
Expected Probabilistic Hierarchies

Marcel Kollovieh1,2,3 Bertrand Charpentier4 Daniel Zügner5 Stephan Günnemann1,2,3,4

1 School of Computation, Information and Technology, Technical University of Munich
2 Munich Data Science Institute 3 Munich Center for Machine Learning

4 Pruna AI 5 Microsoft Research AI for Science

Correspondence to: m.kollovieh@tum.de

Abstract

Hierarchical clustering has usually been addressed by discrete optimization using
heuristics or continuous optimization of relaxed scores for hierarchies. In this work,
we propose to optimize expected scores under a probabilistic model over hierar-
chies. (1) We show theoretically that the global optimal values of the expected
Dasgupta cost and Tree-Sampling divergence (TSD), two unsupervised metrics for
hierarchical clustering, are equal to the optimal values of their discrete counterparts
contrary to some relaxed scores. (2) We propose Expected Probabilistic Hierarchies
(EPH), a probabilistic model to learn hierarchies in data by optimizing expected
scores. EPH uses differentiable hierarchy sampling enabling end-to-end gradient
descent based optimization, and an unbiased subgraph sampling approach to scale
to large datasets. (3) We evaluate EPH on synthetic and real-world datasets includ-
ing vector and graph datasets. EPH outperforms all other approaches quantitatively
and provides meaningful hierarchies in qualitative evaluations.

1 Introduction

A fundamental problem in unsupervised learning is clustering. Given a dataset, the task is to partition
the instances into similar groups. While flat clustering algorithms such as k-means group data points
into disjoint groups, a hierarchical clustering divides the data recursively into smaller clusters, which
yields several advantages over a flat one. Instead of only providing cluster assignments of the data
points, it captures the clustering at multiple granularities, allowing the user to choose the desired level
of fine and coarseness depending on the task. The hierarchical structure can be easily visualized in a
dendrogram (e.g., see Fig. 4), making it easy to interpret and analyze. Hierarchical clustering finds
applications in many areas, from personalized recommendation [39] and document clustering [35] to
gene-expression [16] and phylogenetics [17]. Furthermore, the presence of hierarchical structures
can be observed in various real-world graphs in nature and society [33].

A first family of methods for hierarchical clustering are discrete approaches. They aim at optimizing
some hierarchical clustering quality scores on a discrete search space, i.e.:

max
T̂

score(X, T̂) s.t.T̂ ∈ discrete hierarchies, (1)

where X denotes a given (vector or graph) dataset. Examples of score optimization could be the
minimization of the discrete Dasgupta score [12], the minimization of the error sum of squares [37],
the maximization of the discrete TSD [8], or the maximization of the modularity score [4]. Discrete
approaches have two main limitations: the optimization search space of discrete hierarchies is large
and constrained, which often makes the problem intractable without using heuristics, and the learning
procedure is not differentiable and thus not amenable to gradient-based optimization, as done by

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

13818 https://doi.org/10.52202/079017-0443

most deep learning approaches. To mitigate these issues, a second, more recent family of continuous
methods proposes to optimize some (soft-)scores on a continuous search space of relaxed hierarchies:

max
T

soft-score(X, T) s.t.T ∈ relaxed hierarchies. (2)

Examples are the relaxation of Dasgupta [7, 10, 41] or TSD scores [41]. A major drawback of
continuous methods is that the optimal hierarchy of soft scores might not align with their discrete
counterparts.

Contributions. In this work, we propose to optimize expected discrete scores, called Exp-Das and
Exp-TSD, moving away from prior work on relaxed soft scores. In particular, our contributions
can be summarized as follows:

• Theoretical contribution: We analyze the theoretical properties of both soft and expected
scores. We show that the minimal value of a continuous relaxation can be different from
that of the discrete Dasgupta cost while the optimal values of the expected scores are equal
to their optimal discrete counterparts.

• Model contribution: We propose a new method called Expected Probabilistic Hierarchies
(EPH) to optimize Exp-Das and Exp-TSD. EPH provides an unbiased estimate of Exp-Das
and Exp-TSD with biased gradients based on differentiable hierarchy sampling. By utilizing
an unbiased subgraph sampling procedure, EPH scales to large (vector) datasets.

• Experimental contribution: In quantitative experiments, we show that EPH outperforms
other baselines on 20/24 cases on 16 datasets, including both graph and vector datasets. In
qualitative experiments, we show that EPH provides meaningful hierarchies.

2 Related Work

Discrete Methods. We further differentiate between agglomerative (bottom-up) and divisive
(top-down) discrete algorithms. Well-established agglomerative methods are the linkage algorithms
that subsequently merge the two clusters with the lowest distance into a new cluster. There are
several ways to define the similarity of two clusters. The average linkage (AL) method uses the
average similarity, while single linkage (SL) and complete linkage (CL) use the minimum and
maximum similarity between the groups, respectively [18]. Finally, the ward linkage (WL) algorithm
[37] operates on Euclidean distances and merges the two clusters with the lowest increase in the
sum of squares. In contrast, Bayesian Hierarchical Clustering [19] uses statistical hypothesis tests
to decide which clusters to merge. Another agglomerative approach is the Louvain algorithm
[4], which iteratively maximizes the modularity score. A more recent parallelized agglomerative
graph-based approach, ParHAC, enables scaling to massive datasets. In terms of quality, however,
ParHAC performs inferior to AL w.r.t. the Dasgupta cost [14]. Unlike agglomerative methods,
divisive algorithms work in a top-down fashion. Initially, all leaves share the same cluster and are
recursively divided into smaller ones using flat clustering algorithms. Famous examples are based
on the k-means algorithm [35] or use approximations of the sparsest cut [12].

Continuous Methods. In recent years, many continuous algorithms have emerged to solve
hierarchical clustering. These methods minimize continuous relaxations of the Dasgupta cost using
gradient descent based optimizers. Monath et al. [27] optimized a probabilistic cost version. To
parametrize the probabilities, they performed a softmax operation on learnable routing functions from
each node on a fixed binary hierarchy. Chierchia and Perret [10] proposed UFit, a model operating in
the ultrametric space. Furthermore, to optimize their model, they presented a soft-cardinal measure
to compute a differentiable relaxed version of the Dasgupta cost. Other approaches operate on
continuous representations in hyperbolic space, such as gHHC [28] and HypHC [7].

Zügner et al. [41] recently presented a flexible probabilistic hierarchy model (FPH). FPH directly
parametrizes a probabilistic hierarchy and substitutes the discrete terms in the Dasgupta cost and
Tree-Sampling Divergence with their probabilistic counterparts. This results in a differentiable
objective function, which they optimize using projected gradient descent.

Differentiable Sampling Methods. Stochastic models with discrete random variables are difficult
to train as the backpropagation algorithm requires all operations to be differentiable. To address
this problem, estimators such as the Gumbel-Softmax [20] or Gumbel-Sinkhorn [26] are used to
retain gradients when sampling discrete variables. These differentiable sampling methods have been

2

13819https://doi.org/10.52202/079017-0443

used for several tasks, including DAG predictions [9], spanning trees or subset selection [30], and
generating graphs [6]. In contrast to prior work, EPH enables optimizing the expected clustering
scores under a probabilistic hierarchy by utilizing differentiable sampling. Note that sampling
spanning trees is not applicable in our case since we have a restricted structure where the nodes of
the graph correspond to the leaves of the tree.

3 Probabilistic Hierarchical Clustering

We consider a graph dataset. Let G = (V,E) be a graph with n vertices V = {v1, . . . , vn} and
m edges E = {e1, . . . , em}. Let wi,j denote the weight of the edge connecting the nodes vi and
vj if (i, j) ∈ E, 0 otherwise, and wi =

∑
j wi,j the weight of the node vi. In general, we assume

a directed graph, i.e., wi,j ̸= wj,i. We define the edge distribution P (vi, vj) for pairs of nodes,
P (vi, vj) ∝ wi,j , s.t.

∑
vi,vj∈V P (vi, vj) = 1 and equivalently the node distribution P (vi) ∝ wi, s.t.∑

vi∈V P (vi) = 1. We can extend this representation to any vector dataset D = {x1, . . . , xn} and
interpret the dataset as a graph by using the data points xi as nodes and pairwise similarities (e.g.,
cosine similarities) as edge weights.

Discrete Hierarchical Clustering. We define a discrete hierarchical clustering T̂ of a graph G as
a rooted tree with n leaves and n′ internal nodes. The leaves V = {v1, v2, . . . , vn} represent the
nodes of G, while the internal nodes Z = {z1, z2, . . . , zn′} represent clusters, with zn′ being the root
node. Each internal node groups the data into disjoint sub-clusters, where edges reflect memberships
of clusters. We can represent the hierarchy using two binary adjacency matrices Â ∈ {0, 1}n×n′

and B̂ ∈ {0, 1}n′×n′
, i.e., T̂ = (Â, B̂). While Â describes the edges from the leaves to the internal

nodes, B̂ specifies the edges between the internal nodes. Since every node in the hierarchy except the
root has exactly one outgoing edge, we have the following constraints:

∑n′

j Âi,j = 1 for 1 ≤ i ≤ n,∑n′

j B̂i,j = 1 for 1 ≤ i < n′, and
∑n′

j B̂n′,j = 0 for the last row. Thus, except for the last row of
B̂, both matrices are row-stochastic. We denote the ancestors of v as anc(v), and the lowest common
ancestor (LCA) of the two leaves vi and vj in T̂ as vi ∧ vj .

Probabilistic Hierarchical Clustering. Zügner et al. [41] recently proposed probabilistic hierarchies.
The idea is to use a continuous relaxation of the binary adjacency matrices while keeping the row-
stochasticity constraints. Thus, we end up with two matrices A ∈ [0, 1]n×n′

and B ∈ [0, 1]n
′×n′

. The
entries represent parent probabilities, i.e., Ai,j := p(zj | vi) describes the probability of the internal
node zj being the parent of vi and Bi,j := p(zj | zi) the probability of the internal node zj being the
parent of zi. Together, they define a probabilistic hierarchy T = (A,B). Given such a probabilistic
hierarchy, one can easily obtain a discrete hierarchy by interpreting the corresponding rows of A and
B as categorical distributions. We sample an outgoing edge for each leaf and internal node. Since B
is restricted to be an upper triangular matrix, this tree-sampling procedure will result in a valid discrete
hierarchy, denoted by T̂ = (Â, B̂) ∼ PA,B(T). Alternatively, instead of sampling a discrete hierar-
chy, one can take the most likely edge for each node. This can be efficiently done by selecting the entry
with the highest probability in each row, resulting in the discrete matrices Â and B̂. This approach
serves as a greedy approximation to extract the most likely hierarchy from the probabilistic one.

4 Expected Probabilistic Hierarchical Clustering

4.1 Expected Metrics

Unlike flat clusterings, there has been a shortage of objective functions for hierarchical clusterings.
Thus, many algorithms to derive hierarchies were developed without a precise objective. An objective
function not only allows us to evaluate the quality of a hierarchy but also yields possibilities for
optimization techniques. Recently, the two unsupervised functions Dasgupta cost (Das) [12] and
Tree-Sampling Divergence (TSD) [8] were proposed, triggering the development of a new generation
of hierarchical clustering algorithms. The Dasgupta cost is a well-established metric for graphs
and vector data, while the TSD is a recent metric specifically tailored to graphs. In addition to
being unsupervised, i.e., applicable in cases where the data is unlabeled, both metrics have intuitive
motivations. The metrics can be written as:

Das(T̂) =
∑

vi,vj∈V

P (vi, vj)c(vi ∧ vj) and TSD(T̂) = KL(p(z)∥q(z)), (3)

3

13820 https://doi.org/10.52202/079017-0443

SubgraphGraph

Subgraph
sampling

Differentiable
hierarchy
sampling

0.3 0.7

1.0

1.0

1.0

1.0

1.0

0.1 0.9

0.3 0.7

0.8 0.2

1.0

1.0

Hierarchy:
30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

Discrete Hierarchies:

Forward
Backward

Loss computation

Figure 1: Overview of our proposed EPH model. During training, EPH first samples discrete
hierarchies using our differentiable hierarchy sampling (Sec. 4.3) and a subgraph using our subgraph
sampling procedure (Sec. 4.4). The expected scores are then computed and averaged. Finally, the
probabilistic hierarchy is updated via backpropagation. A formal description is given in App. C.7.

where c(z) is the number of leaves whose ancestor is z, i.e., c(z) =
∑

vi∈V 1[z∈anc(vi)],
and p(z) and q(z) are two distributions induced by the edge and node distributions, i.e.,
p(z) =

∑
vi,vj 1[z=vi∧vj]P (vi, vj) and q(z) =

∑
vi,vj 1[z=vi∧vj]P (vi)P (vj). Dasgupta favors similar

leaves to have their lowest common ancestor low in the hierarchy [12]. TSD quantifies the ability
to reconstruct the graph from the hierarchy in terms of information loss [8]. Hence, any hierarchy
achieving a good score provides a good compression of the original graph. In practice, both metrics
are good indicators of meaningful hierarchies [12, 8, 7]. Recently, Zügner et al. [41] proposed
the Flexible Probabilistic Hierarchy (FPH) method. FPH substitutes the indicator functions with
their corresponding probabilities under the tree-sampling procedure (see App. A.1), obtaining cost
functions for probabilistic hierarchies called Soft-Das and Soft-TSD. These two metrics correspond
to the scores of the expected hierarchies under the tree-sampling procedure. In contrast, we propose
to optimize the expected metrics in this work. Intuitively, this corresponds to moving the expectation
from inside the metric functions to outside, reflecting the natural way of performing Monte-Carlo
approximation via (tree-) sampling. More specifically, our objectives are:

min
A,B

ET̂
[
Das(T̂)

]
s.t. T̂ ∼ PA,B(T) and max

A,B
ET̂

[
TSD(T̂)

]
s.t. T̂ ∼ PA,B(T), (4)

which we denote as Exp-Das and Exp-TSD. Note that we optimize over A and B, which parametrize
a probabilistic hierarchy, while the edge weights are given by the dataset and used to compute the
node and edge distribution. We show in Sec. 4.2 that the optimal values of the expected scores share
the same intuitive meaning as their discrete counterparts. While the probabilities used in the FPH
computation are consistent, their relaxed scores are not consistent with the expected scores under
the tree-sampling procedure. In Fig. 2, we show a simple case where Soft-Das does not align with
the global optimal value, whereas Exp-Das does.

Note that while the Dasgupta cost favors binary branches [12], EPH and the probabilistic hierarchies
are not limited to these. While binary hierarchies offer fine-grained clustering, non-binary hierarchies
provide more flexibility by allowing nodes to have more than two children, which often aligns better
with real-world clustering tasks.

4

13821https://doi.org/10.52202/079017-0443

v1 v2

v3 v4

(a) K4 Graph

z3

z1 z2

v1 v2 v3 v4

(b) A minimizing hierarchy

z3

z1 z2

v1 v2 v3 v4

(c) FPH

z3

z1 z2

v1 v2 v3 v4

(d) EPH

Figure 2: An example where FPH fails to infer a minimizing hierarchy. A hierarchy minimizing the
Dasgupta cost and the inferred hierarchies by FPH and EPH on the unweighted K4 graph, i.e., every
normalized edge weight is equal to 1

6 . While FPH achieves a Dasgupta cost of 4.0 after discretization,
the continuous hierarchy has a Soft-Das score below 3.0. On the other hand, EPH finds a minimizing
hierarchy with a cost of 10

3 . A weighted example is shown in Fig. 8.

4.2 Theoretical Analysis of EPH and FPH

The main motivation to use the expected metrics is the property that their global optimal value,
i.e., the score obtained by the globally optimal hierarchy (the optimizer), is equal to their discrete
counterparts, as we show in Prop. 4.1.
Proposition 4.1. Let A and B be transition matrices describing a probabilistic hierarchy. Then, the
following equalities hold:

min
A,B

ET̂ ∼PA,B(T)

[
Das(T̂)

]
= min

T̂
Das(T̂) and max

A,B
ET̂ ∼PA,B(T)

[
TSD(T̂)

]
= max

T̂
TSD(T̂).

(5)
(See proof in App. A.5)

Consequently, optimizing our cost function aims to find the optimal discrete hierarchy. Furthermore,
we prove in Prop. 4.2 that Soft-Das is a lower bound of Exp-Das, therefore its minimum is a lower
bound of the optimal discrete Dasgupta cost.
Proposition 4.2. Let A and B be transition matrices describing a probabilistic hierarchy. Then,
Soft-Das will be lower than or equal to the expected Dasgupta cost under the tree-sampling procedure:

Soft-Das(T) ≤ ET̂ ∼PA,B(T)

[
Das(T̂)

]
. (6)

(See proof in App. A.4)

In Fig. 2, we provide a specific example illustrating a case where the minimizer of Soft-Das is
continuous, and FPH fails to find the optimal hierarchy, i.e., obtaining a minimal Dasgupta cost. We
know an integral solution exists for EPH since Exp-Das and Exp-TSD are convex combinations of
their discrete counterparts. Furthermore, Exp-Das is neither convex nor concave, as we show in
App. A.6. In Tab. 1, we provide an overview of properties of the cost functions of FPH and EPH.

Table 1: Properties of Soft-Das, Exp-Das, Soft-TSD, and Exp-TSD.
Property Problem Type Convex/Concave Integral Optimal Consistent

Soft-Das Min. Neither w.r.t. A and B (see Fig.14 (left)) ✗ ✗ ✗
Exp-Das Min. Neither w.r.t. A and B (see App.A.6) ✓ ✓ ✓
Soft-TSD Max. Convex w.r.t. LCA probabilities [41] ✓ ✓ ✗
Exp-TSD Max. - ✓ ✓ ✓

4.3 Unbiased Computation of Expected Scores via Differentiable Sampling

In order to compute the expected scores, one could attempt to use a closed-form expression. To
derive these for Exp-Das and Exp-TSD, however, we would need to calculate the probability
p (z = vi ∧ vj , z ∈ anc(v)) for which no known solution exists, and the expectation of a logarithm,
respectively (see Eq. 13 and Eq. 14). An alternative to the closed-form solution is to approximate the

5

13822 https://doi.org/10.52202/079017-0443

expectations via the Monte Carlo method. We propose to approximate Exp-Das and Exp-TSD with
N differentiably sampled hierarchies {T̂ (1), . . . , T̂ (N)} (see “Loss computation” in Fig. 1):

Exp-Score(T) ≈ 1

N

N∑
i=1

Score(T̂ (i)). (7)

However, differentiable sampling of discrete structures like hierarchies is often complex. To this end,
our differentiable hierarchy sampling algorithm consists of three steps integrating the tree-sampling
procedure and the straight-through Gumbel-Softmax estimator [20]: (1) We sample the parents of
the leaf nodes by interpreting the columns of A as parameters of straight-through Gumbel-Softmax
estimators. (2) We sample the parents of the internal nodes by interpreting the columns of B
as parameters of straight-through Gumbel-Softmax estimators. This procedure is differentiable —
each step is differentiable — and expressive — it can sample any hierarchy with n leaves and n′

internal nodes. (3) We use the Monte Carlo method to approximate the expectation by computing the
arithmetic mean of the scores of the sampled hierarchies. We reuse the differentiable computation
of Soft-Das and Soft-TSD, which match the discrete scores for discrete hierarchies while providing
gradients w.r.t. A and B (see Fig. 1 for an overview).

Complexity. Since we sample N hierarchies from n′ + n− 1 many categorical distributions with
O(n′) classes, the sampling process can be done with a complexity ofO(N×n×n′+N×n′2). The
dominating term is the computation of the Das and TSD scores with a complexity ofO(N ×m×n′2)
for graph datasets andO(N ×n2×n′2) for vector datasets [41]. This is often efficient as we typically
have n′ ≪ n and for graphs m ≪ n2. In Sec. 4.4, we propose a subgraph sampling approach to
reduce the complexity to O(N ×M × n′2 + n2) for large vector datasets, where M < n2.

4.4 Scalable Expected Dasgupta Cost Computation via Subgraph Sampling

As discussed in the complexity analysis, the limiting factor is O(n2 × n′2), corresponding to the
evaluation of the Dasgupta cost, which becomes prohibitive for large datasets. To reduce the
complexity, we propose an unbiased subgraph sampling approach. First, we note that we can interpret
the normalized similarities P (vi, vj) as a probability mass function of a categorical distribution.
This interpretation allows us to rewrite the Dasgupta cost as an expectation and approximate it via a
sampling procedure. More specifically,

Das(T̂) = E(vi,vj)∼P (vi,vj) [c(vi ∧ vj)] ≈
1

M

M∑
k=1

c(v(k)
i ∧ v(k)j), (8)

where {(v(1)i , v(1)j), . . . , (v(M)
i , v(M)

j)} are M edges sampled from the edge distribution P (vi, vj),
which can be done inO(M +n2) [24]. We refer to this sampling approach as subgraph sampling (see
Fig. 1). We can approximate the expected Dasgupta cost using the same procedure. In contrast to Exp-
Das, Exp-TSD cannot be easily viewed as an expectation of edges, thus making the approximation
via subgraph sampling impractical. However, since TSD is a metric originally designed for graphs,
which are generally sparse, it would yield little benefits.

Note that we end up with two different sampling procedures. First, we have the differentiable
hierarchy sampling (see Eq. 7). This is necessary to approximate the expectations. Since we do not
have a closed-form expression of Exp-Das and Exp-TSD, we sample discrete hierarchies from the
probabilistic ones and average the scores. Secondly, we have the subgraph sampling (see Eq. 8),
which interprets the Dasgupta cost as an expectation. This is done to reduce the computational
overhead for vector datasets since the number of pairwise similarities grows quadratically in the
number of data points. This estimation is unbiased and introduces an additional parameter, i.e., the
number of sampled edges, which allows a trade-off between computational cost and quality. By
inserting the probabilistic edge sampling approach into the tree sampling, we estimate Exp-Das to
scale it to large vector datasets. An overview of our model is shown in Fig. 1, and a formal description
is given in App. C.7.

In contrast to other approaches, the loss function of EPH is consistent with the discrete scores,
meaning that probabilistic hierarchies with a better training score encode better discrete hierarchies.
Following from Prop. 4.1, we know that any discrete hierarchy sampled from the optimal probabilistic
hierarchy is an optimal discrete hierarchy. While global optimality is not guaranteed, the training loss
provides a reliable indicator of the discrete evaluation performance since the loss functions, Exp-Das
and Exp-TSD, are computed on discrete hierarchies.

6

13823https://doi.org/10.52202/079017-0443

5 Experiments

5.1 Experimental Setup

Datasets. We evaluate our method on both graph and vector datasets. Graph datasets: We use
the datasets Polblogs [1], Brain [2], Citeseer [34], Genes [11], Cora-ML [25, 5], OpenFlight [29],
WikiPhysics [3], and DBLP [38]. To preprocess the graph, we first collect the largest connected
component. Secondly, every edge is made bidirectional and unweighted. An overview of the graphs
is shown in Tab. 7 in App. B.1. Vector datasets: We test our method on vector data for the Dasgupta
cost. Here, we selected the seven datasets Zoo, Iris, Glass, Digits, Segmentation, Spambase, and
Letter from the UCI Machine Learning repository [15]. Furthermore, we also use Cifar-100 [23].
Digits and Cifar-100 are image datasets, the remaining are vector data. While we only flatten the
images of Digits, we preprocess Cifar-100 using the ResNet-101 BiT-M-R101x1 by Kolesnikov et al.
[22], which was pretrained on ImageNet-21k [13]. More specifically, we use the 2048 dimensional
activations of the final layer for each image in Cifar-100 as feature vectors. Furthermore, we
normalize all features to have a mean of zero and a standard deviation of one. We compute cosine
similarities between all pairs of data points using their normalized features. This results in dense
similarity matrices. Finally, we remove the self-loops. Note that in contrast to the graph datasets,
the vector data similarities are weighted. An overview is shown in Tab. 8 in App. B.1. Since we are
in an unsupervised setting, we have no train/test split, i.e., we train and evaluate on the whole graph.

Baselines. We compare our model against both discrete and continuous approaches. For discrete
approaches, we use the single, average, complete [18], and ward linkage [37] algorithms, respectively
referred to as SL, AL, CL, and WL. We do not report the results of SL and CL on the graph datasets
that do not have edge weights since these methods are not applicable to unweighted graphs. In addition
to the linkage algorithms, we also compare to the recursive sparsest cut (RSC) [12] and the Louvain
method (Louv.) [4]. For continuous approaches, we use the gradient-based optimization approaches
Ultrametric Fitting (UF) [10], Hyperbolical Hierarchical Clustering (HypHC) [7], gradient-based
Hyperbolic Hierarchical Clustering (gHHC) [28], and Flexible Probabilistic Hierarchy (FPH) [41].
While the linkage algorithms derive a hierarchy based on heuristics or local objectives, UF, HypHC,
gHHC, and FPH aim to optimize a relaxed Dasgupta cost or TSD score. We set a time limit of 120
hours for all the methods and provided a budget of 512GB of memory for each experiment.

Practical Considerations. We repeat the randomized methods with five random seeds and report the
best score of the discrete hierarchies. We use the same experimental setup as Zügner et al. [41], i.e.,
we use n′ = 512 internal nodes, compress full hierarchies using the scheme presented by Charpentier
and Bonald [8], and use DeepWalk embeddings [32] on the graphs for methods that require features.
We train EPH using PAdamax (projected Adamax [21]), reduce the learning rate for B by a factor
of 0.1 every 1000 epochs, and reset the probabilistic hierarchy to the so-far best discrete hierarchy.
To approximate the expectation of EPH, we use 20 samples, except for Spambase, Letter, and
Cifar-100, where we use 10, 1, and 1, respectively, to reduce the runtime. On the datasets Digits,
Segmentation, Spambase, Letter, and Cifar-100, we train EPH and FPH by sampling n

√
n edges.

For the remaining datasets and during all validation steps, we use the whole graph. Both EPH and
FPH are initialized using the average linkage algorithm. We train FPH with its original setting and
our proposed scheduler and report the minimum of both for each dataset. For the remaining methods,
we use the recommended hyperparameters. An overview of the hyperparameters is shown in Tab. 10,
and an ablation study in App. C.4. Finally, all methods are evaluated on discrete hierarchies. For
EPH, we take the most likely edge for each node as explained in Sec. 3.

5.2 Results

Graph Dataset Results. We report the discrete Dasgupta costs and TSD scores for the graph
datasets in Tab. 2. EPH achieves best scores across 13/16 settings and second-best otherwise. In
particular, EPH, which optimizes Exp-Das, consistently achieves a better Dasgupta cost than FPH,
which optimizes Soft-Das. This observation aligns with the theoretical advantages of Exp-Das
compared to Soft-Das (see Sec. 4.2). EPH and FPH, which both use the tree-sampling probabilistic
framework, consistently achieve the best results. This underscores the effectiveness of tree sampling
for hierarchical clustering.

Code available at https://www.cs.cit.tum.de/daml/expected-probabilistic-hierarchies

7

13824 https://doi.org/10.52202/079017-0443

https://www.cs.cit.tum.de/daml/expected-probabilistic-hierarchies

1 4 10 20 50 100 200
Number of sampled hierarchies

-2

-1

0

1

2

No
rm

al
ize

d
Da

sg
up

ta
 c

os
t

Brain
OpenFlight

Genes
Citeseer

Cora-ML
Polblogs

WikiPhysics

AL n n n n FG
Number of sampled edges

Zoo
Iris

Glass
Digits

Segmentation
Spambase

Figure 3: Hyperparameter study. Normalized Dasgupta costs for different numbers of sampled
hierarchies (left) and different number of sampled edges (right) after the EPH training, including the
average linkage algorithm (AL) and a training on the full graph (FG). The scores are normalized such
that each dataset has a mean of zero and a standard deviation of one.

Table 2: Results for the graph datasets. Best scores in bold, second best underlined.
Dasgupta cost (↓) Tree-sampling divergence (↑)

Dataset PolBl. Brain Cites. Genes Cora-ML OpenF. WikiP. DBLP PolBl. Brain Cites. Genes Cora-ML OpenF. WikiP. DBLP

WL 338.52 567.90 137.80 270.18 301.68 379.68 660.12 OOM 26.59 25.13 62.14 60.93 52.76 50.59 42.18 OOM
AL 355.61 556.68 83.69 196.50 292.77 363.40 658.04 36,463 25.25 28.91 67.80 66.72 55.30 52.02 43.15 38.99
Louv. 344.47 582.45 158.79 247.27 335.57 501.29 798.75 40,726 28.86 30.74 68.09 67.51 58.18 52.97 47.01 41.40
RSC 307.70 526.17 85.41 188.82 264.62 367.36 630.53 OOM 28.04 29.19 67.39 66.28 56.14 52.01 44.86 OOM
UF 331.79 508.30 91.86 208.51 305.43 410.17 560.45 OOM 21.77 24.49 60.13 59.45 48.42 47.64 42.37 OOM
gHHC 349.71 595.70 147.17 308.42 313.29 390.21 672.84 87,344 24.70 25.62 59.53 54.20 49.56 51.36 41.08 16.29
HypHC 272.81 519.96 416.38 632.02 594.23 529.04 678.45 OOM 19.65 7.26 18.98 13.00 19.18 26.82 23.92 OOM
FPH 238.65 425.70 76.03 182.91 257.42 355.61 482.40 31,687 31.37 32.75 69.38 67.78 59.55 57.58 49.87 41.62
EPH 235.50 400.20 74.01 176.57 238.28 312.31 456.26 30,600 32.05 34.24 69.36 67.75 59.41 57.83 50.23 42.74

Furthermore, the performance of the discrete approaches, i.e., the linkage algorithms WL and AL,
the Louvain method, and RSC, is competitive with the other continuous methods, even though they
use heuristics or local objectives to infer the hierarchies. The inferior performance of gHHC and
HypHC can be intuitively explained by the fact that these methods were originally designed for vector
datasets. WL, UF, and HypHC could not scale to DBLP within the memory budget, as they require
the computation of a dense n2 similarity matrix, leading to out-of-memory (OOM) issues.

Table 3: Dasgupta costs (↓) for the vector datasets. Best
scores in bold, second best underlined.

Dataset Zoo Iris Glass Digits Segm. Spam. Letter Cifar

WL 56.28 69.98 122.16 1126.77 1266.17 2962.62 12241 32979
AL 56.31 69.48 121.64 1121.68 1258.22 2952.21 12181 32972
SL 57.67 70.71 126.33 1166.05 1368.21 3042.28 13166 33314
CL 55.78 70.10 123.02 1140.26 1277.48 2971.59 12396 33131
Louv. 56.26 72.31 125.94 1126.48 1238.35 2916.48 11946 32940
RSC 55.94 69.10 121.45 1119.43 1237.20 2917.07 11895 32907
UF 56.28 69.40 122.43 1137.53 1322.86 2998.17 13090 OOM
gHHC 60.09 69.63 123.33 1119.74 1269.28 3018.44 12151 33089
HypHC 56.05 69.22 121.52 1118.08 1233.07 2921.38 11930 OOM
FPH 56.13 69.13 122.00 1132.84 1238.45 2933.56 12197 33224
EPH 55.77 69.10 120.94 1117.58 1230.60 2916.17 11894 32913

Vector Dataset Results. We report
the discrete Dasgupta costs of several
methods on the vector datasets in
Tab. 3. Consistent with the results on
the graph datasets, EPH outperforms
all baselines and achieves the best
scores across 7/8 datasets. These
results demonstrate the capacity of
EPH to not only cluster graphs but
also adapt to vector datasets. Further,
EPH consistently outperforms FPH,
again emphasizing the benefit of optimizing expected scores over soft scores. In contrast with graph
datasets, HypHC performs competitively on vector datasets. This is reasonable since this method was
originally designed for vector datasets. FPH performs slightly worse than HypHC on most datasets
and is only better on Iris.

Hyperparameter Study. We show in Fig. 3 (left) the effect of the number of sampled hierarchies
on the EPH performances. On the one hand, we observe that a large number of sampled hierarchies
(i.e., N ≥ 20) generally yields better results than a small number of sampled hierarchies (i.e.,
N ≤ 10) except for Citeseer. Intuitively, a higher number of sampled hierarchies should lead
to a more accurate expected score approximation. On the other hand, a very large number for
sampled hierarchies (i.e., N ≥ 100) might not lead to significant improvements while requiring
more computational resources. Intuitively, the randomness induced by a lower number of sampled
hierarchies could be beneficial to escape local optima. In general, we found that 20 samples led to
satisfactory results for all datasets, thus achieving a good trade-off between approximation accuracy,
optimization noise, and computational requirements.

8

13825https://doi.org/10.52202/079017-0443

(a) Small HSBM - GT (b) Small HSBM - Exp-Das (c) Small HSBM - Exp-TSD

(d) Large HSBM - GT (e) Large HSBM - Exp-Das (f) Large HSBM - Exp-TSD

Figure 4: Ground truth clusters and dendrograms compared to the inferred ones for the HSBMs.

Table 4: Results of EPH for the HSBMs with n′ = #Cluster.

Dasgupta cost (↓) Tree-sampling divergence (↑)

Method HSBM Small HSBM Large HSBM Small HSBM Large

GT 26.29 130.16 43.14 51.50
EPH 26.19 121.08 43.56 51.53

Level Normalized Mutual Information Normalized Mutual Information

Level 1 1.0 1.0 1.0 1.0
Level 2 1.0 1.0 1.0 1.0
Level 3 0.77 0.81 0.87 0.99

We show in Fig. 3 (right) the effect of the number of sampled edges on the EPH performances on
vector datasets. Using more edges consistently leads to better results. In particular, going from n to
n
√
n shows a significant performance improvement while going from n

√
n to n2 yields only minor

improvements. Hence, controlling the amount of sampled edges allows us to scale our method to
large datasets while maintaining high performance. On the small datasets Zoo, Iris, and Glass, we use
the whole graph, while for the other datasets, we sample n

√
n edges as a trade-off between runtime

and quality of the hierarchical clustering. We provide further experiments in Sec. C.4, including a
minimized version of EPH outperforming FPH in terms of runtime and results.

External Evaluation. As the Dasgupta cost and Tree-Sampling Divergence are internal metrics
and do not necessarily measure how closely a derived hierarchy aligns with an external ground truth,
we complement our unsupervised quantitative evaluation with an external evaluation. Given that
ground-truth hierarchies are typically unavailable in real-world data, we evaluate EPH on synthetic
graph datasets with known ground-truth hierarchies. Additionally, we analyze to what extent the
inferred hierarchies preserve the flat class labels for the vector datasets in Sec. C.3 in the appendix.

Table 5: Cophenetic correlations (↑) of EPH for different
distances on the HSBMs with n′ = #Cluster.

Cophenetic Correlation (↑)

Shortest path distance DeepWalk Distance

Method HSBM Small HSBM Large HSBM Small HSBM Large

GT 0.77453 0.67839 0.94001 0.90920
Exp-Das 0.77174 0.67692 0.93973 0.89788
Exp-TSD 0.77440 0.67838 0.94027 0.90922

We augment the graph datasets with
two hierarchical stochastic block
models (HSBMs), which enables
us to compare the inferred hierarchy
with the ground truth. As the HSBM
graphs are generated in a stochastic
process, the ground-truth hierarchy
is not necessarily optimal in terms of
the Dasgupta cost or Tree-Sampling
Divergence. Furthermore, we compute the normalized mutual information (NMI) across the different
levels of the hierarchies, and the cophenetic correlations for the shortest path distance (SPD) and the
Euclidean distance of DeepWalk embeddings (see Tab. 4 and Tab. 5). We observe that EPH recovers
the first three levels of the ground-truth hierarchy almost perfectly. Moreover, the inferred hierarchies
by EPH obtain even better scores than the ground-truth hierarchies on the HSBMs, underlining
the remarkable capacity of EPH to optimize the Dasgupta and TSD scores. Additionally, the TSD
objective proves to be a more suitable metric for recovering the ground-truth levels of the HSBM in
terms of NMI. The cophenetic correlations observed between Exp-Das and Exp-TSD are notably high

9

13826 https://doi.org/10.52202/079017-0443

and closely align with the ground truth, with Exp-TSD even surpassing the ground truth on DeepWalk
distances. We attribute this to the fact that a minimal Dasgupta cost favors binary branches, which
does not reflect the hierarchies of the HSBMs. Our visual analysis of the graphs and hierarchies
(see Fig. 4) confirms this observation. Additional results for FPH are provided in App. C.1.

(a) Highest Probability (b) Lowest Probability
Figure 5: Largest derived cluster on Cifar-100.

Qualitative Evaluation. We visualize the
largest cluster inferred on Cifar-100 using
EPH. More specifically, we select the internal
nodes with the most directly connected leaves.
Additionally, we sort the images by their
probability, i.e., their entry in the matrix A. We
show the 16 images with the highest probability
and the 16 with the lowest probability for the
largest cluster in Fig. 5. We observe that the
images with high probabilities are all similar
and related to insects. This shows that EPH is
able to group similar images together. In contrast, the last images with the lowest probability do
not fit into the group. This demonstrates the capacity of EPH to measure the uncertainty in the cluster
assignments. We provide additional results with the same behavior for other clusters in App. C.2
(see Fig. 9, Fig. 10, and Fig. 11). Furthermore, we visualize the graph and inferred hierarchies of
EPH for OpenFlight in Fig. 12 in the appendix. Both minimizing Exp-Das and Exp-TSD generate
reasonable clusters and successfully distinguish different world regions. Finally, we visualize the
ground truth classes and clusters of selected vector datasets in Fig. 13.

6 Discussion

Limitations. While the Gumbel-Softmax estimators of the expectations are unbiased in the forward
pass, the estimation of the gradients is not [31] and thus impacts the EPH optimization. Furthermore,
even though the global optimal values of the expected and discrete scores match, EPH does not
guarantee convergence into a global optimum when optimizing using gradient descent methods.

Conclusion. In this work, we propose EPH, a novel end-to-end learnable approach to infer
hierarchies in data. EPH operates on probabilistic hierarchies and directly optimizes the expected
Dasgupta cost and Tree-Sampling Divergence using differentiable hierarchy sampling. We show
that the global optima of the expected scores are equal to their discrete counterparts. Furthermore, we
present an unbiased subgraph sampling approach to scale EPH to large datasets. We demonstrate the
capacity of our model by evaluating it on several synthetic and real-world datasets. EPH outperforms
traditional and recent state-of-the-art baselines.

References
[1] Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us election: divided

they blog. In Proceedings of the 3rd international workshop on Link discovery, pages 36–43,
2005.

[2] Katrin Amunts, Claude Lepage, Louis Borgeat, Hartmut Mohlberg, Timo Dickscheid, Marc-
Étienne Rousseau, Sebastian Bludau, Pierre-Louis Bazin, Lindsay B Lewis, Ana-Maria Oros-
Peusquens, et al. Bigbrain: an ultrahigh-resolution 3d human brain model. Science, 340(6139):
1472–1475, 2013.

[3] Nicolas Aspert, Volodymyr Miz, Benjamin Ricaud, and Pierre Vandergheynst. A graph-
structured dataset for wikipedia research. In Companion Proceedings of The 2019 World Wide
Web Conference, pages 1188–1193, 2019.

[4] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of statistical mechanics: theory and
experiment, 2008(10):P10008, 2008.

[5] Aleksandar Bojchevski and Stephan Günnemann. Bayesian robust attributed graph clustering:
Joint learning of partial anomalies and group structure. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

10

13827https://doi.org/10.52202/079017-0443

[6] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. Netgan:
Generating graphs via random walks. In International conference on machine learning, pages
610–619. PMLR, 2018.

[7] Ines Chami, Albert Gu, Vaggos Chatziafratis, and Christopher Ré. From trees to continuous
embeddings and back: Hyperbolic hierarchical clustering. Advances in Neural Information
Processing Systems, 33:15065–15076, 2020.

[8] Bertrand Charpentier and Thomas Bonald. Tree sampling divergence: an information-theoretic
metric for hierarchical graph clustering. In IJCAI-19, 2019.

[9] Bertrand Charpentier, Simon Kibler, and Stephan Günnemann. Differentiable dag sampling.
arXiv preprint arXiv:2203.08509, 2022.

[10] Giovanni Chierchia and Benjamin Perret. Ultrametric fitting by gradient descent. Advances in
neural information processing systems, 32, 2019.

[11] Ara Cho, Junha Shin, Sohyun Hwang, Chanyoung Kim, Hongseok Shim, Hyojin Kim, Han-
hae Kim, and Insuk Lee. Wormnet v3: a network-assisted hypothesis-generating server for
caenorhabditis elegans. Nucleic acids research, 42(W1):W76–W82, 2014.

[12] Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In Proceedings
of the forty-eighth annual ACM symposium on Theory of Computing, pages 118–127, 2016.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[14] Laxman Dhulipala, David Eisenstat, Jakub Lacki, Vahab Mirrokni, and Jessica Shi. Hierarchical
agglomerative graph clustering in poly-logarithmic depth. Advances in Neural Information
Processing Systems, 35:22925–22940, 2022.

[15] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

[16] Michael B Eisen, Paul T Spellman, Patrick O Brown, and David Botstein. Cluster analysis and
display of genome-wide expression patterns. Proceedings of the National Academy of Sciences,
95(25):14863–14868, 1998.

[17] Joseph Felsenstein. Inferring phylogenies, volume 2. Sinauer associates Sunderland, MA, 2004.

[18] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements
of statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

[19] Katherine A Heller and Zoubin Ghahramani. Bayesian hierarchical clustering. In Proceedings
of the 22nd international conference on Machine learning, pages 297–304, 2005.

[20] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[22] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain
Gelly, and Neil Houlsby. Big transfer (bit): General visual representation learning. In European
conference on computer vision, pages 491–507. Springer, 2020.

[23] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[24] Richard A. Kronmal and Arthur V. Peterson. On the alias method for generating random
variables from a discrete distribution. The American Statistician, 33(4):214–218, 2022/09/29/
1979. ISSN 00031305. doi: 10.2307/2683739. Full publication date: Nov., 1979.

11

13828 https://doi.org/10.52202/079017-0443

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[25] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating
the construction of internet portals with machine learning. Information Retrieval, 3(2):127–163,
2000.

[26] Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permuta-
tions with gumbel-sinkhorn networks. arXiv preprint arXiv:1802.08665, 2018.

[27] Nicholas Monath, Ari Kobren, Akshay Krishnamurthy, and Andrew McCallum. Gradient-based
hierarchical clustering. In 31st Conference on neural information processing systems (NIPS
2017), Long Beach, CA, USA, 2017.

[28] Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, and Amr Ahmed. Gradient-
based hierarchical clustering using continuous representations of trees in hyperbolic space. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 714–722, 2019.

[29] Jani Patokallio. Openflights. URL https://openflights.org/.

[30] Max Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, and Chris J Maddison. Gradient
estimation with stochastic softmax tricks. Advances in Neural Information Processing Systems,
33:5691–5704, 2020.

[31] Max B Paulus, Chris J. Maddison, and Andreas Krause. Rao-blackwellizing the straight-through
gumbel-softmax gradient estimator. In International Conference on Learning Representations,
2021.

[32] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710, 2014.

[33] Erzsébet Ravasz and Albert-László Barabási. Hierarchical organization in complex networks.
Physical review E, 67(2):026112, 2003.

[34] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[35] Michael Steinbach, George Karypis, and Vipin Kumar. A comparison of document clustering
techniques. 2000.

[36] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[37] Joe H Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the American
statistical association, 58(301):236–244, 1963.

[38] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on
ground-truth. Knowledge and Information Systems, 42(1):181–213, 2015.

[39] Yuchen Zhang, Amr Ahmed, Vanja Josifovski, and Alexander Smola. Taxonomy discovery for
personalized recommendation. In Proceedings of the 7th ACM international conference on Web
search and data mining, pages 243–252, 2014.

[40] Sheng Zhou, Hongjia Xu, Zhuonan Zheng, Jiawei Chen, Jiajun Bu, Jia Wu, Xin Wang, Wenwu
Zhu, Martin Ester, et al. A comprehensive survey on deep clustering: Taxonomy, challenges,
and future directions. arXiv preprint arXiv:2206.07579, 2022.

[41] Daniel Zügner, Bertrand Charpentier, Morgane Ayle, Sascha Geringer, and Stephan Günnemann.
End-to-end learning of probabilistic hierarchies on graphs. In International Conference on
Learning Representations, 2022.

12

13829https://doi.org/10.52202/079017-0443

https://openflights.org/

A Appendix

A.1 Equations of Soft-Das and Soft-TSD

In the following, we show the equations of Soft-Das and Soft-TSD.

Soft-Das(T) =
∑

vi,vj∈V

P (vi, vj)
∑
z∈Z

∑
v∈V

p (z = vi ∧ vj) p (z ∈ anc(v)) (9)

Soft-TSD(T) =
∑
z∈Z

p(z) log
p(z)
q(z)

(10)

where p(z) =
∑

vi,vj∈V

P (vi, vj)p (z = vi ∧ vj) (11)

q(z) =
∑

vi,vj∈V

P (vi)P (vj)p (z = vi ∧ vj) (12)

A.2 Closed Form Solutions of Exp-Das and Exp-TSD

To compute closed-form solutions of the expectations, the following equations need to be solved:

Exp-Das(T) =
∑

vi,vj∈V

P (vi, vj)
∑
z∈Z

∑
v∈V

p (z = vi ∧ vj , z ∈ anc(v)) (13)

Exp-TSD(T) =
∑
z∈Z

ET̂ ∼PA,B(T =(A,B))

[
p(z) log

p(z)
q(z)

]
. (14)

A.3 Relation between Joint and Independent LCA and Ancestor Probabilities

While the LCA probabilities are crucial to compute Soft-Das, Exp-Das requires the joint LCA and
ancestor probabilities, i.e., p(zk = vi ∧ vj , v ∈ anc(zk)), for the leaves vi, vj and v and the internal
node zk. In Prop. A.1, we show that the joint probabilities are an upper bound of the product of the
single terms.

zk

zk′

v1 v v2

(a) r
zk
v and r

zk
v1 meet at node zk′ .

zk

zk′

v1 v v2

(b) r
zk
v and r

zk
v2 meet at node zk′ .

zk

v1 v v2

(c) r
zk
v , rzk

v1 and r
zk
v2 meet at node

zk.

Figure 6: The different cases of the event p (zk = v1 ∧ v2 | zk ∈ anc(v)). While the LCA of v1 and
v2 is zk in every case, the LCA of v1 and v and the LCA of v2 and v are different. We have three
cases: either the paths from v1 or v2 and v meet before zk at node zk′ (shown in (a) and (b)), or all
paths meet for the first time at zk (shown in fig. (c)).

Proposition A.1. Let p describe the probability under the tree-sampling procedure, zk an internal
node, v1, v2, and v leaves. Then, the following inequality holds:

p(zk = v1 ∧ v2)p(zk ∈ anc(v)) ≤ p (zk = v1 ∧ v2, zk ∈ anc(v)) (15)

Proof. First, we observe that the right-hand side of the inequality can be rewritten as:

p (zk = v1 ∧ v2, zk ∈ anc(v)) = p (zk = v1 ∧ v2 | zk ∈ anc(v)) p(zk ∈ anc(v)). (16)

13

13830 https://doi.org/10.52202/079017-0443

To prove the non-trivial case p (zk ∈ anc(v)) ̸= 0, we need to show that the following holds:

p (zk = v1 ∧ v2) ≤ p (zk = v1 ∧ v2 | zk ∈ anc(v)) . (17)

Let rzj
vi = (vi, . . . , zj) denote a path from a leaf vi to an internal node zj and let zn′ be the root node.

Recalling from [41] that the paired path probability under the tree-sampling procedure is

p((r
zn′
v1 , r

zn′
v2)) = p(rzk

v1)p(r
zk
v2)p(r

zn′
zk), (18)

with zk = v1 ∧ v2, we can rewrite the LCA probabilities as

p (zk = v1 ∧ v2) =
∑

(r
zk
v1 ,r

zk
v2):zk=v1∧v2

p(rzk
v1)p(r

zk
v2). (19)

Adding the condition zk ∈ anc(v) means there exists a path from the leaf v to the internal node zk.
There are three different cases: first, the path meets rzk

v1 and rzk
v2 at zk for the first time, or the path

meets the path rzk
v1 or rzk

v2 in a lower node zk′ , with k′ < k. The cases are shown in Fig. 6. In the first
case, all three paths are independent. Thus, the LCA probabilities do not change. In the other two
cases, they are only independent up to the node zk′ . The probability for the path rzkzk′ is equal to 1
since we know that zk ∈ anc(v). More formally, the conditional probability is

p (zk = v1 ∧ v2 | zk ∈ anc(v)) =
∑

(r
zk
v1 ,r

zk
v2):zk=v1∧v2

p(rzk
v1 | zk ∈ anc(v))p(rzk

v2 | zk ∈ anc(v)).

(20)
Assuming that the path from v to zk meets the path from v1 to zk in the node zk′ with k′ ≤ k, we
have

p(rzk
v1 | zk ∈ anc(v))p(rzk

v2 | zk ∈ anc(v)) = p(r
z′k
v1)p(r

zk
v2) ≥ p(rzk

v1)p(r
zk
v2). (21)

The last inequality follows since r
z′k
v1 is a subpath of rzk

v1 and therefore has a higher probability. This
concludes the proof.

A.4 Proof of Proposition 4.2

In the following, we provide the proof of the inequality shown in Prop. 4.2.

Proof. To prove it, we first write out the definitions of Soft-Das and the expected Dasgupta cost.

Soft-Das(T) =
∑
v1,v2

P (v1, v2)
∑
z

∑
v

P (z = v1 ∧ v2)P (z ∈ anc(v)) (22)

and

ET̂ ∼PA,B(T)

[
Das(T̂)

]
= ET̂ ∼PA,B(T)

[∑
v1,v2

P (v1, v2)
∑
z

∑
v

I[z=v1∧v2]I[z∈anc(v)]

]
(23)

= ET̂ ∼PA,B(T)

[∑
v1,v2

P (v1, v2)
∑
z

∑
v

I[z=v1∧v2,z∈anc(v)]

]
(24)

=
∑
v1,v2

P (v1, v2)
∑
z

∑
v

ET̂ ∼PA,B(T)

[
I[z=v1∧v2,z∈anc(v)]

]
(25)

=
∑
v1,v2

P (v1, v2)
∑
z

∑
v

P (z = v1 ∧ v2, z ∈ anc(v)) (26)

The proof follows by using Prop. A.1.

A.5 Proof of Proposition 4.1

Here we provide the proof of Prop. 4.1.

14

13831https://doi.org/10.52202/079017-0443

Proof. To prove the left-hand side, we first observe that the expected Dasgupta cost can be rewritten
as a convex combination of the Dasgupta costs of all possible hierarchies under the tree-sampling
procedure. More formally,

ET̂ ∼PA,B(T)

[
Das(T̂)

]
=

∑
T̂ ∈H(n,n′)

PA,B(T̂)Das(T̂) (27)

whereH(n, n′) describes the set of all valid hierarchies with n leaves and n′ internal nodes. Thus,
the minimizer of the expected Dasgupta cost is a convex combination of all minimizing hierarchies,
with the minimum being equal to the optimal Dasgupta cost. The equation on the right-hand side for
TSD can be proved equivalently.

Note that since the expectation operator is convex, any discrete optimizer (i.e., discrete hierarchies
achieving the optimum value) of the discrete scores will be an optimizer of the expected scores and
vice-versa. In this case, discrete hierarchies are represented by deterministic A, B matrices. Only
probabilistic hierarchies, which are optimizers of the expected scores, described by non-discrete A
and B matrices, are not optimizers of the discrete scores. This is expected since those probabilistic
hierarchies do not belong to the valid input domain of the discrete scores. In addition, any sample we
draw from these probabilistic optimizers is also a discrete optimizer of Dasgupta or TSD because of
the convexity of the expectation operator.

A.6 Non-Convexity and Non-Concavity of Exp-Das

Minimizing a convex function using gradient descent is easier than a concave one. Minimizing a
concave function heavily depends on the initialization in a constrained setting. Exp-Das(T = (A,B))
is neither convex nor concave with respect to A and B. For both, a counter-example exists. This
implies that we can not tell whether Exp-Das converges into a local or global minimum when training.
To show that Exp-Das is not concave, it is sufficient to find two hierarchies T1 = (A1,B1) and
T2 = (A2,B2) such that:

1

2
Exp-Das(T1) +

1

2
Exp-Das(T2) ≥ Exp-Das

(
1

2
(T1 + T2)

)
, (28)

and equivalently to show that it is not convex:

1

2
Exp-Das(T1) +

1

2
Exp-Das(T2) ≤ Exp-Das

(
1

2
(T1 + T2)

)
, (29)

where T1 + T2 = (A1 + A2,B1 + B2). In Fig. 7, we show these two examples. In (a) and (b),
we show two hierarchies, and in (c), a linear interpolation of these two. The graph in (d) satisfies
Eq. 28, while the graph in (e) satisfies Eq. 29. We report the Dasgupta costs for all hierarchy and
graph combinations in Tab. 6.

Table 6: Dasgupta costs for all combinations of hierarchies and graphs from Fig. 7.

Hierarchy T̂1 T̂2 TI

Convex Example 3.5 3.5 3.375
Concave Example 3.0 3.0 3.25

A.7 Weighted Failing Soft-Das Example

In addition to the example in Fig. 2, we show a weighted graph where FPH fails to find the minimizing
hierarchy in Fig. 8.

15

13832 https://doi.org/10.52202/079017-0443

z3

z1 z2

v1 v2 v3 v4

(a) T̂1 = (Â1, B̂1)

z3

z1 z2

v1 v2 v3 v4

(b) T̂2 = (Â2, B̂2)

z3

z1 z2

v1 v2 v3 v4

(c) TI = 0.5 · T̂1 + 0.5 · T̂2

v1 v2

v3 v4

1
8

1
8

1
2

1
8

1
8

(d) Convex Example

v1 v2

v3 v4

1
4

1
4

1
4

1
4

(e) Concave Example

Figure 7: Three hierarchies and two graphs that show that Exp-Das is neither convex nor concave
with respect to A and B. The hierarchy in (c) is a linear interpolation of the hierarchies in (a) and (b).
The graphs in (d) and (e) are counter-examples, with convex and concave behavior, respectively.

v1 v2

v3 v4

1
14

2
14

1
14

4
14

2
14

4
14

(a) K4 Graph

z3

z1

z2

v1

v2

v3

v4

(b) A minimizing hierarchy

z3

z1 z2

v1

v2

v3 v4

(c) FPH

z3

z1

z2

v1

v2

v3

v4

(d) EPH

Figure 8: An example of a weighted K4 graph where FPH fails to infer a minimizing hierarchy. While
FPH achieves a Dasgupta cost of 23

7 after discretization, the continuous hierarchy has a Soft-Das
score below 3.0. On the other hand, EPH finds a minimizing hierarchy with a cost of 3.0.

16

13833https://doi.org/10.52202/079017-0443

B Experiments Information

B.1 Datasets

An overview of the graph and vector datasets is given in Tab. 7 and Tab. 8. The details of the HSBMs
are shown in Tab. 9.

Table 7: Overview of the graph datasets.

Dataset Number of Nodes Number of Edges License

PolBlogs 1222 16715 n/a
Brain 1770 8957 n/a
Citeseer 2110 3694 n/a
Genes 2194 2688 n/a
Cora-ML 2810 7981 n/a
OpenFlight 3097 18193 OBdL
WikiPhysics 3309 31251 n/a
DBLP 317080 1049866 n/a

Table 8: Overview of the vector datasets.
Dataset Number of Data Points Number of Attributes Number of Classes License

Zoo 101 17 7 CC BY 4.0
Iris 150 4 3 CC BY 4.0
Glass 214 10 6 CC BY 4.0
Digits 1797 8×8 10 CC BY 4.0
Segmentation 2310 19 7 CC BY 4.0
Spambase 4601 57 2 CC BY 4.0
Letter 20000 16 26 CC BY 4.0
Cifar-100 50000 2048 100 n/a

Table 9: Overview of the HSBMs.
Dataset Number of Nodes Number of Edges Number of Clusters

Small HSBM 101 1428 15
Large HSBM 1186 27028 53

17

13834 https://doi.org/10.52202/079017-0443

B.2 Hyperparameters

We show an overview of the hyperparameters we used in Tab. 10. Furthermore, we compare
the original FPH results with the tuned results, i.e., the minimum of the original, and using the
aforementioned scheduler in Tab. 11.

Table 10: Overview of the Hyperparameters.

Method Hyperparameter Value

EPH

LR Scheduler
Initialization Average Linkage

Num. Samples 20
Num. Samples* 10
Num. Samples** 1

FPH
LR min{Scheduler, 0.05}
LR min{Scheduler, 150}

Initialization Average Linkage
Epochs 1000

HypHC

LR min{1e−3, 5e−4, 1e−4}
Temp. min{1e−1, 5e−2, 1e−2}

LR*** 1e−3

Temp.*** 1e−1

Epochs 50
Num. Triplets n2

UF
Loss min{Dasgupta, Closest+Size}
LR 0.1

Epochs 500

Scheduler

LRA (Exp-Das) 0.1
LRA (Exp-Das)**** 0.05
LRB (Exp-Das) 0.1
LRB (Exp-Das)***** 0.01
LRA (Exp-TSD) 150
LRB (Exp-TSD) 500

Sampling frequency 1000
Sampling frequency***** 2000
Epochs (Exp-Das) 10000
Epochs (Exp-TSD) 3000

DeepWalk Embedding Dim. 10
Embedding Dim.***** 32

* Used for DBLP and Spambase
** Used for Letter and Cifar-100
*** Used for Letter
**** Used for Cifar-100
***** Used for DBLP

Table 11: Dasgupta costs of the original FPH (orig.) and with our modifications (tuned). Improve-
ments are highlighted in bold.

Dasgupta cost Tree-sampling divergence

Dataset PolBl. Brain Cites. Genes Cora-ML OpenF. WikiP. DBLP PolBl. Brain Cites. Genes Cora-ML OpenF. WikiP. DBLP

FPH (orig.) 262.48 503.67 77.16 183.63 257.42 355.61 537.95 31,687 31.37 32.23 69.37 67.69 58.02 57.58 49.87 41.62
FPH (tuned) 238.65 425.70 76.03 182.91 257.42 355.61 482.40 31,687 31.41 32.75 69.38 67.78 59.55 57.58 49.87 41.62

18

13835https://doi.org/10.52202/079017-0443

C Additional Results

C.1 HSBM Results for FPH

We show the results for FPH on the HSBM graphs in Tab 12.

Table 12: Results of FPH for the HSBMs with n′=# Cluster.
Dasgupta cost Tree-sampling divergence

Method HSBM Small HSBM Large HSBM Small HSBM Large

GT 26.29 130.16 43.14 51.50
FPH 27.84 127.99 43.53 51.53

Level 1 1.0 0.99 1.0 1.0
Level 2 1.0 0.95 1.0 1.0
Level 3 0.77 0.81 0.87 0.99

C.2 Additional Visualizations

We show the largest clusters for the Digits and Cifar100 datasets in Fig. 9, Fig. 10, and Fig. 11. We
observe that EPH provides qualitatively reasonable clusters and groups similar images.

(a) Largest Cluster (b) Second Largest Cluster

(c) Third Largest Cluster (d) Fourth Largest Cluster
Figure 9: Largest derived clusters on Digits. On the left in each subplot the 16 images with the
highest probability, on the right the 16 images with the lowest probability.

(a) Highest Probability (b) Lowest Probability

Figure 10: Second largest derived cluster on Cifar-100.

Additionally, we provide a visualization of the OpenFlight dataset in Fig. 12, showing that both
Exp-Das and Exp-TSD yield meaningful hierarchies and clusters. Finally, we apply t-SNE [36] to
selected datasets and compare the ground-truth labels with clusters inferred by EPH in Fig. 13.

19

13836 https://doi.org/10.52202/079017-0443

(a) Highest Probability (b) Lowest Probability

Figure 11: Third largest derived cluster on Cifar-100.

(a) Das - 64 clusters

(b) TSD - 64 clusters

Figure 12: Inferred clusters inferred by EPH optimizing Exp-Das and Exp-TSD. 64 clusters are
highlighted in the graphs and dendrograms.

C.3 Additional External Evaluation

In addition to the unsupervised metrics, we investigate whether the inferred hierarchies on the vector
datasets preserve the flat ground truth class labels. To do this, we flatten the derived hierarchies
and compare inferred clusters with the available ground-truth labels by applying the Hungarian
algorithm to align the cluster assignments with the labels, as explained by Zhou et al. [40]. Using
this procedure, we compute the accuracies, shown in Tab. 13. While the linkage algorithms were
inferior to the continuous optimization algorithms in terms of Dasgupta cost, they dominate here.
EPH, trained on Exp-Das, yields the best accuracies only on Iris and Spambase. As the linkage
algorithms and Louvain generate hierarchies using heuristics while the continuous methods aim to
minimize the Dasgupta cost, the results are not surprising since the Dasgupta cost and other metrics
do not necessarily go hand in hand.

C.4 Ablation

For our ablation study, we use a simplified optimization scheme. More specifically, we use a fixed
learning rate of 0.05 and only train for 1000 epochs.

20

13837https://doi.org/10.52202/079017-0443

(a) Zoo

(b) Iris

(c) Digits

(d) Segmentation

(e) Spambase

Figure 13: Ground truth clusters (left) compared to inferred flattened clusters (middle) and den-
drograms (right) of EPH for the datasets Zoo, Iris, Digits, Segmentation, and Spambase with
n′ = min{n− 1, 512} internal nodes after applying the t-SNE algorithm.

21

13838 https://doi.org/10.52202/079017-0443

0.0 0.2 0.4 0.6 0.8 1.0
Factor a

-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d
So

ft-
Da

s

Soft-Das Interpolation

Brain Citeseer Cora-ML Genes OpenFlight Polblogs WikiPhysics

0.0 0.2 0.4 0.6 0.8 1.0
Factor a

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
Ex

p-
Da

s

Exp-Das Interpolation

Figure 14: Linear interpolation of Soft-Das and Exp-Das scores from the average linkage hierarchy
to the hierarchy inferred by Exp-Das.

Table 13: Accuracies for the vector datasets. Best scores in bold, second best underlined.
Dataset Zoo Iris Glass Digits Segm. Spam. Letter Cifar

WL 0.74 0.76 0.44 0.82 0.61 0.76 0.33 0.49
AL 0.80 0.82 0.43 0.65 0.48 0.82 0.31 0.16
SL 0.84 0.67 0.37 0.10 0.15 0.61 0.04 0.01
CL 0.81 0.77 0.40 0.59 0.51 0.74 0.26 0.33
Louv. 0.60 0.83 0.42 0.68 0.29 0.86 0.18 0.05
RSC 0.41 0.35 0.38 0.39 0.51 0.84 0.11 0.05
UF 0.60 0.55 0.43 0.43 0.54 0.54 0.04 OOM
gHHC 0.59 0.71 0.42 0.51 0.30 0.69 0.08 0.01
HypHC 0.79 0.82 0.52 0.42 0.29 0.60 0.10 OOM
FPH 0.58 0.83 0.40 0.20 0.44 0.61 0.06 0.03
EPH 0.70 0.83 0.40 0.65 0.53 0.86 0.14 0.18

Constrained vs. Unconstrained Optimization. We require the rows of the matrices A and B to
be row-stochastic. There are several possibilities to enforce this. Either we can perform constrained
optimization using projections onto the probabilistic simplex or perform a softmax operation over
the rows. In Tab. 14, we compare the Dasgupta costs on the graph datasets for several graph datasets.
We can observe that the constrained optimization,i.e., using projections after each step, yields better

Table 14: Dasgupta costs for constrained and unconstrained optimization on several graph datasets
with n′ = 512 internal nodes.

Dataset PolBlogs Brain Citeseer Genes Cora-ML OpenFlight WikiPhysics

Constrained 252.55 428.40 74.84 178.90 242.38 324.45 481.92
Unconstrained 272.60 457.62 79.47 188.02 269.10 349.20 526.99

results than the unconstrained optimization on every graph. This aligns with the findings of Zügner
et al. [41]. Therefore, we recommend using constrained optimization.

Initialization. The initialization of a model can play a crucial role. Zügner et al. [41] found that
using the AL algorithm as initialization yields substantial improvements. Therefore, we compare
both initializations and additionally test using their algorithm FPH as initialization. We show the
Dasgupta costs for several graph datasets in Tab. 15. As expected, using the AL algorithm or FPH

Table 15: Dasgupta costs for different initializations on several graph datasets with n′ = 512 internal
nodes. In the first three rows the initial Dasgupta costs and in the last three rows the Dasgupta costs
after the training. Best scores in bold, second best underlined.

Dataset PolBlogs Brain Citeseer Genes Cora-ML OpenFlight WikiPhysics

Random 914.11 1285.68 1574.76 1621.82 2107.65 2302.13 2479.51
AL 355.60 556.68 83.69 196.50 292.77 363.40 658.04
FPH 262.47 453.17 77.05 179.55 257.42 355.61 538.47

Exp-Das (Random) 275.44 499.12 307.52 368.66 564.35 502.22 624.27
Exp-Das (AL) 252.55 428.40 74.84 178.90 242.87 324.45 481.92
Exp-Das (FPH) 251.55 431.15 74.88 177.32 245.79 326.46 527.02

22

13839https://doi.org/10.52202/079017-0443

as initialization yields significant improvements over a random initialization. Even though the FPH
initialization starts with a better hierarchy, the resulting hierarchies are inferior to the AL initialization.
This could be caused by local minima, in which the model gets stuck. We recommend using AL
as initialization since it performs best on most datasets and has a lower computational cost than FPH.

Direct vs. Embedding Parametrization. Additionally to the direct parametrization of the matrices A
and B, we test an embedding parametrization for each node in the hierarchy. More specifically, we use
d-dimensional embeddings for the leaves and internal nodes. We perform a softmax operation with an
additional learnable temperature parameter ti to infer A and B over the cosine similarities between
the embeddings. The main advantage of the embedding approach is that, in addition the hierarchical
clustering, we gain node embeddings that can be used for downstream tasks such as classification or
regression. We test the embedding parametrization with d = 128 on several graph datasets. Once we
let ti be learnable, and once we freeze it to ti = 1. We compare the results to the constrained optimiza-
tion. While we train the direct parametrization for 1000 epochs, the embedding approach is trained
for 20000 epochs. This is done to ensure convergence since it is randomly initialized. We show the
results in Tab. 16. First, we observe that not using a temperature parameter yields substantially worse

Table 16: Dasgupta costs for the direct and embedding parametrization on several graph datasets with
n′ = 512 internal nodes. Best scores in bold, second best underlined.

Dataset PolBlogs Brain Citeseer Genes Cora-ML OpenFlight WikiPhysics

Direct 252.55 428.40 74.84 178.90 242.38 324.45 481.92
Embedding (ti = 1) 451.63 659.11 1008.23 1146.86 1261.91 968.41 1108.42
Embedding 249.84 440.29 213.99 290.19 409.68 373.07 514.91

results. Furthermore, the embedding parametrization is inferior to the direct parametrization, even
though it was trained for 20000 epochs, while the constrained optimization was only trained for 1000.
Only on the dataset PolBlogs the embedding approach is slightly better than the direct parametrization.
We attribute the inferior performance to the random initialization and the fact that we have to use
a softmax operation instead of projections. Our results are in line with the ablation study of Zügner
et al. [41]. They also parametrized their model using embeddings and used the softmax function
on the negative Euclidean distances to infer the matrices A and B. Since the embedding approach
yields worse results with longer training times, we recommend using the direct parametrization.

Number of Internal Nodes. As in many real-world problems, we do not know the number of internal
nodes n′ beforehand in our experiments. While increasing n′ generally leads to more refined and
expressive hierarchies, it reduces interpretability and comes with a higher computational cost. To
select the hyperparameter n′, we test various choices on several datasets. We show the corresponding
Dasgupta costs and TSD scores in Fig. 15 and Fig. 16. We found that n′ = 512 is sufficient to capture
most information. In practice, we recommend using the Elbow method.

32 64 128 256 512
Number of internal nodes

240
260
280
300
320
340
360
380
400

Da
sg

up
ta

 c
os

t

Polblogs

32 64 128 256 512
Number of internal nodes

400

450

500

550

600

650
Brain

WL AL Louv RSC UF gHHC HypHC FPH EPH

32 64 128 256 512
Number of internal nodes

300

400

500

600

700

Cora-ML

32 64 128 256 512
Number of internal nodes

500

600

700

800

900
WikiPhysics

Figure 15: Dasgupta costs for different numbers of internal nodes.

32 64 128 256 512
Number of internal nodes

5

10

15

20

25

30

Tr
ee

-s
am

pl
in

g
di

ve
rg

en
ce

Polblogs

32 64 128 256 512
Number of internal nodes

0
5

10
15
20
25
30
35

Brain

WL AL Louv RSC UF gHHC HypHC FPH EPH

32 64 128 256 512
Number of internal nodes

0

10

20

30

40

50

60
Cora-ML

32 64 128 256 512
Number of internal nodes

10
15
20
25
30
35
40
45
50

WikiPhysics

Figure 16: TSD scores for different numbers of internal nodes.

23

13840 https://doi.org/10.52202/079017-0443

Number of Sampled Hierarchies. Another crucial hyperparameter for EPH is the number of
sampled hierarchies. Additionally to Fig. 3, we provide the raw Dasgupta costs and standard errors
after the training in Fig. 17. Furthermore, we show the influence of the number of samples to
approximate the expected Dasgupta cost on randomly initialized hierarchies in Fig. 18.

1 4 10 20 50 100 200
Number of sampled hierarchies

430

435

440

445

450

Da
sg

up
ta

 c
os

t

Brain
Mean

1 4 10 20 50 100 200
Number of sampled hierarchies

326
328
330
332
334
336
338

OpenFlight

1 4 10 20 50 100 200
Number of sampled hierarchies

181

182

183

184

Genes

1 4 10 20 50 100 200
Number of sampled hierarchies

74.6

74.7

74.8

74.9

75.0

75.1

75.2
Citeseer

1 4 10 20 50 100 200
Number of sampled hierarchies

243

244

244

245

245

246

Da
sg

up
ta

 c
os

t

Cora-ML

1 4 10 20 50 100 200
Number of sampled hierarchies

251
252
253
254
255
256
257
258

Polblogs

1 4 10 20 50 100 200
Number of sampled hierarchies

488
490
492
494
496
498
500

WikiPhysics

Figure 17: Dasgupta costs and standard error for different numbers of sampled hierarchies after the
EPH training.

1 4 10 20 50 100 200
Number of sampled hierarchies

910
915
920
925
930
935
940

Ex
pe

ct
ed

 D
as

gu
pt

a
co

st

Polblogs
Mean

1 4 10 20 50 100 200
Number of sampled hierarchies

1270

1280

1290

1300

1310

1320
Brain

1 4 10 20 50 100 200
Number of sampled hierarchies

2060

2070

2080

2090

2100

2110
Cora-ML

1 4 10 20 50 100 200
Number of sampled hierarchies

2450
2460
2470
2480
2490
2500

WikiPhysics

Figure 18: Approximated Expected Dasgupta costs for different numbers of sampled hierarchies for
randomly initialized probabilistic hierarchies.

Minimized Version. To reduce EPH’s runtime, we introduce a minimized version of our algorithm
that samples a single hierarchy and omits validation steps. The final hierarchy is selected on the
training loss, enabled by the alignment between expected and discrete scores. We compare this
minimized version to the original and FPH on the graph datasets in Tab. 17, with all methods trained
using the original setup described in Sec. 5.

Table 17: Results of the minimized version of EPH for the graph datasets. Best scores in bold, second
best underlined.

Dasgupta cost (↓) Tree-sampling divergence (↑)

Dataset PolBl. Brain Cites. Genes Cora-ML OpenF. WikiP. DBLP PolBl. Brain Cites. Genes Cora-ML OpenF. WikiP. DBLP

FPH 238.65 425.70 76.03 182.91 257.42 355.61 482.40 31,687 31.37 32.75 69.38 67.78 59.55 57.58 49.87 41.62
EPH 235.50 400.20 74.01 176.57 238.28 312.31 456.26 30,600 32.05 34.24 69.36 67.75 59.41 57.83 50.23 42.74
EPH (minimized) 236.86 404.30 72.81 173.56 238.11 309.33 463.63 30,644 31.92 34.26 69.36 67.85 59.54 57.92 50.19 42.70

Our minimized version outperforms FPH in 14 out of 16 cases while achieving a shorter runtime, as
shown in Tab. 20.

C.5 Standard Deviations

We show the standard deviations of the randomized models on the graph datasets in Tab. 18 and for
the vector datasets in Tab. 19.

C.6 Runtimes

We report the runtimes for EPH and the baselines in Tab. 20 and Tab. 21. While HypHC, FPH,
and EPH are executed on a GPU (NVIDIA A100), the remaining methods do not support or do not
require GPU acceleration. Since gHHC has a lower computational runtime than the other randomized
methods, we run it with 50 random seeds instead of 5.

24

13841https://doi.org/10.52202/079017-0443

Table 18: Standard Deviations for the graph datasets.

Dasgupta cost Tree-sampling divergence

Dataset PolBl. Brain Cites. Genes Cora-ML OpenF. WikiP. DBLP PolBl. Brain Cites. Genes Cora-ML OpenF. WikiP. DBLP

HypHC 6.37 9.05 22.93 16.54 51.74 28.83 36.64 OOM 0.47 0.64 0.71 0.35 1.47 1.02 1.22 OOM
EPH 0.43 1.31 0.10 2.17 1.02 2.49 2.95 35.89 0.31 0.39 0.01 0.07 0.02 0.12 0.15 0.03

Table 19: Standard Deviations for the vector datasets.

Dasgupta cost Accuracy

Dataset Zoo Iris Glass Digits Segmentation Spambase Letter Cifar Zoo Iris Glass Digits Segmentation Spambase Letter Cifar

HypHC 0.08 0.58 0.27 1.37 0.46 2.04 45.10 OOM 0.05 0.01 0.05 0.07 0.06 <0.01 0.01 OOM
FPH - - - 5.29 3.07 19.31 96.52 528.68 - - - 0.04 0.06 0.01 0.02 0.01
EPH 0.01 0.01 0.01 0.11 0.22 1.11 2.42 5.73 0.03 <0.01 0.01 0.06 0.05 <0.01 0.01 0.01

C.7 Pseudocodes

In the following, we provide a formal description of our EPH algorithm, the subgraph sampling, and
how we normalize graphs.

Algorithm 1 EPH
Input: G = (V,E): Graph
Input: T = (A,B): Initial hierarchy
Input: α: Learning rate
Input: K: Number of sampled hierarchies
for t = 1, . . . do
gt ← 0
for k = 1, . . . ,K do
Ĝ ← SampleSubgraph(G)
T̂ ∼ PA,B(T)
gt ← gt +∇T Score(Ĝ, T̂)

end for
Tt ← Tt−1 − α

K gt
Tt ← P (Tt) //simplex projection

end for
return T̂t

Algorithm 2 NormalizeGraph
Input: G = (V,E): Graph
P (vi, vj)← wi,j∑

u,v∈V wu,v

P (vi)← wi∑
j wj

Algorithm 3 SampleSubgraph
Input: G = (V,E): Graph
Input: M : Number of sampled edges
Ê ←MultiSet() //allow duplicate edges
for m = 1 . . .M do
e = (vi, vj) ∼ P (vi, vj)
Ê.add(e)

end for
Ĝ ← (V, Ê)

NormalizeGraph(Ĝ)
return Ĝ

25

13842 https://doi.org/10.52202/079017-0443

Table 20: Runtime in seconds for the graph datasets with n′ = 512 internal nodes.

PolBlogs Brain Citeseer Genes Cora-ML OpenFlight WikiPhysics DBLP

Nodes 1222 1770 2110 2194 2810 3097 3309 317080
Edges 16715 8957 3694 2688 7981 18193 31251 1049866

WL 1 <1 <1 <1 <1 1 1 OOM
AL 1 1 <1 <1 1 1 2 101
Louv. 1 1 1 1 1 1 1 1031
RSC 92 78 104 427 280 626 863 OOM
UF 9 3 1 1 2 4 6 OOM
gHHC 75 79 73 78 73 79 83 15630
HypHC 2043 4163 5981 6816 11557 14278 16778 OOM
FPH 452 547 345 373 644 592 667 6647
EPH 1496 1066 749 521 1196 1654 2325 224331
EPH (minimized) 111 100 72 79 85 116 157 4160

Table 21: Runtime in seconds for the vector datasets with n′ = min{n− 1, 512} internal nodes.

Zoo Iris Glass Digits Segmentation Spambase Letter Cifar-100

Points 101 150 214 1797 2310 4601 20000 50000

WL <1 <1 <1 8 13 51 983 8316
AL <1 <1 <1 8 13 51 985 8564
SL <1 <1 <1 8 13 51 975 8494
CL <1 <1 <1 8 13 52 986 8594
Louv. <1 <1 <1 8 14 55 1065 7324
RSC 1 1 2 27 40 127 2009 14110
UF <1 <1 <1 9 14 57 1132 OOM
gHHC 47 57 59 83 66 89 110 8462
HypHC 47 60 77 3385 5814 26933 250792 OOM
FPH 87 93 144 2586 3963 13876 134845 427557
EPH 445 763 1337 4328 6645 19974 130227 430322

26

13843https://doi.org/10.52202/079017-0443

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract accurately describes the contributions and claims of the paper.
The methodology is explained in Sec. 4, and theoretical properties and methodology are
shown and discussed in Sec. 4.2. Our subgraph sampling approach is discussed in Sec. 4.4.
The results on the graph and vector datasets are presented in Sec. 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Sec. 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

27

13844 https://doi.org/10.52202/079017-0443

Answer: [Yes]
Justification: All theoretical results include assumptions and proofs and are presented in
App. A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All training details and hyperparameters are disclosed. We provide all hyperpa-
rameters in Tab. 10, pseudeocodes in Alg. 1 and Alg. 3, and explain the experimental setup
in Sec. 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

28

13845https://doi.org/10.52202/079017-0443

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The project page of EPH is attached and the datasets (except the synthetic
HSBMs) are publicly available. The baselines are not attached since these are all publicly
available. Furthermore, the submitted code includes information about the environment
used for the experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details are provided in Sec. 5.1 and Tab. 10.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Standard deviations of our experiments are provided in Tab. 18 and Tab. 19.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

29

13846 https://doi.org/10.52202/079017-0443

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Machine and runtimes are stated in Sec. C.6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed the NeurIPS Code of Ethics and ensured that the
paper is conform with the code.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper proposes a hierarchical clustering algorithm for graphs and vector
data. There are no no broader societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

30

13847https://doi.org/10.52202/079017-0443

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The proposed models do not pose a risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The licenses of the used datasets are shown in Tab. 7 and Tab. 8. Furthermore,
all baselines and methods are cited accordingly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

31

13848 https://doi.org/10.52202/079017-0443

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All hyperparameters are shown in Tab. 10, pseudeocodes in Alg. 1 and Alg. 3,
and the experimental setup is explained in Sec. 5.1
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

32

13849https://doi.org/10.52202/079017-0443

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

13850 https://doi.org/10.52202/079017-0443

