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Abstract

It has repeatedly been observed that loss minimization by stochastic gradient de-
scent (SGD) leads to heavy-tailed distributions of neural network parameters. Here,
we analyze a continuous diffusion approximation of SGD, called homogenized
stochastic gradient descent, and show in a regularized linear regression framework
that it leads to an asymptotically heavy-tailed parameter distribution, even though
local gradient noise is Gaussian. We give explicit upper and lower bounds on
the tail-index of the resulting parameter distribution and validate these bounds in
numerical experiments. Moreover, the explicit form of these bounds enables us to
quantify the interplay between optimization hyperparameters and the tail-index.
Doing so, we contribute to the ongoing discussion on links between heavy tails and
the generalization performance of neural networks as well as the ability of SGD to
avoid suboptimal local minima.

1 Introduction

Stochastic gradient descent (SGD) is the cornerstone of optimization in modern deep learning
(cf. [Bottou et al., 2018]). In contrast to deterministic methods, it introduces stochasticity to the
optimization procedure and therefore has to be analyzed from a probabilistic viewpoint. For instance,
it has been observed by Martin and Mahoney [2019], Simsekli et al. [2019], Hodgkinson and Mahoney
[2021], Gurbuzbalaban et al. [2021] and others, that the distributions of neural network parameters
under loss minimization by SGD are typically heavy-tailed. This heavy-tailed behavior has been
linked to the generalization performance of neural networks: Simsekli et al. [2019] give evidence
that the extreme realizations of heavy-tailed random variables allows SGD to escape local minima of
the loss landscape, and Hodgkinson and Mahoney [2021] argue for a negative correlation between
the parameter distributions’s tail-index and the network’s generalization performance.2 For these
reasons, it is important to understand the origin and effects of heavy-tailed behavior of neural network
parameters in SGD. An important step in this direction has been taken in [Gurbuzbalaban et al., 2021],
where the tail behavior of SGD iterates is characterized in dependence on optimization parameters,
dimension and Hessian curvature at the loss minimum. One limitation of [Gurbuzbalaban et al., 2021]
is that this link is described only qualitatively, but not quantitatively. Here, we provide an alternative
approach through analyzing homogenized stochastic gradient descent, a diffusion approximation of
SGD introduced in [Paquette et al., 2022b, Mori et al., 2022]. Leveraging Itô calculus for diffusion
processes, we are able to provide more precise bounds and estimates of the tail behavior of SGD
iterates, which we subsequently validate in numerical experiments.
∗Center for scalable data analytics and artificial intelligence (ScaDS.ai), Leipzig/Dresden, Germany.
2The tail-index is a quantitative measure of heavy-tailedness, with a smaller tail index indicating increased

heaviness of tails; see Section 2.4. See also [Raj et al., 2023, Benjamin and Simsekli, 2024] for further results on
the connection between generalization and heavy tails.
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1.1 Our contribution

Our contribution to the analysis of heavy-tailed phenomena in SGD can be summarized as follows:

• We introduce a new method, namely comparison results in convex stochastic order for
homogenized stochastic gradient descent. These comparison results, given in Section 3
allow us to link SGD to the well-studied class of Pearson Diffusions (cf. [Forman and
Sørensen, 2008]) and then to obtain bounds for their tail-index.

• Contrary to [Gurbuzbalaban et al., 2021], who describe the tail-index only implicitly (ob-
serving phase-transitions between different regimes) our tail-index bounds are fully explicit.
Moreover, their explicit form is validated in numerical experiments in Section 4.

• Our results suggest (skew) Student-t-distributions as surrogate for parameter distributions in
neural networks under SGD, in contrast to the earlier work of [Gurbuzbalaban et al., 2021]
where α-stable distributions have been suggested. This proposal is validated by numerical
experiments and statistical test in Section 4.

• Finally, our results challenge the claim that the ‘observed heavy-tailed behavior of SGD in
practice cannot be accurately represented by an SDE driven by a Brownian motion’ put
forward in [Simsekli et al., 2020]. Our modeling approach is based on hSGD – an SDE
driven by Brownian motion – which asymptotically exhibits heavy-tailed behavior with a
tail-index that, in experiments, closely matches the empirical tail index of SGD iterates on
real data.

2 Background

2.1 Empirical risk minimization

The general framework for training deep neural networks is to solve the problem of empirical risk
minimization

min
x∈Rd

{
L(x) :=

1

n

n∑
i=1

Li(x)

}
, (ERM)

where Li denotes the loss induced by the data point ai ∈ Rd with label/response bi ∈ R, given
the model’s parameter vector x ∈ Rd. For our theoretical and numerical analysis of heavy-tailed
phenomena we focus on the specific case of regularized linear regression. Hence, as in [Gurbuzbalaban
et al., 2021], we assume a quadratic structure of Li(x), setting

Li(x) =
1

2
(ai · x− bi)2.

Including a regularization term weighted by δ ≥ 0, we arrive at the objective function

Lreg(x) = L(x) +
δ

2n
|x|2 =

1

n

(
n∑
i=1

Li(x) +
δ

2
|x|2
)
, (δ-ERM)

which is the loss function of ridge regression (cf. [Hastie et al., 2009]). We arrange the training
data into a design matrix A ∈ Rn×d and label vector b ∈ Rn, whose i-th row are given by ai and bi
respectively, allowing the write (δ-ERM) as s

Lreg(x) =
1

2n
|Ax− b|2 +

δ

2n
|x|2

with gradient given by ∇Lreg(x) = 1
n

(
A>(Ax− b) + δx

)
.

2.2 Stochastic gradient descent

The standard approach to solve the problem of empirical risk minimization in deep learning is to
use stochastic gradient descent (SGD) or any of its generalizations involving momentum, adaptive
learning rates, gradient rescaling, etc. (cf. [Goodfellow et al., 2016, Bottou et al., 2018]). As a first
step, we consider plain SGD with constant learning rate γ, which can be written in recursive form as

xk+1 = xk − γ∇Lreg
Ωk

(xk), (SGD)

2
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where ∇Lreg
Ωk

(xk) = 1
B

∑
i∈Ωk

Lreg
i (x) and Ωk is a batch of size B > 1 sampled uniformly and

independently from {1, · · · , n}. It will be convenient to rewrite (SGD) as

xk+1 = xk − γ∇Lreg(xk) + γε(xk), (1)

where the gradient noise is given by

ε(xk) = −[∇LΩk(xk)−∇L(xk)]. (2)

Note that the gradient noise is unbiased (i.e. Eε(x) = 0) with covariance matrix given by3

C(x) := E
[
ε(x)ε(x)>

]
=

1

B

(
1

n

n∑
i=1

∇Li(x)∇Li(x)> − 1

n2
∇L(x)∇L(x)>

)
.

The theoretical properties of SGD can now be either analysed directly through the stochastic re-
currence (1) (cf. [Bottou et al., 2018]) or through a continuous diffusion approximation, known
in the general case as stochastic modified equation, cf. [Mandt et al., 2016, Li et al., 2017]. This
approximation is obtained by recognizing (1) as the Euler-Maruyama approximation (in the small
learning-rate regime) of the stochastic differential equation (SDE)

dXt = −γ∇Lreg(Xt)dt+ γ
√
C(Xt)dWt (SME)

driven by a d-dimensional Brownian motion (Wt)t≥0; cf. Thm. 1 in [Li et al., 2017]. A common
further simplification is to assume that the covariance matrix C(x) is constant, yielding the Ornstein-
Uhlenbeck-approximation (also known as Langevin equation) of SGD, cf. [Mandt et al., 2016, Li
et al., 2017].

2.3 Homogenized Stochastic Gradient Descent

Our analysis of SGD is based on homogenized stochastic gradient descent (hSGD), introduced
concurrently in [Paquette et al., 2022a] and [Mori et al., 2022], which is another approximation of
(SME). In contrast to the Ornstein-Uhlenbeck-approximation where the covariance matrix of gradient
noise is assumed constant, hSGD uses the more elaborate ‘decoupling approximation’

C(x) ≈ 2

B
L(x)∇2L(x),

see [Paquette et al., 2022a] and [Mori et al., 2022] for a derivation. Hence, in our notation, hSGD for
penalized empirical risk minimization is given by4

dXt = −γ∇Lreg(Xt)dt+ γ

√
2

B
L(Xt)∇2L(Xt)dWt. (hSGD)

In the regime where n and d are simultaneously large, and under certain assumptions on the distribu-
tion of the data A and b, [Paquette et al., 2022a] provide approximation guarantees of the following
form: For any given T > 0 and D > 0, there is a C > 0, such that

P
(

sup
0≤t≤T

∣∣R(xbtnc)−R(Xt)
∣∣ > d−ε/2

)
≤ Cd−D (3)

for quadratic statistics R : Rd → R and when n ≥ dε for some ε > 0; cf. Thm. 1.3 in [Paquette
et al., 2022a] for details. Further empirical evidence for the approximation quality of hSGD with
respect to SGD can is also given in [Paquette et al., 2022a, Mori et al., 2022], altogether providing a
sufficient basis for analyzing the properties of SGD through hSGD.

Furthermore, the stochastic differential equation (hSGD) can be simplified by using the reduced
singular value decomposition (SVD) of the design matrix A. In detail, let r = rank(A) 6 d, and let
A = PΣQ> be the reduced SVD of A, where Q is d-by-r and satisfies Q>Q = Ir, P is n-by-r and
satisfies P>P = Ir, and

Σ = diag{λj}, λ1 > λ2 > · · · > λr > 0

is the diagonal matrix of non-zero singular values of A. We distinguish the following two cases of
hSGD:

3Full derivation given in Supplement A.1.
4We remark that Paquette et al. [2022a] assume a batch size of B = 1; the derivation of [Mori et al., 2022],

however, does not restrict B.

3
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• Underparametrized hSGD: Ax = b has no exact solution,

• Overparametrized hSGD: Ax = b has an exact solution,

and impose the following assumption:

Assumption 2.1. In the overparametrized case, we require δ > 0, i.e. the loss function must be
regularized.

It is easily verified that x∗ = QΣ−1P>b is the unique global minimum of the unregularized loss in
the underparametrized case and the global minimum of smallest norm in the overparametrized case.
We set Yt = (Y it )ri=1 = Q>Xt −Q>x∗ and obtain the following system of SDEs5 for the ‘centered
principal components’ (Y 1

t , . . . , Y
r
t ) of (hSGD)

dY it = −γ
n

[(
λ2
i + δ

)
Y it − δαi

]
dt+

λiγ

n

√√√√√ 1

B

 r∑
j=1

(λjY
j
t )2 + β

dBit (4)

with

α = (αi)
r
i=1 = −Σ−1P>b, β = b>(In − PP>)b ≥ 0

and (Bt)t≥0 a r-dimensional Brownian motion, obtained as an orthogonal transformation Bt =
Q>Wt of the d-dimensional Brownian motion (Wt)t≥0. Note that PP>b is the projection of b onto
the column space of A. Thus, in the overparametrized case, PP>b = b and hence β = 0, whereas in
the underparametrized case PP>b 6= b and hence β > 0. Here, our main objective is to use (hSGD)
to study the distributional properties, in particular the tail behavior, of SGD iterates.

2.4 Heavy-Tailed Distributions

We collect some relevant definitions related to heavy-tailed distributions and their tail index
(cf. [Resnick, 2007, Foss et al., 2011]).

Definition 2.2 (See Def. 1.1 in Foss et al. [2011]). A distribution function F (z) is said to be
heavy-tailed (at the right end) if and only if

lim sup
z→∞

1− F (z)

e−sz
=∞, for all s > 0.

A real-valued random variable is said to be heavy-tailed if its distribution function is heavy-tailed.

Definition 2.3. An Rd−valued random vector X is heavy-tailed if uTX is heavy-tailed for some
vector u ∈ Sd−1 := {u ∈ Rd : |u| = 1}.

Definition 2.4. The tail-index of an Rd−valued random vector X is defined as

η := sup{p ≥ 0 : E[|X|p] <∞} ∈ [0,∞].

In particular, a finite tail-index η <∞ implies heavy-tailedness of X , and lower values of η signify
increased heaviness of tails and more extremal behavior. A tail index of η < 2, for example, implies
infinite variance and η < 1 implies non-existence of even the mean of X . Examples of heavy-
tailed distributions are the lognormal distribution, the Student-t-distribution, the Pareto (power-law)
distribution, and α-stable distributions.

Finally, we introduce a definition related to the asymptotic behavior of stochastic processes.

Definition 2.5. Let X = (Xt)t≥0 be a stochastic process. The asymptotic tail-index of X is defined
as

η := sup{p ≥ 0 : lim sup
t→∞

E[|Xt|p] <∞}. (5)

5Full derivation given in Supplement A.2.

4
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2.5 Pearson Diffusions

To analyze its tail behavior, we perform a further rescaling of (4) by setting, for i ∈ {1, . . . , r},

Zit =

{
λisign(αi)Y

i
t , β = 0,

λi√
β
Y it , β > 0,

µi =

{
nλi|αi|
λ2
i+δ

, β = 0,
nλiαi√
β(λ2

i+δ)
, β > 0,

χ =

{
0, β = 0,
1, β > 0,

θi =
γ

n

(
λ2
i + δ

)
> 0 and φi =

γλ4
i

2nB(λ2
i + δ)

> 0.

(6)

This recasts the system (4) to

dZit = −θi(Zit − µi)dt+
√

2θiφi(|Zt|2 + χ)dBit (7)
with |Zt|2 =

∑r
i=1(Zit)

2. These SDEs now have a clear structural resemblance to the system of
independent one-dimensional SDEs

dẐit = −θ(Ẑit − µi)dt+

√
2θiφi((Ẑit)

2 + χ)dBit (8)

with the only difference given by the coupling of (7) through the |Zt|2-term in the diffusion coeffi-
cient.6 The components of (8) are independent Pearson diffusions. Pearson diffusions are a flexible
class of SDEs with a unified theory for statistical inference and with stationary distributions known
as Pearson distributions (cf. [Forman and Sørensen, 2008]). In more detail, we obtain from [Forman
and Sørensen, 2008] the following properties:

Underparametrized hSGD (β > 0): Ẑit is R-valued and the stationary distribution of Ẑit is called
Pearson’s type IV distribution (or skew Student t-distribution) and has the unnormalized density

pi(u) ∝
[
1 +

(
u√
νi

+ µi

)2
]− νi+1

2

exp
{
µi(νi − 1) arctan

(
u√
νi

+ µi

)}
(9)

with νi = φ−1
i + 1.

Overparametrized hSGD (β = 0): Ẑit is (0,∞)-valued and the stationary distribution of Ẑit is called
Pearson’s type V distribution (or inverse Gamma distribution) and has the unnormalized density

pi(u) ∝ u−νi−1 exp

(
−µi(νi − 1)

u

)
(10)

with νi = φ−1
i + 1.

In both cases, the stationary distribution is heavy-tailed with tail-index given by νi, thus providing a
first connection between the SDE-approach and the emergence of heavy-tails. This connection will
be quantified and made rigorous in Section 3.

2.6 Comparison to existing literature

We compare our approach to studying the distributional properties of SGD through (hSGD) with
other continuous-time approximations: The Ornstein-Uhlenbeck-approximation uses (SME) under
the additional assumption that the covariance matrix C(x) is constant. Thus, gradient noise is
approximated by Gaussian noise and the Gaussian noise enters (SME) additively. The α-stable
Ornstein-Uhlenbeck-approximation of [Gurbuzbalaban et al., 2021] instead presumes (based on
a generalized central limit theorem) that gradient noise is non-Gaussian and follows an α-stable
law. Moreover, the noise is assumed state-independent, and therefore also enters additively. In
(hSGD), gradient noise is locally (i.e., conditionally on the state Xt) Gaussian, but state-dependent.
The diffusion term in (7) reveals that the noise enters the SDE both multiplicatively (through the
|Zt|2-term) and additively (through the constant χ). Moreover, χ = 0 in the overparametrized
case, such that we observe a phase transition from a mix of additive and multiplicative noise in
the underparametrized case, to purely mulitiplicative noise in the overparametrized case. We note
that the importance of multiplicative noise in models of SGD dynamics is discussed in great detail
in [Hodgkinson and Mahoney, 2021]. We provide a summary of the comparison of these approaches
in Table 1

6Existence and uniqueness of the solutions to these SDEs follows from standard results, cf. [Karatzas and
Shreve, 2014, Ch. 5, Thm. 2.5] or Oksendal [2013].

5
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Table 1: Comparison of continuous-time models of SGD

Model local gradient noise global parameter distribution tail-index
Gaussian OU Gaussian additive Gaussian +∞
α-stable OU Non-Gaussian additive Non-Gaussian (α-stable) (0, 2)

homogenized SGD Gaussian additive/multiplicative Non-Gaussian (with Student-t as proxy) (1,∞)

3 Theoretical results

3.1 Moment comparison

Our first result shows that the decoupled Pearson diffusions (8) are lower bounds, in convex stochastic
order7, to the coupled hSGD process (7). In particular, a comparison result for moments holds.
Theorem 3.1. For i = 1, · · · , d, let (Zit)t>0 be the components of the rescaled (hSGD) from (7)
and (Ẑit)t>0 be the independent Pearson diffusion from (8). Then for any t > 0 and convex function
g : R→ R it holds that

E[g(Zit)] ≥ E[g(Ẑit)]. (11)
In particular this implies the ordering of p-moments

E[|Zit |p] ≥ E[|Ẑit |p] (12)

for all p ≥ 1.

Note that finiteness of the expectations does not need to be assumed, i.e., the inequalities also hold
if one of the expectations takes the value +∞. Comparison results for SDEs generally require two
conditions (cf. [Bergenthum and Rüschendorf, 2007]): An ordering between the drift- and diffusion-
coefficients of the two SDEs, and the ‘propagation-of-order’-property for one of the processes.
Comparing (7) and (8), we see that the drift coefficients are identical, while the diffusion coefficients
satisfy the required ordering condition 2θiφi(|z|2 + χ) ≥ 2θiφi(z

2
i + χ) for any z ∈ Rr. The

propagation-of-order property of Ẑ and the full proof of Theorem 3.1 are provided in Supplement A.3.

3.2 Upper and lower bounds for the asymptotic tail index

Since the process (Zt)t≥0 is a linear transformation of the hSGD process (Xt)t≥0, it is clear that the
tail behaviour of their marginal distributions – in particular the finiteness of p-moments – is identical.
Hence, an application of Thm. 3.1 provides an upper bound on the asymptotic tail index of (hSGD):
Theorem 3.2. The asymptotic tail index η of (hSGD) has the upper bound

η ≤ η∗ := 1 +
2nB(λ2

1 + δ)

γλ4
1

. (13)

Under conditions on the learning rate γ, a complementary lower bound can be derived from existing
results on moment stability of SDEs, see Thm. 5.2 in [Li et al., 2019] and Supplement A.5 for details:
Theorem 3.3. Suppose that the learning rate γ satisfies

γ < γ =:
2nB(λ2

1 + δ)

λ2
1

∑r
i=1 λ

2
i

,

then the asymptotic tail index η of (hSGD) has the lower bound

η ≥ η∗ := 1 +
2nB(λ2

1 + δ)

γλ4
1

−
∑r
i=2 λ

2
i

λ2
1

. (14)

3.3 Wasserstein convergence

Theorems 3.2 and 3.3 are results on the asymptotic tail index, raising the question how fast con-
vergence to the stationary distribution takes place. The next result shows that, under a suitable
assumption on the learning rate, convergence takes place exponentially fast in 2-Wasserstein distance:

7See e.g. [Shaked and Shanthikumar, 2007]

6

14071https://doi.org/10.52202/079017-0450



Theorem 3.4. Suppose that the learning rate γ satisfies

γ < γ′ =:
nB

2

{
r∑
i=1

λ4
i

λ2
i + δ

}−1

.

Then the equation
r∑
i=1

λ4
i

λ2
i + δ − nρ/γ

=
nB

2γ

has a unique positive solution ρ∗ > 0, and the marginal distribution πt of the hSGD process Xt

converges in 2-Wasserstein distanceW2 to its unique invariant distribution π. Moreover, there exists
C > 0, such that

W2(πt, π) ≤ Ce−tρ∗ .

We remark that if the conditions of Theorem 3.4 are satisfied, then the asymptotic tail-index η is
necessarily greater than two, such that second moments and in particular the 2-Wasserstein distance
are well-defined and finite.

3.4 Discussion of theoretical results

We compare our results to Gurbuzbalaban et al. [2021], who analyse the distributional properties of
SGD directly through the stochastic recurrence (1) under the assumption of an isotropic Gaussian
data distribution. In our setting, the data distribution is arbitrary, since all results are given conditional
on the data matrix A. On the other hand, we analyse SGD only through its diffusion approximation
(hSGD) rather than directly. However, in contrast to [Gurbuzbalaban et al., 2021], we obtain the
quantitative and explicit tail-index bounds (13) and (14), whereas Gurbuzbalaban et al. [2021] only
describe the tail index through an implicit equation and derive qualitative results on its behaviour.

Parameter Dependency. Some interesting observations can be made when we consider the dependency
of η on several meta-parameters of the stochastic gradient descent procedure:
Corollary 3.5. The upper and lower bounds of the tail-index are increasing in the regularization
parameter δ and batch size B, and are decreasing in the learning rate γ and the first singular value
λ1 of the data matrix A.

This result agrees with Theorem 4 in [Gurbuzbalaban et al., 2021], obtained under the assumption of
an isotropic data distribution ai ∼ N(0, σ2Id), in all aspects, except the dependency on dimension
d. While Gurbuzbalaban et al. [2021] report decreasing dependency on d, our tail-index bounds do
not explicitly depend on dimension d. Nevertheless, the two results can be reconciled as follows:
Under the assumptions in [Gurbuzbalaban et al., 2021], the data matrix A = (ai) is random with
E(ATA) = σ2Id, and the product matrix W := ATA follows the so-called Wishart ensemble
(cf. [Wishart, 1928]). Moreover, from Theorem 1.1 in [Johnstone, 2001] it follows that for large d the
maximum eigenvalue of W is

λ2
1 = σ2

[(
1√
r

+ 1

)2

d+ r
1
6

(
1√
r

+ 1

) 4
3

d
1
3 Ψ

]
, (15)

where the ratio r = d
n−1 < 1 and the distribution function of the random variable Ψ is the well-known

Tracy-Widom distribution of order 1 (cf. [Craig and Harold, 1996]). From (15), we can calculate the
average of λ2

1 as

E
[
λ2

1

]
= σ2(

1√
r

+ 1)2d = σ2(
√
n− 1 +

√
d)2

and λ2
1 fluctuates around this expectation over a narrow region of width O(d

1
3 ). Substituting λ2

1 by
its expectation in (13) and (14) we can now see that η∗ and η∗ increase in both variance σ2 and d,
consistent with [Gurbuzbalaban et al., 2021].

Distributional properties. From Theorem 3.1 we see that the skew Student-t distribution provides
an asymptotic lower bound in convex order for the marginal distribution of hSGD. Empirically (see
Section 4) we see that skewness is negligible and furthermore, that the Student-t-distribution not
only provides a lower bound, but in fact a very good fit to the parameter distribution of SGD in
general, surpassing the fit of the α-stable distribution proposed in [Gurbuzbalaban et al., 2021]. For
this reason, we propose to use the Student-t-distribution, rather than α-stable distribution, as a proxy
for the parameter distribution in SGD.

7
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4 Experiments

Based on the upper and lower bounds in Theorems 3.2 and 3.3, we present some experiments to
illustrate the tail behavior of SGD and the factors influencing the tail index. The procedure of our
experiments contains the following steps.

1. Given [data|b], we transform the data to be on a similar scale by the linear scaling

A =
data−min{data}

max{data} −min{data}
.

2. Let K be the iteration number of SGD. We apply (SGD) to solve (ERM). The final state
xK ∈ Rd is a random vector.

3. Repeat the second step 1000 times for different initial points and obtain 1000 different
samples of xK .

4. For further distributional analysis we project xK via y = q>1 xK on the dominant direction,
given by the first right singular vector q1 of A. Then we utilize the 1000 samples to obtain
the empirical complementary cumulative distribution function (ccdf) of y.

4.1 Datasets

Synthetic data. We first validate our results in the same synthetic setup used in [Gurbuzbalaban et al.,
2021]. All data points are drawn from isotropic Gaussian distributions, precisely, the i-th row of
X ∈ Rn×d contains χi ∈ Rd ∼ N (0, Id). Then given x ∈ Rd ∼ N (0, 3Id) we draw the response
vextor b ∈ Rn with components bi ∼ N (χix, 3). We set the number n of the synthetic data to be
2000 through our experiments.

Real data. In our second setup we conduct our experiments on the handwritten digits dataset from
the Scikit-learn python package (cf. [Pedregosa et al., 2011]) using a random feature model proposed
in [Rahimi and Recht, 2007] and a three-layer neural network. The digits dataset contains n = 1797
images of handwritten digits in a 8× 8 pixel format. The pixels are stacked into vectors of length
n0 = 82 = 64 resulting in a raw data matrix Y ∈ Rn×n0 and the class label bi = {0, 1, · · · , 9} is
used as response vector. For the random feature model, we choose a dimension d and draw a random
weight matrix W ∈ Rn0×d having standard Gaussian entries. The feature matrix W ∈ Rn×d is given
by

Z = σ

(
YW
√
n0

)
∈ Rn×d,

where σ(·) is a rescaled ReLu activation function. The neural-network model uses 64 neurons in each
hidden layer and sigmoid activation functions. The precise parameter values used for the figures are
reported in Tables 4 and 5 in the supplement.

4.2 Empirical results

To verify the heavy-tailed behavior of y as well as our tail-index bounds from Theorems 3.2 and 3.3
and the distributional approximation suggested by (9), we use MLE-estimation to fit our centered
data as

z := y −mean{y} ∼ κt(ν),

where t(ν) denotes a Student-t-distribution with parameter ν and κ is a fitted scaling factor.8 The
QQ-plots in Figures 1, 2 (a)-(c) show that the Student-t-distribution provides a very good fit to the
empirical data, validating our use of Pearson diffusions to approximate SGD. In comparison, it can be
seen in Figure 1, 2 (d)-(f) that the fitted α-stable distribution overestimates the heaviness of tails, in
particular for the random feature model on real data. We complement these figures by Kolmogorov-
Smirnov tests (cf. Chapter 4.4 in [Corder and Foreman, 2014]) testing for the goodness-of-fit of the
Student-t-distribution and the α-stable distribution respectively; see Tables 2, 3 for detailed results. In
all three settings, the hypothesis of a Student-t-distribution is accepted, while the α-stable distribution
is rejected.

8Eq. (9) actually implies a skew Student-t-distribution, but we use a symmetric one to avoid the estimation
of an additional parameter µ.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Results for linear regression/random feature model trained on datasets X , Y , and Z .
(a)-(c) Quantile-Quantile plots of fitted Student-t-distribution against empirical SGD iterates; (d)-
(f) Quantile-Quantile plots of fitted α-stable distribution against empirical SGD iterates; (g)-(i)
Comparison between ccdf of empirical data and Student-t-distribution parameterized by upper
tail-index bound η∗ and lower bound η∗.

Moreover, in Figure 1 (g)-(i) we plot (in doubly logarithmic coordinates) the empirical ccdf of the
SGD iterates z, together with the ccdf of the Student-t-distribution parametrized by our lower and
upper bound η∗ and η∗. It can be seen that the empirical ccfd, including its tail, is nicely sandwiched
between upper and lower bound, validating Theorems 3.2 and 3.3. Additionally, we once more
confirm the heavy-tailed behavior of SGD iterates as already observed in [Simsekli et al., 2019,
Hodgkinson and Mahoney, 2021, Gurbuzbalaban et al., 2021].

Table 2: Kolmogorov-Smirnov test of theoretical distributions against observed SGD iterates of the
linear regression/random feature model. The null hypothesis H0 is that two distributions are identical,
the alternative H1 is that they are not identical.

Distribution Dataset In Fig. 1 K-S statistic p-value decision
Student-t X (a) 0.029 0.795 > 0.05 accept H0

Student-t Y (b) 0.039 0.433 > 0.05 accept H0

Student-t Z (c) 0.030 0.759 > 0.05 accept H0

α-stable X (d) 0.084 0.002 < 0.05 reject H0

α-stable Y (e) 0.067 0.022 < 0.05 reject H0

α-stable Z (f) 0.070 0.015 < 0.05 reject H0

9

14074 https://doi.org/10.52202/079017-0450



(a) (b) (c)

(d) (e) (f)

Figure 2: Results for three-layer neural network model trained on datasets X , Y , and Z . (a)-(c)
Quantile-Quantile plots of fitted Student-t-distribution against empirical SGD iterates of second layer;
(d)-(f) Quantile-Quantile plots of fitted α-stable distribution against empirical SGD iterates of second
layer.

Table 3: Kolmogorov-Smirnov test of theoretical distributions against observed SGD iterates from the
second layer of the three-layer neural network model. The null hypothesis H0 is that two distributions
are identical, the alternative H1 is that they are not identical.

Distribution Dataset In Fig. 2 K-S statistic p-value decision
Student-t X (a) 0.011 0.208 > 0.05 accept H0

Student-t Y (b) 0.061 0.871 > 0.05 accept H0

Student-t Z (c) 0.060 0.883 > 0.05 accept H0

α-stable X (d) 0.078 0.001 < 0.05 reject H0

α-stable Y (e) 0.084 0.035 < 0.05 reject H0

α-stable Z (f) 0.070 0.015 < 0.05 reject H0

5 Conclusion and Limitations

This study delves into the phenomenon of heavy tails emerging in the parameters of homogenized
stochastic gradient descent applied to regularized linear regression. By establishing a connection
between hSGD and Pearson diffusions, we have been able to derive both explicit upper and lower
bounds for the tail index of the parameter distribution. Our results reveal that heavy tails can emerge
even in the presence of locally Gaussian gradient noise and provide insights into the influence of
optimization hyperparameters on the tail index. However, it is essential to recognize that our analysis
relies on the approximation of SGD by hSGD and is limited to the setting of linear regression with
quadratic loss. Another limitation (see (14)) is that the tail-index of hSGD is lower-bounded by one,
and thus hGSD can not be used to analyse ‘ultra-heavy tails’ with tail-index η ≤ 1. Future work
will be devoted to extending our results to non-linear models and to providing a tighter connection
between the behaviour of hSGD and the discrete-time SGD algorithm.
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A Supplementary material

A.1 Derivation of covariance matrix

Consider the minibatch stochastic gradient

∇Lk(x) =
1

B

∑
i∈Ωk

Li(x) =
1

B

∑
i∈Ωk

∇Li(x),

where B is the batchsize and the random set Ωk = {i1, · · · , iB} consists of B independently
identically distributed random integers sampled uniformly from {1, 2, · · · , n}.

Let ∇L̃k(x) = 1
B

∑
i∈Ωk

∇Li(x). It can be rewritten as

∇L̃k(x) =
1

B

n∑
i=1

∇Li(x)si,

where the random variable si = l if l-multiple i’s are sampled in Ωk, with 0 6 l 6 B. The probability
of si = l is given by the multinomial distribution P(si = l) = ClB( 1

n )l(1− 1
n )B−l. Moreover, we

have

E[si] =
B

n
, E[sisj ] =

B(B − 1)

n2
, E[sisi] =

Bn+B(B − 1)

n2
.

We can also compute

E[∇L̃k(x)] =
1

B

n∑
i=1

∇Li(x)E[si] =
1

n
∇L(x) (16)

and
E[∇L̃k(x)∇L̃k(x)>]

=
1

B2
E

 n∑
i=1

n∑
j=1

∇Li(x)∇Lj(x)>sisj

 =
1

B2

n∑
i=1

n∑
j=1

[
∇Li(x)∇Lj(x)>E(sisj)

]
=

1

B2

n∑
i,j=1

∇Li(x)∇Lj(x)>
B(B − 1)

n2

+
1

B2

n∑
i=1

∇Li(x)∇Li(x)>
[
Bn+B(B − 1)

n2
− B(B − 1)

n2

]

=
B − 1

B

1

n2
∇L(x)∇L(x)> +

1

nB

n∑
i=1

∇Li(x)∇Li(x)>.

(17)

Combining (16) with (17) gives

C(x) = E
{

[∇f̃k(x)−∇f(x)][∇f̃k(x)−∇f(x)]>
}

= E
{

[∇L̃k(x)− 1

n
∇L(x)][∇L̃k(x)− 1

n
∇L(x)]>

}
= E[∇L̃k(x)∇L̃k(x)]> − 1

n2
∇L(x)∇L(x)>

=
1

B

[
1

n

n∑
i=1

∇Li(x)∇Li(x)> − 1

n2
∇L(x)∇L(x)>

]
.

A.2 Transformation of hSGD

By multiplying both sides of hSGD by Q> we obtain

d(Q>Xt) = −γQ>∇Lreg(Xt)dt+ γQ>
√

2

B
L(Xt)∇2L(Xt) dWt

= −γ
n
Q>

[
A>(AXt − b) + δXt

]
dt+

γ

n

√
1

B
|AXt − b|2Q>

√
A>AdWt.

(18)
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Due to

Q>
[
A>(AXt − b) + δXt

]
=
(
Σ2 + δIr

)
Q>Xt − ΣP>b

and

|AXt − b|2 = |ΣQ>Xt − P>b|2, Q>
√
A>A = ΣQ>,

(18) can be reformulated as

d(Q>Xt) =− γ

n

[(
Σ2 + δIr

)
Q>Xt − ΣP>b

]
dt

+
γ

n

√
1

B
|ΣQ>Xt − P>b|2Σ d

(
Q>Wt

)
.

(19)

Let Bt := Q>Wt, which is an r-dimensional Brownian motion, due to Q>Q = Ir. From (19) it
follows that Yt = Q>Xt −Q>x∗ satisfies

dYt = −γ
n

[(
Σ2 + δIr

)
Yt − α

]
dt+

γ

n

√
1

B
[Y >t Σ2Yt + β]ΣdBt (20)

with
α := −Σ−1P>b, β := b>(In − PP>)b ≥ 0.

Reading (20) component by component, we obtain (4).

A.3 Proof of Theorem 3.1

We write the SDEs (7) and (8) in the form

dZit = bi(Z
i
t)dt+ σi(Zt)dB

i
t, dẐit = bi(Ẑ

i
t)dt+ σ̂i(Ẑ

i
t)dB

i
t,

where

bi(zi) = −θi(zi − µi), σ2
i (z) = 2θiφi(|z|2 + χ) and σ̂i(zi)

2 = 2θiφi(z
2
i + χ).

While the drift coefficients are identical, the diffusion coefficients satisfy the inequality σi(z) ≥ σ̂i(z)
for all z ∈ Rr and i = 1, . . . , r. Note that all coefficients are Lipschitz continuous and of bounded
growth, such that the standard assumptions for uniqueness and existence of strong SDE solutions are
satisfied. Moreover, the SDEs for Ẑit are decoupled and each is a Markov diffusion with generator
given by

L̂i = bi(x)∂x +
σ̂i(x)2

2
∂xx,

where x denotes the scalar state variable of Ẑi. Let ClP (R) denote the subspace of Cl-functions for
which all derivatives up to order l have polynomial growth. Suppose that g ∈ ClP (R). From Theorem
4.8.6 in [Kloeden and Platen, 1999] the backward functional

Gi(t, x) = E[g(ẐiT )|Ẑit = x], t ∈ [0, T ],

satisfies the backward Kolmogorov equation

∂tGi(t, x) + L̂iGi(t, x) = 0 t < T, (21)
Gi(T, x) = g(x).

with ∂tGi continuous and Gi(t, ·) ∈ ClP (R) for each t ∈ [0, T ]. We now provide a Lemma showing
the propagation-of-order property of Ẑ:

Lemma A.1. If g ∈ ClP (R) is convex, so is Gi(t, ·) for all t ∈ [0, T ] and i = 1, . . . , r.

Proof. For better readability we suppress the superscript and subscript i in the SDE

dẐit = bi(Ẑ
i
t)dt+ σ̂i(Ẑ

i
t)dB

i
t
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and consider its Euler-Maruyama approximation

ẐK,tj+1
= ẐK,ti + b(ẐK,tj )∆tj + σ̂(ẐK,tj )(Btj+1

−Btj )

with tj = j T−tK + t, j = {0, 1, · · · ,K} and ∆tj = T−t
K := ∆. Using Theorem 9.7.4 in [Kloeden

and Platen, 1999] we have

GK(t, x) = E[g(ẐK,T )|ẐK,t = x]→ G(t, x), t ∈ [0, T ]. (22)

Let A be a transition operator given by

AS = S + ∆b(S) + σ̂(S)W

with W ∼ N(0,∆). We will show that A satisfies the convex-ordering property

Eh(S1) 6 Eh(S2)⇒ Eh(AS1) 6 Eh(AS2) (23)

for any convex function h(·). Let S1, S2 be random vectors which are independent of W and
satisfy Eh(S1) 6 Eh(S2). Due to Strassen’s theorem in [Strassen, 1965], we can also assume that
E(S2|S1) = S1. It follows from conditional Jensen’s inequality that

Eh(AS2) = Eh(S2 + ∆b(S2) + σ̂(S2)W )

= E[Eh(S2 + ∆b(S2) + σ̂(S2)W )|S1]

> E[h(E(S2|S1) + ∆E(b(S2)|S1) + E(σ̂(S2)|S1)W )]

= E[h(S1 + ∆b(S1) + E(σ̂(S2)|S1)W )].

(24)

Here, the linearity of b(·) implies E(b(S2)|S1) = b(S1). Note that the function f(x) =
√
x2 + χ is

convex. Similarly, σ(·) is convex. Using conditional Jensen’s inequality again gives

$(S1) := E(σ̂(S2)|S1) > σ̂(E(S2|S1)) = σ̂(S1). (25)

Due to

S1 + ∆b(S1) + E(σ̂(S2)|S1)W ∼ N(µ,$2), S1 + ∆b(S1) + σ̂(S1)W ∼ N(µ, σ̂2)

with µ = E(S1 + ∆b(S1)), by Theorem 3.4.7 in [Müller and Stoyan, 2002], (25) implies that

E[h(S1 + ∆b(S1) + E(σ̂(S2)|S1)W )] > E[h(S1 + ∆b(S1) + σ̂(S1)W )] = Eh(AS1).

Combined with (24) we have proved the convex-ordering property (23).

By the Markov property of the Euler-Maruyama approximation we have

GK(t, x) = E[g(AKx)].

Let Z be a Bernoulli random variable which takes the value z1 ∈ R with probability p ∈ (0, 1) and
the value z1 ∈ R with probability 1− p. Then E(Z) = pz1 + (1− p)z2. Then we have

h(E(Z)) = h(pz1 + (1− p)z2) 6 ph(z1) + (1− p)h(z2) = Eh(Z).

Using the convex-ordering property (23) of the operator A we obtain

GK(t,pz1 + (1− p)z2) = GK(t,E(Z)) = E[g(AKE(Z))] 6 E[g(AKZ)] = GK(t, Z) (26)

due to g is convex. Take expectation on both sides of (26) gives

GK(t,pz1 + (1− p)z2) 6 E[GK(t, Z)] = pGK(t, z1) + (1− p)GK(t, z2),

which means GK(t, ·) is convex. The approximation property (22) implies the convexity of G(t, ·).

Next, we need a technical result that shows that each process Gi(z, Zit)t∈[0,T ] is of ‘class (D)’.9

Lemma A.2. For each i = 1, . . . , r, the process Gi(t, Zit)t∈[0,T ] is of class (D).
9A stochastic process (Xt)t∈I is of class (D), if the set {Xτ : τ is I-valued stopping time} is uniformly

integrable (cf. Definition 4.8 in [Karatzas and Shreve, 2012]).
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Proof. Since the solution to (8) is a polynomial process (see example 3.6 in [Cuchiero et al., 2012]),
it follows from Theorem 3.1 in [Filipović and Larsson, 2016] that

Gi(t, Zit) = E[g(ẐiT )|Ẑit = Zit ] = exp{(T − t)G}P(Zit),

where

G =



0 g0 2× 1g1 0 · · · 0

0 g2 2g0 3× 2g1 0
...

0 0 2 (g2 + g3) 3g0
. . . 0

0 0 0 3 (g2 + 2g3)
. . . p(p− 1)g1

... 0
. . . pg0

0 · · · 0 p (g2 + (p− 1)g3)


with

g0 = θiµi, g1 = θiφiχ, g2 = −θi, g3 = θiφi,

and P(Zit) = (0, 1, Zit , (Z
i
t)

2, · · · , (Zit)p)T. Then there is a constant CT that depends on T such that

|Gi(t, Zit)| 6 CT (1 + |Zit |p).

Let τn be a localizing sequence for G(t, yt). Then we have

|Gi(t ∧ τn, Zit∧τn)| 6 CT (1 + |Zit∧τn |
p),

which implies
|Gi(t ∧ τn, Zit∧τn)|2 6 CT (1 + |Zit∧τn |

2p). (27)

Taking F0-condition on both sides of (27) gives

E
{
|Gi(t ∧ τn, Zit∧τn)|2

}
6 CT

(
1 + E|Zit∧τn |

2p
)

6 CT

(
1 + E

[
sup
n
|Zit∧τn |

2p

])
6 CT e

CT .

Here, the last inequality holds based on Lemma 2.17 in [Cuchiero et al., 2012]. Thus, we complete
the proof of this lemma.

We are now prepared to give the proof of Theorem 3.1.

Proof. Let g be a convex function and assume for now that g ∈ C2
P (R). Define the local martingale

Lt =

∫ t

0

∂xGi(s, Zis)σi(Zs)dBis

. Using Itô’s formula in the first step and (21) in the second step, we have

Gi(t, Zit)− Gi(0, Zi0)

=

∫ t

0

∂tGi(s, Zis)ds+

∫ t

0

(
bi(Z

i
t)∂x +

σ2
i (Zt)

2 ∂xx

)
Gi(s, Zis)ds+ Lt

=−
∫ t

0

L̂iGi(s, Zs)ds+

∫ t

0

(
bi(Z

i
t)∂x +

σ2
i (Zt)

2 ∂xx

)
Gi(s, Zis)ds+ Lt

=
1

2

∫ t

0

[σ2
i (Zs)− σ̂2

i (Zis)]∂xxGi(s, Zis)ds+ Lt.

(28)

By Gi(t, ·) ∈ C2
P (R) and Lemma A.1 we obtain ∂xxGi(s, ·) > 0 for all i ∈ {1, . . . , d}. Thus, due

to the ordering of σ2
i and σ̂2

i , the first term in the right hand side of (28) is nonnegative. Since L is
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a continuous local martingale with zero initial data, it follows that Gi(t, Zt) − Gi(0, Z0) is a local
submartingale.

Let τn be a localizing sequence for Gi(t, Zt). For all t ∈ [0, T ], we have

Gi(t ∧ τn, Zt∧τn)− Gi(0, Z0)
a.s.−−−−→
n→∞

Gi(t, Zt)− Gi(0, Z0). (29)

Since Gi(t, Zt) is a process of class (D) or locally Lp-bounded, p > 1, it follows that Gi(t ∧
τn, Zt∧τn)− Gi(0, Z0) is uniformly integrable. Combining almost-sure convergence with the uni-
formly integrable property, it implies that the convergence (29) also takes place in L1, and therefore,
Gi(t, Zt)− Gi(0, Z0) is a submartingale. By taking expectations on both sides of (28) and using the
fact that Z0 = Ẑ0, we obtain the comparison result

Eg(ZiT ) = EGi(T,ZiT ) > G(0, Zi0) = E[g(ẐiT )] (30)

for all convex g ∈ C2
P (R).

Now let g be arbitrary convex function on R. From Theorem 3.1.4 in [Hiriart-Urruty and Lemaréchal,
1996] we can find, for each n ∈ N a convex Lipschitz function g̃n such that g̃n = g in [−n, n] and
g̃n ≤ g in R \ [−n, n]. By [Azagra, 2013] we can find further smooth convex functions gn ∈ C∞Lip(R)

such that g̃n− 1
n ≤ gn ≤ g̃n on all of R. It follows that the sequence gn converges pointwise to g from

below. We observe that C∞Lip(R) ⊂ C2
P (R) and equation (11) now follows from (30) by monotone

convergence. Finally, equation (12) follows by choosing the convex function g(zi) = |zi|p.

A.4 Proof of Theorem 3.2 (upper bound)

From Xt = QYt + x∗, the triangle inequality and the unitary invariance of the Euclidean norm, it
follows that |Yt| ≤ |Xt|+ |x∗|. Thus, we have

βp/2

λp1
E[|Z1

t |p] = E[|Y 1
t |p] ≤ E[|Yt|p] ≤ 2p (E[|Xt|p] + |x∗|p) . (31)

Now, let p > ν1. By Theorem 3.1, Fatou’s Lemma, and the properties of the distribution (9) or (10)

lim sup
t→∞

E[|Z1
t |p] ≥ lim inf

t→∞
E[|Z1

t |p] ≥ lim inf
t→∞

E[|Ẑ1
t |p] ≥ E[|Ẑ1

∞|p] =∞.

Together with (31) this implies that also

lim sup
t→∞

E[|Xt|p] =∞

and it follows from (5) that the tail index satisfies η ≤ p for all p > ν1. Finally, the parameter ν1 in
the limit distribution of Ẑ1 is given by ν1 = 1 + φ−1

1 , where φ1 can be found in (6). Thus, we obtain
Theorem 3.2.

A.5 Proof of Theorem 3.3 (lower bound)

For better readability, we rewrite (hSGD) in the form

dXt = F (Xt)dt+G(Xt)dBt (32)

with

F (Xt) = −γ
n

[
AT(AXt − b) + δXt

]
, G(Xt) =

γ

n

√
1

B
|AXt − b|2ATA.

Our goal is to show that

lim sup
|x|→∞

(1 + |x|2)
[
2xTF (x) + |G(x)|2

]
− (2− ρ)|xTG(x)|2

|x|4
< −C1 (33)

for all ρ ∈ (0, η∗), where C1 is a positive constant and

η∗ := 1 +
2n(λ2

1 + nδ)

γλ4
1

−
∑d
i=2 λ

2
i

λ2
1

> 0.
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Under condition (33) it follows directly from Theorem 5.2 in [Li et al., 2019] that the solution Xt of
the SDE (32)) satisfies

sup
06t<∞

E|Xt|ρ 6 C2

with C2 a positive constant, showing Theorem 3.3.

In order to show (33), let

M(x) :=
xTATAx

|x|2
, x ∈ Rd \ {0}

denote the Rayleigh-quotient of ATA. From Chapter 1 in [Horn and Johnson, 2012] we have that the
range of M(x) is equal to the line segment [λ2

r, λ
2
1], i.e.,{

M(x) : x ∈ Rd \ {0}
}

= [λ2
r, λ

2
1]. (34)

Evaluating the condition (33), we have

(1 + |x|2)
[
2xTF (x)

]
|x|4

=
(1 + |x|2)

{
−2 γnx

T
[
AT(Ax− b) + δx

]}
|x|4

=
(1 + |x|2)

[
−2 γnx

T(ATA+ δIr)x+ 2 γnx
TATb

]
|x|4

= −
2 γnx

T(ATA+ δIr)x

|x|4
−

2 γnx
T(ATA+ δIr)x

|x|2
+

2 γn (1 + |x|2)xTATb

|x|4

and

(1 + |x|2)|G(x)|2 − (2− ρ)|xTG(x)|2

|x|4

=
(1 + |x|2)

[
γ2

n2B |
√
|Ax− b|2ATA|2

]
− (2− ρ) γ2

n2B |x
T
√
|Ax− b|2ATA|2

|x|4

=
γ2

n2 (1 + |x|2)|Ax− b|2|
√
ATA|2 − (2− ρ) γ

2

n2 |Ax− b|2|xT
√
ATA|2

|x|4

=
γ2

n2B |Ax− b|
2|
√
ATA|2

|x|4
+

γ2

n2B |Ax− b|
2|
√
ATA|2

|x|2

−
(2− ρ) γ2

n2B |Ax− b|
2

|x|2
xTATAx

|x|2
.

With |
√
ATA|2 = tr(ATA) and the positive constant ρ given below, we obtain

lim sup
|x|→∞

(1 + |x|2)
[
2xTF (x) + |G(x)|2

]
− (2− ρ)|xTG(x)|2

|x|4

= lim sup
|x|→∞

[
−

2 γnx
T(ATA+ δIr)x

|x|2
+

γ2

n2B |Ax− b|
2|
√
ATA|2

|x|2

−
(2− ρ) γ2

n2B |Ax− b|
2

|x|2
xTATAx

|x|2
]

= − γ2

n2B
lim inf
|x|→∞

[
2nB(M(x) + δ)

γ
− tr(ATA)M(x) + (2− ρ)M(x)2

]
= − γ2

n2B
inf

m∈[λ2
r,λ

2
1]
q(m, ρ),

(35)
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where

q(m, ρ) =
2nB(m+ δ)

γ
− tr(ATA)m+ (2− ρ)m2. (36)

Set

ϑ := 2 +
2nB(λ2

1 + δ)

γλ4
1

−
∑d
i=1 λ

2
i

λ2
1

.

Note that due to the assumption γ < γ̄ we have ϑ > 2. We claim that

inf
m∈[λ2

r,λ
2
1]
q(m, ρ) > q(λ2

1, θ) = 0 (37)

for all ρ ∈ [2, ϑ). First, note that m 7→ q(m, ρ) is concave for any ρ ∈ [2, ϑ), such that its minimum
must be attained at one of the boundary values m ∈ {λ2

r, λ
2
1}. Second, note that ρ 7→ q(m, ρ) is

strictly decreasing for any m ∈ (0,∞), such that for (37) it is sufficient to show

q(λ2
r, θ) ≥ q(λ2

1, θ) = 0. (38)

Using the assumption γ < γ̄ we obtain

q(λ2
r, θ) =

2nB

γ
(λ2
r + δ)− tr(ATA)λ2

r +
2nB

γ
(λ2

1 + δ)
λ4
r

λ4
1

− tr(ATA)
λ4
r

λ2
1

≥ tr(ATA)

(
(λ2
r + δ)

(λ2
1 + δ)

λ2
1 − λ2

r

)
.

For δ = 0 the right hand side vanishes and (38) is shown. Differentiation shows that the right hand
side is increasing in δ, such that (38) holds for all δ ≥ 0. Altogether, we have shown that the right
hand side of (35) is strictly negative. Thus, the SDE (32) satisfies the Assumption 5.1 in [Li et al.,
2019]. Based on Theorem 5.2 in Li et al. [2019], the solution Xt of the SDE (32) satisfies

sup
06t<∞

E|Xt|ρ 6 C

for all ρ ∈ [2, ϑ). Therefore, the lower bound, denoted by η∗, for the asymptotic tail index of Xt is

η∗ = ϑ = 1 +
2nB(λ2

1 + δ)

γλ4
1

−
∑d
i=2 λ

2
i

λ2
1

.

A.6 Wasserstein convergence

Lemma A.3. Let Z and Z̃ be two strong solutions of (7) with possibly different initial conditions
Z0, Z̃0 ∈ Rr. Suppose that

γ < γ′ =:
nB

2

{
r∑
i=1

λ4
i

λ2
i + δ

}−1

. (39)

Then the equation
r∑
i=1

λ4
i

λ2
i + δ − nρ/γ

=
nB

2γ
(40)

has a unique positive solution ρ∗ > 0 and there exist constants C,C ′ independent of Z0, Z̃0, such
that

E
[∣∣∣Zt − Z̃t∣∣∣2] ≤ Ce−2tρ∗

∣∣∣Z0 − Z̃0

∣∣∣2
and

E
[
|Zt|2

]
≤ C ′e−2tρ∗ |Z0|2 .

Proof. We set µ = (µ1, . . . , µr), Θ = diag(θ1, . . . , θr), ψ = (2φ1θ1, . . . , 2φrθr), and transform Z
into Vt := eΘt(Zt − µ). Applying Ito’s formula, we see that V can be written as

Vt = Z0 +

∫ t

0

eΘs
√

diag(ψ1, . . . , ψr)(|Zs|2 + χ)dBs. (41)
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The same representation holds for Ṽ in relation to Z̃. Setting d(z, z′) =
√
|z|2 + χ−

√
|z′|2 + χ,

we estimate ∣∣∣V it − Ṽ it ∣∣∣2 ≤ 4

{∣∣∣Zi0 − Z̃i0∣∣∣2 + ψi ·
(∫ t

0

eθisd(Zs, Z̃s)dB
i
s

)2
}

for each i = 1 . . . r. Using Ito isometry and the Lipschitz property d(z, z′) ≤ |z − z′|, we obtain

E
[∣∣∣V it − Ṽ it ∣∣∣2] ≤ 4

{∣∣∣Zi0 − Z̃i0∣∣∣2 + ψi

∫ t

0

e2θisE
[
|Zs − Z ′s|2

]
ds

}
.

Introducing Dt = (D1
t , . . . , D

r
t ), where Di

t = E
[∣∣∣Zit − Z̃it ∣∣∣2] and M = ψ1> = (ψi)i,j , where

1 = (1, . . . , 1), we can combine these inequalities into the vector-valued inequality

Dt ≤ 4

{
e−2ΘtD0 + e−2Θt

∫ t

0

e2ΘsMDsds

}
.

Now, consider the comparison equality

D̂t = 4

{
e−2ΘtD0 + e−2Θt

∫ t

0

e2ΘsMD̂sds

}
.

Differentiation shows that
d

dt
D̂t = −2(Θ− 2M)D̂t.

Applying the comparison result of Beesack [1969], we obtain

E
[
|Zs − Z ′s|2

]
= 1>Dt ≤ 1>D̂t = 1>e−2t(Θ−2M)D0.

Hence,
E
[
|Zs − Z ′s|2

]
≤ Ce−2ρ∗t|Z0 − Z ′0|2

, where ρ∗ is the smallest Eigenvalue of Θ− 2M .

Now, M = ψ1>, i.e., Θ− 2M can be considered a rank-one perturbation of the diagonal matrix Θ.
By [Anderson, 1996], the Eigenvalues ρ1, . . . , ρr of Θ− 2M are solutions of the secular equation

F (ρ) := 1−
r∑
i=0

2ψi
θi − ρ

= 0. (42)

Moreover, they interlace the diagonal values of Θ, i.e., we have ρ∗ = ρ1 < θ1 < ρ2 < · · · < ρr < θr.
Therefore, all Eigenvalues of Θ − 2M are positive, except for ρ∗ which may be either positive or
negative. On (−∞, θ1) the function F is strictly decreasing from 1 to −∞, such that its root ρ∗
satisfies ρ∗ > 0 if and only F (0) > 0. Rewriting this condition in terms of (6) yields (39); doing
the same for the secular equation (42) yields (40). This completes the proof for the estimate of
E [|Zs − Z ′s|]

2; the proof for E
[
|Zs|2

]
is completely analogous.

We are now prepared for the proof of Theorem 3.4, which uses some key ideas from [Friesen et al.,
2020]:

Proof. Let (Zt)t≥0 be the unique strong solution of (7) and denote by pt(z, dζ) its Markov transition
kernel. Moreover, for any Borel measure µ on Rr set

Ptµ(dζ) :=

∫
Rr
pt(z, dζ)µ(dz).

Note that Pt+s = PtPs = PsPt by the Markov property of Z. Denote by P2 the set of all Borel
measures µ on Rr with

∫
|z|2µ(dz) < ∞. From Lemma A.3 we see that under condition (39) Pt

maps P2 into P2 for any t ≥ 0. Moreover, the contraction estimate in Lemma A.3 implies that

W2(Ptδz, Ptδz′) ≤ Ce−tρ∗ |z − z′|
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with δz, δz′ the Dirac measures in z and z′ respectively. Using the convexity of the 2-Wasserstein
distance (cf. Sec. A.2 in [Friesen et al., 2020]), it now follows that

W2(Ptµ, Ptν) ≤ Ce−tρ∗W2(µ, ν)

for any µ, ν in P2.

Let µ ∈ P2. For any n, k ∈ N0, we have

W2(Pn+kµ, Pnµ) =W2(PnPkµ, Pnµ) ≤ Ce−nρ∗W2(Pkµ, µ),

which shows that (Pnµ)n∈N0
is a Cauchy sequence in (P2,W2). In particular there exists a limit

π ∈ P2 such that limn→∞W2(Pnµ, π) = 0. Next, we show that π is an invariant measure for Z.
Indeed, for any h > 0 and k ∈ N, we can estimate

W2(Phπ, π) ≤ W2(Phπ, PhPkµ) +W2(PkPhµ, Pkµ) +W2(Pkµ, π) ≤
≤ Ce−hρ∗W2(π, Pkµ) + Ce−kρ∗W2(Phµ, µ) +W2(π, Pkµ),

where the right hand side tends to zero as k →∞. Finally, we show that the invariant measure π is
unique. Suppose that there is another invariant measure π′ ∈ P2. Then

W2(π, π′) =W2(Pnπ, Pnπ
′) ≤ Ce−nρ∗W2(π, π′),

which tends to zero as n → ∞. Together, this shows that under the conditions of Lemma A.3, Z
converges inW2-distance to its unique invariant distribution π, and hence completes the proof of
Theorem 3.4.

A.7 Parameter Values

Table 4: Parameters used for Figure 1

Figure 1 data d K γ γ δ B λ1 η∗ η∗

(a), (d), (g) X 200 1000 0.015 0.037 0 1 319.83 3.56 3.61
(b), (e), (h) Y 64 10000 0.100 0.133 0 1 137.07 2.48 2.91
(c), (f), (i) Z 200 10000 0.200 0.304 0 1 93.49 2.70 3.06

Table 5: Parameters used for Figure 2

Figure 2 data d K γ δ B

(a), (d), (g) X 200 3000 0.1 0 1
(b), (e), (h) Y 64 3000 0.1 0 1
(c), (f), (i) Z 200 3000 0.1 0 1

A.8 Experimental configuration

The computing device that we use for calculating our examples includes a single Intel Core i7-10710U
CPU with 16GB memory. Our code is available at: https://github.com/zhezhejiao/hSGD.
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Justification: see the Section 1.1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: see the Sections 2.6 and 3.4.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Justification: See the Supplement A.1-A.6 for all the proofs.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experiments in the paper are reproducible; code will be released.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: See the Supplement A.8.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See the Supplement A.7.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: see the Table 2.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See the Supplement A.8.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research in this paper conform with the NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See the Supplement A.8.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: See the Supplement A.8.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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