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Abstract

In this paper, we analyze the sample and communication complexity of the feder-
ated linear stochastic approximation (FedLSA) algorithm. We explicitly quantify
the effects of local training with agent heterogeneity. We show that the communi-
cation complexity of FEdLSA scales polynomially with the inverse of the desired
accuracy €. To overcome this, we propose SCAFFLSA, a new variant of FedLSA
that uses control variates to correct for client drift, and establish its sample and
communication complexities. We show that for statistically heterogeneous agents,
its communication complexity scales logarithmically with the desired accuracy,
similar to Scaffnew [37]]. An important finding is that, compared to the existing
results for Scaffnew, the sample complexity scales with the inverse of the number
of agents, a property referred to as linear speed-up. Achieving this linear speed-up
requires completely new theoretical arguments. We apply the proposed method
to federated temporal difference learning with linear function approximation and
analyze the corresponding complexity improvements.

1 Introduction

Heterogeneity has a major impact on communication complexity in federated learning (FL) [28[36].
In FL, multiple agents use different local oracles to update a global model together. A central server
then performs a consensus step to incrementally update the global model. Since communication with
the server is costly, reducing the frequency of the consensus steps is a central challenge. At the same
time, limiting communications induces client drift when agents are heterogeneous, biasing them
towards their local solutions. This issue has mostly been discussed for FL. with stochastic gradient
methods [23}151]. In this paper, we investigate the impact of heterogeneity in the field of federated
linear stochastic approximation (federated LSA). The goal is to solve a system of linear equations
where (i) the system matrix and the corresponding objective are only accessible via stochastic oracles,
and (ii) these oracles are distributed over an ensemble of heterogeneous agents. This problem can be
solved with the FedLSA method, which performs LSA locally with periodic consensus steps. This
approach suffers from two major drawbacks: heterogeneity bias, and high variance of local oracles.

A popular means of overcoming heterogeneity problems is the method of control variables, which
goes back to the line of research initiated by [23]. However, existing results on the complexity of
these methods tend to neglect the linear decrease of the mean squared error (MSE) of the algorithm
with the number of agents N [37], or they require a lot of communication [23]]. In this paper, we
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Table 1: Communication and sample complexity for finding a solution with MSE lower than €2 for
FedLSA, Scaffnew, and SCAFFLSA with i.i.d. samples (see Cor. for results with Markovian
samples). Our analysis is the first to show that FedLSA exhibits linear speed-up, as well as its variant
that reduces bias using control variates.

Algorithm Communication 7' Local updates H Sample complexity T'H
FedLSA [12] O (A ogt) 1 O (Hogt)

O (53 log 2) O(x7) O (e log <)

O (L 1og ! (%) Oz log 1)

O (Gzlog ! O(3%) O (s 08 })

show that it is possible to reduce communication complexity using control variates while preserving
the linear speed-up in terms of sample complexity. Our contributions are the following:

» We provide the sample and communication complexity of the FedLSA algorithm, inspired
by the work of [51]]. Our analysis highlights the relationship between the MSE of the
FedLSA method and three key factors: the number of local updates, the step size, and the
number of agents. We provide an exact analytical formulation of the algorithm’s bias, which
is confirmed in our numerical study. We also give results under Markovian noise sampling.

* We propose SCAFFLSA, a method that provably reduces communication while maintaining
linear speed-up in the number of agents. This method uses control variates to allow for
extended local training. We establish finite sample and communication complexity for
SCAFFLSA. Our study is based on a new analysis technique, that carefully tracks the
fluctuations of the parameters and ccommunicationsontrol variates. This allows to prove
that SCAFFLSA simultanously maintains linear speedup and reduced communication.
To our knowledge, this is the first time that these two phenomenons are proven to occur
simultaneously in FL.

* We apply both these methods to TD learning with linear function approximation, where
heterogeneous agents collaboratively estimate the value function of a common policy.

We provide a synthetic overview of this paper’s theoretical results in Table[T]in the general federated
LSA setting, and we instantiate these results for federated TD learning in Table 2] (Appendix [E). We
start by discussing related work in Section[2] We then introduce federated LSA in Section [3| and
analyze it in Section[d} In Section 5| we introduce SCAFFLSA, a novel strategy to mitigate the bias.
Finally, we illustrate our results numerically in Section[6] Since an important application of LSA
is TD learning [47] with linear function approximation, we instantiate the results of Section {5 for
federated TD learning.

Notations. For matrix A we denote byN]|A|| its operator norm. Setting /N for the number of agents,
we use the notation E.[a.] = N~' Y ", a. for the average over different clients. For the matrix
A=AT =0,A € R and x € R? we define the corresponding norm ||z||4 = V2T Az. For
sequences a,, and b,,, we write a,, < b, if there exists a constant ¢ > 0 such that a,, < c¢b,, forn > 0.

2 Related Work

Federated Learning. With few exceptions (see e.g. [12]), most of the FL literature is devoted
to federated stochastic gradient (SG) methods. A strong focus has been placed on the Federated
Averaging (FedAvg) algorithm [36]], which aims to reduce communication through local training,
resulting in local drift when agents are heterogeneous [53]. Sample and communication complexity
of FedAvg were investigated under a variety of conditions covering both homogeneous [31}[20] and
heterogeneous agents [25], [27]. Different ways of measuring heterogeneity for FedAvg have then
been proposed [31} 41]]. In [44] it was also shown that FedAvg yields linear speedup in the number
of agents when gradients are stochastic, a phenomenon that we prove is still present in FedLSA.

In order to correct the client drift of FedAvg, [23] proposed Scaffold, a method that tames hetero-
geneity using control variates. [[17,38] prove that Scaffold retrieves the rate of convergence of the
gradient descent independently of heterogeneity, although without benefit from local training. It has
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Algorithm 1 FedLSA

Input: 1> 0,60y, € R, T,N, H >0
fort=0to7T —1do
Initialize 6; o = 0;
forc =1to N do
for h =1to H do
Receive Z{ ), and perform local update: 6 p, = 65, | — n(A°(Zf )07, _, —b(Zf},))

Aggregate local updates 6,11 = % Zi\le 0% i 1)

been shown in [37] (with the analysis of ProxSkip, which generalizes Scaffold) that such methods
accelerate training. However, unlike Scaffold, the analysis of [37] loses the linear speedup in the
number of agents. Several other methods with accelerated rates have been proposed [35} 15} 16l 18}, 21]],
albeit all of them lose the linear speedup. Contrary to these papers, we show that our approach to
FedLSA with control variates preserves both the acceleration and the linear speedup.

Federated TD learning. Temporal difference (TD) learning has a long history in policy evaluation
[47,9]], with the asymptotic analysis under linear function approximation (LFA) setting performed in
[49, 148]). Several non-asymptotic MSE analyses have been carried out in [4} 8} 142} 32| [45]. Much
attention has been paid to federated reinforcement learning 33} 43| 52]] and federated TD learning
with LFA. [26, 7, 34] provides an analysis under the strong homogeneity assumption. Federated TD
was also investigated with heterogeneous agents, first without local training [12]], then with local
training but without linear acceleration [[11} 22]. Recently, [50] proposed an analysis of federated TD
with heterogeneous agents, local training, and linear speed-up in number of agents. However, [50]
do not mitigate the local drift effects, and their conclusions are valid only in the low-heterogeneity
setting. In high heterogeneity settings, their analysis exhibits a large bias. Additionally, their analysis
requires the server to project aggregated iterates to a ball of unknown radius. In contrast, our analysis
shows that FedLSA converges to the true solution without bias even without such projection.

3 Federated Linear Stochastic Approximation and TD learning

3.1 Federated Linear Stochastic Approximation

In federated linear stochastic approximation, /N agents collaboratively solve a system linear equation
system with the following finite sum structure

A0, =b, whereA=LY" Ac b=1%N b,

where for ¢ € [N], A¢ € R¥*4 b € R% We assume the solution 6, to be unique, and that each
local system A“f¢ = b¢ also has a unique solution 5. The values of A’s and b®’s can be different,
representing the different realities of the agents. In federated LSA, neither matrices A ° nor vectors b®
are observed directly. Instead, each agent ¢ € [IV] has access to its own observation sequence (Z) xen,
that are independent from one agent to another. Agent ¢ obtains estimates {(A°(Zf), b"(Z)) }ken
of A€ and b®, where A¢ : Z — R%? and b® : Z — R? are two measurable functions. Naturally,
we define the error of estimation of A€ and b¢ as b®(z) = b¢(2) — b¢, A¢(z) = A°(z) — A€. This
allows to measure the noise at local and global solutions as

£°(z) = A°(2)6° — b(2) , and w®(z) = A°(2)0, — b°(2) , )
together with the associated covariances,
c _ | A Ac(NT c__ (T _ c T
2% _/z A°(2)A°(z) dm.(2), ¢ —/Z e(2)e(z) dme(2) , TS —/Zw (2)w(z) dme(2), 3)
that are finite whenever one of the following assumptions on the { Z; 4 1. >0 hold.

A1l. For each agent ¢, (Z)ken are i.i.d. random variables with values in (Z, Z) and distribution .
satisfying B [A°(Z§)] = A° and E, [b(Zf)] = b® and we define Ca = sup, || A°||.
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A2. Foreach ¢ € [N}, (Z)ken is a Markov chain with values in (Z, Z), with Markov kernel P..
The kernel P. admits a unique invariant distribution 7., Z§ ~ 7., and P is uniformly geometrically
ergodic, that is, there exist Tmix(c) € N, such that for any k € N,

sup (1/2)[[PE([2) = PE(|2!) |y < (1/4) /7@

z,2'€Z
and for ¢ € [N], we have E, [A°(Z{)] = A° and E,_[b(Z§)] = b®, and we define

|le]]cc = max sup le€(2)]] < oo, Ca = maxsup |A°(z)] < oo .
c€[N] z¢ c€[N] zez

Moreover, each of the matrices —AF¢ js Hurwitz.

In A2} random matrices A°(z) and noise variables £°(z) are almost surely bounded. This is necessary
for working with the uniformly geometrically ergodic Markov kernels P.. For simplicity, we state
most of our results using Am which is classical in finite-time studies of LSA [46, 14]]. Nonetheless,
we show that our analysis of FedLSA can be extended to the Markovian setting under AR}

In a federated environment, agents can only communicate via a central server, which is generally
costly. Hence, in FedLSA, agents’ local updates are only aggregated after a given time. During the
round ¢ > 0, the agents start with a shared value 6; and perform H > 0 local updates, for h = 1 to
H, given by the recurrence

0 n =05 1 —n(A(Z{ )00 1 — D(ZF1)) 4

with 0 , = 6;, and where we use the alias Z; ), = Z Hith, to simplify notations. Agents then send
0, 1 to the server, that aggregates them as 6, = N ! ZC 1 U5_1, i and sends it back to all agents.
We summarize this procedure in Algonthml Our next assumpt10n which holds whenever A is
Hurwitz [19, 39} [15]], ensures the stability of the local updates.

A3. There exist a > 0, 1o > 0, such that ne.a < 1/2, and for n € (0;1), ¢ € [N], u € R, it
holds for Z§ ~ m., that EY/?[||(1 — nA<(Z§))ul?] < (1 —na)|u|.

3.2 Federated Temporal Difference Learning

A major application of FedLSA is federated TD learning with linear function approximation.
Consider N Markov Decision Processes {(S, A, Pypp, 7, ¥) }ee[n] With shared state space S, action
space A, and discounting factor v € (0,1). Each agent ¢ € [N] has its own transition kernel
P§ipp> Where P§p(+|s, a) specifies the transition probability from state s upon taking action a for
this specific agent, as well as its own reward function r¢ : S x A — [0, 1], that we assume to be
deterministic for simplicity. Agents’ heterogeneity lies in the different transition kernels and reward
functions, that are specific to each agent.

In federated TD learning, all agents use the same shared policy 7, and aim to construct a single shared
function, that simultaneously approximates all value functions, defined as, for s € S and ¢ € [N],

ver(s) =E[ 307 Fro(S5 A7), with S5 = 5, A7 ~ w(|S5), and 57, ~ Ppp(1SF, 7).
In the following, we aim to approximate V7 (s) as a linear combination of features built using
a mapping ¢ : S — RZ. Formally, we look for # € R? such that the function Vy(s) = ¢ (s)0
properly estimate the true value. For ¢ € [N], we denote p€ the invariant distribution over S induced
by the policy 7 and transition kernel P§;pp of agent c¢. Our goal is to find a parameter ¢ which is
defined as a unique solution to the projected Bellman equation, see [49], which defines the best linear
approximation of V™. This problem can be cast as a federated LSA problem [42,150] by viewing
the local optimum parameter 6¢ as the solution of the system A0S = b® , where

AC = Es~u¢,s’~P”>C(~|s) [d)(s){qﬁ(s)*v(ﬁ(sl)}—r] ) and BC = Es~u¢,a~ﬂ(~|s)[¢(s)rc(saa)] . (5)
The global optimal parameter is then defined as the solution 6, of the averaged system

(£ 5N A0, = L7 be. Asitis the case for federated LSA, this parameter may give
a better overall estimation of the value function. Indeed, the distribution ;¢ of some agents may be
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strongly biased towards some states, whereas obtaining an estimation that is more balanced across all
states may be more relevant.

In practice, when computing value functions, the tuples { (S}, A, S§ 1) }ren are sampled along one
of the two following rules.

TD 1. (S, Ay, Si1) are generated i.i.d.with Sy, ~ ¢, A ~ 7(-[Sg), Si1 ~ Pypp(-[Sk, A%) -
TD2. (S, Ay, Si,.) are generated sequentially with A, ~ (-[Sg), Si 1 ~ Pypp(-[Sk, A7) -
The generative model assumption TD(I]is common in TD learning [8] 30, 42, 43]. It is possible to
generalize all our results to the more general Assumption TD[2} sampling over a single trajectory and
leveraging the Markovian noise dynamics. This would have a similar impact on our results on TD(0)

as it has on the ones we will present for general FedLSA in Section[d} In our analysis, we require
the following assumption on the feature design matrix X = E,. [¢(56)p(S6) '] € RP*%.

ID3. Matrices ¥, are non-degenerate with the minimal eigenvalue v = min ¢y )\min(E;) > 0.

Moreover, the feature mapping ¢(-) satisfies sup,cg ||¢(s)|| < 1.

This assumption ensures the uniqueness of the optimal parameter #¢. Under TD[I]and TD[3]we check

the LSA assumptions AlT|and AB] and the following holds.

Claim 3.1. Assume TD[l|and TD[3| Then the sequence of TD(0) updates satisfies All|and A5|with
Ca=1+7, [Pzl <20+7*,  Tr(3) <20+ (107 +1)

_ (A= _ (A=)
L E<)

We prove this claim in Appendix [E.1] and refer to [45} 42] for more details on the link between TD
and linear stochastic approximation.

4 Refined Analysis of the FedLSA Algorithm

4.1 Stochastic expansion for FedLSA

We use the error expansion framework [1, [14] for LSA to analyze the MSE of the es-
timates 6; generated by Algorithm For this purpose, we rewrite local update (@) as
05, — 05 = (1 —nA(Z5 )05, — 05) —ne(Z5),), where £¢(z) is defined in (Z). Running this
recursion until the start of local training, we obtain ’

c c C, c c H C, c c
et,H -0 = F7E,17:7121{9t70 =05} =1 FE,}QLHE (Zt,h) )

where £°(2) is as in (3), and we recall that 67 , = 6; 1, Ve € [N]. We also introduced the notation

F(C.’n) = HZ:m(I - nA(ZtC,h)) ) l<m<n< H ’

t,m:mn

with the convention Fgf;,?:)n = I for m > n. Note that by A , Fﬁi;j?n is exponentially stable. That

is, for any h € N, we have E!/2 [||F£f$:)m+hu||2] < (1 —na)"||ul|. Using the fact 6§ , = 6;_1, and
employing (T)), we obtain that

O — 0, =T\ {01 — 0.} + prr + 7o — 0P . with TV =NIN 187 (6)

— N AC 5 c = N H c, c c
where 7 i = 5> {(I—nA)" — FE,C:I){}{@* — b}, e = %ZcﬂZh:lFE,iﬁzLH(’? (ZEp)
are zero-mean fluctuation terms, and

pr = 5 Loty (1= (L= A9 ") {0 — 0.}
is the deterministic heterogeneity bias accumulated in one round of local training. Note that pg
vanishes when either (i) agents are homogeneous, or (ii) number of local updates is H = 1. To
analyze FedLSA, we run the recurrence (6)) to obtain the decomposition

0 — 0, =0, + 0, 4 " 7

Here 6" = [T'_, f‘g;{{ﬁo — 6, } is a transient term that vanishes geometrically, 6\ is a zero-mean
fluctuation term, with detailed expression provided in Appendix @ and the term ét(b"b') is

0 = S () pm where T = BT

s=1

and accounts for the bias of FEdLSA due to local training, that vanishes whenever pg = 0.
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4.2 Convergence rate of FedLSA for i.i.d. observation model

First, we analyze the rate at which FedLSA converges to a biased solution 6, + ét(bi’bi). The following
two quantities, which stem from the heterogeneity and stochasticity of the local estimators, play a
central role in this rate

Oe =Ee[Tr(Z)] ,  heer = Be [IZ5 11105 — 0.2 -

Here 6. and Upeer correspond to the different sources of noise in the error decomposition (7). The
term & is related to the variance of the local LSA iterate on each of the agents, while Upee; controls
the bias fluctuation term. In the centralized setting (i.e. if N = 1), the Uperer term disappears, but not
the . term. We now proceed to analyze the MSE of the iterates of FedLSA :

Theorem 4.1. Assume and Then for any step size 1) € (0, 1)) it holds that

. — —  JETEI,

where the bias 9 converges in expectation to G(bi’bi) =({I- f‘(g))*lﬁ H at a geometric rate, and
]El/QlHetbl b')H 1< NHE[[[05—0, ][]
~ a *

is uniformly bounded by

The proof of Theorem[d.1|relies on bounding each term from (7). We provide a proof with explicit
constants in Appendix [Al Importantly, the fluctuation terms scale linearly with N. Moreover, in
the centralized setting (that is, N = 1), the bias terms pz, 6."""” and Geer vanish in Theorem
yielding the last-iterate bound

EV2[110: — 0.1%] < /2= + (1 —na)™ |60 — 0] ,

which is known to be sharp in its dependence on 7 for single-agent LSA (see Theorem 5 in [13]).
Based on Claim 3.1} Theorem 41| translates for federated TD(0) as follows.

Corollary 4.2. Assume TD[I|and TD[3] Then for any step size ) € (0, 152), the iterates of federated

TD(0) satisfy, with x (05, 0%, .., 0N ) = Eo[[[ — 60,]12] V (1 + E. ||9f\l2
A (bi,bi 0,,01,..., oN —y)v
E1/2[||9t—9t( )_0*” ﬂX((l ’Y)VN ) + HN (!P:l)ly + (1 _ ?7(12’7) )tHHeO o 9*H .

The right-hand side of Corollary [.2]scales linearly with N, allowing for linear speed-up. This is in
line with recent results on federated TD(0), which shows linear speed-up either without local training
[7] or up to a possibly large bias term [50] (see analysis of their Theorem 2). While Corollary [4.2]
shows the algorithm’s convergence to some fixed, biased value, one can set the parameters of FedLSA
such that this bias is small. This allows to rewrite the result of Theorem [.1]in order to get a sample
complexity bound in the following form.

—— e 2/5 .
Corollary 4.3. Assume and Let H>1,and0 < e < ( Uh””WEEC([IHQ* 0-11) v lll:C;G Il

Set the step sizen = O ( 73,:552 A 7700) and the number of local steps H = O (% NC) Then,

to achieve E[||0r — 0, ||?] < €* the required number of communications for federated LSA is
7 =0 (e v Bl g Loorel)
aneo aZe '

In Corollary , the number of oracle calls scales as TH = O (%% Jog ”9029* I ), which shows
that FedLSA has linear speed-up. Importantly, the number of communications 7' required to achieve
precision € scales as e !. In the next section, we will show how this dependence on ¢! can be
reduced from polynomial to logarithmic. Now we state the communication bound of federated TD(0).
Corollary 4.4. Assume TD and TD Then for any 0 < €< 91(0 0 ) with

RETIRN
c —y)vNe? [16¢

to achieve E [||0T — 0, H2] < €2, the required number ofCOmmunicationsforfederated TD(O) is
7= 0 (b v SE g 1)

Corollary is the first result to show that, even with local training and heterogeneous agents,
federated TD(0) can converge to 6, with arbitrary precision. Importantly, this result preserves the
linear speed-up effect, showing that federated learning indeed accelerates the training.
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4.3 Convergence of FedLLSA under Markovian observations model

The analysis of FEdLSA can be generalized to the setting where observations {Z} },cn form a
Markov chain with kernel P.. To handle the Markovian nature of observations, we propose a
variant of FedLSA that skips some observations (see the full procedure in Appendix [B). This
follows classical schemes for Markovian data in optimization [40], as adjusting the number of
skipped observations (keeping about 1 observation out of 7,,,ix(c)) allows to control the correlation
of successive observations. We may now state the counterpart of Corollary 4.3] for the Markovian
setting.

Corollary 4.5 (Corollary {f.3] adjusted to the Markov samples). Assume A[2|and A[3|and let 0 <

Drar Vo B 11050, 111)*° - ~
(Ve VB ll5 1) v B0 Set the step size n = O (522 Aoy AnED), where

Vpeter VT e

€<

we give the expresszon of 77( ) s @B7). Then, for the iterates of Algorithm |3 l in order to achieve
E[||67 — 6.?] < €2, the required number of communication is

T=0 ((an%o y EC[”ZSQQ*”]) log Loo=0: H) 7

where the number of local updates H satisfies

H _0< RV maxcmax@)log(NT“(neo—m+2Ec[|9:—9*|]+n||s|oo>/e2)).

Ee[[165—0x11] Ne

The proof of Corollary 4.3]follows the idea outlined in [40]], using Berbee’s lemma [10]. We give
all the details in Appendix [B] This result is very similar to Corollary #.3] Most crucially, it shows
that the communication complexity is the same, regardless of the type of noise. The differences
with Corollary lie in (i) the number local updl\%tes H, that is scaled by 7,ix (up to logarithmic
factors), and (ii) the additional condition 17 < 15 ’, that allows verifying the stability of random
matrix products with Markovian dependence (see Lemma [B.2]in the appendix).

Remark 4.6. Although, for clarity of exposition, we only state the counterpart of Corollary {.3in the
Markovian result, all of our results can be extended to Markovian observations using the same ideas.

5 SCAFFLSA: Federated LSA with Bias Correction

5.1 Stochastic Controlled Averaging for Federated LSA

We now introduce the Stochastic Controlled Averaging for Federated LSA algorithm (SCAFFLSA),
an improved version of FedLSA that mitigates client drift using control variates. This method is
inspired by Scaffnew (see[37). In SCAFFLSA, each agent ¢ € [IN] keeps a local variable £, that
remains constant during each communication round ¢. Agents perform local updates on the current

estimates of the parameters GA;O = 6, for ¢ € [N], and for h € [H],

Hf,h = etc,h—1 —n(A( tc,h) tc,h—l —b( tc,h) —&)
At the end of the round, (i) the agents communicate the current estimate to the central server, (ii)
the central server averages local iterates, and (iii) agents update their local control variates; see
Algorlthrn By defining the ideal control variates at the global solution, given by £¢ = A°f, —b¢ =
Ac(0, — 65), we can rewrite the local update as

Af,h — 0, = (I=nA“( tc,h))(Atc,hq —0) + (& — &) — WWC(th) ) @
where w®(z) is defined in (Z). Under it has finite covariance X¢, = [, w® (2) Tdme(2).

Similarly to the analysis of FedLSA, we use (8] to describe the sequence of aggregated iterates and
control variates as, fort > 0 and ¢ € [N],

Ory1 — 0, = fﬁf” (9t ) Zc 1 f+1( ff) — NWii1
i1 — & =& — &+ m(9t+1 —01),

where C¢,, = SO0, h+)1 g and @y = &SN S Chrjr)l gw(Zf,). We now state the
convergence rate, as Well as sample and communication complexity of Algorithm 2]

©))

13933 https://doi.org/10.52202/079017-0447



Algorithm 2 SCAFFLSA: Stochastic Controlled FEdLSA with deterministic communication

Input: 7 > 0,0y,6 € R4, T, N, H
fort =1to7T do
forc = 1to N do
Set 9;0 = 925
for h = 1to H do . . .
Receive Z{ ;, and perform local update 07 ;, = 07, | —n(A°(Z{},)0F ), —b*(Z¢,) —&F)

Aggregate local iterates: 0;,1 = % Ziv:l étc o

Update local control variates: 5, | = &f + ﬁq(atﬂ - éf )

Theorem 5.1. Assume A Letn, H > 0 such that ) < 1o, and H < a/2401 {03\ +Isg } Set
&5 = 0forall ¢ € [N]. Then we have

7 a T AC(nC
Ellor — 0,12 S 1%l + (1= 252) 7 {109 — 0,2 + n* HPEC[|A%(65 - 6.1} -

Corollary 5.2. Let € > 0. Set the step size n = O(min(ne, Na¢ /5 )) and the number local updates
to H = O(maX(n(c = N€(£a|=\2|\)))' Then, to achieve E[||07 — 0,|*] < €2, the required

number of communication for SCAFFLSA is
T — (’)(C +aHEH log (H9—9H+1EH|A§(9—9)II]@/C )) _

We provide detailed proof of these statements in Appendix [C| They are based on a novel analysis,
where we study virtual parameters 6¢ , , that follow the same update as (§)), without the last term
nw®(Zy ). After each round, virtual parameters are aggregated, and virtual control variate updated as

0 N je Fe c Fo c 0 0
Orp1 — 0, = %Zc:IQLH sand 7 — &0 =& — &0 + ﬁa[(et—&-l —Om) -
This allows to decompose
O —0.= 00— 0.+ 6, and & — & =& — &+ &7,

where 6§, — 6, and £¢ — £¢ are transient terms, and 6, = 6, — 0, and Eg = £¢ — £¢ capture the
fluctuations of the parameters and control variates.

We stress that our analysis shows that, in comparison with FedLSA, the SCAFFLSA algorithm
reduces communication complexity while preserving the linear speed-up in the number of agents.
This is in stark contrast with existing analyses of control-variate methods in heterogeneous federated
learning, that either have large communication cost, or lose the linear speed-up [24} 137, 121]]. To obtain
this result, we conduct a very careful analysis of the propagation of variances and covariances of 6,

and {Nf between successive communication rounds. We describe this in full detail in Appendix

In Corollary we show that the total number of communications depends only logarithmically on
the precision e. This is in stark contrast with Algorithm[I] where the necessity of controlling the bias’
magnitude prevents from scaling H with 1/c. Additionally, this shows that the number of required
local updates reduces as the number of agents grows. Thus, in the high precision regime (i.e.small e
and 1), using control variates reduces communication complexity compared to FedLSA.

5.2 Application to Federated TD(0)

Applying SCAFFLSA to TD learning, we obtain SCAFFTD(0) (see Algorithm [5]in Appendix [E).
The analysis of SCAFFLSA directly translates to SCAFFTD(0), resulting in the following commu-

nication complexity bound.
Corollary 5.3. Assume TD[l| and TD[3|and let 0 < ¢ < \/SE.[1 + [65]?]/(1 — 7)v). Set the
step size 1 = O((llm‘%) and the number local updates to H = O(%). Then, to achieve

E[||01 — 04%] < €2, the required number of communication for SCAFFTD(0) is
- 1 10-0ll+(A—y)vE[|0-0]]]
Tfo((l_,y)ulog( )) .

€
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Figure 1: MSE as a function of the number of communication rounds for FedLSA and SCAFFLSA
applied to federated TD(0) in homogeneous and heterogeneous settings, for different number of
agents and number of local steps. Green dashed line is FedLSA’s bias, as predicted by Theorem [.1]
For each algorithm, we report the average MSE and variance over 5 runs.

Corollary confirms that, when applied to TD(0), SCAFFLSA’s communication complexity
depends only logarithmically on heterogeneity and on the desired precision. In contrast with existing
methods for federated TD(0) [[L1} 22, 150], it converges even with many local steps, whose number
diminishes linearly with the number of agents N, producing the linear speed-up effect.

Remark 5.4. In Appendix B we extend the analysis of Scaffnew [37] to the LSA setting. Their
analysis does not exploit the fact that agents’ estimators are not correlated, and thus lose the linear
speed-up. In contrast, our novel analysis technique carefully tracks correlations between parameters
and control variates throughout the run of the algorithm.

6 Numerical Experiments

In this section, we demonstrate the performance of FEdLSA and SCAFFLSA under varying levels
of heterogeneity. We consider the Garnet problem [2, [16]], with n = 30 states embedded in d = 8
dimensions, a = 2 actions, and each state is linked to b = 2 others in the transition kernel. We aim to
estimate the value function of the policy which chooses actions uniformly at random, in homogeneous
and heterogeneous setups. In all experiments, we initialize the algorithms in a neighborhood of the
solution, allowing to observe both transient and stationary regimes. We provide all details regarding
the experimental setup in Appendix [G] Our code is available either as supplementary material or
online on GitHub: https://github.com/pmangold/scafflsa.

SCAFFLSA properly handles heterogeneity. This heterogeneous scenario is composed of two
different Garnet environments, that are each held by half of the agents, with small perturbations. Such
a setting may arise in cases where each agent’s environment reflects only a part of the world. For
instance, if half of the individuals live in the city, while the other half live in the countryside: both have
different observations, but learning a shared value function gives a better representation of the overall
reality. In Figures[I(a)|to[I(d)] we plot the MSE with N' € {10,100}, H € {10,1000} and n = 0.1,
with the same total number of updates T"H = 500, 000. As predicted by our theory, FedLSA stalls
when the number of local updates increases, and its bias (green dashed line in Figures [I(a)|to[I(d)) is
in line with the value predicted bg our theory (see Theorem[4.T). For completeness, we plot the error
of FedLSA in estimating 6, + 6% in Appendlxl (Gl On the opposite, SCAFFLSA’s bias-correction
mechanism allows to eliminate all bias, improving the MSE until noise dominates.
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Figure 2: MSE, averaged over 10 runs, for last iterates of FedLSA (dashed lines) and SCAFFLSA
(solid lines) in the stationary regime, as a function of the number of agents, in different federated
TD(0) problems. The black dotted line decreases in 1 /N, serving as a visual guide for linear speed-up.

Both algorithms behave alike in homogeneous settings. In the homogeneous setting, we create
one instance of a Garnet environment. Then, each agent receives a slightly perturbed variant of this
environment. This illustrates a situation where all agents solve the same exact problem, but may
have small divergences in their measures of states and rewards. We plot the MSE in Figures
to[L(h)] with N' € {10,100} agents, n = 0.1, and H € {10,1000}, with the same total number of
updates T'H = 500, 000. In this case, as predicted in Corollary 4.3} the number of local steps H has
little influence on the final MSE. Since agents are homogeneous, control variates have virtually no
effect, and SCAFFLSA is on par with FedLSA. The MSE is dominated by the noise term, which
diminishes with the step size (see additional experiments in Appendix (G| with smaller 7 = 0.01).

Both algorithms enjoy linear speed-up! In Figure 2] we plot the MSE obtained once algorithms
reach the stationary regime, as a function of the number of agents N = 1 to 1000, for step sizes
n € {0.001,0.01,0.1,1} and H € {1,100}, in both homogeneous and heterogeneous settings.
Whenever (i) agents are homogeneous, or (ii) the number of local steps is small, both FedLSA and
SCAFFLSA can achieve similar precision with a step size that increases with the number of agents.
This allows to use larger step sizes, so as to reach a given precision level faster, resulting in the
so-called linear speed-up. However, when agents are heterogeneous and the number of local updates
increases, FedLSA loses the speed-up due to large bias. Remarkably, and as explained by our theory
(see Corollary[5.2), SCAFFLSA maintains this speed-up even in heterogeneous settings.

7 Conclusion

In this paper, we studied the role of heterogeneity in federated linear stochastic approximation. We
proposed a new analysis of FedLSA, where we formally characterize FedLSA’s bias. This allows to
show that, with proper hyperparameter setting, FEdLSA (i) can converge to arbitrary precision even
with local training, and (ii) enjoys linear speed-up in the number of agents. We then proposed a novel
algorithm, SCAFFLSA, that uses control variates to allow for extended local training. We analyzed
this method using on a novel analysis technique, and formally proved that control variates reduce
communication complexity of the algorithm. Importantly, our analysis shows that SCAFFLSA
preserves the linear speed-up, which is the first time that a federated algorithm provably accelerates
while preserving this linear speed-up. Finally, we instantiated our results for federated TD learning,
and conducted an empirical study that demonstrates the soundness of our theory in this setting.
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A Analysis of Federated Linear Stochastic Approximation

For the analysis we need to define two filtration: ]-';h = U(Zﬁk,t > s,k > h,1 <c¢<N),
corresponding to the future events, and f;h = O'(Ztc,k, t < s,k <h,1<c< N),corresponding to
the preceding events. Recall that the local LSA updates are written as

tc,h — 0y = (I—-nA( tch))( tc,hfl —07) —ne’( tch) .

Performing H local steps and taking average, we end up with the decomposition

Or — 0 = D0 {001 — 0.} + pur + T + nPrr (10)
where we have defined

_ 1 N ,

M= 2., Diir (11)

= 1 N AC c

PH = N Zc:l(l —(I-nA )H){G* — 0.},

— ]' N AC C, c
T = & o, A= nA)" — DI H0; - 0.}

_ I N H o em) e
PrH = T3 Zczl thl Ft,hZ—l:Hg (Zn) -

The transient term fﬁ"}{ (0:—1 — 6,), responsible for the rate of forgetting the previous iteration error

0:—1 — 0,, and the fluctuation term 0, g, reflecting the oscillations of the iterates around 0,, are
similar to the ones from the standard LSA error decomposition [14]]. The two additional terms in
(TO) reflect the heterogeneity bias. This bias is composed of two parts: the true bias pg, which is
non-random, and its fluctuations 7; . To analyze the complexity and communication complexity of
FedLSA, we run the recurrence (0] to obtain

0, — 0, = ét(tr) + égbi,bi) + ét(fl,bi) + ét(ﬂ) 7 (12)

where we have defined

t
o = T T {00 - 0.}, (13)
s=1

t
I = S ()

s=1
t t
A (fl,bi = _ _
0" =" I Tmem + A, om
s=11=s+1
t t
A (fl = _
0" =n>" T T
s=11=s+1

with the notations f‘g) = E[f‘inl)q] = % Zivzl(l — nA)H and Ag],)s,t = {szsﬂ 1:‘57%} -
(fg))tﬂ. The first term, ét(tr) gives the rate at which the initial error is forgotten. The terms ét(bi’bi)
and 0~§ﬂ’b') represent the bias and fluctuation due to statistical heterogeneity across agents. Note that
in the special case WhereNaf%ents are homogeneous (i.e. A° = A for all ¢ € [N]), these two terms
vanish. Finally, the term 9§ depicts the fluctuations of 6, around the solution ,. Now we need to
upper bound each of the terms in decomposition (12). This is done in a sequence of lemmas below:
0" is bounded in Lemma 0% in LemmalA.2l 6" in LemmalA.4| and §°**" in Lemma
Then we combine the bounds in order to state a version of Theorem

Theorem

Lemma A.1. Assume and Then, for any step size n) € (0, 1)) it holds

E[la™)2] < — 0=
“| t || ] — aN(l_e—Q)

with explicit constants in
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Proof. We start from the decomposition (T3). With the definition of égf') and
E” |:{sz5+1 F(n) }% H} = 0, we obtain that

E[I6)%) = 5 Z H{HF(”’}@,HHZ]-

1=s+1

Now, using the assumption A3|and Minkowski’s inequality, we obtain that

t
EI/Z[H{ H fin&}%an] ZE1/2H F(cn){ H F(n)}%,HHQ]

1=s+1 c=1 i=s+1

(a) t—1 B
< 1= na) B2 { T] 5% esall?] -
1=s+1

(14)

In (a) applied Af3|conditionally on F,”, ;. Hence, by induction we get from the previous formulas
that

t
E[6]?] < Z (1 — na)"E[||@s,ull?] - (15)

Now we proceed with bounding E ||| @ #|?]. Indeed, since the clients are independent, we get using

(TT) that
E[ll6sm %] NQZ B, e (Zen)lP]
= N2 e 1[2 BTG e (25 ) 7]
< S (e E[e(2,)I7)

Therefore, using (3) and the following inequality,
H-1 1
> (1 —na)** <HA—, forally>0,suchthatna < 1,
na
h=0
we get

Elponl?] < & (HA L) o

Plugging this inequality in (I3]), we get

t
(A1) < PR (10 0 ) [0~
s=1

N
G 1
ST IR N
*N(n 1—(1—na)?#
N0e 1
< oy e AN T
where we used additionally
e <l—gz<e™, (16)

which is valid for z € [0; 1/2]. Now it remains to notice that
T A 1 1
<
1—e~ 1—e-
for any = > 0. O

We proceed with analyzing the fluctuation of the true bias component of the error 6; defined in (13).

The first step towards this is to obtain the respective bound for 7s g, s € {1,...,T}, where 75 g is

defined in (TT). Now we provide an upper bound for G(H ek
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Lemma A.2. Assume and Then, for any step size n € (0, 1)) it holds

2 E. Ec 1]
El/Q ||9(f| ,bi) ” 2’]’}’0/1 ter || |HpH||
Na aH1/2N1/2

Proof. Recall that 6""® is given (see (T3)) by

t t t t
i =3 11 1 T,H+(z{ 0 fgrvz,}—@;w—s) o an
=1i=s+1
T

s=1 i=s+1

T

where 7, g and pyy are defined in (TT). We begin with bounding 7. In order to do it we first need to
bound 7 gr. Since the different agents are independent, we have

1 . .
E[|1 7,1 1% = N2 > S E[(( - AT — 102 — 0.1 - (18)
c=1

Applying Lemma and the fact that {(I — nAC)h”AC(Z;h)F(C(ZH) (05 — 9*)}th1 is a
martingale-difference w.r.t. F_ > We get that

E[H((I—nfv) ~TI{6S — 0.3)1%]

||Z — A TLA(ZE T 02 — 0.3

L= nAY)" T AZE )T, 1,105 = 03]

H

Z [H( s,(h+1):H
h=1

H

Zl 0

< a)? "0 0.} TR 1)) T (AN(ZE) T AYZE TS ) 405 — 0.} -

s,(h+1):H

Using the tower property conditionally on ]-' 10 We get

(eym) Ac(rc T Ac(re (esm) _ (cm) c mlemn)
]E[(F (ZJrl) H) (A( S,h)) A( s,h)]‘—‘s,(71+1);H]—E[(FS,(Z+1): ) E I (z+1) ]

where %% is the noise covariance matrix defined in [@). Since for any vector u € R? we have
lulls. < (155 |

, we get
~ H
E[[[((1—nA9)" — 1IN {0e — 0,317 < n* > (1 — na)2h- ”E[HF(CZ+1 {05 — 033 ]
h=1

H
<RI 1Y (1 = na)2 VR[S {02 - 0,317 (19)
h=1

< HipP (1= na)* =055 1165 — 6.7 -

Combining the above bounds in (I8) yields that

H? (1 —na)* =0 570011925 111165 — 6.2
E[l17,n?] < N : (20)
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Thus, proceeding as in (T4) together with (20), we get

t t
BT =" EUTL_ ., Tamsl

¢ HpP(L—pa)H0 0 155 1165 — 0.1

< ZS L N2¥_ (1 _ na)QH(t—s)
H772 1 'r)a ( 1) .
- (1 _((1 —na ))2H) [”E || ||9* - 9*|i2i
2Han

< n Hane™
~ aN(1—na)? 1 — e 2Han

Ec (125 11165 — 6.[1%)

IN

277 c c 2
LRI 1602 - 6.7

In the bound above we used (T6) together with the bound

—2x

xe 1
T—em =372

Now we bound the second part of 6(ﬂ *) in (T7), that is, T%. To begin with, we start with applying

Lemma|[D.T]and we get for any s € {1 trandi € {s+1,...,t}, that

{ H I‘ F(n t— 5 Z { H F(n) _fg))(fg))i—s—lﬁH.

1=s+1 1=s+1 r=i+1
Note that,

{ H F(U) } F(n) F(U) ( (77))1 s— lﬁH] =0
r=i+1

Proceeding as in (19), we get using independence between agents for any v € R?,

E[|(T {7 — T Jull? IIZ (TS0 — (=A™ )ul’

NQZEH (P57 — (L= nAS) ")l

N
Hn*(1 - na)Q(H_l 1 .
< N NZ”EA” [Jull® .
c=1

Hence, using (Z1), we get
HiP (1 — na)*H =) 2K, ||z ||

BN T T} - @) )oul?) = N am—T0

1=s+1
Combining the above estimates in (IE) and using Minkowski’s inequality, we get

EV2[ T2 < NlmﬂE |35 | HpHIIZ a)f1=*)

2 HaneHan

aH1/2N1/2 1 — ¢e—Han ECHE%HHﬁH”
2 —_
< —riayyey Bl ezl
where we used that na < 1/2 and
e "
1, >0
l—e® ™ v=

and the statement follows.
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Lemma A.3. Recall that pir = + SN (1— (1 — A ") {65 — 0,}, it satisfies

C

2 H? N B
Iprll < > exp(nH||A])]|6s — 0. (22)
c=1
Proof. Using the identity,
H-2

1-(1- = Hu —u? k 23
(1w = Hu—u ZO <k+2> (23)

and the inequality (,/7,) < (”,/?) H?, we get that

H-2 H-2

H H? H-2 H?

—1)k Ml< = A H -2 24
S0 (o) < X ()t < w2 oo

Using @23) with u = nA° for all ¢, we get
| X H-2 o
oo HAci 2A52 71]{7 Ack:
pi N; A —1%( )kZ:O( Mo ) A9

by definition of #¢ and 6,, we have that >~ A°(9¢ — 6,) = SN Acge — (N, A), =
S b — 3N be = 0. Using this and (4), we finally get (22). O
Lemma A.4. Assume and Then for any step size n) € (0,1 ) we have

EV2(16:711%) < (1= na)™ 60 — 6.

Proof. Proceeding as in (T4) for any u € R? we have

t
EV2[| TT % ul?) < (1 = na) ™ ul
s=1

Using this result for u = 6y — 6, we get the statement. O
Lemma A.5. Assume and Then for any 1 € (0,71s0) we have
167 = (1= D) ol < (1= ma) (L= D)~ |

Proof. Using A[3|and Minkowski’s inequalitty, we get
1650 = (=T | = (0= T3) () |
< ||<Iff<">>*1||u<f<"’>t- [

< @-T) Y — ZIII—T}AC (Y =15y

< (1—na)"|(1 —PS!P) YT |
and the statement follows. O

Theorem A.6. Assume A and Al Then for any step size 1) € (0, 1)so) it holds that

EI/Z “|9 e(b' bi) 9 ” / 7]06 2 / 27]Uheter

2 Ecnzgn 17
aH1/2N1/2
where the bias égbi’bi) converges to (I — f‘g’))_lﬁH at a rate

1670 — (1= T || < (1= ) || = T) | |1 -

+

+ (1 =na)™0o — 0ull . (25)
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Proof. Proof follows by combining the results Lemma [A-T}Lemma [A-3]above. O

In the lemma below we provide a simplified sample complexity bound of Corollary 3] corresponding
to the synchronous setting, that is, with number of local training steps H = 1. There, the bias term
disappears, and above results directly give a simplified sample complexity bound.

Corollary A7 Assume Allland AB| Let H = 1, then for any 0 < € < 1, in order to achieve
E[l|07 — 0.]?] < € the required number of communications is

f}heter Vo. HGO — 0*”
T = 1
© ( Na2ez % €

number of communications, setting the step size

aNée?
n==———"—-: (26)

Vheter V O¢

Proof. Bounding the first two terms in decomposition (23)) we get that the step size should satisfy
aNe?

n< ——.
Uheter \ O¢
From the last term we have

MUTINNG. 5 WA
a“e €

1
t>—1lo
a

Corollary A.8. Assume A[l|and A3} For any

Ca' Ecllos — 6., (m&nef —0,] )2/5

0<e<
a a

in order to achieve E[||0r — 0.||*] < € the required number of communications is

E.||6¢ — 6 0 — 6
T — O< || *2 *H 10g || 0 *”) 7 27)
a“ce €

N=0 (W)
Uheter V O¢

f}heter\/a—s
H=0|—7+——
<N€Ec9§—9*||)

setting the step size

and number of local iterations

Proof. We aim to bound separately all the terms in the r.h.s. of Theorem[@.1] Note that it requires to
set ) € (0;19) with 7o given in (26) in order to fulfill the bounds

/ nvheter < / O¢

Now, we should bound the bias term
EV2[|6°717) < (14 (1= na) ™) [T =T) " purll < 20T =T3) | -

Thus, using the Neuman series, we can bound the norm of the term above as

(’1) ('I) Hk = || _H”
I-T} E (3 E (1 —na P 11| —
I( ul = ”k . . na)” " pul < = (1—na)¥
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Hence, using the bound of Lemmal[A.3] we get

2pull  _ maH  nHE[exp(nH[|Ac|)]65 — 0.]]
1-1-na)f —1-(1—-na)H a
< 2nHE.[exp(nH||A])]10F — 0.]]] _ nHE[]|05 — 0]

5 (bi,bi
EV/2[||6{") 2]

IN

a ~ a
where we used the fact that the step size 7 is chosen in order to satisfy nH Ca < 1. Thus in order to
fulfill E2/2[]|6®**V||2] < e we need to choose 1 and H such that

nHE.[|65 — 0.]] < <a.

It remains to bound the term 7%)\‘)‘5”' Using the bound of Lemma we get

E.[|%g E.||2< || (nH) 3/2
D Y Y
aH1/2N1/2 'Uhetervo'e C[H@i - 0*”] .

Hence, it remains to combine the bounds above in order to get the sample complexity result (27). [

Corollary A.9. Assume TD[I\and TD[3| Then for any

2(V2(1+7)y/ET0—0TVA+ETOIDENO—011)  ampjo—o))
O<es< =P V T @)

in order to achieve E|||07 — 0,||?] < €* the required number of communications for federated TD(0)

algorithm is
E[l6—01I] lle—oll
T= (9(((1 eV (1_7)y6>log . ) .

B Markovian sampling schemes for FedLSA

Note that under each of the matrices A¢, ¢ € [N] is Hurwitz. This guarantees the existence and
uniqueness of a positive definite matrix (). which is a solution of the Lyapunov equation

{AC}TQC + QCAC =T.
We further introduce the associated quantities, that will be used throughout the proof.

Ac = HQC||_1/2 s Too,e = (1/2)||A°||Z?2||QCH_1 AMQell s a= gg[il{}] e 5 Moo = MIN Tooc

c€[N]
KQ.e = Amax(Qc)/Amin(Qc) ,  bg,e = 2\/RQ,cCa, kg = g% KQ,e, bg= g% bg,c -

In our statement of A we also required that each of the chains (Z)xen starts from its invariant
distribution 7.. This requirement can be removed, and extension to the setting of arbitrary initial
distribution can be done based on the maximal exact coupling argument [[13, Lemma 19.3.6 and
Theorem 19 3.9]. However, to better highlight the main ingredients of the proof, we prefer to keep
stationary assumption.

Proof of Corollary[d.3] Assume that the total number of local iterations, that is, T'H, satisfies
TH =2qm+k, 0<k<2q, (29)

where ¢ € N is a parameter that will be determined later. With Lemma [B.4] we construct for each
c € [N] a sequence of random variables { Z oYi=1....m>» which are i.i.d. with the same distribution
7. Moreover, Lemma [B.4]together with union bound imply

P(3j € [m],c € [N]: Z33% # Z5;,) <mN(1/4)l9/7] .
The bound (29) implies that m < T'H/(2q). Thus, for any 6 € (0, 1), in order to guarantee that
P(3j € [m],c € [N]: Z33 # Z5;,) <6
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Algorithm 3 FedLSA with Markovian data

Input: 1 > 0,6, € R, T, N, H > 0, time window ¢ € N.
fort =0toT —1do
Initialize 6; o = 0;
forc=1to N do
for h =1to H do
Receive Z} ), then check the condition:
if h = qj,7 € N then
Compute local update

9?,3‘ = 90,j71 - TI(AC(ZtC,qj) - bC(Ztc,qj))

else
Skip current update

Average: 0,1 = + SN L0sy, (28)

it is enough to ensure that

/T
ANHT(/4)"" _ o

mN(1/4)l/7] < (30)
Inequality (30) holds for fixed § € (0, 1), if we choose
Tmix log (2N HT'/6
log 4

Thus, setting the block size ¢ as in (31)), we get that for total number iterations T'H satisfying (29),
with probability at least 1 — ¢ the results of Algorithm [3|are indistinguishable from the result of its
counterpart Algorithm applied with number of local steps H/q. We will denote the iterates of the

latter algorithm applied with number of local steps i € N as ngd)’h in order to make explicit the
dependence of global parameter upon the number of local iterates. We further denote the event, where

Hgnd),H/q = 07, by As. Thus, setting

H '[)heter Ve 1 )
H_of Owevoe 113 (32)
q (EcHI@i —0.]]] Ne
similarly to the way the number of local updates is set in Corollary {f.3] we obtain that
E[|07 — 0.°] = E[lor — 0.]°1a] + E[||0 — 6.]*17] (33)
= E[[65""" — 6.]La] + E[|or — 6./ 15]
< & 4+ VOEV2[||or — 04,

where in the last inequality we relied on the special choice of H/q from (32)) together with Holder’s
inequality. Now it remains to bound E[||67 — 6,||*] and tune the parameter § appropriately. Note that
within this bound we can not rely on the estimates based on independent observations {Z;‘ sz } J=1,...,m-
At the same time, note that the skeleton Zgjq, j > 0 for any ¢ € [N] is a Markov chain with the
Markov kernel P? and mixing time 7mix = 1. This allows us to write a simple upper bound on
E[||61 — 0. |*] based on the stability result for product of random matrices provided in [14]. Indeed,
applying the result of Lemma[B.1] we get

N 2
2T
EV2[0r — 0.1 < (90 =0+ ; 165 = Ol + nTH||€||oo> :
and the corresponding bound can be rewritten as

N 2
27
E[[l6r — 6.]%) < ¢ + V6 (90 =0+ > 60— 6.l + nTHfloo> :

c=1
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Thus, setting

654

2
N
HAT* (1160 — 0. + & S0, 1105 - 0] + el )
we obtain that the corresponding bound for block size ¢ scales as
’77'mix log (2NHT/6)
q= 1
og4

5:

)

—‘ < [Tmix log H log (NTE’ACOM/ez)] ,

where we write < for inequality up to an absolute constant and set

N 2
2 c
Acorr - <||0()_9*” +NZH9*_9*” +77||€||00> .

c=1
Combination of the above bounds yields that
E[|6r — 6.]%) < 2€2
and the proof is completed. O

Lemma B.1. Assume A2|and AB| Then, for the iterates 0, of Algorithm[3|run with parameters n, H, q

satisfying the relation
nH > 12 (2+ logd N long> 7
q a 2 2

it holds for any probability distribution £ on (Z, Z) and any t € N, that

(34)

N
1/4 2t .
E¢/ 16 — 0.1 < 180 — 0]l + 55 D 1165 — 0| +ntH]e o
c=1

Proof. First we write a counterpart of the error decomposition (12) - (13) for the LSA error of the
subsampled iterates of Algorithm 3] Namely, we write that

O — 0, = T\ {0 1 — 0.} + s +1P0sr (35)
where we have defined
rn? = [T - nA(Zi) . 1<m<n<H, (36)
h=m
N c,m,

F(nq)_ L FEI"P}]),
It H = WZC 1(I - tclnf{q ){90 — 0x }
Pt,H= —N 2uc— 1 Eh 1F§ciﬂﬁq1 HE (Zthh)

For notation simplicity we have removed the dependence of sz g on the subsampling parameter ¢ € N.
Thus, applying the result of [14, Proposition 7] (see also Lemma[B.2) together with Minkowski’s
inequality, we obtain from the previous bound that for any distribution £ on (Z, Z),

1/4[||Ptclan)”4} < TQ,Cele/Qe_"aH/(m‘Z) <1,
provided that the ratio nH /q satisfies the relation (34)). This bound yields that
1/475(n,
BT 1Y <1,

Ey/*[ll52, 21| Z 6% —

1 4
¢ el < Hlelloo -

Hence, we obtain by running the recurrence (33)), that
2
1/4 c
BL/ 016, — 041%) < 10— 0 + 20 S 1165 — 0]+t

c=1
and the statement follows. O
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Stability results on product of random matrices. The results of this paragraph provides the
stability bound for the product of random matrices T{"9 defined in (36). Define the quantities

t,m:n

-1

00 = [ii A kg% CxY N/ (6erg CA)} x [8ry2Ca Ja] ARV /2, 37)

Cr = 4(ky° Ca +d/6)* x [8ky°Ca /a] , cy" =a/{12Cr} .

Then the following result holds:
Lemma B.2 (Proposition 7 from [14], simplified). Assume AR|and Then, for any ¢ € [N], t € N,
step size 1) € (0, 77&2/[)}, any n € N, ¢ > Tyix, and probability distribution § on (Z, Z), it holds

]Eé/4 [HF(CW»Q)H4] < Me2d1/2eﬂin(nfm)/12 )

t,m:mn

Proof. 1t is enough to note that, since ¢ > Ty,ix, and we consider g-skeleton of each Markov kernels
P., each of the subsampled kernels P will have a mixing time 1. O

Berbee’s lemma construction. We outline some preliminaries associated with the Berbee’s cou-
pling lemma [3]] construction. We recall first a definition of the S-mixing coefficient. Consider a
probability space (€2, F,P) equipped with o-fields § and & such that § C F,® C F. Then the
B-mixing coefficient of § and & is defined as

B(3,8) = (1/2)sup Y _ Y [P(A; NB,) — P(A)P(B;)| ,

iel jel

and the supremum is taken over all pairs of partitions {A; };c| € §' and {B,};c; € &7 of Zy with
finite | and J.

Now let (Z,dz) be a Polish space endowed with its Borel o-field, denoted by Z, and let (ZV, Z&N)
be the corresponding canonical space. Consider a Markov kernel P on Z x Z and denote by P¢ and
E, the corresponding probability distribution and expectation with initial distribution £. Without
loss of generality, we assume that (Zj)xen is the associated canonical process. By construction, for
any A € Z,Pe (Zy, € A| Zy_1) = P(Zy_1,A), Pe-as. Inthe case { = 6, z € Z, P and E; are
denoted by P, and E,,, respectively. We now make an assumption about the mixing properties of P:
UGE 1. The Markov kernel P admits 7 as an invariant distribution and is uniformly geometrically
ergodic, that is, there exists 7,;x € N such that for all k € N,

A(PY) = sup (1/2)]|P*(z,) — P, ) lrv < (1/4)F/7)

z,z€Z

For ¢ € N, k € N, and the Markov chain {Z,, },cn satisfying the uniform geometric ergodicity
constraint UGE we define the o-algebras Fj, = 0(Zy, ¢ < k) and ‘Flj_+q =0(Zp,t>k+gq). In

such a scenario, using [[13, Theorem 3.3], the respective $-mixing coefficient of F; and F, ,j'

bounded by

g 18
B(q) = B(Fr. Fify,) < APF) = (1/4)l0/7)

We rely on the following useful version of Berbee’s coupling lemma [3]], which is due to [10}
Lemma 4.1]:

Theorem B.3 (Lemma 4.1 in [10]]). Let X and Y be two random variables taking their values in
Borel spaces X and ), respectively, and let U be a random variable with uniform distribution on
[0; 1] that is independent of (X,Y"). There exists a random variable Y* = f(X,Y,U) where f is a
measurable function from X x Y x [0,1] to Y, such that:

1. Y™ is independent of X and has the same distribution as Y,

2 P(Y* £Y) = Blo(X),0(Y)).
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Let us now consider the extended measurable space Zn = ZN x [0, 1], equipped with the o-field
Zy = 2N @ B([0,1]). For each probability measure ¢ on (Z, Z), we consider the probability
measure P = P; ® Unif([0, 1]) and denote by E; the corresponding expected value. Finally, we
denote by (Zk)keN the canonical process Zj, : ((#zi)ien,u) € Zy — zp and U': ((#)ien,u) € Iy —
u. Under Pf, {Zk}keN is by construction a Markov chain with initial distribution £ and Markov

kernel P independent of U. Moreover, the distribution of U under If”g is uniform over [0, 1]. Using
the above construction, we obtain a useful blocking lemma, which is also stated in [[10]].

Lemma B.4. Assume UGEl | let ¢ € N and 5 be a probability measure on (Z, Z). Then, there exists
a random process (Z ken defined on (Zy, Zx, ]P’g) such that for any k € N, it holds:

1. For any i, vector V' = (qu+1,...,2;q+q) has the same distribution as V; =
(Zig+1, -+ s Ziq+q) under Pg;

2. The sequences (V55)i>o0 and (Vi | )i>o are i.id. ;

3. Forany i, P¢(Vi # V) < B(q);
Proof. The proof follows from Theorem[B.3|and the relations between UGE[I]and 3-mixing coeffi-
cient, see e.g. [13} Theorem 3.3]. O
C Federated Linear Stochastic Approximation with Control Variates

C.1 Technical Lemmas

Lemma C.1. Assume AlandAl Recall C(t g = Zh 1 tchr-Ql .y Then it holds that
(t,c ’f] c
E {HI— ﬁCnH } < {Ci +||Z,1||} :
Proof. We rewrite I — C’T(?ff,) using Lemmaas

1 | 1 H n H H (

t,c c, c C,

I— EOT(;,H =7 {I - F;hzr)l:H} =7 Z Z ol 51)1 H o
h=1 h=1/4=h+

which can then be decomposed as
(t,c) °cr (e;m) c c c (e;m)
HOnH*HZZA éilH*ﬁZZ {As( — AT -
h=1f=h+1 h=1¢=h+1

Minkowski’s inequality and A give E1/2 [||% S S AT } < 17| A¢|. The
second term has a reverse martingale structure, and we thus have

2772
(t,c) n H c
B |r- o] < T {ch szl
which is the result of the lemma. O
Lemma C.2. Assume A and AH Recall C~'f+1 = Zle {I‘Eiﬁ:l g — 1= AC)H”’}. Then we

have

E[IC 2] < n?H* {Ch+IZ51} -

Proof. We start by recalling the definition of C 11, that is
N H

~c c 1 c,7 e —
t+1 = b1 T NZE i1 NZZ{FE};QlH (*A)H h}.
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Using Lemma[D.1] we have

N H H

~tc+1 NZZZFt h+1€{AP ‘ ) _AE}(I_AC)H_Z_l :

é=1h=1,=h
By Minkowski’s inequality and Assumption A} we obtain

N H H

E1/2 [HC ] NZZZE1/2 ”Ac Zc ) AEH2] )

¢=1 h=14=h

Now, we notice that
E[IA%(Z5,) — A°I] = B [|A%(Z;,) — A1) + | A° — A% < C& +]55 ]
and the result of the lemma follows. O

Lemma C.3. Assume and Recall Cf;,? = ZhH 1 I‘Ec;ﬂ)l .y then
BT ) < 208 {Ch+IS5 0} -

Proof. Denote Aj = A°(Z{,, 1),

Pi =T =T
1N (H H
- {0 i) - TTa-aai}
c=1 \(h=1 h=1

Using Lemma[D.1] we can rewrite

I, = ”Zz{hﬂll—mm}mz— z}{ I1 <1—nAz>}.

c=1k=1 h=k+1

Using triangle inequality and the fact that A} ’s are independent from each other, we have

Bl = 4 33 || T nan) | 2| fac - az] 2| 1T a-nsi]|-
h=k+1

c=1k=1
By triangle inequality, and using the definition of Ca and ”ECA , we have E[||Af — Af||]] <
E[|Af — Acl| +[|A¢ — Ac|| + [[Af — A°[]] < 2Ca +2[|Z4 || Therefore, we obtain

E|T%, ] <2nZ (1= na)* (Ca+lz51)
and the result follows. O

C.2 Proof

The linear structure of SCAFFLSA’s updates allow to decompose the updates between a transient
term, and a fluctuation term. To materialize this, we define the following virfual parameters

0o = by , ég}ozéo,and e =¢5, forallce {1,...,N}.

These parameters are updated similarly to 6;’s and &;’s, although without the last fluctuation term.
For the virtual parameter 6, the update is similar to (8], as follows

p— Oe = (L= nA(Z)))(0F 1 — 0.) +0(&F — €5,

which gives, after I local updates,

VtC,H b, = Ft+1(‘9 —0,) +nCi (& — &),
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where we recall T, = [, (I — nA(Zf})) and Cf, | = S tchi)l .- The virtual parameters
obtained after [ local updates are then aggregated as

1N
O = o ; 0%
This is then used to define the virtual control variates, similarly to (9},
Fc Fc 1 ] e
€t+1 = £t + UiH(aHl - et,H) :
These updates can be summarized over one block, which gives
Orir =0, =Ty 1 (0: — Z (8 ;

Fc c 1 c ] 1 c
S — &= niH(Ft‘H T¢ ) (0 —0.) + (I—- H c) (6 - HN Z (& — &) -

The analysis of SCAFFLSA can then be decomposed into (i) analysis of the "transient" virtual
iterates 6,’s and 5 s, and (ii) analysis of the fluctuations 6; — 6, and & — ft

Analysis of the Transient Term. First, we analyze the convergence of the virtual variables 6, and
& fort > 0and e € {1,..., N}. Consider the Lyapunov function,

2772 N
] 77H ~C c
Ve =100 = 0.1 + T D 1IEF — €017
c=1

which is naturally defined as the error in 6, estimation using the virtual iterates, on communication
rounds, and the average error on the virtual control variates.

Theorem C.4. Assume A and A Let n, H such that naH < 1, and H < m and set
&6 = 0forall ¢ € [N]. Then, the sequence (Y )tcn satisfies, for all t > 0,

s < (1~ 122 Bl

where o = ||0g — 0,1 + TL SN | A0S - 0,)]|.

Proof. Expression of the Lyapunov function. Since the sum virtual control variates is Zivzl étc =

S &S =0, wehave §pyy = &S0 0, = N 05, — nH(E - £). Applying
Lemma|[D.3] we obtain

0 1 ne ~C c
141 = 0,07 = Il Zet,H — 0 —nH(E - )|
c=1
1 Y 1 Y
=N Z 165 1 — 6 — nH (&5 — €)|1° — N Z 16e41 — 0f gy + nH(E — €)1
c=1

3 5 ) PHE QN >
ZnezH—e*—nH@s—g:)n ) Bl SRR
c=1 c=1

2 \

since £f, | = & + %(%H - 9f7H). Adding % 25:1 €51 — £¢|? on both sides, we obtain

N
1 « -
Ve =57 D65 i — 0x —nH(E — €))7, (38)
c=1
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where we defined Cg’ = EhH 1 I‘Echi)l .y~ In the following, we will use the filtration of all events
up to step ¢, Fy ::J(Z;h,O <s<t,0<h<H/1<c<N)

Using Young’s inequality, and Assumption AP we can bound

Bl6; 1 — 0. — nH(E — EIP) = [Ty (6 — 02) —nH (1= Cs ) (& — €I
< E[(1+ ao)[T{575 (0 — 017 + (1 + ag )P HPE(I(L - £C5 i) (€ — €9)°]
< (14 ao)(1 - na)QH]E[H@t =0+ (1 + ag I HPE[ (1 - C5 1) (€ — €I -
Using Lemma|[C.I] we have
2H2 .
E(I(1 - #C5 )& — €)I17) < 17— { CA +IZ5 1} ENIE — 211

We thus obtain, for H such that naH < 1, and after setting oy = # and using the facts that
(1—naH)(1+ao) <1—-"2Land 1+ ag' < 20g",

(10 1 — 0. — nH(E — €0)|
. naH 5o 2 1 2 c 4 774 c_ ¢cy2
< (1 28 Bl - 01+ 7 {CA +img I} ot BN - €51

T)G’H ] 77H c c c
— (1= 57 ) BB - 0u1P1+ T {Ch +Iz:} P HPENS - 5171,

2

Then, since % {CZA +[=¢)|} < 1, we obtain

c naH ) c c
Bl — 0. — 1 (& — DI < (1- 50 ) B[16 - 0. + Pt - 7] . 09)
and the result follows by plugging (39) back in (38). O

Analysis of the Fluctuations. To study the fluctuations, we define the following quantities,
0, =0,—0,,and & =¢—¢&, fort>0,andce{l,...,N}.

Our analysis is based on a careful study of the recurrence between variances and covariances of
parameters and control variates. We thus start by deriving recurrence properties on these quantities.
From the update of 6;, we have,

011 — 0, =T, 1 (6; — 6,)

N
Z tc — NEt+1

= ét—&-l 0. +Ft+16t + = Zcf+1§t NEL+1 5

2\3

which can be rewritten as a recursive update of the fluctuations

Or1 = L0 Z C +1f~f —NE¢t1 - (40)

Similarly, we have, for the fluctuations of the control variates

~C 1 n (& 1 = >
§iv1 = ﬁ(ﬂﬂ —Iy1)0: + (I Ct+1)ft NH Z +1§t - E(EtJrl — &) -

Remark that, for all ¢ > 0, gf and fg’s are sums of (random) linear operations computed on zero-mean
vectors, that are independent from these linear operations. Thus, for allt > O and allc € {1,..., N}
we have

E[6;] =0 , E[]=0. (41)
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We now aim at recursively finding a sequence of upper bounds {b\"? b(®:) 5= 57}~ such that,
forallt > 0,¢,¢ € {1,..., N} such that c # ¢/,

o 6] <
o 0@ | <8 e 07 <5

E@ET] | <t

(Initialization.) For t = 0, nothing is random so the fluctuations are zero, and bw o) — b(9 & — =b-
b7 = 0. We also study the first iteration of SCAFFLSA. In the following lemma, we give upper
bounds on the variances and covariances of the parameters obtained after one iteration.

Lemma C.5. Assume A[ljand A3| then the first iterate of SCAFFLSA satisfy the following inequali-
ties

0,6 — N—l c 0 3
B0 = T, br = Dm0 = 2 s, bf =

Proof. (Value ofbge’g).) From the definition of 6;, we have 6; = ~ Zc_l Zh 1 I‘gchﬂ aw(Z5 )

By independence of the agents, and since E[T’ g ,Zzl pw(Z7 )] =0forallc € {1,..., N}, and for
all h € {0,..., H —1},

9 N H
n"ND n c, c,
E[(6)01)7) = 05 >0 > E [Tt (26 )we(28 )T )]
c=1h=1
n? N H o
c,m c c,m T
= ﬁ Z ZE [Fl h]+1 HE (Fg,hzl;H) ’

c=1h=1

where the second equality comes from the fact that, for all h € {1,..., H — 1}, the matrix Fg?ﬁl: I

and the vector w®(Z¢ ;) are independent. Triangle inequality, Jensen’s inequality, and definition of
the operator norm then give

<3
1=
M= T[M=

&=

|E1@n @) < HE ez ] |

1,h+1:H 1,h+1:H

IA
Z|s
] =

rlem ZC(I‘() )T)H

()
Il
—
>
Il
-

< E

Z|s
_1M-
5 IM=

F(C,ﬂ) 2 ¢
1,h+1:H || wH .
Assumption ensures that E [Hrgch’?HHH ] < 1, and we have
o 2H & H
Bl @) ]| < T DIl < Tl -
[E@0@)T| < T o1l < T

(Value of bT.) Let ¢ € {1,...,N}. The definition of gf gives the following expression for the

: e N H ¢ H c
fluctuation &F = w777 3oy 32 { gchn-&)-l aY (ZLh)} ~ 7 2n=t FY}ZIL @ (Zi ;). Therefore,
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N H Y
(o,
e=1h=1 ot
1 L& i "
" (NH Z Z {(wC(Zl w) (Fgc}znﬂ H) } H Z “(Zi 1) Fgch"+)1 H)T>] .
e=1h=1 Z

With similar arguments as above, we have

1 e, é é, N -2 c, c C,
E[E)E)T] < NWZE[F& T ) T |+ 1 E [T T )] -

Assuming N > 2, triangle inequality gives

N — N —

E[( H S S| = S
[EEE T < 15l + S I8l = S 1)
(Value of b(l"@. ) For the covariance of gf and 51, we have
E[@1)E)]
n N H _
~5 | (B3
c=1 h=1
1 N H } ~ B 1 H
x (NHZDw%zih)f(ﬁf;ﬁlmf — 2 @ Z)T <F§°;21H>T>]
c=1h=1 h=1
n - (em) (em) n - (e:m) (e:m)
c é c T c c, T
=E NQH;]—;Fl hn+1 HZ (Fl hn+1 H) ]_]E ﬁ};rl h+1: HE (Fl,hZ-l:H) ] :

As a result, we have
~  ~ 2
|E[@, &) < Sl -

(Value of b7.) Similarly to above, for ¢ # ¢/, we have

[(51)(51) = (N Z{ gchn+1 gw® Z1 h } - = ngchnﬂ gw(Z7 h>>
¢=1 h=1
| NoH ) H
(N S5 (A T - 3y S T M)]
¢=1h=1 h=1

N
N2H2 ZE [Fgchn-i)-l :H (F%}Ln-i)-le)T}
c=1
1 c c c, 1 c, c c,
- NHQE |:Fg hn—&)-l HZ (Fg,hn—&)-l:H)T} - NHQE [F(l,hﬁl:HEw(Fg,hZzl:H)T} .

‘Which results in the bound

[BEE) | < o1l
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Lemma C.6. Let v > 0, and assume that nH {CA +1x% ||1/2} <vandn*H? {CQA +2£ } <
v. Then the following inequalities hold for any t > 0,

b3y < (1—na)* )" +ung§0’5’ oo g+ 2T 3” 2.,
nHBS < 20 4 3unp0S) 1 2 7 2 H27 + 20m® H2B] + 2 HIIE I
P H2b < 206" 4 3unHp ") +4m;2H2b7 + 3un?H2Y + 7 H||S, |
P H27,, < 200" + 3unH{" + Y PHE 4 o P+ HIIE I

Proof. (Value of bgil) ) Replacing §t+1 by its expression from (40), then expanding the expression,
we have

~ ~ N _ N T
(9t+1)(9t+1)T=( 100+ %Z Cinéi — U5t+1) (Ft+19t+%z Ciné - 775t+1)

TFT

N N
(g ~é 7]
- Ft+19t9TFt+1 + Z Ft+19t(§t )T( t+1 N Z 1€t 975 t+1

N N N
77 é - n = prd ~e
Ni ZZ t+1§t ft t-4-1)T - 775t+19tTFtT+1 N th+1(§t)T( t+1)T

é=1¢é=1 =1

0 N
— Ly 100 (Ees) " — N Ce)(E) (Eern) T + 1P (Eran) (Bern)

From the triangle inequality and Jensen’s inequality, we have

IE[(Be+1) (Oer1) 11| < BTy IPIE(B:0, 11| + nZ]EW IICE A IPIIEG:ES )

m

N
c=1

N N
Z CilPNEEE T + JZ—ZZ EY2(|CE, IPJEY 211G I EIEET

2‘@

=

Fﬂ)T

)y = _
+ H]E[nFillﬁtsfﬂ + 7I€t+19 t+1 |

Wct-s-lft €t+1 + 775t+15t Cita

2\“
i Mzmn

+ 17| ElEe+ 18]l -
Now, we have from @T)) that E[f;] = E[¢¢] = 0. Thus, we have, forall ¢ € {1,..., N},
B[ 0.8/ + 776’t+19TF§'21TH| = |[E[0 BBy, + neBIE T =0,
IEMCE 16085 + NE&l Fe Il = IE[nC; +1E[5t]5t+1 + g BIE ]th+1T]|| =0.
Which results in the following inequality

N
IE[Be+1) (Ocr1) 11| < BTy IPTIE(B:O; 11| + an EY2([1CF 4 IPIEG:E; TN

é=1

N N N
]7\772 IICE . IPIEEE TN + ZZ B2 O B 2 ICE 1 IPIELEE I
= T

[etield
el

+ 30?||ElEr418{ 4]l -
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Using Lemma|C.2] we obtain

IE[(Be1)@s1) I < (1= 1a)*" | E[6.0,]]

+ S {Ca+ISE 12 HIEGE T + 2 Zn2H4{cA+\\zﬁ\\}||E[et il

2

+
2\3
- 1
M=

2 S {Ch HISG ) GG + 307 Bl aelall

[
Il
—

Y

I
o=

Assuming nH {CA +HE%H1/2} <vandn*H? {Ci +HE%H} < v, we obtain

Z |E[ECEET]|

N
IE[r1) @) TN < (1 — na)™ |EGET] +0 2L > IR ]
N =1

772H2 N N
v ZZIM?& I+ 2 )

=

01’3!
[elld

This gives our first inequality that links our upper bounds,

H _ 3n*H
b < (1 —na)* o + v HES 4 2 Lbr o HAY 4+ S5
(Value ofb§+f .) As for bgi’f), we bound, for ¢ € {1,..., N},
b
= ( t+19t + Z +1ft - 775t+1)
1 Tc 1 [ T
X (’,’IiHI‘t-’_th + (I t+1) H Z Ct—‘,—lgt - €t+1>
1 AT c epTTe T 1
7777HFt+19t0 Tyl + HZCtHf L *ﬁftﬂo ey
NNC 1 (6] C T = ~C 1 C T
FRBET(1- 0+ Zaﬂ@ T(1- i) e (1- 205

N N
~C

& Py T T A~
t+1§t t t+1 NH5t+1 E ft t+1

1 e T A
+ NI Zl [y 1068 T t+1

c=1 c¢=1

1 N"C (& n = =C
- ﬁrt+10t5t+1 - NH th+1§t5t+1 E€t+1€t+l—r

Now we proceed as above by taking the expectation, then the norm, and using the triangle in-

. ~ T
equality. Note that by @), we have E[£,416/T¢, "] = 0, E[g;41&f T(I -4 tC_H) ] =0,
Eler1 Ym0 6 TCH, T = 0, BT, ,0,86,, 7] = 0, and E[C{, €025, , T] = 0. After using
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Jensen’s inequality, we obtain

N
[E@r1&7" I < nHE1/2[||Ft+1H J||E[6:60, Hz:: RL2(16E, | |2 RIED )|
o8 [l sl a5 i 2o || IEEE TN
EL/2 HI y H
N . x B B
v 2 (1G] &) ZZ [HCHHH I IEEE TN
- 6: =1

e ]|

Using Lemma|[C.I] Lemma|C.2] and Lemma[C.3] we obtain

N
7 1 ~
JEG1E8 71 < 2 {Ca +I5 172} IERSN + > {Ca+IZ5 12} IEES
+ 2L {on +img 12} IEGE T + ”ZnH2{CA+||z 172} IEEEE: Tl

N
1 c 7 gé
o Z H2{Ca+25 112} IEGE T

01

¢ Fege M-
N2H N {CA+IZS I} IEEE T + B [ e ]

=1c¢=1

)

where we used the two following inequalities

E {HZCHHH( t+1)”:| < E/2 MNEH‘H < nH? {CA +”EC};||1/2} 7
B 1G5 MICE TN < B[ 510817 + 51C5. 1P| < whrt {ch +imk 1}

This leads to the following inequality

nHbS < 20t {Ca+IZ5 )12}l 4 32H2 {Ca +]55 12} 00

+n?H? (nH {CA Jr||2f§||1/2} +nH* {CE\ +“E%”}) {]tbt_ * (1 - ]17) bf}

where we used HIE [%@4—15&_1 T} H < bg&f) _ QWnHEwH Assuming nH{CA+||ECA||1/2} <

and n? H> {CzA +24£ } < v, we obtain the following bound

1 _ 22 H
nHBTY < 206" 4 3unH 4 20 {th + (1 - > b*} LT S

(Value of b, | and bf 11-) As above, we start by expanding the matrix product,
I = 5 1 é
1€, = (anFtHet + (I t+1)ft NH Z Cia&l — 5t+1)

Lf§+1§t+ I- i1 §t Z +1ft — &1 '
(nH NH
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1 R 1 1 _—
— —_T¢. .0,0/T¢ —(If ) cgTe
2 H? t+1Y¢ t+1 e nH i i1 ) Et t+1

~. 1
NH2 ZC+1§t0TFt+1T - H25t+10TFt+1
I, . ,6¢ 1 ¢ T 1 1 c T
- 7Ft+19t§t T(I H ”1) + (I H t+1>§t ( T H t+1)
¢e 1 ¢ T 1 ~ cc 1 c T
NHZ +1£t£ ( T t+1) _EgtJrlgtT(I—E t+1>

c 1 (&
+ T TS, Tz (-5 m)ftfﬁZ Fa

c=1
T é
NQHQZ +1§t§t ZCtJrl _NH25t+1ft Z t+1
1 c ~ T 1 c cxc T
+ Frt+19t5t+1 g (I - ﬁCtJrl) tE1+1

1
~c T ~ ~ T
NH2 Z Ct +1§t €41 — m5§+15§+1
Taking the expectation, then the norm, and using triangle inequality and Jensen’s inequality, we obtain

[

1 N 1 1 C 2 ~CF~T
< Bl PIERATN + 2 (- osa || Im@an

i ZEW (120 12] 1B
v L [HI ;Hm IE0E T +E |1 gosa | J- ot |12 T

nH
Z]E {u Fallr- = tHM IB(EE: T

<7 ZE“"’ [1C2 TI12] NEB: T

Z]E - 0] 162 1] 1E@E T

~E T 1 ~c =c
+ ar Sy E 1CEINICE TI] IS T + Bl 585 -

c=1¢=1

We can now use Lemma|C.I] Lemma|C.2] and Lemma[C.3|to obtain the following upper bound
[T
< 2{cA+Hng} IBEATI + =7 5 {Ca +IZ5 12} I
+ i an {Ca+Iz )2} IEE

1 77H c |11/2 necT 2 2 c fcee T
oy (O IZE Y IERE Tl + I o s} s )
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N
1 2 c 11/2 céecT
* g 2= {Ca+lizg M2} IEEE T

N
41 N ec
N ZnH2 {Ca+Im5 172} IEGE )
1 N
+ 37 2o {CaH ISR A IR T

1 c cCeC 1 ~c =c
+ sznzm {CA+IZE I} IEEE TN + || ElEs e T -

c=1¢=1

This bound can be simplified as

W H2 |60
27172
c 0.0) , mH c 9,
< 2B {Ch+I1Z5 1} o + T {Ca +mg 172} 0
—|—772H2 {CA+||EC~ ”1/2}()(9»5)
c |11/2 (95) c cege T
+ T Loy o+ T Lo g 1 } 1B )
+n3H3 {CA +15 |1/2} {Nb; + <1 - N> bf}
CEI P 2l 1= R
{ Joi®9 4 nta? {Ca+IzE 2] b7+ (1 N> bt}
4 174 2 c 1 = 1 - 1 ~ ~c T
+nH {CA+||EA||} th tll-5 b +HEE[€t+1€t+l ]‘,
which can be simplified as
cc c 0,0 c 6,
P H B & Il < 2022 {C +135 1} ol + 30t {Ca +IZ5 112} nib)
1 1
c q1/2 2772 [ 2 c 2072 ) L= L) g #
+ (20 {Ca+Iz5 )1V} + P B2 {Ch+IS5 I} ) P H {th + <1 N) b }
4174
77 H C NCNC 1 =C =C
+ L {CA IS I IBEE: T + || Bl T

We now distinguish two cases, when ¢ = ¢’ and when ¢ # ¢'. First, let ¢ = ¢/, we obtain

wrr {Ca sy 1

P HE,, < 297 H? {C A } B\ 4 3pH {CA +HIg ||1/2} nHH®

1
c ||11/2 27172 2 c 27172 = #
+ (20H {Ca+IZ5 M2} + 02 H? {Ch +I35 11 }) n*H {th + (1 - N) b; }
2H2 _

+ L { A HIsg I 2y + P H S
since when ¢ = ¢, we have a|[E[£ee¢ T]|| < b7 and H%}E[ggﬂggﬂ T]H < by = XLz, .
Assuming nH {CA —i—HE%Hl/Q} <wvandn’H? {CZ —i—HEiH} < v, we obtain

P H2b7, < 200 4+ 3unHLY + aun? H26Z + 3un? H20] + 0> H||S,|| -

We proceed similarly for ¢ # ¢/, which gives

(6,0)

32 H
P H2T,, < 206" 4 3u ng(“)Jr P H2b, + o 2] + =~ 77 1Zell

since, when ¢ # ¢/, we have |[E[€5€¢ T]|| < b7 and H%E[Z—fﬂi—fﬂ T]H <b] = %sz” O
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Corollary C.7. Assume that nH{CAHm%Hl/z} < m and 772H2 {CE&‘F”E%H} <
m, sef w = min (1, m), then it holds that

27172
0,0 0, 77 H= _
b0 + wnHSS + b+ winH2],

H Lw?H? _ 1 H
<<1_77a2 >b(”)+ wnHb" + Z 2 b;+§n2H2bf+9n IS0l -

Assuming naH < %, we have 1 — l <1l- M. This in turn ensures that

2
0,0 0, wn“H
b§+1)+W77Hb§+f) N bt+1 +wn szzil
H n?H m2H
s(l—”“Q) {b( O ¢ wnHB®S 4 21 ~ b +n2H2b¢}+ TSl

which gives, for any t > 0,

187)

b < SISl -

Proof. From Lemma [C.6] we have, for any 0 < w < 1, v > 0, and assuming that
nH{CA—i—HZ%Hl/?} < v and )2 H? {CQA +||2%||} < v, and since w < 1,

2
0,0 0 77 =
by +wnHbY + wr e W H27,,

< {(1—na) + 6wt {CA N ARSI

nH

977 H
1Zll -

+ 100 HB"® + 100 2HA + L —

Now, we choose w = min (17 m) and obtain

H
1 —na)? + 6wnH{CA+HZ%H1/2} <1- naH+6w77H{CA+HZ%H1/2} <1- % :

Additionally, w < 1, thus 3 + 6w < 9 and we obtain

2 2
0,0 9, =
%%+ wnHLES + N by + wn?H2bY,

H H
< (1 _ ’7“2) b £ 10umHB®O + 100 b7 + 100> H2] + -~

977 H
([l -

Choosing v < 2“—0 < m gives the result. O

Complete analysis of SCAFFLSA. We can now state our main theorem, which gives an upper
bound on the expected distance between the iterates of SCAFFLSA and the solution 6,.

Theorem C.8. Assume All|land Let 1, H such that naH < 1, and H < m, and set
&5 = 0for all ¢ € [N]. Then, the sequence ({)+cn satisfies, for all t > 0,

t
naH — 36dn
Bl - 0.7 < (1 757 ) {2060 - 6,17 + 2P HAELAS( - 0171} + S

Proof. Recall our decomposition 8; — 6, = 6, — 6, + 6. By Young’s inequality, we have

E[||6; — 0.11°] < 2E[|16; — 6.]1°] + 2E[|16; 1] -
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By Theorem we have E[||6; — 6,]?] < (1 — "“H) g, and by Corollary we have
E[||6:]12] < db(9 0) < 1877d||2] ||. Combine the two results, we obtain

aH 36d
E[l6, - 6.7 < (1—" )mm”nz I

2
replacing 1o = [|6p — 04]|*> + % Zil ||Ac(0¢ — 6,)||* gives the result of the theorem. O

Corollary C.9. Under the Assumptions of Theorem one may set the parameter of SCAFFLSA
to

) = min (7] Nae? ) o 1 e ( a 72d|2w|>
= 009 ) = X ’ ’
72d)| 3| 240 {Ci +||EA||} o' Ne2

which guarantees E[||0; — 0, ||] < €2 after a number of communication rounds

T>

2 N Ac(Ac
20 {Ch %11} RN 5> ESTEAT
o2 2 :

The overall sample complexity of the algorithm is then

TH:max<240 72d|z€||)1og (4\\90—6 P+ TS IIAC(Hi—H*)IF)

Moo’ Na?e? €2

Proof. Let € > 0. Starting from Theorem|C.$§| us upper bound, we have E[[|6; — 0, %] < > whenever
aH 36d
(1- 22 20+ X5 < 2,

where 0o = [|6g — 0,]|? + TL SN ||A¢(6 — 6,)[|. This gives a first condition 3541 |53, || < €2,
which requires

< Nae?
’f] S 0/ -
72d| 2 ||
This allows to take any value of H such that H < 24077{Ca+\|2\|} = 240N6{702+HEH}' With such
setting, it remains to set the number of communication 7' to
29, _ 240 {CA +IZEl} . e
T>—1 ) = 1 —_
= naH 0g(€2) o2 Og(62)7
t

which ensures that (1 — "‘;H ) 29 < 5. O

D Technical proofs

Lemma D.1. For any matrix-valued sequences (U, )nen, (Vi )nen and for any M € N, it holds that:

M k-1
HUk—HVk—Z{HU}Uk—Vk{ H Vit.
k=1 j=1 j=k+1

Lemma D.2 (Stability of the deterministic product). Assume AJ3| Then, for any w € R% and h € N,
11— A" || < (1= na)"|u] .
Proof. Since (Zﬁh)1<h<H are i.i.d, we get

c, } h c AcC
BTy = B[ (- nA(Z;))u] = TIL BT - 1A(Z5)]u = (- 7A9)"u
The proof then follows from the elementary inequality: for any square-integrable random vector U,
IE[U < E[IUIP)Y2. O
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Lemma D.3. Let (z;)Y.,, and (y;)Y., be N vectors of R%. Denote T = (1/N) Z _,2; and
gn = (1/N) Zi:l yi. Then,

N

N
Nlizy —gnl? =Y e —yill> = Y i — 25 — (i — g1
=1

i=1

Proof. Define x = [z ,...,z}]" andy = [y{,...,y%]" € RV Define by P the orthogonal
projector on
&= {XGRNd:X: [xT,...,xT]T,xERd} .

We show that Px = [Z},...,Z 5] . Note indeed that forany z = [27,...,2"]T € £, we get (with
a slight abuse of notations, (-, -) denotes the scalar product in RV¢ and R¢)

(x—Px, z) Z{x“ (Tn,2)}=0.

The proof follows from Pythagoras identity which shows that
IPx—Pyl* =[xy |* - [x=Px) - (y =Py |?)
O

Lemma D.4. Assume AH| Let Z be a random variable taking values in a state space (Z, Z) with
distribution .. Setn > 0, then for any vector u € R%, we have

E[|[(T - nA“(Z))ull?) < (1 = na)|lull®* = n($ — DE[A(Z)u]?] .
Proof. First, remark that
1T —nA(2))ul? = uT(I —nA%(Z))T (1= nA%(Z)u
u' (I-2n(3(A%(2) + A(2)T)) + *A°(2)TA%(Z))u

Since we have IE[%(AC(Z)+AC(Z) )] = al and]E[%(AC(Z)—i—AC(Z)T)] = %E[AC(Z)TAC(Z)],
we obtain

E[|(1 - nA%(Z))ul?] = u"u - 2nu" E[3(A(Z) + A%(Z) ")]u+ 11°u" E[A%(Z) " A%(Z)]u
< Jlul® = nallull® — FuTE[A(Z)TAY(Z)]u + 7*u E[AS(Z)TAY(Z)]u
= (1= na)llull* = n(7 — n)u"E[A(Z) T A%(Z)]u

which gives the result. O

E TD learning as a federated LSA problem

In this section we specify TD(0) as a particular instance of the LSA algorithm. In the setting of linear
functional approximation the problem of estimating V™ (s) reduces to the problem of estimating

0, € R%, which can be done via the LSA procedure. For the agent ¢ € [N] the k-th step randomness
is given by the tuple Z; = (S}, Aj;, Si;;). With slight abuse of notation, we write Af ), instead of

A(Z{}), and by, instead of b(Z{ ;). Then the corresponding LSA update equation with constant
step size 7 can be written as

ef,h = 6’f,h71 - U(Ag,hetc,h—l - bg,h) )

where Af , and by ;, are given by

fﬂh = ¢( tc,h){¢( tc,h) - 7¢(Stc,h+1)}T )
;h = &( tc,h)rc( tc,hv f,h)-

Respective specialisation of FedLSA and SCAFFLSA algorithms to TD learning are stated in
Algorithm @] and Algorithm 5]

(42)
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Algorithm 4 Federated TD(0): FedLSA applied to TD(0) with linear functional approximation

Input: 1> 0,0y € R:LT,N,H >0
fort=0toT —1do
Initialize 6; o = 6;
forc=1to N do
for h =1to H do
Receive tuple (StC W A;h, th +1) following TD and perform local update:

c __ pc c c c
9t,h = et,h—l - n(At,het,h—l - bt,h) )
C C 1 1
where Af; and b{ ), are given in {@2)

Average: 0,1 = & Zivzl 0% 1 (43)

Algorithm 5 SCAFFTD(0): SCAFFLSA applied to TD(0) with linear functional approximation

Input: 7> 0,0y € R, T,N,H >0
fort=0toT —1do
Initialize 6; o = 0;
forc =1to N do
for h =1to H do
Receive tuple (Sf;,, A 1., S ) following TD and perform local update:

9f,h = 9f,h—1 - 77(A§,h9§,h—1 - f,h -£9,
where A{; and bf ;, are given in @#2)
Average: 0,41 = &+ SN 0; 1
Update local control variates: f, | = &f + n%(et+1 — é; )

The corresponding local agent’s system writes as A°0¢ = b, where we have, respectively,
AC = ES~M,S~P(~|S) [¢(S){d)(8) - ’yd)(S/)}T]
b® = Es~p,a~7r(-\s) [(25(8)7“6(57 a)] :

The authors of [S0] study the corresponding virtual MDP dynamics with P=N"! Zivzl PYiop»

F=N"1 Z?{:I r¢. Next, introducing the invariant distribution of the kernel /i of the averaged state
kernel

N
P.(Bls)=N"! Z/AIP’&DP(BB,a)ﬂ(daB),
c=1

we have 6 as an optimal parameter corresponding to the system 6 = b. Here
A = Eswﬁ,swﬂa’(»\s) [¢(5){¢(5) - ’y(é(sl)}—r]
b= Eonpiamn(19)[0(s)7(5,a)] -

E.1 Proof of Claim[3.1

We prove the following inequalities

Ca=1+7, (44)
=51 <200 +7)%, (45)
Te(S9) < 2(1+7)2 (l65)> +1) (46)
o=, (“7)

Moo = 572 (48)
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Table 2: Communication and sample complexity for finding a solution with MSE lower than €2 for
FedLSA, Scaffnew, and SCAFFLSAon the federated TD learning problem. Our analysis is the first
to show that FedLSA exhibits linear speed-up, as well as its variant that reduces bias using control

variates.
Algorithm Communication T' Local updates Sample complexity T'H
N 1 N
1 1 1 1 1
1 1 1 1 1

The proof below closely follows [42]] (Lemma 7) and [45] (Lemma 1). Everywhere in this subsection
we use a generic notation Af as an alias for the random matrix A{ ;. Now, using TD and (B)), we
get

ATl < (T+7)

almost surely, which implies ||A¢|| < 1+ v for any ¢ € [N], giving (#4). This implies, using the
definition of E%, that
151 = IE[{AT}TAS] — {A°}TA°|| <2(1+7)*,
and the bound (@3] follows. Next we observe that
Te(5) = [} (AS — A9)05 — (b — bY)||?

< 205} TEI{AS)T ASIOS + 2E[(* (55, A5))2 Tr(p(55)¢ T (56)]

<2(1+7){05} T2, ()65 + 2

<2(147) (6517 +1)

where the latter inequality follows from TD[3] and thus @6) holds. In order to check the last
equation (@7), we note first that the bound for a and 7, readily follows from the ones presented
in [42][Lemma 5] and [42][Lemma 7]. To check assumption note first that, with s ~ u¢, s’ ~
P7™(-|s), we have

A+ {AYT = p(s){p(s) = 19(s)} T + {el(s) = ve(s) }els) T
)" = {e(s)p(s) " +o(s)e(s) "}
< 2+ 7)e(s)e(s) " +re(s)e(s) T,

where we additionally used that

—(uu" o) 2w’ +ou’ < (uvu' +ov’)
for any u,v € RZ. Thus, we get that

E[A°+{A°}T] 2 2(1+ )55 .

The rest of the proof follows from the fact that

E[{AT}TAf] = {A}TA = (1= 9)"Amin T
which holds whenever {8) is satisfied; see e.g. in [30] (Lemma 5) or [45] (Lemma 7).

Based on these results, we instantiate the results summarized in Table|l|to Federated TD learning in
Table[2l

F Analysis of Scaffnew for Federated LSA

To mitigate the bias caused by local training, we may use control variates. We assume in this section
that at each iteration we choose, with probability p, whether agents should communicate or not.
Consider the following algorithm, where for k = 1,...,T/p, we compute

0 = 05y — n(A“(Z{)05_y —b(Z5) — 1)
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Algorithm 6 "Scaffnew": Stochastic Controlled FedLSA with probabilistic communication
Input: 7 > 0, 0p,&5 € R4, T, N, H,p > 0
Set: K =T)p
for £k =1to K do
forc=1to N do
Receive Z; and perform local update:

p?fé =051 — n(A“(ZP)0;_y —b°(Z5) — &)

Draw By, ~ Bernoulli(
if B;, = 1 then
Average local iterates: 0 = % Zivzl é,ﬁ
Update: £ = &, + 2(05 — 05)
else )
Set: 0f = 0. €5 = €5,

i.e. we update the local parameters with LSA adjusted with a control variate £;_,. This control
variate is initialized to zero, and updated after each communication round. We draw a Bernoulli
random variable By, with success probability p and then update the parameter as follows:

0 = {ka %E?{:1él§ By=1,
05 B, =0.
We then update the control variate
& =&+ 0= 00).
where we have set {§ = 0. We state this algorithm in Algorithm 6]

Note that, for all k¥ € N, Zivzl & = 0. . We now proceed to the proof, which amounts to
constructing a common Lyapunov function for the sequences {05 }ren and {&f }ken. Define the
Lyapunov function,

1 N 7]2 1 N
_ c 2 c cl|2
b= 7 18— 07 T Dol - I

where 6, is the solution of A6, = b, and £¢ = A°(6, — 6°). A natural measure of heterogeneity is
then given by

N N
Apeter = i ”gi”Z = l ”Ac(ei - 9*)”2 .
N N
c=1 c=1

To analyze this algorithm, we’ll study the decrease of the expected value of 15, where the expectation
is over randomness of the communication and the stochastic oracles. This requires a stronger
assumption than the Assumption A[3|that we used in Section 4]

A4. There exist constants a, L > 0, such that for any n € (0,1/L), ¢ € [N], it holds for Z§ ~ =,
that

al S E[3(A°(Z]) + A%(Z5) )] < $E[A“(Z]) TA(Z])] .
This assumption is slightly more restrictive than A[3] Indeed, whenever A@]holds, A3]also holds with

the same constant a (see 42, 45)). In the case of TD, this assumption holds with L = (11:“77)”.

Lemma F.1 (One step progress). Assume A and A Assume that n < i The iterates of the
algorithm described above satisfy

E[yx] < (1 — min (na,pZ))E[wkq] + % ;TT(EE) .

Proof. Decomposition of the update. Remark that the update can be reformulated as

05 — 0, = (I —nAS(Zg)(05_1 — 0.) +n(Ef_y — € — nwe(Z5) | (49)
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where w®(z) = A°(2)6, — b®(z). This comes from the fact that, for all z,
b(z) + &y = b+ b(2) + &,
= A6 +b(2) + &5y
=A%, +b%(2) + & 4 — &
= A°(2)0, — A%(2)0, +b°(2) + &, — &
= A(2)0, —w(z) + &1 — & .

Expression of communication steps. Using that Zi\il &1 =0and Ziv,l & =0, we get

Z 165 — 0.]1> = 1{1}(Bk)H9k —0.]° + 140y (Br)+ Z 165 — 6.2

c—l
N 1 N
=1y (Bl ZQk** k1) 29 **f* )I? + 10y (Br) NZ 165 — 6.1 -

The first term can be upper bounded by using Lemma[D.3] which gives
113 (Bi) |0 — 04 ||2

N
1 ) e e e
= 1113(By) { Z”Hk_ ~(&io1 — &) — 0. - NZ||9k_(9k—p§k1)+pf*||2}

=1( Bk{ Z||9k §k1 ) — 0.° — %*Zﬂfk §*||2}

We now expand the ﬁrst term in the right-hand side of the previous equation. This gives

*ZII% fk 1= &) = 0.

N
1 He 277 c c
- > {0 - 2 -, -0+ L, -}
c=1

which yields

L1y (Br) {x} = 1013 (Br) {Ilék — 0.7 + *N Z €5 — E*Iz}

N
77 c c pe 77 1 c c
= 1(13(Bx) { Z 165 — 6.1I* — <fk—1 =& 0k —0.)+ 2N Z 1€k-1 — 5*2} . (50)
c=1

On the other hand, note that

165 — 6 ||2+*WZH@ G*IIQ}

n* 1 c c
I9k—9*IIQ+FNZH£k_1 —§*|2} : (61
c=1

N

1103 (Bi) {tx} = 1{0y(Bx) { >
v

= 1{0} Bk { Z

By combining (51) and (30), we get
N N
1 c 2 772 1 c c|12
Vi = NZ 6% — 0.1° + PN - Z 1€k — &1l

*ZH@;C 0.2 — 27 1{1}(Bk)<§k L €8, 08—

c=1

1 N
NE:KmJ—ﬁW-(ﬂ)

’U‘S
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Progress in local updates. We now bound the first term of the sum in (32). For ¢ € [N], {#9) gives
165 — 017 = 11— nA(Z0) (051 — 0.) + (&1 — &) — nw(ZD)]1®
= |1 — nA(Z){05 — 0.} — nw(ZR)II° +n?lIgE 1 — €517
+20(&— — &0, (L= nA(ZQ){0; — 0.} — nw(Z5))

= IT = A (ZD){0F — 0.} — " (ZQ)” +2n(& 1 — &5, 0F — 0.) — P16y — &7 -
T

(53)

Define the o-algebra G,—1 = 0(Bs,s < k—1,Z%, s < k—1,c € [N]). We now bound the
conditional expectation of T}

E9 [Ty]
=E9 |1 — nA“(Z){85 — 6. 31> — 2n((I — nA(Z{){65 — 0.}, wo(Z5)) + 0 |w (Z5)|7]
=E9 (|1 — nA“(Z) {05 — 0317 + 20°(AS(Z) {05, — 0.}, w(Z5)) + nPllw(ZR)IP]

where we used the fact that (I, w®(Z)) = 0. Using Young’s inequality for products, and Lemma|D.4|
with < 57 and u = 0f, — 0, we then obtain

EY [Ty]
< EY (L= nA(ZQ){0; — 0317 + | A(Z0){05 — 03117 + 0P llw(ZD)IIP + Pl (Z5) |17
< (1—na)||ff, — 6.]* — n(3 — 2n)E [||A( Z;?){HE — 0 3%] +20°EY [ (Z)IP] . (54

Plugging (54) in (53)) and using the assumption 7 < we obtain

2L’
B (105 — 0.1 — 20(65_, — &, 05— 0.)]
< (L= )05 - 0.2 = Pllgiy — €512 + 207 Te(S2) . (55)

Bounding the Lyapunov function. Taking the condtional expectation of (52) and using (53)) for
c = 1to N, we obtain the following bound on the Lyapunov function

N N
1 ne c c pe 772 1 c c
“ v (105 = 0.1% = 2n(ei_y — &5, 6 — 0.)] + g 2 i — I

N
Z (1 —na) |05 — 0.11> — n?l1€5_y — €511 + 20 Ta(29)] fZHfM &2

2 \

2 N
77 1 C C 277 c
(1 - o)y Z 05— 017+ (1) B L S e, -+ 22 S v
p c=1 c=1
and the result of the Lemma follows from the Tower property. O

Theorem F.2 (Convergence rate). Assume and 2). Then, for any n < i and'T > 0, it holds

2 2n? 1
WK} (1 - )K <||90 - 0*H2 + ZzAheter> 77 ZT ZC

where ( = min (na p2).
Corollary F.3 (Iteration complex1ty) Let € > 0. Set n = min (i E—) and p = \/na (so that
¢ = na). Then, E[{pi] < €2 as long as the number of iterations is

2L 45, ) log <||90 — 0, + min (527, ;,)Aheter>
O b

K > max | —
- ( a’ €a? 2¢2

which corresponds to an expected number of communication rounds

2L [45. 160 — 0, ]|* + min (527, &5 ) Aneter
T > max —, log .
a €2a? 262
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Theorem F.4 (No linear speedup in the probabilistic communication setting with control variates).
The bounds obtained in Theorem[F2| are minimax optimal up to constants that are independent from
the problem. Precisely, for every (p,n) there exists a FLSA problem such that

2

2
E[wK] = (1 - C)K (Heo - 6*”2 + ZzAheter> + 2%6.8 5

where we have defined ( = min (277a7 p2).

Proof. Define for all ¢ € [N],
A¢=qal, b®=b.u,

where u is a vector whom all coordinates are equal to 1. We also consider the sequence of i.i.d random
variables (Z7) such that that for all ¢ € [N]and 0 < ¢t < T, Z; follows a Rademacher distribution.
Moreover, we define

AS(ZE) = A", b(Z;)=b"+ Ziu.
In particular this implies

w(z) = Ziu .

We follow the same proof of Lemma [F-T]until the chain of equalities breaks. Thereby, we start from

N 5 N
E[vy] = E[>_ 1|65 — 6. + ]%Z leg — €8]
c=1 c=1

N 2 N
=E[) 11— A (Z)){051 — 0.} = (ZP)? + (1 —192)2*2 Dol — €17
c=1 c=1
N ) 2 N
=E[Y_ (1—nA) {05, — 0.} — nw(Z0))1? + (1 _p2)]% Dol — €17
c=1 c=1
2

N N
c c(r7c n c c
=E[D (1 —na)?|105_1 = 0u[* + | (ZD)IIP + (1 = ") =5 D lI€iy — &I°]
c=1 c=1

where we used that A¢(Z¢) = A°. Unrolling the recursion gives the desired result. O

3

G Experimental Details and Additional Experiments

G.1 Experimental Details

Here, we give additional details regarding the numerical experiments. The environments used
are instances of Garnet, where we use 30 states, embedded via a random projection in a d = 8-
dimensional space. We use two actions, and consider a branching factor of two, meaning that, from
each state, one can transition to two different states with some probability. The rewards are then
drawn uniformly randomly from the interval [0, 1].

In the homogeneous setting, we sample one Garnet environment. Each client then receives a
perturbation of this instance, where we perturb all non-zeros probabilities of transition from one state
to another and all rewards with a random variable € ~ {(0, 0.02).

In the heterogeneous setting, we proceed similarly, except that we sample two different Garnet
environments, with the same parameters. Half of the agents receive the first environment, and the
second half receive the second environment. As in the homogeneous setting, each agent’s environment
slightly differs from the base environment by a small perturbation € ~ 2/(0, 0.02).

All the experiments presented in this paper can be run on a single laptop in just a few hours.
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Figure 3: MSE as a function of the number of communication rounds for FedLSA and SCAFFLSA
applied to federated TD(0) in homogeneous settings with = 0.1, for different number of agents
(N = 10 on the first line, N = 100 on the second line) and different number of local steps. Green
dashed line is FedLSA’s bias, as predicted by Theorem[4.1] For each algorithm, we report the average
MSE and variance over 5 runs.
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Figure 4: MSE as a function of the number of communication rounds for FedLSA and SCAFFLSA
applied to federated TD(0) in heterogeneous settings with 1 = 0.1, for different number of agents
(N = 10 on the first line, N = 100 on the second line) and different number of local steps. Green
dashed line is FedLSA’s bias, as predicted by Theorem[4.1] For each algorithm, we report the average
MSE and variance over 5 runs.

G.2 Additional Experiments: Number of Local Steps and Smaller Step-Size

In this section, we give more experimental results for FedLSA and SCAFFLSA. We use the same
setting as in Section[6] but use more settings of local steps.

In Figure [3]and Figure ] we give report the counterpart of Figure [[| with a wider ranger of number
of local updates H € {1, 10,100, 1000, 10000}. The results obtained here match with observations
from Section[6} in homogeneous settings, FedLSAand SCAFFLSAexhibit very similar behavior.
In both methods, increasing the number of local steps speeds-up the training, until the stochas-
tic noise dominates. At this point, both algorithms reach a stationary regime with similar error.
In heterogeneous settings, while FEdLSA’s bias is smaller than the variance of its iterates, train-
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SCAFFLSApreserves the speed-up by eliminating this bias.

Finally, we report in Figure [5and Figure [6] the results when running the same experiments using
a smaller step size n = 0.01 for different number of agents and local updates. In this setting, all
algorithms manage to find better estimators, since the amount of variance depends on the step size

(as seen in Theoremd.1]and Theorem 5.1)). Additionally, FedLSA’s bias is smaller than in Figure

which is also in line with the upper bound E!/2[||6{*"||2] < w
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Figure 7: MSE as a function of the number of communication rounds for FedLSA and SCAFFLSA
applied to federated TD(0) in homogeneous and heterogeneous settings, for different number of
agents and number of local steps. Green dashed line is FedLSA’s bias, as predicted by Theorem f.1]

For each algorithm, we report the average MSE and variance over 5 runs.
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Figure 8: MSE as a function of the number of communication rounds for FedLSA and SCAFFLSA
applied to federated TD(0) in homogeneous and heterogeneous settings, for different number of
agents and number of local steps, using a smaller step size 7 = 0.01. Green dashed line is FedLSA’s

bias, as predicted by Theorem 4.1} For each algorithm, we report the average MSE and variance over
5 runs.

G.3 Additional Experiments: Convergence of FedLSA

In Figure [7] and Figure we give the counterpart of Figure [[] where we additionally plot the
MSE of the estimator 8; + 82" for different settings of all parameters. We recall that b _

I- f‘(}}’))‘l pu is the bias of FedLSA, as we proved in Theorem Therefore, 0, + (5&2""‘) is a
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proper estimator of 6, although, of course, it cannot be computed in practice since the bias ééZ"b”
is unknown. and we see in Figure[/|that, in homogeneous settings, we recover the same error as
FedLSA and SCAFFLSA. Moreover, in heterogeneous settings, it has an error similar to the one of
SCAFFLSA, meaning that FedLSA, once its bias is removed, converges similarly to SCAFFLSA.
The latter, however, does not require to remove an unknown bias, and directly estimates the right
quantity.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract, we claim (i) to analyze the FedLSA algorithm, with exact
caracterization of the bias (see Section , (ii) to propose and analyze SCAFFLSA (see
Section [5), and to apply it to federated TD (see Corollary 4.4 Corollary [5.3). We also
propose results in the markovian sampling scheme in Corollary 4.5] and perform a numerical
analysis of our method applied to federated TD in Section [6]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The main limitation of our paper is that the numerical analysis is done on
federated TD on a synthetic dataset. Nonetheless, we emphasize that our paper is a theoretical
paper, and that these experiments rightfully serve the purpose of illustrating the theoretical
results.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All our theoretical results are provided with clear references to assumptions,
that we all state in Section [3to ensure that these assumptions are easy to find. All results are
given with proofs, that are correctly references for each theorem and corollary.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Numerical results are stated with a complete description of the environments
that are used, as well as the precise sets of hyperparameters that we used. We stress that
the code (in Python) is provided as supplementary with the paper, making it easy for one to
reproduce our numerical experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the code is open source, and available at https://github.com/
pmangold/scafflsa.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The algorithm used in the numerical experiments are exactly the algorithms
described in the paper. The Garnet environements are given with the parameters used for
generation, and with reference to the original problem.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental results are given with error bars that consist either in the
standard deviation over multiple independent runs, or the minimal/maximal values obtained
over multiple independent runs.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments in this paper are ran on a single laptop, and can easily be
reproduced by anyone with very limited computational power.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper is of purely theoretical nature, and the proposed methods do not
deal with sensitive attributes that could induce unfairness or privacy issues.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: This paper is of purely theoretical nature, and although the proposed methods
could help deploy more federated learning solutions, this does not constitute a risk for
societal harm.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: N/A.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: N/A since no existing assets are used.
Guidelines:

* The answer NA means that the paper does not use existing assets.
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* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: N/A since the paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: N/A since the paper does not involve crowdsourcing nor research on human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: Justification: N/A since the paper does not involve crowdsourcing nor research
on human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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