Computation resources. Experiments were conducted using a Tesla A100 80GB GPU, two Intel
Xeon Platinum 8358 CPUs with 32 cores each (base clock 2.6 GHz, turbo boost 3.4 GHz), and 512
GB of RAM.

F.2 All user curves for classification tasks

The all user performance curves for classification tasks are shown in Figure[7}

F.3 Ablation study

Ablation study for subspace learning loss by adding loss in sequence. We undertake an ablation
study to evaluate the efficacy of our subspace learning procedure, as depicted in Tables [6] and
Initially, we utilize only the contrastive loss as the baseline. This helps in learning encoding functions
for different feature blocks, ensuring consistency in embeddings across all sample slices. However,
the reconstruction functions learned in this manner are subpar. By adding a reconstruction loss,
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Figure 7: All user performance curve for classification tasks.

the performance of decoding functions is matched with the encoding functions. Despite the initial
effectiveness of unsupervised subspace learning, further enhancements are achieved by incorporating
label information through our proposed specification. With the addition of supervised loss, we
ultimately attain optimal performance for both classification and regression tasks.

Table 6: Ablation study for subspace learning loss Table 7: Ablation study for subspace learning loss
by adding loss in sequence for classification tasks. by adding loss in sequence for regression tasks.

contrastive  + reconstruction  + supervised contrastive  + reconstruction + supervised
acc(%) 61.1 66.2 67.4 rmse 0.208 0.200 0.194

F.4 Code availability

The code can be found at https://github.com/LAMDA-TP/Hetero-Learnware-Label-Info.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions supported by the remaining sections.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: This paper assumes that all models with heterogeneous feature spaces share the
same label space. However, this assumption can be further extended to include heterogeneous
label spaces as well. For example, a basic way is to recommend multiple learnwares by
distribution matching and reuse learnwares by dynamic classifier selection proposed in
previous work [Wu et al.l 2023]].

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors

should reflect on how these assumptions might be violated in practice and what the

implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of the experimental setup in Appendix [FI]
The specifics of our algorithms are thoroughly explained in Appendix [D}

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The link to the code can be found in Appendix
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: A detailed description of the experimental setup is provided in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviations for performance comparison in our experi-
ments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report our compute resources in Appendix [F.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This paper clearly cites the original paper that produced the code package or
dataset.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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