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Abstract

The benefit of transformers in large-scale 3D point cloud perception tasks, such as
3D object detection, is limited by their quadratic computation cost when modeling
long-range relationships. In contrast, linear RNNs have low computational com-
plexity and are suitable for long-range modeling. Toward this goal, we propose a
simple and effective window-based framework built on LInear grOup RNN (i.e.,
perform linear RNN for grouped features) for accurate 3D object detection, called
LION. The key property is to allow sufficient feature interaction in a much larger
group than transformer-based methods. However, effectively applying linear group
RNN to 3D object detection in highly sparse point clouds is not trivial due to its lim-
itation in handling spatial modeling. To tackle this problem, we simply introduce a
3D spatial feature descriptor and integrate it into the linear group RNN operators to
enhance their spatial features rather than blindly increasing the number of scanning
orders for voxel features. To further address the challenge in highly sparse point
clouds, we propose a 3D voxel generation strategy to densify foreground features
thanks to linear group RNN as a natural property of auto-regressive models. Ex-
tensive experiments verify the effectiveness of the proposed components and the
generalization of our LION on different linear group RNN operators including
Mamba, RWKV, and RetNet. Furthermore, it is worth mentioning that our LION-
Mamba achieves state-of-the-art on Waymo, nuScenes, Argoverse V2, and ONCE
datasets. Last but not least, our method supports kinds of advanced linear RNN
operators (e.g., RetNet, RWKV, Mamba, xLSTM and TTT) on small but popular
KITTI dataset for a quick experience with our linear RNN-based framework.

1 Introduction

3D object detection serves as a fundamental technique in 3D perception and is widely used in
navigation robots and self-driving cars. Recently, transformer-based [56] feature extractors have
made significant progress in general tasks of Natural Language Processing (NLP) and 2D vision by
flexibly modeling long-range relationships. To this end, some researchers have made great efforts to
transfer the success of transformers to 3D object detection. Specifically, to reduce the computation
costs, SST [15] and SWFormer [53] divide point clouds into pillars and implement window attention
for pillar feature interaction in a local 2D window. Considering some potential information loss of
the pillar-based manners along the height dimension, DSVT-Voxel [60] further adopts voxel-based
formats and implements set attention for voxel feature interaction in a limited group size.
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Figure 1: (a) Comparison of different 3D backbones in terms of detection performance on Waymo [52],
nuScenes [4], Argoverse V2 [62] and ONCE [37] datasets. Here, we adopt Mamba [22] as the default
operator of our LION. Besides, we present the simplified schematic of DSVT (b) [60] and our
LION (c) for implementing feature interaction in 3D backbones.

Although the above methods have achieved some success in 3D detection, they perform self-attention
for pillar or voxel feature interaction with only a small group size due to computational limitations,
locking the potential of transformers for modeling long-range relationships. Moreover, it is worth
noting that modeling long-range relationships can benefit from large datasets, which will be important
for achieving foundational models in 3D perception tasks in the future. Fortunately, in the field of
large language models (LLM) and 2D perception tasks, some representative linear RNN operators
such as Mamba [22] and RWKV [40] with linear computational complexity have achieved competitive
performance with transformers, especially for long sequences. Therefore, a question naturally arises:
can we perform long-range feature interaction in larger groups at a lower computation cost based on
linear RNNs in 3D object detection?

To this end, we propose a window-based framework based on LInear grOup RNN (i.e., perform
linear RNN for grouped features in a window-based framework) termed LION for accurate 3D object
detection in point clouds. Different from the existing method DSVT (b) in Figure 1, our LION (c)
could support thousands of voxel features to interact with each other in a large group for establishing
the long-range relationship. Nevertheless, effectively adopting linear group RNN to construct a
proper 3D detector in highly sparse point cloud scenes remains challenging for capturing the spatial
information of objects. Concretely, linear group RNN requires sequential features as inputs. However,
converting voxel features into sequential features may result in the loss of spatial information (e.g.,
two features that are close in 3D spatial position might be very far in this 1D sequence). Therefore,
we propose a simple 3D spatial feature descriptor and decorate the linear group RNN operators with
it, thus compensating for the limitations of linear group RNN in 3D local spatial modeling.

Furthermore, to enhance feature representation in highly sparse point clouds, we present a new 3D
voxel generation strategy based on linear group RNN to densify foreground features. A common
manner of addressing this is to add an extra branch to distinguish the foregrounds, as seen in previous
methods [53, 17, 70]. However, this solution is relatively complex and rarely used in 3D backbone
due to its lack of structural elegance. Instead, we simply choose the high response of the feature map
in the 3D backbone as the areas for voxel generation. Subsequently, the auto-regressive property of
linear group RNN can be effectively employed to generate voxel features.

Finally, as shown in Figure 1 (a), we compare LION with the existing representative methods. We
can clearly observe that our LION achieves state-of-the-art on a board autonomous datasets in terms
of detection performance. To summarize, our contributions are as follows: 1) We propose a simple
and effective window-based 3D backbone based on the linear group RNN named LION to allow
long-range feature interaction. 2) We introduce a simple 3D spatial feature descriptor and integrate it
with the linear group RNN, compensating for the lack of capturing 3D local spatial information. 3)
We provide a new 3D voxel generation strategy to densify foreground features, producing a more
discriminative feature representation in highly sparse point clouds. 4) We verify the generalization of
our LION with different linear group RNN mechanisms (e.g., Mamba, RWKV, RetNet). In particular,
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Figure 2: The illustration of LION, which mainly consists of N LION blocks, each paired with a
voxel generation for feature enhancement and a voxel merging for down-sampling features along the
height dimension. (H,W,D) indicates the shape of the 3D feature map, where H , W , and D are
the length, width, and height of the 3D feature map along the X-axis, Y-axis, and Z-axis. N is the
number of LION blocks. In LION, we first convert point clouds to voxels and partition these voxels
into a series of equal-size groups. Then, we feed these grouped features into LION 3D backbone to
enhance their feature representation. Finally, these enhanced features are fed into a BEV backbone
and a detection head for final 3D detection.

our LION-Mamba achieves state-of-the-art on challenging Waymo [52], nuScenes [4], Argoverse
V2 [62], and ONCE [37] dataset, which further illustrates the superiority of LION.

2 Related Work

3D Object Detection in Point Clouds. 3D object detectors in point clouds can be roughly divided into
point-based and voxel-based. For point-based methods [6, 68, 42, 10, 32, 39, 24, 50, 73, 67, 43, 65, 5],
they usually sample point clouds and adopt point encoder [44, 45] to directly extract point features.
However, the point sampling and grouping utilized by point-based methods is time-consuming. To
avoid these problems, voxel-based methods [13, 12, 34, 48, 49, 51, 23, 59, 63, 69, 64, 70] convert
the input irregular point clouds into regular 3D voxels and then extract 3D features by 3D sparse
convolution. Although these methods achieve promising performance, they are still limited by the
local receptive field of 3D convolution. Therefore, some methods [8, 36] adopt the large kernel to
enlarge the receptive field and achieve better performance.

Linear RNN. Recurrent Neural Networks (RNNs) are initially developed to address problems
in Natural Language Processing (NLP), such as time series prediction and speech recognition,
by effectively capturing temporal dependencies in sequential data. Recently, to overcome the
quadratic computational complexity of transformers, significant advancements have been made in
time-parallelizable data-dependent RNNs (called linear RNNs in this paper) [46, 38, 40, 41, 55,
11, 66, 22, 54, 3]. These models retain linear complexity while offering efficient parallel training
capabilities, allowing their performance to match or even surpass that of transformers. Due to their
scalability and efficiency, linear RNNs are poised to play an increasingly important role in various
fields and some works [1, 14, 29, 72] have applied linear RNNs to 2D/3D vision filed. In this
paper, we aim to further extend linear RNNs to 3D object detection tasks thanks to their long-range
relationship modeling capabilities.

Transformers in 3D Object Detection. Transformer [56] has achieved great success in many tasks,
motivating numerous works to adopt attention mechanisms in 3D object detection to achieve better
performance. However, the application of transformers is non-trivial in large-scale point clouds. Many
works [16, 53, 35, 60] apply transformers to extract features by partitioning pillars or voxels into
several groups based on local windows. Although these approaches achieve promising performance,
they usually adopt small groups for feature interaction due to the quadratic computational complexity
of transformers, hindering them from capturing long-range dependencies in 3D space. In contrast, we
propose a simple and effective framework based on linear RNNs named LION to achieve long-range
feature interaction for accurate 3D object detection thanks to their linear computational complexity.

3 Method

Due to computational limitations, some transformer-based methods [15, 60, 35] usually convert
features into pillars or group small size of voxel features to interact with each other within small
groups, limiting the advantages of transformers in long-range modeling. More recently, some linear
RNN operators [22, 40, 55] that maintain linear complexity with the length of the input sequence
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Figure 3: (a) shows the structure of LION block, which involves four LION layers, two voxel
merging operations, two voxel expanding operations, and two 3D spatial feature descriptors. Here,
1×, 1

2×, and 1
4× indicate the resolution of 3D feature map as (H,W,D), (H/2,W/2, D/2) and

(H/4,W/4, D/4), respectively. (b) is the process of voxel merging for voxel down-sampling and
voxel expanding for voxel up-sampling. (c) presents the structure of LION layer. (d) shows the details
of the 3D spatial feature descriptor.

are proposed to model long-range feature interaction. More importantly, the linear RNN operators
such as Mamba [22] and RWKV [40] have even shown comparable performance with transformers
in LLM thanks to their low computation cost in long-range feature interaction. This further motivates
us to adopt linear RNNs to construct a 3D detector for long-range modeling.

3.1 Overview

In this paper, we propose a simple and effective window-based framework based on LInear grOup
RNN (i.e., perform linear RNN for grouped features in a window-based framework) named LION,
which can group thousands of voxels (dozens of times more than the number of previous methods [15,
60, 35]) for feature interaction. The pipeline of our LION is presented in Figure 2. LION consists
of a 3D backbone, a BEV backbone, and a detection head, maintaining a consistent pipeline with
most voxel-based 3D detectors [63, 60, 69]. In this paper, our contribution lies in the design of the
3D backbone based on linear group RNN, which will be introduced in the following.

3D Sparse Window Partition. Our LION is a window-based 3D detector. Thus, before feeding voxel
features into our LION block, we need to implement a 3D sparse window partition to group them for
feature interaction. Specifically, we first convert point clouds into voxels with the total number of
L. Then, we divide these voxels into non-overlapping 3D windows with the shape of (Tx, Ty, Tz),
where Tx, Ty and Tz denote the length, width, and height of the window along the X-axis, Y-axis,
and Z-axis. Next, we sort voxels along the X-axis for the X-axis window partition and along the
Y-axis for the Y-axis window partition, respectively. Finally, to save computation cost, we adopt the
equal-size grouping manner in FlatFormer [35] instead of the classic equal-window grouping manner
in SST [15]. That is, we partition sorted voxels into groups with equal size K rather than windows of
equal shapes for feature interaction. Due to the quadratic computational complexity of transformers,
previous transformer-based methods [15, 60, 35] only achieve feature interaction using a small group
size. In contrast, we adopt a much larger group size K to obtain long-range feature interaction thanks
to the linear computational complexity of the linear group RNN operators.

3.2 LION Block

The LION block is the core component of our approach, which involves LION layer for long-range
feature interaction, 3D spatial feature descriptor for capturing local 3D spatial information, voxel
merging for feature down-sampling and voxel expanding for feature up-sampling, as shown in
Figure 3 (a). Besides, LION block is a hierarchical structure to better extract multi-scale features due
to the gap of different 3D objects in size. Next, we introduce each part of LION block.
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Figure 5: The details of voxel generation. For input voxels, we first select the foreground voxels and
diffuse them along different directions. Then, we initialize the corresponding features of the diffused
voxels as zeros and utilize the auto-regressive ability of the following LION block to generate diffused
features. Note that we do not present the voxel merging here for simplicity.

LION Layer. In LION block, we apply LION layer to model a long-range relationship among grouped
features with the help of the linear group RNN operator. Specifically, as shown in Figure 3 (c), we
provide the structure of LION layer, which is composed of two linear group RNN operators. The
first one is used to perform long-range feature interaction based on the X-axis window partition and
the second one can extract long-range feature information based on the Y-axis window partition.
Taking advantage of two different window partitions, LION layer can obtain more sufficient feature
interaction, producing more discriminative feature representation.
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Figure 4: The illustration of spa-
tial information loss when flatten-
ing into 1D sequences. For exam-
ple, there are two adjacent voxels
in spatial position (indexed as 01
and 34) but are far in the 1D se-
quences along the X order.

3D Spatial Feature Descriptor. Although linear RNNs have the
advantages of long-range modeling with low computation cost, it is
not ignorable that the spatial information might be lost when input
voxel features are flattened into 1D sequential features. For example,
as shown in Figure 4, there are two adjacent features (i.e., indexed
as 01 and 34) in 3D space. However, after they are flattened into 1D
sequential features, the distance between them in 1D space is very
far. We regard this phenomenon as a loss of 3D spatial information.
To tackle this problem, an available manner is to increase the number
of scan orders for voxel features such as VMamba [31]. However,
the order of scanning is too hand-designed. Besides, as the scanning
orders increase, the corresponding computation cost also increases
significantly. Therefore, it is not appropriate in large-scale sparse
3D point clouds to adopt this manner. As shown in Figure 3 (d), we
introduce a 3D spatial feature descriptor, which consists of a 3D sub-
manifold convolution, a LayerNorm layer, and a GELU activation
function. Naturally, we can leverage the 3D spatial feature descriptor
to provide rich 3D local position-aware information for the LION layer. Besides, we place the 3D
spatial feature descriptor before the voxel merging to reduce spatial information loss in the process of
voxel merging. We provide the corresponding experiment in our appendix.

Voxel Merging and Voxel Expanding. To enable the network to obtain multi-scale features, our
LION adopts a hierarchical feature extraction structure. To achieve this, we need to perform feature
down-sampling and up-sampling operations in highly sparse point clouds. However, it is worth
mentioning that we cannot simply apply max or average pooling or up-sampling operations as in 2D
images since 3D point clouds possess irregular data formats. Therefore, as shown in Figure 3 (b),
we adopt voxel merging for feature down-sampling and voxel expanding for feature up-sampling in
highly sparse point clouds. Specifically, for voxel merging, we calculate the down-sampled index
mappings to merge voxels. In voxel expanding, we up-sample the down-sampled voxels by the
corresponding inversed index mappings.

3.3 Voxel Generation

Considering the challenge of feature representation in highly sparse point clouds and the potential
information loss of implementing voxel merging in Figure 2, we propose a voxel generation strategy
to address these issues with the help of the auto-regressive capacity of the linear group RNN.
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Distinguishing Foreground Voxels without Supervision. In voxel generation, the first challenge is
identifying which regions of voxel features need to be generated. Different from previous methods [53,
17, 70] that employ some supervised information based on well-learned BEV features to obtain the
foreground region for feature diffusion. However, these approaches may be unsuitable for a 3D
backbone and may even compromise its elegance. Interestingly, inspired by [34, 30], we notice
that the corresponding high values of feature responses along the channel dimension in the 3D
backbone (Refer to Figure 6 in our appendix) are usually the foregrounds. Therefore, we compute the
feature response F ∗

i for the output feature Fi of the ith LION block, where i = 1, 2, ..., N indicates
the index of LION block in the 3D backbone. Thus, this above process can be formulated as:

F ∗
i =

1

C

C∑
j=0

F j
i , (1)

where C is the channel dimension of Fi. Next, we sort the feature responses F ∗
i in descending order

and select the corresponding Top-m voxels as the foregrounds from the total number L of non-empty
voxels, where m = r ∗ L and r is the ratio of foregrounds. This process can be computed as:

Fm = Topm(F ∗
i ), (2)

where Topm(F ∗
i ) means selecting Top-m voxel features from F ∗

i . Fm are the selected foreground
features, which will serve for the subsequent voxel generation.

Voxel Generation with Auto-regressive Property. The previous method [53] adopts a K-NN
manner to obtain generated voxel features based on their K-NN features, which might be sub-optimal
to enhance feature representation due to the redundant features and the limited receptive field.
Fortunately, the linear RNN is well-suited for auto-regressive tasks in addition to its advantage of
handling long sequences. Therefore, we leverage the auto-regressive property of linear RNN to
effectively generate the new voxel features by performing sufficient feature interaction with other
voxel features in a large group. Specifically, for convenience, we define the corresponding coordinates
of selected foreground voxel features Fm as Pm. As shown in Figure 5, we first obtain diffused
voxels by diffusing Pm with four different offsets (i.e., [-1,-1, 0], [1,1, 0], [1,-1, 0], and [-1,1, 0])
along the X-axis, Y-axis, and Z-axis, respectively. Then, we initialize the corresponding features
of diffused voxels by all zeros. Next, we concatenate the output feature Fi of the ith LION block
with the initialized voxel features, and feed them into the subsequent (i+ 1)th LION block. Finally,
thanks to the auto-regressive ability of the LION block, the diffused voxel features can be effectively
generated based on other voxel features in large groups. This process can be formulated as:

Fp = Fi ⊕ F[−1,−1,0] ⊕ F[1,1,0] ⊕ F[1,−1,0] ⊕ F[−1,1,0], (3)

F
′

p = Block(Fp), (4)
where F[x,y,z] denotes the initialized voxel features with diffused offsets of x, y, and z along the
X-axis, Y-axis, and Z-axis. The ⊕ and Block denote the concatenation and LION block respectively.

4 Experiments

4.1 Datasets and Evaluation Metrics

Waymo Open Dataset. Waymo Open dataset (WOD) [52] is a well-known benchmark for large-scale
outdoor 3D perception, comprising 1150 scenes which are divided into 798 scenes for training, 202
scenes for validation, and 150 scenes for testing. Each scene includes about 200 frames, covering
a perception range of 150m × 150m. For evaluation metrics, WOD employs 3D mean Average
Precision (mAP) and mAP weighted by heading accuracy (mAPH), each divided into two difficulty
levels: L1 is for objects detected with more than five points and L2 is for those at least one point.

nuScenes Dataset. nuScenes [4] is a popular outdoor 3D perception benchmark with a perception
range of up to 50 meters. Each frame in the scene is annotated with 2Hz. The dataset includes 1000
scenes, which is divided into 750 scenes for training, 150 scenes for validation, and 150 scenes for
testing. nuScenes adopts mean Average Precision (mAP) and the NuScenes Detection Score (NDS)
as evaluation metrics.

Argoverse V2 Dataset. Argoverse V2 [62] is a outdoor 3D perception benchmark with a long-range
perception of up to 200 meters. It contains 1000 sequences in total, 700 for training, 150 for validation,
and 150 for testing. Each frame in the scene is annotated with 10Hz. For the evaluation metric,
Argoverse v2 adopts a similar mean Average Precision (mAP) metric with nuScenes [4].
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4.2 Implementation Details

Network Architecture. In our LION, we provide three representative linear RNN operators (i.e.,
Mamba [22], RWKV [40], and RetNet [55]). Each of operator adopts a bi-directional structure to
better capture 3D geometric information inspired by [21]. On WOD, we keep the same channel
dimension C = 64 for all LION blocks in LION-Mamba, LION-RWKV, and LION-RetNet. For
the large version of LION-Mamba-L, we set C = 128. We follow DSVT-Voxel [60] to set the grid
size as (0.32m, 0.32m, 0.1875m). The number of LION blocks N is set to 4. For these four LION
blocks, the window sizes (Tx, Ty, Tz) are set to (13, 13, 32), (13, 13, 16), (13, 13, 8), and (13, 13, 4),
and the corresponding group sizes K are 4096, 2048, 1024, 512, respectively. Besides, we adopt
the same center-based detection head and loss function as DSVT [60] for fair comparison. In the
voxel generation, we set the ratio r = 0.2 to balance the performance and computation cost. For
the nuScenes dataset, we replace DSVT [60] 3D backbone with our LION 3D backbone except for
changing the grid size to (0.3m, 0.3m, 0.25m). For the Argoverse V2 dataset, we replace the 3D
backbones of VoxelNext [9] or SAFDNet [70] with our LION 3D backbone except for setting the
grid size to (0.4m, 0.4m, 0.25m). Moreover, it is noted that we only add three extra LION layers
to further enhance the 3D backbone features, rather than applying the BEV backbone to obtain the
dense BEV features.

Training Process. On the WOD, we adopt the same point cloud range, data augmentations, learning
rate, and optimizer as the previous method [60]. We train our model 24 epochs with a batch size
of 16 on 8 NVIDIA Tesla V100 GPUs. Besides, we utilize the fade strategy [58] to achieve better
performance in the last epoch. For the nuScenes dataset, we adopt the same point cloud range, data
augmentations, and optimizer as previous method [2]. Moreover, we find that LION converges faster
than previous methods on nuScenes dataset. Therefore, we only train our model for 36 epochs without
CBGS [77]. The learning rate and batch size are set to 0.003 and 16, respectively. It is worth noting
that the CBGS strategy extends training iterations about 4.5 times, which means that our training
iterations are much fewer than previous methods [2] (i.e., 20 epochs with CBGS). For the Argoverse
V2 dataset, we adopt the same training process with SAFDNet [70] and SECOND [63], respectively.

4.3 Main Results

In this section, we provide a board comparison of our LION with existing methods on WOD,
NuScenes and Argoverse V2 datasets for 3D object detection. Furthermore, in the section A.1 of our
appendix, we present the experiment in ONCE dataset [37] and provide more types of linear RNN
operators (e.g., RetNet, RWKV, Mamba, xLSTM, and TTT) based on our LION framework for 3D
detection on a small but popular dataset KITTI [20] for a quick experience.

Results on WOD. To illustrate the superiority of our LION, we provide the comparison with existing
representative methods on the WOD in Table 1. Here, we also conduct the experiments on our LION
with different linear group RNN operators, including LION-Mamba, LION-RWKV and LION-RetNet.
Compared with the transformer-based methods [15, 53, 60], our LION with different linear group
RNN operators outperforms the previous state-of-the-art (SOTA) transformer-based 3D backbone
DSVT-Voxel [60], illustrating the generalization of our proposed framework. To further scale up
our LION, we present the performance of LION-Mamba-L by doubling the channel dimension of
LION-Mamba. It can be observed that LION-Mamba-L significantly outperforms DSVT-Voxel
with 1.9 mAPH/L2, leading to a new SOTA performance. The above promising results effectively
demonstrate the superiority of our proposed LION.

In Table 2, we also provide the results with multiple frames as inputs on the WOD test split. For three
frames, our LION-L outperforms the representative method PillarNeXt [20] by 3.3 (77.4 vs. 74.1)
mAPH/L2, which clearly illustrates the superiority of our methods.

Results on nuScenes. We also evaluate our LION on nuScenes validation and test set [4] further
to verify the effectiveness of our LION. As shown in Table 3, on nuScenes validation set, our
LION-RetNet, LION-RWKV, and LION-Mamba achieves 71.9, 71.7, and 72.1 NDS, respectively,
which outperforms the previous advanced methods DSVT [60] and HEDNet [71]. Besides, our
LION-Mamba even brings a new SOTA on nuScenes test benchmark, which beats the previous
advanced method DSVT with 1.2 NDS and 1.4 mAP, illustrating the superiority of our LION. Note
that all results of our LION are conducted without any test-time augmentation and model ensembling.
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Table 1: Performances on the Waymo Open Dataset validation set (train with 100% training data). ‡
denotes the two-stage method. Bold denotes the best performance of all methods. “-L" means we
double the dimension of channels in LION 3D backbone. RNN denotes the linear RNN operator. All
results are presented with single-frame input, no test-time augmentation, and no model ensembling.

Methods Present at Operator Vehicle 3D AP/APH Pedestrian 3D AP/APH Cyclist 3D AP/APH mAP/mAPH
L1L1 L2 L1 L2 L1 L2 L2

SECOND [63] Sensors 18

Sp
ar

se
C

on
v

72.3/71.7 63.9/63.3 68.7/58.2 60.7/51.3 60.6/59.3 58.3/57.0 61.0/57.2
PointPillars [27] CVPR 19 72.1/71.5 63.6/63.1 70.6/56.7 62.8/50.3 64.4/62.3 61.9/59.9 62.8/57.8
CenterPoint [69] CVPR 21 74.2/73.6 66.2/65.7 76.6/70.5 68.8/63.2 72.3/71.1 69.7/68.5 68.2/65.8
PV-RCNN‡ [48] CVPR 20 78.0/77.5 69.4/69.0 79.2/73.0 70.4/64.7 71.5/70.3 69.0/67.8 69.6/67.2
PillarNet-34 [47] ECCV 22 79.1/78.6 70.9/70.5 80.6/74.0 72.3/66.2 72.3/71.2 69.7/68.7 71.0/68.5
FSD‡ [17] NeurIPS 22 79.2/78.8 70.5/70.1 82.6/77.3 73.9/69.1 77.1/76.0 74.4/73.3 72.9/70.8
AFDetV2 [26] AAAI 22 77.6/77.1 69.7/69.2 80.2/74.6 72.2/67.0 73.7/72.7 71.0/70.1 71.0/68.8
PillarNeXt [28] CVPR 23 78.4/77.9 70.3/69.8 82.5/77.1 74.9/69.8 73.2/72.2 70.6/69.6 71.9/69.7
VoxelNext [9] CVPR 23 78.2/77.7 69.9/69.4 81.5/76.3 73.5/68.6 76.1/74.9 73.3/72.2 72.2/70.1
CenterFormer[76] ECCV 22 75.0/74.4 69.9/69.4 78.6/73.0 73.6/68.3 72.3/71.3 69.8/68.8 71.1/68.9
PV-RCNN++‡ [49] IJCV 22 79.3/78.8 70.6/70.2 81.3/76.3 73.2/68.0 73.7/72.7 71.2/70.2 71.7/69.5
TransFusion [2] CVPR 22 –/– –/65.1 –/– –/63.7 –/– –/65.9 –/64.9
ConQueR [78] CVPR 23 76.1/75.6 68.7/68.2 79.0/72.3 70.9/64.7 73.9/72.5 71.4/70.1 70.3/67.7
FocalFormer3D [7] ICCV 23 –/– 68.1/67.6 –/– 72.7/66.8 –/– 73.7/72.6 71.5/69.0
HEDNet [71] NeurIPS 23 81.1/80.6 73.2/72.7 84.4/80.0 76.8/72.6 78.7/77.7 75.8/74.9 75.3/73.4
SEED [33] ECCV 24 79.7/79.2 71.8/71.4 83.1/78.3 75.5/70.8 80.0/78.8 77.3/76.1 74.9/72.8

SST_TS‡ [15] CVPR 22

Tr
an

sf
or

m
er 76.2/75.8 68.0/67.6 81.4/74.0 72.8/65.9 –/– –/– –/–

SWFormer [53] ECCV 22 77.8/77.3 69.2/68.8 80.9/72.7 72.5/64.9 –/– –/– –/–
OcTr [74] CVPR 23 78.1/77.6 69.8/69.3 80.8/74.4 72.5/66.5 72.6/71.5 69.9/68.9 70.7/68.2
DSVT-Pillar [60] CVPR 23 79.3/78.8 70.9/70.5 82.8/77.0 75.2/69.8 76.4/75.4 73.6/72.7 73.2/71.0
DSVT-Voxel [60] CVPR 23 79.7/79.3 71.4/71.0 83.7/78.9 76.1/71.5 77.5/76.5 74.6/73.7 74.0/72.1

LION-RetNet (Ours) –

R
N

N

79.0/78.5 70.6/70.2 84.6/80.0 77.2/72.8 79.0/78.0 76.1/75.1 74.6/72.7
LION-RWKV (Ours) – 79.7/79.3 71.3/71.0 84.6/80.0 77.1/72.7 78.7/77.7 75.8/74.8 74.7/72.8
LION-Mamba (Ours) – 79.5/79.1 71.1/70.7 84.9/80.4 77.5/73.2 79.7/78.7 76.7/75.8 75.1/73.2
LION-Mamba-L (Ours) – 80.3/79.9 72.0/71.6 85.8/81.4 78.5/74.3 80.1/79.0 77.2/76.2 75.9/74.0

Table 2: Result of our LION with multiple frames as input on the Waymo Open Dataset test set.

Methods Present at Frames Vehicle 3D AP/APH Pedestrian 3D AP/APH Cyclist 3D AP/APH mAP/mAPH
L1L1 L2 L1 L2 L1 L2 L2

PV-RCNN++‡ [49] IJCV 22 1 81.6/81.2 73.9/73.5 80.4/75.0 74.1/69.0 71.9/70.8 69.3/68.2 72.4/70.2
AFDetV2 [26] AAAI 22 1 –/– –/– –/– –/– –/– –/– 72.2/70.3
PillarNeXt [28] CVPR 23 1 –/– –/– –/– –/– –/– –/– 72.2/69.6
FSD‡ [17] NeurIPS 22 1 82.7/82.3 74.4/74.1 82.9/77.9 75.9/71.3 75.6/74.4 72.9/71.8 74.4/72.4
PillarNeXt [28] CVPR 23 1 –/– –/– –/– –/– –/– –/– –/72.0

CenterPoint++ [69] CVPR 21 3 82.8/82.3 75.5/75.1 81.1/78.2 75.1/72.4 74.4/73.3 72.0/71.0 74.2/72.8
PillarNeXt [28] CVPR 23 3 83.3/82.8 76.2/75.8 84.4/81.4 78.8/76.0 73.7/72.7 71.6/70.6 75.5/74.1
LION-Mamba-L (ours) – 3 84.7/84.3 77.2/76.9 87.2/84.5 82.0/79.3 79.2/78.3 76.8/75.9 78.7/77.4

Results on Argoverse V2. To further verify the effectiveness of our LION on the long-range
perception, we evaluate the experiments on Argoverse V2 validation set. For a fair comparison, we
adopt the same detection head [69] with VoxelNext [9] and SAFDNet [70] for long-range perception.
As shown in Table 4, our LION-RetNet, LION-RWKV, and LION-Mamba achieve the detection
performance with 40.7 mAP, 41.1 mAP and 41.5 mAP, all three of which have outperformed the
previous SOTA method SAFDNet [70], leading to new SOTA results. These superior results clearly
illustrate the effectiveness of our LION.

4.4 Ablation Study

In this section, we conduct ablation studies of LION on the WOD validation set with 20% training
data. If not specified, we adopt LION-Mamba as our default model and train our model with 12
epochs in the following ablation studies. For more experiments, please refer to our appendix.

Ablation Study of LION. To illustrate the effectiveness of our proposed LION, we conduct the
ablation study for each component, including the design of large group size, 3D spatial feature
descriptor, and voxel generation in Table 5. Here, our baseline is proposed LION that removes
the design of large group size, 3D spatial feature descriptor, and voxel generation. In Table 5, we
observe that the design of large group size even brings 1.1 mAPH/L2 performance improvement,
which illustrates the benefits of performing long-range feature interaction with the help of linear
RNN. Then, we integrate the 3D spatial feature descriptor, which further produces an obvious
performance improvement with 1.7 mAPH/L2. This demonstrates the superiority of the 3D spatial
feature descriptor in compensating for the lack of capturing spatial information of linear RNNs.
Furthermore, we notice that the 3D spatial feature descriptor is very helpful to small objects (e.g.,
Pedestrians) thanks to its capability of extracting the local information of 3D objects. To address
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Table 3: Performances on the nuScenes validation and test set. ‘T.L.’, ‘C.V.’, ‘Ped.’, ‘M.T.’, ‘T.C.’,
and ’B.R.’ are short for trailer, construction vehicle, pedestrian, motor, traffic cone, and barrier,
respectively. All results are reported without any test-time augmentation and model ensembling.

Performances on the validation set

Method Present at NDS mAP Car Truck Bus T.L. C.V. Ped. M.T. Bike T.C. B.R.

CenterPoint [69] CVPR 21 66.5 59.2 84.9 57.4 70.7 38.1 16.9 85.1 59.0 42.0 69.8 68.3
VoxelNeXt [9] CVPR 23 66.7 60.5 83.9 55.5 70.5 38.1 21.1 84.6 62.8 50.0 69.4 69.4
Uni3DETR [61] NeurIPS 23 68.5 61.7 – – – – – – – – – –
TransFusion-LiDAR [2] CVPR 22 70.1 65.5 86.9 60.8 73.1 43.4 25.2 87.5 72.9 57.3 77.2 70.3
QTNet [25] NeurIPS 23 70.9 66.5 87.2 61.5 75.8 43.0 25.7 87.8 75.5 61.5 75.4 71.4
DSVT [60] CVPR 23 71.1 66.4 87.4 62.6 75.9 42.1 25.3 88.2 74.8 58.7 77.9 71.0
HEDNet [71] NeurIPS 23 71.4 66.7 87.7 60.6 77.8 50.7 28.9 87.1 74.3 56.8 76.3 66.9

LION-RetNet (Ours) – 71.9 67.3 87.9 64.3 78.7 44.6 27.6 88.9 73.5 56.6 79.2 72.1
LION-RWKV (Ours) – 71.7 66.8 88.1 59.0 77.6 46.6 28.0 89.7 74.3 56.2 80.1 68.3
LION-Mamba (Ours) – 72.1 68.0 87.9 64.9 77.6 44.4 28.5 89.6 75.6 59.4 80.8 71.6

Performances on the test set

TransFusion-LiDAR [2] CVPR 22 70.2 65.5 86.2 56.7 66.3 58.8 28.2 86.1 68.3 44.2 82.0 78.2
DSVT [60] CVPR 23 72.7 68.4 86.8 58.4 67.3 63.1 37.1 88.0 73.0 47.2 84.9 78.4
HEDNet [71] NeurIPS 23 72.0 67.7 87.1 56.5 70.4 63.5 33.6 87.9 70.4 44.8 85.1 78.1

LION-Mamba (Ours) – 73.9 69.8 87.2 61.1 68.9 65.0 36.3 90.0 74.0 49.2 87.3 79.5

Table 4: Comparison with prior methods on Argoverse V2 validation set. ‘Vehicle’, ‘C-Barrel’,
‘MPC-Sign’, ‘A-Bus’, ‘C-Cone’, ‘V-Trailer’, ‘MBT’, ‘W-Device’ and ‘W-Rider’ are short for regular
vehicle, construction barrel, mobile pedestrian crossing sign, articulated bus, construction cone,
vehicular trailer, message board trailer, wheeled device, and wheeled rider.
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CenterPoint [69] 22.0 67.6 38.9 46.5 16.9 37.4 40.1 32.2 28.6 27.4 33.4 24.5 8.7 25.8 22.6 29.5 22.4 6.3 3.9 0.5 20.1 22.1 0.0 3.9 0.5 10.9 4.2
HEDNet [71] 37.1 78.2 47.7 67.6 46.4 45.9 56.9 67.0 48.7 46.5 58.2 47.5 23.3 40.9 27.5 46.8 27.9 20.6 6.9 27.2 38.7 21.6 0.0 30.7 9.5 28.5 8.7
VoxelNeXt [9] 30.7 72.7 38.8 63.2 40.2 40.1 53.9 64.9 44.7 39.4 42.4 40.6 20.1 25.2 19.9 44.9 20.9 14.9 6.8 15.7 32.4 16.9 0.0 14.4 0.1 17.4 6.6
FSDv1 [17] 28.2 68.1 40.9 59.0 29.0 38.5 41.8 42.6 39.7 26.2 49.0 38.6 20.4 30.5 14.8 41.2 26.9 11.9 5.9 13.8 33.4 21.1 0.0 9.5 7.1 14.0 9.2
FSDv2 [18] 37.6 77.0 47.6 70.5 43.6 41.5 53.9 58.5 56.8 39.0 60.7 49.4 28.4 41.9 30.2 44.9 33.4 16.6 7.3 32.5 45.9 24.0 1.0 12.6 17.1 26.3 17.2
SAFDNet [70] 39.7 78.5 49.4 70.7 51.5 44.7 65.7 72.3 54.3 49.7 60.8 50.0 31.3 44.9 24.7 55.4 31.4 22.1 7.1 31.1 42.7 23.6 0.0 26.1 1.4 30.2 11.5

LION-RetNet 40.7 74.7 41.0 72.7 47.5 44.2 66.9 77.0 57.1 48.3 63.7 55.1 27.0 42.5 25.2 57.9 29.7 22.0 6.9 39.3 47.3 19.9 0.0 28.8 12.8 37.7 12.6
LION-RWKV 41.1 76.3 44.6 74.0 52.1 46.0 68.1 75.8 55.8 49.4 62.8 55.3 27.1 42.9 25.9 60.1 30.9 22.2 9.3 36.5 55.3 23.2 0.0 27.8 7.1 37.6 11.4
LION-Mamba 41.5 75.1 43.6 73.9 53.9 45.1 66.4 74.7 61.3 48.7 65.1 56.2 21.7 42.7 25.3 58.4 28.9 23.6 8.3 49.5 47.3 19.0 0.0 31.4 8.7 37.6 11.8

Table 5: Ablation study for each component in LION. Here, the large group size means that we set it
as (4096, 2048, 1024, 512) for four blocks (also refer to the section of our implementation details),
otherwise, we set a small group size as (256, 256, 256, 256).

Large Group Size 3D Spatial Feature Descriptor Voxel Generation 3D AP/APH (L2) mAP/mAPH
(L2)Vehicle Pedestrian Cyclist

– – – 65.6/65.2 72.3/65.0 68.3/67.2 68.8/65.8
✓ – – 66.2/65.7 73.7/67.2 68.7/67.6 69.5/66.9
✓ ✓ – 66.5/66.1 74.8/69.6 70.9/70.0 70.8/68.6
✓ – ✓ 66.4/66.0 73.5/67.4 70.4/69.3 70.1/67.6
✓ ✓ ✓ 67.0/66.6 75.4/70.2 71.9/71.0 71.4/69.3

the challenge of feature representation in highly sparse point clouds, we adopt voxel generation to
enhance the features of foregrounds, which brings a promising gain of 0.7 mAPH/L2 (67.6 vs. 66.9).
By combining all components, our LION achieves a superior performance of 69.3 mAPH/L2, which
outperforms the baseline of 3.5 mAPH/L2.

Superiority of 3D Spatial Feature Descriptor. To further verify the necessity of 3D spatial feature
descriptor, we provide the comparison with two available manners including the MLP and linear RNN
to replace our descriptor in Table 6. Here, we set our LION without 3D spatial feature descriptor as the
baseline in this part. We observe that MLP even does not bring promising performance improvement in
terms of mAPH/L2 since MLP lacks the ability to capture local 3D spatial information. Furthermore,
considering the limited receptive field of MLP, we adopt a linear group RNN operator to replace
MLP. We find that there is only slight performance improvement with 0.3 mAPH/L2, which indicates
that the linear group RNN might not be good at modeling local spatial relationships although it
has the strong capability to establish long-range relationships. In contrast, our 3D spatial feature
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Table 6: Ablation study for 3D Spatial Feature Descriptor (3D SFD) in LION.

Methods 3D AP/APH (L2) mAP/mAPH
(L2)Vehicle Pedestrian Cyclist

Baseline 66.4/66.0 73.5/67.4 70.4/69.3 70.1/67.6
MLP 66.6/66.2 74.1/68.1 70.0/69.0 70.2/67.7
Linear Group RNN 66.4/66.0 74.0/68.2 70.5/69.5 70.3/67.9
3D SFD (Ours) 67.0/66.6 75.4/70.2 71.9/71.0 71.4/69.3

Table 7: Ablation study for voxel generation in LION. “Baseline” indicates no voxel generation. “Zero
Feats” and “K-NN Feats” indicate initializing features to all zeros and K-NN features, respectively.
“Auto-Regressive” uses the LION block based on linear group RNN for its auto-regressive property.
“Sparse-Conv” maintains the same structure as the LION block but replaces the linear group RNN
with 3D sub-manifold convolution.

Index Methods 3D AP/APH (L2) mAP/mAPH
(L2)Vehicle Pedestrian Cyclist

I Baseline 66.5/66.1 74.8/69.6 70.9/70.0 70.8/68.6
II Zero Feats + Sparse-Conv 64.6/64.2 72.8/67.4 69.3/68.3 68.9/66.6
III K-NN Feats + Auto-Regressive 66.5/66.1 74.0/68.7 71.1/70.1 70.5/68.3
IV Zero Feats + Auto-Regressive (Ours) 67.0/66.6 75.4/70.2 71.9/71.0 71.4/69.3

descriptor brings obvious performance improvement, which boosts the baseline of 1.7 mAPH/L2.
This effectively illustrates the superiority of the 3D spatial feature descriptor in compensating for the
lack of local 3D spatial-aware modeling in the linear group RNN.

Effectiveness of Voxel Generation. Voxel generation is applied to enhance the feature representation
of objects in highly sparse point clouds for accurate 3D object detection. Therefore, to explore the
effectiveness of our proposed voxel generation, we present the comparison with several available
manners in Table 7. First, we compare our results of IV with II by only replacing the operator
of linear group RNN in LION block with 3D sub-manifold convolution to generate the diffused
features. We find that the manner of IV (69.3 vs. 66.6) significantly outperforms the performance
of II in terms of mAPH/L2. This benefits from the linear group RNN’s ability to model long-range
feature interactions, generating a more reliable feature representation through its auto-regressive
capacity, demonstrating the superiority of voxel generation with the linear group RNN. To further
illustrate that the effectiveness of voxel generation is from its auto-regressive property of LION
block rather than a strong feature extractor, we initialize the diffused features of the foreground
voxels by K-NN operation (III) instead of the manner of all-zeros features (IV) and then feed them to
the same following LION block for voxel generation. In Table 7, we find that the manner of III is
inferior to IV by 1.0 mAPH/L2. This clearly illustrates that our voxel generation is benefiting from its
auto-regressive property of LION block. Finally, compared with the baseline (I), our voxel generation
(IV) can obtain a promising performance improvement, which verifies its effectiveness.

5 Conclusion

In this paper, we have presented a simple and effective window-based framework termed LION,
which can capture the long-range relationship by adopting linear RNN for large groups. Specifically,
LION incorporates a proposed LION block to unlock the great potential of linear RNNs in modeling
a long-range relationship and a voxel generation strategy to obtain more discriminative feature
representation in sparse point clouds. Extensive ablation studies demonstrate the effectiveness of
our proposed components. Additionally, the generalization of our LION is verified by performing
different linear group RNN operators. Benefiting from our well-designed framework and the proposed
superior components, our LION-Mamba achieves state-of-the-art performance on the challenging
Waymo and nuScenes datasets.
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A Appendix

The appendix is organized as follows. First, in section A.1, we provide more types of linear RNN
operators (e.g., RetNet, RWKV, Mamba, xLSTM, and TTT) based on our LION framework for 3D
detection on a small but popular dataset KITTI for a quick experience. Second, we present extra
experiments on the WOD [52] validation set in section A.3, including the placement of the 3D spatial
feature descriptor, the impact of different window sizes and different group sizes in inference, and the
ratio r in voxel generation. Third, we provide the comparison of computation cost and parameter
size in section A.4, and detailed information of LION structure in section A.5. Forth, in section A.6,
we visualize the feature maps of different LION blocks to illustrate the rationality of distinguishing
foreground voxels based on feature response. Finally, we provide the comparison of qualitative
results with DSVT [60] and qualitative results of LION to demonstrate the superiority of our LION
in section A.7 and section A.8. Besides, we discuss the broader impacts in section A.9.

A.1 Experiments on KITTI dataset

Table 8: Effectiveness on the KITTI validation set for Car, Pedestrian, and Cyclist. * represents our
reproduced results by keeping the same configures except for their 3D backbones for a fair comparison.
Our LION supports different representative linear RNN operators (TTT, xLSTM, RetNet, RWKV,
and Mamba). mAP is calculated by all categories and all difficulties with recall 11.

Method Car Pedestrian Cyclist mAPEasy Moderate Hard Easy Moderate Hard Easy Moderate Hard

VoxelNet [75] 77.5 65.1 57.7 39.5 33.7 31.5 61.2 48.4 44.4 51.0
SECOND [63] 83.1 73.7 66.2 51.1 42.6 37.3 70.5 53.9 46.9 58.4
PointPillars [27] 79.1 75.0 68.3 52.1 43.5 41.5 75.8 59.1 52.9 60.8
PointRCNN [50] 85.9 75.8 68.3 49.4 41.8 38.6 73.9 59.6 53.6 60.8
TANet [34] 83.8 75.4 67.7 54.9 46.7 42.4 73.8 59.9 53.5 62.0
DSVT-Pillar* [60] 87.3 77.4 76.2 61.4 56.8 51.8 82.3 67.1 63.7 69.3
DSVT-Voxel* [60] 87.8 77.8 76.8 66.1 59.7 55.2 83.5 66.7 63.2 70.8

LION-TTT 87.9 78.0 76.7 63.4 58.6 53.7 84.0 69.6 64.5 70.7
LION-xLSTM 87.7 77.9 76.8 66.6 59.3 54.0 82.4 67.4 63.4 70.6
LION-RetNet 88.0 77.9 76.7 67.4 60.2 55.8 83.6 69.6 64.6 71.5
LION-Mamba 88.6 78.3 77.2 67.2 60.2 55.6 83.0 68.6 63.9 71.4
LION-RWKV 88.5 78.3 77.1 68.9 62.2 58.1 89.6 71.2 66.9 73.4

KITTI Dataset. KITTI [20] is a popular benchmark dataset for autonomous driving, which consists
of 7481 training frames and 7518 test frames for 3D object detection. We follow the dataset splitting
protocol in [43] and further split the 7481 training frames into 3712 frames for training set and 3769
frames for validation set. For the 3D detection task, KITTI dataset mainly detects Car, Pedestrian,
and Cyclist for three difficulty levels, i.e., Easy, Moderate, and Hard. And the mean Average
Precision (mAP) using 11 recall positions is adopted as the evaluation metric.

Results on KITTI. We conduct experiments on the KITTI validation set to illustrate the generalization
of LION for different linear RNN operators. We select some representative linear RNN operators
(TTT [54], xLSTM [3], RetNet [55], Mamba [22], and RWKV [40]) for LION. We adopt the same
training parameters (i.e., number of epochs, learning rate, optimizer) with SECOND [63]. Besides,
we use the same BEV backbone and the detection head with SECOND [63]. For a fair comparison,
we keep the same configure of DSVT [60] and all our LION methods except 3D backbones. As
shown in Table 8, LION-RetNet, LION-Mamba, and LION-RWKV outperforms DSVT-Voxel by 0.7
mAP, 0.6 mAP, and 2.6 mAP. These experiments demonstrate the generalization and effectiveness of
our linear RNN-based framework LION.

A.2 Experiments on ONCE dataset

ONCE Dataset. ONCE [37] is another representative autonomous driving dataset, which consists
of 5000, 3000, and 8000 frames for training, validation, and testing set, respectively. Each frame is
annotated with 5 classes (Car, Bus, Truck, Pedestrian, and Cyclist). Besides, ONCE merges the car,
bus, and truck class into a super-class called vehicle following WOD [52]. For the detection metric,
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Table 9: Comparison with previous methods on ONCE validation set. For a fair comparison, we
replace the SECOND 3D backbone in the ONCE dataset with our LION 3D backbone, maintaining
a grid size of (0.4m, 0.4m, 0.25m), and adopt the same training process as SAFDNet [70] and
SECOND [63] while utilizing the center head of CenterPoint [69].

Method Vehicle Pedestrian Cyclist mAPoverall 0-30m 30-50m 50m-inf overall 0-30m 30-50m 50m-inf overall 0-30m 30-50m 50m-inf

PointRCNN [50] 52.1 74.5 40.9 16.8 4.3 6.2 2.4 0.9 29.8 46.0 20.9 5.5 28.7
PointPillars [27] 68.6 80.9 62.1 47.0 17.6 19.7 15.2 10.2 46.8 58.3 40.3 25.9 44.3
SECOND [63] 71.2 84.0 63.0 47.3 26.4 29.3 24.1 18.1 58.0 70.0 52.4 34.6 51.9
PV-RCNN [48] 77.8 89.4 72.6 58.6 23.5 25.6 22.8 17.3 59.4 71.7 52.6 36.2 53.6
CenterPoint [69] 66.8 80.1 59.6 43.4 49.9 56.2 42.6 26.3 63.5 74.3 57.9 41.5 60.1
PointPainting [57] 66.2 80.3 59.8 42.3 44.8 52.6 36.6 22.5 62.3 73.6 57.2 40.4 57.8

LION-RetNet 78.1 88.7 72.4 58.5 52.4 60.5 43.6 26.3 68.3 79.4 62.9 46.1 66.3
LION-RWKV 78.3 89.2 72.6 56.7 50.6 60.0 40.4 24.2 68.4 79.4 63.2 45.7 65.8
LION-Mamba 78.2 89.1 72.6 57.5 53.2 62.4 44.0 24.5 68.5 79.2 63.2 47.1 66.6

ONCE extends [19] by taking the object orientations into special consideration and evaluating the
final performance by mAP for three classes.

Results on ONCE. We also evaluated our LION on ONCE validation set to further verify the
effectiveness of our LION. As shown in Table 9, our LION-RetNet, LION-RWKV, and LION-Mamba
produces advanced detection performance with 66.3 mAP, 65.8 mAP, and 66.6 mAP, respectively. It
is worth mentioning that our LION-Mamba outperforms the previous SOTA method CenterPoint [69]
with 6.5 mAP, leading to a new SOTA result. These experiments illustrate the superiority of our
LION.

A.3 Extra Experiments

Table 10: The Placement of 3D Spatial Feature Descriptor.

Methods 3D AP/APH (L2) mAP/mAPH
(L2)Vehicle Pedestrian Cyclist

Baseline 66.4/66.0 73.5/67.4 70.4/69.3 70.1/67.6
Placement 1 66.5/66.1 74.8/69.1 71.1/70.2 70.1/68.6
Placement 2 (Ours) 67.0/66.6 75.4/70.2 71.9/71.0 71.4/69.3

Table 11: The ratio r in voxel genenration.

Ratio 3D AP/APH (L2) mAP/mAPH
(L2)Vehicle Pedestrian Cyclist

0 66.5/66.1 74.8/69.6 70.9/70.0 70.8/68.6
0.2 (Ours) 67.0/66.6 75.4/70.2 71.9/71.0 71.4/69.3
0.5 67.2/66.8 75.3/70.0 72.1/71.1 71.5/69.3

Table 12: Comparison of group sizes on WOD validation set (train with 20% training data).

# Group Size 3D AP/APH (L2) mAP/mAPH
(L2)Vehicle Pedestrian Cyclist

I [256, 256, 256, 256] 65.6/65.2 72.3/65.0 68.3/67.2 68.8/65.8
II [1024, 512, 256, 256] 66.9/66.5 74.9/69.6 70.8/69.8 70.9/68.6
III [2048, 1024, 512, 256] 66.7/66.3 74.9/69.7 72.2/71.2 71.3/69.1
IV [4096, 2048, 1024, 512] 67.0/66.6 75.4/70.2 71.9/71.0 71.4/69.3
V [8192, 4096, 2048, 1024] 66.5/66.1 74.6/69.5 71.6/70.6 70.9/68.7

The Placement of 3D Spatial Feature Descriptor. We conduct experiments about the placement of
the 3D spatial feature descriptor, as shown in Table 10. We regard the manner that does not adopt
the 3D SFD of our LION as the baseline. Here, we provide two available manners: Placement 1 and
Placement 2. For Placement 1, we place the 3D SFD after voxel merging. For Placement 2, we place
3D SFD before the voxel merging. Compared to the baseline, Placement 1 brings 1.0 mAPH/L2
improvement, which demonstrates the effectiveness of 3D SFD in compensating for the lack of local
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Table 13: Comparison of different window and group sizes in inference on WOD validation set (train
with 100% training data). Bold denotes the result of LION with the default settings in the main paper.

Window Size Group Size mAP/mAPH (L2)

[7, 7, 32], [7, 7, 16], [7, 7, 8], [7, 7, 4] [4096, 2048, 1024, 512] 73.24

[13, 13, 32], [13, 13, 16], [13, 13, 8], [13, 13, 4] [4096, 2048, 1024, 512] 73.24
[25, 25, 32], [25, 25, 16], [25, 25, 8], [25, 25, 4] [4096, 2048, 1024, 512] 73.25

[13, 13, 32], [13, 13, 16], [13, 13, 8], [13, 13, 4] [2048, 1024, 512, 256] 73.18

[13, 13, 32], [13, 13, 16], [13, 13, 8], [13, 13, 4] [4096, 2048, 1024, 512] 73.24
[13, 13, 32], [13, 13, 16], [13, 13, 8], [13, 13, 4] [8192, 4096, 2048, 1024] 73.02

3D spatial-aware modeling in linear RNNs. Moreover, Placement 2 further brings 0.7 mAPH/L2
improvement over Placement 1, which demonstrates the effectiveness of 3D SFD for reducing spatial
information loss in the process of voxel merging.

The Ratio in Voxel Generation. We conduct the ablation study for foreground selection ratio r
in voxel generation. As shown in Table 11, compared with baseline (r = 0), the manner of setting
r = 0.2 brings 0.7 mAPH/L2 performance improvement. When we set a larger ratio r = 0.5,
the performance is improved slightly. Therefore, we set r = 0.2 to balance the performance and
computation cost.

Different Group Sizes in Training. We provide a comparison of different group sizes in Table 12.
We set a minimum group size of 256 for four LION blocks as the baseline. We could find that the
manners with large group sizes (i.e., II, III, IV) bring consistent performance over the small ones.
However, there is a drop in performance when the group size is increased from IV to V. This might
lead to less effective retention of important information in excessively long sequences due to the
limited memory capacity of linear RNNs.

Different Window Sizes and Group Sizes in Inference. To analyze the impact of window size
and group size in the inference process, we evaluate the results under the cases of different window
sizes and group sizes with the same trained model of LION-Mamba (i.e., window size={(13, 13, 32),
(13, 13, 16), (13, 13, 8), and (13, 13, 4)} and group size={4096, 2048, 1024, 512}) on WOD 100%
training data. As shown in Table 13, surprisingly, we find that using different window sizes or group
sizes during inference still does not significantly affect performance. This indicates that LION might
decrease the strong dependence on hand-crafted priors and have good extrapolation ability.

A.4 Comparison of Computation Cost, Parameter Size and Latency

Table 14: Comparison of computation cost, parameter size and latency of different methods on the
WOD validation set.

Method Operator mAP/mAPH (L2) FLOPs (G) Params (M) Latency (ms)

DSVT-Voxel [60] Transformer 74.0/72.1 100.8 2.7 136.7
LION (Ours) Mamba 75.1/73.2 58.5 1.4 146.2

We compare our LION with the representative transformer-based method DSVT-Voxel [60] in terms
of computation cost, parameter size and latency on the WOD validation set. As shown in Table 14,
LION with Mamba [22] achieves a more superior performance (73.2 mAPH/L2), less computational
cost (58.5 GFLOPs), fewer parameters than DSVT-Voxel. However, our LION still has more latency
in inference stage. These properties clearly illustrate the superiority of our proposed LION and might
have great potential to further optimize the speed of inference in the future.

A.5 Architecture Specifications

As shown in Table 15, the architecture specifications of the LION models (LION-RWKV, LION-
RetNet, LION-Mamba, and LION-Mamba-L) on Waymo Open dataset are detailed in terms of
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Table 15: Detailed architecture specifications on Waymo Open dataset.

LION-RWKV LION-RetNet LION-Mamba LION-Mamba-L

Block
Window Shape Window Shape Window Shape Window Shape

Dim, Group Size Dim, Group Size Dim, Group Size Dim, Group Size

Block 1
[13, 13, 32] [13, 13, 32] [13, 13, 32] [13, 13, 32]

64, 4096 64, 4096 64, 4096 128, 4096

Block 2
[13, 13, 16] [13, 13, 16] [13, 13, 16] [13, 13, 16]

64, 2048 64, 2048 64, 2048 128, 2048

Block 3
[13, 13, 8] [13, 13, 8] [13, 13, 8] [13, 13, 8]

64, 1024 64, 1024 64, 1024 128, 1024

Block 4
[13, 13, 4] [13, 13, 4] [13, 13, 4] [13, 13, 4]

64, 512 64, 512 64, 512 128, 512

window shape, dimension, and group size. For LION-Mamba-L, we set the dimension to 128 to
double the channel of LION.

Low

High

Block 1 Block 2 Block 3 Block 4

Figure 6: Visualization of feature map of different blocks. We highlight the foreground annotated by
red GT boxes. The color map represents the magnitude of the feature response.

A.6 Visualization for Feature Map

As shown in Figure 6, we visualize feature maps of different LION blocks. We can observe that as the
features pass through more blocks, the magnitude of the foreground’s feature response becomes larger,
demonstrating the rationality of distinguishing foreground voxels by feature response. Besides, we
find that the foreground features become more dense and more distinguished, which also demonstrates
the effectiveness of the voxel generation operation.
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Figure 7: Comparison of DSVT and LION on the WOD validation set from the BEV perspective.
Blue and green boxes are the prediction and ground truth boxes. It can be seen that LION can achieve
better results compared to DSVT, demonstrating the superiority of LION.

A.7 Comparison of Qualitative Results with DSVT

To illustrate the superiority of LION, we present the visualization of the qualitative results of
DSVT [60] (a) and LION (b) on the WOD [52] validation set, as shown in Figure 7. Specifically,
in the first and third columns, our LION can reduce more false positives compared with DSVT. In
the second column, our LION even detects some hard objects at a distance. In the last column, our
LION can achieve more accurate localization. These qualitative results demonstrate the superior
performance of our LION.

A.8 Qualitative Results

As shown in Figure 8, we visualize the qualitative results of LION on the WOD validation set. As
shown in the first column, LION can still achieve satisfactory results even in crowded 3D scenes.
However, as shown in the second and third columns, LION misses some objects at a distance with
sparse point clouds. Therefore, we will further improve the performance of distant objects by fusing
the image features in the future.

Figure 8: Qualitative results of LION on the WOD validation set. Green and blue boxes denote
ground truth and predicted bounding boxes, respectively.

A.9 Broader Impacts

LION achieves promising performance for 3D object detection, enhancing the safety of autonomous
driving. However, LION has relatively high requirements on computing resources to achieve faster
running speed, which puts forward higher requirements for the hardware of autonomous driving.
Future research could focus on optimizing LION to improve bottlenecks in running speed while
maintaining high detection accuracy, making it more accessible and practical for autonomous driving.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately reflect the our
contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We have discussed limitations in paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper primarily introduces a new architecture and proposes several
modules based on this architecture. It does not include theoretical assumptions and proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed information to reproduce the main experimental results of
the paper.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We plan to provide all code for reproducing the results after the manuscript is
accepted. Additionally, all datasets used in our experiments are publicly available, ensuring
that the main experimental results can be faithfully reproduced.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide experimental details in paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper provides detailed experimental setups and procedures to ensure the
reproducibility of the results. However, it does not include error bars or other statistical
significance information.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide experiments compute resources in paper.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conducted in the paper conform with the NeurIPS code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: These impacts are discussed in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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Justification: The paper focuses on foundational research and does not release any data or
models that pose a high risk for misuse. Therefore, no specific safeguards are necessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All existing assets used in the paper, such as code and datasets, are properly
credited. The licenses and terms of use for these assets are explicitly mentioned and
respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new models introduced in the paper are thoroughly documented. Compre-
hensive documentation is provided alongside the models to ensure clarity and reproducibility.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Therefore, it does not include participant instructions, screenshots, or compensation details.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Therefore, IRB approval or equivalent review is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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