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Abstract

Reinforcement learning (RL) has emerged as a pivotal technique for fine-tuning
large language models (LLMs) on specific tasks. However, prevailing RL fine-
tuning methods predominantly rely on PPO and its variants. Though these algo-
rithms are effective in general RL settings, they often exhibit suboptimal perfor-
mance and vulnerability to distribution collapse when applied to the fine-tuning of
LLMs. In this paper, we propose CORY, extending the RL fine-tuning of LLMs to
a sequential cooperative multi-agent reinforcement learning framework, to leverage
the inherent coevolution and emergent capabilities of multi-agent systems. In
CORY, the LLM to be fine-tuned is initially duplicated into two autonomous agents:
a pioneer and an observer. The pioneer generates responses based on queries, while
the observer generates responses using both the queries and the pioneer’s responses.
The two agents are trained together. During training, the agents exchange roles
periodically, fostering cooperation and coevolution between them. Experiments
evaluate CORY’s performance by fine-tuning GPT-2 and Llama-2 under subjective
and objective reward functions on the IMDB Review and GSM8K datasets, respec-
tively. Results show that CORY outperforms PPO in terms of policy optimality,
resistance to distribution collapse, and training robustness, thereby underscoring its
potential as a superior methodology for refining LLMs in real-world applications.
The code can be found at: https://github.com/Harry67Hu/CORY.

1 Introduction

Large language models (LLMs) have achieved impressive success across diverse downstream tasks,
including dialogue systems [Ouyang et al., 2022, Touvron et al., 2023], code generation [Roziere
et al., 2023], and robotic control [Driess et al., 2023, Brohan et al., 2023]. However, as the capabilities
of LLMs advance, the challenges associated with further performance gains become increasingly
intricate. Fine-tuning LLMs for specific tasks presents a significant challenge, prompting recent
exploration of LLM fine-tuning paradigm such as supervised fine-tuning (SFT) [Wu et al., 2021],
reinforcement learning (RL) fine-tuning [Shojaee et al., 2023], and direct preference optimization
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(DPO) [Rafailov et al., 2024]. RL fine-tuning demonstrates promising potential for refining LLM.
Compared to SFT, RL fine-tuning offers a more direct optimization path, aligning training with
desired outcomes and potentially leading to better out-of-distribution performance [Kirk et al.,
2023]. Compared to DPO, RL fine-tuning allows fine-tuning on rule-based reward functions without
requiring preference data.

However, contemporary RL algorithms are not specifically designed for LLMs. When fine-tuning an
LLM using these RL algorithms, they exhibit instability and vulnerability to distribution collapse,
which means that the LLM is over-optimized and exhibits highly biased behavior [Zheng et al., 2023,
Yang et al., 2024b]. From the perspective of RL, LLM fine-tuning has several challenges, including
large discrete action space and sparse rewards. Taking the RL fine-tuning of Llama-2 [Touvron et al.,
2023] as an example, the dimension of the action space of Llama-2 can reach to 32000, representing
32000 potential vocabulary choices. Moreover, the reward signal is received only after generating
the complete response, which results in a sparse reward problem. The above challenges hinder
the exploration in such a vast search space, causing the instability of popular algorithms like PPO
[Schulman et al., 2017].

Cooperative multi-agent reinforcement learning (MARL) represents a paradigm shift in the field of
artificial intelligence (AI), where multiple autonomous agents coevolve within a complex system,
resulting in the emergence of new skills [Foerster, 2018, Yang and Wang, 2020, Oroojlooy and
Hajinezhad, 2023, Zang et al., 2023]. Language is an outcome of such multi-agent coevolution. In a
society, numerous individuals utilize language for communication. Languages develop through agent
interactions and are shaped by societal and cultural influences. As languages progress, they influence
and are influenced by these interactions [Cavalli-Sforza and Feldman, 1981, Duéñez-Guzmán et al.,
2023]. Inspired by this, fine-tuning an LLM within a cooperative MARL framework might lead to
the emergence of superior policies during coevolution.

In this paper, we propose a plug-and-play method named CORY, which extends the RL fine-tuning of
LLMs to a sequential cooperative MARL framework. In CORY, the LLM to be fine-tuned is initially
duplicated into two autonomous agents3, assigned two roles respectively: a pioneer and an observer.
There are two fundamental mechanisms in CORY to enable the coevolution of the two LLM agents.
The first is knowledge transfer, where the pioneer generates a response according to a task query
independently, and the observer generates response based on the query as well as the response from
the pioneer. The second is role exchange, where the roles of the two LLM agents are exchanged
periodically during training. The two agents share a collective reward, calculated as the sum of
individual task rewards, and they are trained simultaneously with their respective samples. Ultimately,
CORY acts as a form of bootstrapping, wherein the collaborative learning between LLMs enhances
the effectiveness of RL fine-tuning. Notably, this approach remains algorithm-agnostic, offering
flexibility for integration with various RL algorithms beyond PPO, while maintaining simplicity and
compatibility with existing methods.

In the experimental evaluation, we systematically investigate the efficacy of our proposed method
across two types of reward functions: subjective and objective. Subjective reward functions are
models trained to align human preferences, while objective reward functions are pre-defined functions
typically established by domain experts. For the assessment of subjective rewards, we leverage the
IMDB review dataset [Tripathi et al., 2020], a well-established benchmark for sentiment analysis.
Meanwhile, the evaluation of objective rewards is conducted using the GSM8K dataset [Cobbe et al.,
2021a], which focuses on mathematical word problem reasoning. Experiment results indicate that
CORY surpasses PPO regarding policy optimality, resilience to distribution collapse, and robustness
during training, highlighting its potential as an advanced method for improving LLMs in practical
applications.

2 Problem Formulation

To understand LLMs through the lens of RL, we present a sequential decision-making problem
formulation for the next-token prediction in causal language models. The next-token prediction
is precisely defined by the concept of language-augmented Markov decision process [Li et al.,
2022], denoted asM =< V,S,A, r, P, γ >. Here, V represents a vocabulary of a language model,

3The “agents” here refer to individuals who make decisions and take actions in the context of reinforcement
learning [Sutton and Barto, 2018].
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encompassing all possible tokens. The w ∈ V represents a specific token within this vocabulary. The
state space S ⊂ VM , where VM is the combination space of M tokens. The action space A ⊂ VN ,
where VN is the combination space of N tokens. M and N are the max token lengths for state and
action, respectively. A state s ∈ S is a concatenation of token sequence s = (w1, w2, . . . , wM ).
An action a ∈ A is the output of a causal language model, construed as a concatenation of token
sequence a = (w1, w2, . . . , wN ). The states and actions are padded with pad token if the real length
is less than the maximum length. The reward function r : S ×A → R assigns a numerical score to a
sequence of tokens, which can be considered as a typical sparse reward problem within the context
of RL. The state transition function P : S × V → S describes a deterministic transition of states
according to the auto-regressive paradigm. At each step, a predicted token is concatenated with the
state of last step: si+1 = (si, wi+1) = (s0, w1:i+1), where s0 denotes a tokenized user’s input for a
causal language model, and w1:i = (w1, w2, . . . , wi) denotes a token sequence up to the i-th token.
Then, the token-level policy of a causal language model can be encapsulated within π(wi|s0, w1:i−1).
And the sentence-level policy is defined as a joint policy:

π(a|s0) =
N∏
i=1

π(wi|s0, w1:i−1). (1)

The reward function r(·, ·) is related to a specific task (e.g., safety alignment [Liu, 2023, Ji et al.,
2024], code generation [Shojaee et al., 2023, Liu et al., 2023]). A task reward is only obtained after
N steps of decision-making via token-level policy. Under such a sparse reward, RL is prone to
over-optimisation, resulting in distributional collapse of the language model. To mitigate the risk of
distributional collapse, it is common practice to incorporate token-level KL penalties into the reward
function, which serves to constrain the deviation of the language model from its original distribution
[Go et al., 2023, Zheng et al., 2023].

r̂(si, wi) =

{ −ηKL(πθ(·|s0, w1:i−1), π0(·|s0, w1:i−1)) i < N

r(s0, a)− ηKL(πθ(·|s0, w1:i−1), π0(·|s0, w1:i−1)) i = N,
(2)

where η is the KL coefficient, r̂(si, wi) represents the token-level combined reward function. For each
token, a KL penalty is imposed based on the KL divergence between current policy πθ(·|s0, w1:i−1)
and initial policy π0(·|s0, w1:i−1). Only after predicting the final token, does the reward model yield
a task-specific reward r(s0, a).

3 Method

3.1 Coevolving with the Other You (CORY)

To extend the RL fine-tuning of LLMs to a cooperative MARL framework, the LLM to be fine-tuned
in CORY is initially duplicated into two copies, each is treated as an autonomous agent. Then, two
roles, a pioneer and an observer, are assigned to these two LLM agents. We design two fundamental
mechanisms to facilitate the coevolution between the two agents. The first design is knowledge
transfer. The LLMs asynchronously take action, with the pioneer transferring its response (action)
to the observer. The observer then utilizes this information to guide its own decision. The second
design is role exchange. Once the observer achieves a satisfactory performance, it exchanges roles
with the pioneer. In the following, we provide a comprehensive description of each element, and the
pipeline of our method is shown in Figure 1.

Knowledge Transfer. To enable collaboration between the two LLM agents for improved response
generation, we introduce a knowledge transfer mechanism. Given a query denoted as s0, the pioneer
acts first and generates a response denoted as a1. Subsequently, the observer receives both the
original query s0 and the pioneer’s response a1 to generate its own response a2. This sequential
interaction facilitates knowledge transfer, where the observer leverages the pioneer’s output to guide
its own generation process, potentially leading to a superior response due to the in-context learning
capabilities of LLMs. The sentence-level policies of the pioneer and observer can be formulated as
follows:

a1 ∼ πpio(·|s0), a2 ∼ πobs(·|s0, a1). (3)
During the training process, the parameters of the pioneer and the observer are optimized separately
through an RL algorithm such as PPO. A cooperative relationship exists between the two LLM agents.

3

15499 https://doi.org/10.52202/079017-0495



7

Task Query
: “Please help me solve the 
following math problem...”

('

Response

Traditional RL Fine-Tuning

: “Sure! Here is a solution
to this problem...”

)'

Reward Model

' (', )'
Training

Coevolving with the Other You (CORY)
Task Query

: “Please help me solve the 
following math problem...”

('

Reward Model

' (', )! + ' (', )&
Training

Response 1 Response 2

Pioneer 

: “Sure! Here is a solution
to this problem...”

)! : “Sure! Here is a solution based
on the reference answer...”

)&

' (', )! + ' (', )&

Observer
LLM Agent

LORY

Knowledge Transfer

Training

Role Exchange

Figure 1: The framework of CORY. A traditional RL fine-tuning method can be simply extended to
the CORY version with only three steps. First, duplicate the LLM into two LLM agents, one acting
as a pioneer and the other as an observer; second, combine the task rewards of the two LLM agents to
replace the original task reward; third, periodically exchange the roles of the two LLM agents during
training. After training, either the LLM agent can perform the task independently.

To facilitate this collaboration, CORY employs a collective task reward, calculated as the sum of
individual task rewards:

rCORY(s0, a1, a2) = r(s0, a1) + r(s0, a2), (4)

which implies that both the pioneer and the observer receive rewards from each other’s improvement.
Following the form of Equation 2, we add rCORY and the KL penalty to construct a whole reward
signal. Similar to Ni et al. [2022], we find that a partially correct reference can also be beneficial for
the observer. Hence, it is not necessary for the pioneer to generate a high-quality response.

Role Exchange. During training, the observer may develop a prompt bias due to consistently
receiving inputs in the form of (s0, a1). This reliance on prompts that combine the original query
with the pioneer’s response, hinders the observer’s ability to generate responses independently. To
address this issue, we introduce a role exchange mechanism. This mechanism involves exchanging
the roles of the pioneer and observer periodically during training:

πpio(·|s0) = πpio(·|s0; θ1), πobs(·|s0, a1) = πobs(·|s0, a1; θ2), if swap = False

πpio(·|s0) = πpio(·|s0; θ2), πobs(·|s0, a1) = πobs(·|s0, a1; θ1), if swap = True,
(5)

where swap is initialized as False, and reverse periodically. This exchange ensures that both the
LLMs experience both roles (pioneer and observer) multiple times throughout the training process.
Through this role exchange mechanism, they are forced to adapt to both prompt formats: s0 alone
and the combined format (s0, a1). This allows us to use either LLM individually during inference.
From a representational learning perspective, this role exchange mechanism encourages the LLMs to
develop a unified representation for s0 and (s0, a1). This unified representation captures the essential
information from the task query, regardless of the specific prompt format presented during training or
inference.

These two key mechanisms in CORY act as a form of bootstrapping. The two LLM agents collaborate,
with the observer potentially learning better policies by leveraging the pioneer’s output. Role exchange
ensures both the LLMs benefit from this collaborative learning, similar to cooperative learning among
humans. Importantly, CORY is an algorithm-agnostic approach, meaning it can be theoretically
compatible with various RL algorithms beyond PPO. Additionally, CORY offers the advantages
of simplicity in implementation and seamless integration with existing frameworks, making it a
plug-and-play solution. The derivation of the CORY’s policy update can be found in Appendix B,
and the detailed pseudocodes are provided in Appendix C.
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Figure 2: The empirical demonstration of why CORY surpasses single-agent RL fine-tuning. In (c),
the values of η from left to right are 1e-5, 1e-4, 1e-3, and 1e-2.

3.2 Understanding CORY

Following the explanation of CORY in Section 3.1, this section provides an empirical demonstration
of why the proposed method surpasses the single-agent RL fine-tuning method.

In fact, RL fine-tuning with KL penalty inherently formulates a multi-objective reinforcement learning
problem. The LLM agent strives to concurrently maximize the task reward and minimize the KL
divergence. Unfortunately, these two objectives may be in opposition to one another. This is because
maximizing the task reward will inevitably lead to the output distribution deviating from the pre-
trained model, resulting in an increase in KL divergence. Hence, the optimization process seeks a
trade-off between the task reward and the KL divergence, ideally driving the policy towards a Pareto
frontier [Ngatchou et al., 2005]. This frontier covers all achievable policies where no policy can
improve on one objective without sacrificing performance on the other. Formally, the Pareto frontier
can be defined as:

F := {Jr(π) | π ∈ Π ∧ ∄π′ ̸= π : Jr (π
′) ≥ Jr(π)} , (6)

where Jr(π) = Eπ[
∑T

t=0 γr(st, at)]. r(s, a) ∈ Rm is a vector-valued reward function and Π
denotes the set of all policies. Given a fixed reference vector ω ∈ Ω ⊆ Rm, one could scalarize
the multi-objective reward into a single objective by using the weighted sum ωT r(s, a). Under this
preference weighting, the ideal outcome for the policy is to converge to a point on the Pareto frontier,
as illustrated by the black dots in Figure 2(a).

However, due to the inherent complexities of natural language, achieving perfect policy convergence
to the Pareto frontier is often intractable. Nevertheless, by adjusting the preferences, these sub-optimal
policies can still form a frontier as illustrated in Figure 2(b). For simplicity, we term it the sub-optimal
frontier. Our hypothesis is that the sub-optimal frontier achieved by CORY lies closer to the true
Pareto frontier compared to that achieved by single-agent RL method.

To verify this hypothesis, we fine-tune the Llama-2-7b-chat model on the grade school math 8K
(GSM8K) dataset [Cobbe et al., 2021b] using both PPO and CORY. We measure the KL divergence
and the task reward obtained by each policy after convergence. By adjusting the preference, i.e., η
in Equation 2, we are able to generate sub-optimal frontiers for both the methods, as illustrated in
Figure 2(c). It is important to note that the Y-axis represents the negative KL divergence (larger values
indicate better performance). As expected, the sub-optimal frontier achieved by CORY consistently
outperforms that of PPO, empirically validating the hypothesis.

Our analysis through the lens of multi-objective RL offers valuable insights into the effectiveness of
CORY. The knowledge transfer mechanism inherently addresses the optimization challenges faced by
the observer. By leveraging the reference response provided by the pioneer, the observer actually
experiences a guided optimization process. Such guided process can alleviate the optimization
pressure on the task reward side, and prioritize improvement on the KL penalty side. However, since
the observer’s policy during training takes both the task query and the pioneer’s response as inputs,
the optimized policy is not the one we really want (we need the policy which only takes the task query
as input), resulting in the prompt bias issue. The role exchange mechanism can effectively address
this issue, and transfer the skills learned by the observer back to the pioneer, reducing the pioneer’s
optimization pressure. Notably, CORY demonstrates significantly better stability and robustness
compared to single-agent RL method (See details in Section 4.2 and Appendix E.1). It consistently
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achieves a lower KL divergence between the fine-tuned and pre-trained models while maintaining
strong performance on the target task, signifying a better trade-off between the two objectives.

4 Experiments

This section systematically investigate the performance of CORY across two types of reward functions:
subjective reward function and objective reward function. Subjective reward functions are reward
models trained on data capturing human preferences. They essentially translate the human sentiment
or judgment into a numerical reward signal that guides alignment. Objective reward functions are
pre-defined rule-based functions, typically established by domain experts. This categorization reflects
real-world scenarios where reward functions might be learned from human preferences or manually
crafted by domain experts. Prompts used in experiments are detailed in Appendix A.2.

4.1 Subjective Rewards on IMDB Review

Task Setup. To evaluate our method under the subjective reward setting, we select the IMDB Review
dataset [Tripathi et al., 2020]. This dataset contains 50K <text,label> pairs, with the training set and
the test set each contains 25K pieces of data. The texts in the IMDB dataset are movie reviews, and
the labels are the binary sentiment classification labels. The distilbert-imdb model4 trained on the
dataset is employed as the reward model. We fine-tune GPT2-Large (774M)5 by using single-agent
PPO (single-PPO) and CORY respectively. In addition, GPT2-XL (1.5B)6 is fine-tuned by using
single-PPO as an ablation on model size. In this task, we randomly sample text snippets from the
IMDB dataset. The first 2 to 8 tokens (representing the beginning of the review) are retained as
prompts for sentiment completion. The LLMs generate continuations that transform the prompts
into positive sentiment comments. After that, the reward model evaluates the generated text to
assign a sentiment score. The objective is to maximize the average sentiment score of the completed
comments. Examples of this task are detailed in Appendix D.

In the experiments, each method undergoes 100 training iterations using a batch size of 256. For
simplicity, GPT2-Large and GPT2-XL fine-tuned by single-PPO are termed as PPO-GPT-2-l and
PPO-GPT-2-xl, respectively. GPT-2-Large that fine-tuned by CORY are referred to CORY-LLM1 and
CORY-LLM2, where the former one is the LLM that initialized as the pioneer, and the latter one is the
LLM that initialized as the observer.

20 40 60 80 100
Iteration

0.5

1.0

1.5

2.0

2.5

Ta
sk

 re
w

ar
d

PPO-GPT-2-l
PPO-GPT-2-xl
CORY-LLM1
CORY-LLM2

(a) Task reward

20 40 60 80 100
Iteration

0

20

40

KL

PPO-GPT-2-l
PPO-GPT-2-xl
CORY-LLM1
CORY-LLM2

(b) KL divergence

25 50 75 100
Iteration

10.0

7.5

5.0

2.5

0.0

C
om

bi
ne

d 
re

w
ar

d

PPO-GPT-2-l
PPO-GPT-2-xl
CORY-LLM1
CORY-LLM2

(c) Combined reward

Figure 3: Training curves under subjective rewards on IMDB Review.

Results and Analysis. We monitor the training process by visualizing task reward, KL diver-
gence, and a combined reward function that incorporates both the above objectives. Denoted
as rc(s0, a), the combined reward function can be expressed as rc(s0, a) = r(s0, a) + η ∗
KL(s0, πθ, π0), where r(s0, a) and KL(s0, πθ, π0) are the sentence-level task reward part and
the KL penalty part, respectively. And the KL penalty part can be calculated as KL(s0, πθ, π0) =∑

i=0,1,...,N −KL(πθ(·|s0, w1:i−1), π0(·|s0, w1:i−1)).

It is important to note that, the actual reward used for training in CORY is not the combined reward.
The actual training reward not only includes the KL penalty and the task reward from the target agent,

4https://huggingface.co/lvwerra/distilbert-imdb
5https://huggingface.co/openai-community/gpt2-large
6https://huggingface.co/openai-community/gpt2-xl
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but also includes the task reward from the other agent. In fact, the combined reward rc(s0, a) is
the real overall objective that needs to be optimized, and can be aligned with the single-agent RL
fine-tuning, making it easier to compare performance of all the methods.

The training curves of task reward, KL divergence, and the combined reward are illustrated in
Figure 12. The results show that single-PPO and CORY achieve similar task reward levels after 100
training iterations. However, the curve of KL divergence related to single-PPO is significantly higher
than that of CORY, reaching more than twice the level of CORY after all the training iterations. This
indicates CORY’s ability to achieve similar task reward levels with a smaller deviation from the
pre-trained policy. Moreover, it can be observed that the curves of CORY-LLM1 and CORY-LLM2 are
very close, indicating that the two LLM agents initially playing different roles finally achieve very
similar performance levels at the end of the training. Consistent with the motivation of CORY, both
the fine-tuned LLM agents can be used to finish tasks individually, which verifies the effectiveness of
the bootstrapped learning and coevolution principles in CORY.

Finally, Figure 12(c) visually confirms CORY’s advantage in combining the two objectives. The
combined reward curve for CORY consistently rises, indicating its effectiveness in simultaneously
improving task reward and minimizing KL divergence. Conversely, PPO’s combined reward curve
exhibits a decreasing trend, suggesting its struggle in balancing these objectives. Hyperparameters
used for both single-PPO and CORY are detailed in Appendix A.1.

4.2 Objective Rewards on GSM8K

Task Setup. To evaluate our method under a rule-based objective reward function, we select the
GSM8K task [Cobbe et al., 2021a]. GSM8K comprises 8.79K high-quality, linguistically diverse
grade school math word problems, with 7.47K allocated for training and 1.32K for testing. For each
question in the dataset, a response is obtained via LLM. The precise answer is extracted from the
responses using a regular expression, typically the final set of numbers in the response. If the number
in question matches the ground truth as recorded in the dataset, a reward of 1 is awarded. Conversely,
if the number is incorrect, a reward of 0 is given. The Llama-2-7b-chat7 model is selected as the
pre-trained model. To reduce the training overhead, the model is quantised to 4-bit. For simplicity, the
4-bit Llama-2-7b-chat model fine-tuned with single-PPO is referred to as PPO-Llama-2. The copied
models fine-tuned with CORY are referred to CORY-LLM1 and CORY-LLM2, where the former is
the LLM that initialized as the pioneer, and the latter is the LLM that initialized as the observer.
Examples of this task are detailed in Appendix D.
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Figure 4: Training curves under objective rewards on GSM8K.

Results and Analysis. Similar to Section 4.1, We monitor the training process by visualizing task
reward, KL divergence, and the combined reward. As shown in Figure 4, the jitter observed in
all curves suggests the challenge posed by GSM8K. The vast exploration space presents inherent
instability for the RL algorithms. As Figure 4(a) illustrates, the task reward curve of single-PPO
peaks around 50 training iterations, followed by a decline. Single-PPO’s KL divergence exhibits
no convergence trend, reaching a maximum value during training (Figure 4(b)). The instability of
single-PPO results the high KL divergence after 50 iterations, leading to a poor performance on
combined reward (Figure 4(c)).

7https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
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Figure 5: Evaluation results on
GSM8K test dataset.

In contrast, CORY demonstrates a significantly more stable task
reward curve, consistently outperforming single-PPO. What’s
more, CORY achieves a considerably lower KL divergence
compared to single-PPO, facilitating faster convergence. This
characteristic is particularly valuable in the fine-tuning context,
as it allows CORY to achieve similar or even better task rewards
without significant modifications to the original parameter dis-
tributions.

Furthermore, the combined reward curves visually confirm
CORY’s superiority over single-PPO. CORY’s ability to effec-
tively balance the two objectives is reflected in its steadily in-
creasing combined reward. Conversely, single-PPO’s struggle
with balancing the objectives manifest as a decreasing com-
bined reward and training instability.

In addition, we conduct a comparative analysis of models fine-tuned with distinct methods and a
pre-trained model on the GSM8K test set as shown in Figure 5. The evaluation metric utilized is
pass@k, which generates k corresponding repetitions for a sample and passes if at least one is correct.
The test results demonstrate that the CORY fine-tuned 4bit Llama-2-chat-7b could achieve a pass@1
of 18% on GSM8K test dataset.

4.3 Ablations

In ablation experiments, we ablate the influence of model size, knowledge transfer, and role exchange
under the subjective reward setting on IMDB review dataset. For method names depicted in Figure 6,
REx indicates role exchange, KT indicates knowledge transfer, LLM1 and LLM2 refer to LLMs who
are initialized as the pioneer and the observer respectively.
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Figure 6: Training curves for ablations experiments.

Ablation on Model Size. Our method employs two models during training, with the total parameters
trained being doubled in comparison to single-PPO. In order to ablate whether the enhancement of
CORY is derived from the expansion of the model parameters, an additional fine-tuning of GPT2-XL
(1.5B) with single-PPO is conducted on the IMDB dataset, which has twice the number of parameters
as GPT2-Large. The results are presented in Figure 12. While the task reward of the model rapidly
reaches its maximum value, the KL penalty part does not exhibit a notable improvement compared to
GPT2-Large. The KL divergence continues to increase, leading to the collapse of the distribution.

Ablation on Knowledge Transfer. We maintain role exchange, and the two models still share
a collective task reward (Equation 4), but disable knowledge transfer. This resembles PPO with
individual queries as inputs. However, without the observability of the pioneer’s outputs, this
equivalent to adding noise to the PPO reward signal. Consequently, the task rewards become unstable,
and the KL divergences are higher compared to CORY as shown in Figure 6. This highlights the
importance of observability for framing RL fine-tuning as a true multi-agent cooperation problem.

Ablation on Role Exchange. We maintain knowledge transfer but disable role exchange. As evident
from Figure 6, both LLMs achieve good task rewards, but their KL divergences are much higher than
that of CORY. Notably, the observer LLM exhibits significantly lower KL divergence compared to
the pioneer LLM. This observation highlights a fascinating phenomenon in cooperative learning:
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by receiving the pioneer’s response, the observer can effectively optimize the KL divergence. This
suggests that the observer leverages the pioneer’s exploration to refine its policy while maintaining
good performance, potentially leading to a more stable learning process.

5 Related Work

The most related topic is reinforcement leanring from human feedback (RLHF). InstructGPT [Ouyang
et al., 2022] fine-tunes GPT-3 like models [Brown et al., 2020] to enhance helpfulness by combining
SFT with RL based on human preference dataset. Askell et al. [2021] trains a preference model for
aligning the LLM with human values. It argues that ranked preference modeling proves to be the
most effective training objective for distinguishing between desirable and undesirable LLM behaviors.
Bai et al. [2022] incorporates an iterative online training mode where preference model and LLM
are updated weekly using fresh human feedback data. Existing research acknowledges the inherent
complexity, instability, and hyperparameter sensitivity of RLHF, particularly when employing PPO
Zheng et al. [2023]. Several works have attempted to address these challenges by introducing max-
entropy regularization [Wen et al., 2024], hyperparameter tuning [Zheng et al., 2023], and reward
shaping [Yang et al., 2024a]. However, these methods does not show significant improvement over
the vanilla PPO algorithm. This inspires us to explore alternative method from a different perspective
that extent the RL fine-tuning of LLMs to a cooperative MARL problem.

Another related topic is MARL. Under the interaction relationship (cooperation, competition, mixed),
multi-agent could spontaneously emerge complex and diverse policies, so as to solve the complex
problems that single-agent reinforcement learning is difficult to solve. For example, in Kim et al.
[2023], the RL based prompt tuning is decomposed into multi-agent joint tuning. The huge joint
action space is equally split across agents, learning better and longer prompt. Such mechanisms
have also been applied in the field of combinatorial optimization. The paper that is most similar
to us on the architecture of agent training is Gao et al. [2023]. It proposes an asymmetric training
symmetric execution framework to deal with the two-agent Stackelberg game Fang et al. [2021]. In
the Stackelberg game, two agents make decisions asynchronously. The agent that makes the decision
later can observe the former agent, but the former agent cannot observe the later agent. The training
framework proposed by the authors is able to converge in Stackelberg equilibrium empirically. This
inspires us to design the training framework for LLMs under a sequential cooperative setting.

6 Discussion

Experimental evidence suggests that CORY yields more stable and superior performance in RL fine-
tuning. This can be attributed to our extension of single-agent RL fine-tuning into a cooperative MARL
version. In this section, we delve into a discussion of how the multi-agent learning can benefit LLM
fine-tuning. The primary benefit is that multi-agent learning encourages the coevolution of LLMs
through collective living, social relationships and major evolutionary transitions [Duéñez-Guzmán
et al., 2023]. This process generates a variety of new data, which further facilitates coevolution. This
mechanism contributes to many breakthroughs in games AI, such as Go [Silver et al., 2016, 2017,
Clark and Storkey, 2015], StarCraft II [Vinyals et al., 2019], and Diplomacy [Bakhtin et al., 2022].

In this paper, we investigate the application of cooperative MARL to address challenges in RL
fine-tuning. Cooperative MARL fine-tuning appears to increase training robustness and prevent dis-
tribution collapse. While we concentrate on cooperation, competitive MARL, especially population-
based methods, represents a promising direction for future research. These approaches create an
auto-curriculum mechanism driven by a natural arms race, which propels agent learning and en-
ables mastery of complex tasks. Besides the interaction paradigm, the scale of agents is crucial to
emergence. While we examine a setting involving two LLMs, incorporating more LLMs in MARL
fine-tuning is an intriguing prospect for future studies.

7 Conclusion

In this paper, we extend the RL fine-tuning of LLMs to a sequential cooperative MARL framework.
To this end, we duplicate the pre-trained LLM into two LLM agents with different roles, and design
two key mechanisms: knowledge transfer and role exchange. These mechanisms enable the two LLM
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agents to learn collaboratively, and after the fine-tuning process, either the LLM agent can be chosen
to perform the task independently. We also provide an in-depth analysis of RL fine-tune from the
perspective of multi-objective RL, revealing the existence of a Pareto frontier between KL divergence
and task reward. We empirically illustrate that CORY has an advantage over single-agent RL method
in approaching the Pareto frontier. Experiment results indicate that CORY surpasses PPO regarding
policy optimality, resilience to distribution collapse, and robustness during training, highlighting its
potential as an advanced method for improving LLMs in practical applications.
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A Implementation Details

The code repository we utilize is TRL8. Our experimentation employs 2 AMD EPYC 7773X CPUs
and 8 NVIDIA A6000 GPUs (48GB each). Leveraging a single GPU, CORY can achieve full-
precision RL fine-tuning of GPT2-XL on the IMDB Review dataset within 12 hours. With 4 GPUs,
CORY can accomplish the RL fine-tuning of a 4-bit quantized Llama-2-7b-chat model on GSM8K
within 4 hours.

A.1 Hyperparameters

The hyperparameter settings for fine-tuning GPT2 followed the default configuration in TRL for
the IMDB dataset, while the hyperparameter setting of Llama-2 primarily adhered to the guidelines
provided by StackLlama. To ensure a fair comparison, all hyperparameters were carefully selected
to balance the stability and performance of PPO. A grid search was conducted over α and η, with
the sets α 1e-6, 1e-5, 1e-4 and η 1e-3, 1e-2, 1e-1, 0.2, 0.3, respectively, to identify the hyperparam-
eter that yielded the most stable training for PPO. Given CORY’s robustness to hyperparameters
(Appendix E.1), most PPO hyperparameters, except for the learning rate α, were applied directly to
CORY. For the GSM8K dataset, In the GSM8K dataset, we adjusted the learning rate α for CORY.

Table 1: Hyperparameters in IMDB Review

Hyperparameter PPO-GPT-2-l PPO-GPT-2-xl CORY
Learning Rate (α) 1.41e-5 1.41e-5 1.41e-5
Epochs 1 1 1
PPO Epoch 4 4 4
Batch Size 256 256 256
Mini Batch Size 256 256 256
Gradient Accumulation Steps 1 1 1
Iterations 100 100 100
Initial KL Coefficient (η) 0.3 0.3 0.3
Early Stopping False False False
Discount (γ) 1 1 1
GAE (λ) 0.95 0.95 0.95
Gradient Clip Range 0.2 0.2 0.2
Value Clip Range 0.2 0.2 0.2
Value Loss Coefficient (β) 0.1 0.1 0.1
Period of role exchange (TREx) - - 5 iterations

Table 2: Hyperparameters in GSM8K

Hyperparameter PPO PPO-13b CORY
Learning Rate (α) 1e-5 1e-5 1e-4
Epochs 1 1 1
Batch size 32 32 32
Mini Batch Size 2 2 2
Gradient Accumulation Steps 16 16 16
Iterations 100 100 100
Initial KL Coefficient (η) 0.01 0.01 0.01
Early Stopping False False False
Discount (γ) 1 1 1
GAE (λ) 0.95 0.95 0.95
Gradient Clip Range 0.2 0.2 0.2
Value Clip Range 0.2 0.2 0.2
Value Loss Coefficient (β) 0.1 0.1 0.1
Period of role exchange (TREx) - - 5 iterations

8https://github.com/huggingface/trl

13

15509 https://doi.org/10.52202/079017-0495

https://github.com/huggingface/trl


A.2 Prompt Details

IMDB Review. The prompts used in IMDB Review are as follows. For PPO or CORY’s pioneer,
since this is a sentence completion task, instead of using a prompt template, we directly input the first
few words in the review (brown).

Another fun, witty, frothy

For CORY’s observer, we use pioneer’s response (blue) to complete the sentence as a reference for
observer, and retype the first few words of the comment at the end of the prompt for observer to
complete.

I can make this sentence ‘Another fun, witty, frothy cut different from the usual.’ more
positive: Another fun, witty, frothy

GSM8K. The prompts used in GSM8K are as follows. For PPO or CORY’s pioneer, we provide a
example question and answer. This is followed by a question from the dataset (brown). Then the
prompt ends with ‘Answer:’ to guide the LLM to answer.

Question: Shawn has five toys. For Christmas, he got two toys each from his mom and
dad. How many toys does he have now?
Answer: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that
is 4 more toys. 5 + 4 = 9.
Question: The civic league was hosting a pancake breakfast fundraiser. A stack of pancakes
was $4.00 and you could add bacon for $2.00. They sold 60 stacks of pancakes and 90
slices of bacon. How much did they raise?
Answer:

For CORY’s observer, the question is followed by ‘Reference’ (blue), which is the pioneer’s response.
Finally, it also ends with ‘Answer’ to guide the model to answer.

Question: Shawn has five toys. For Christmas, he got two toys each from his mom and
dad. How many toys does he have now?
Answer: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that
is 4 more toys. 5 + 4 = 9.
Question: The civic league was hosting a pancake breakfast fundraiser. A stack of pancakes
was $4.00 and you could add bacon for $2.00. They sold 60 stacks of pancakes and 90
slices of bacon. How much did they raise?
Reference: To find out how much the Civic League raised, we need to multiply the number
of stacks of pancakes by the cost of each stack. So, 60 x $4 = $240. Then, we multiply the
number of slices of bacon by the cost of each slice. So, 90 x $2 = $180. Therefore, the
Civic League raised a total of $240 + $180 = $420.
Answer:
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B Token-Level Policy Update of CORY

We first derive the formula of Q-function when fine-tuning LLM with PPO. The token-level reward
function r̂ is given in Equation 2.

Qπ(si, wi) = Ewi+1,...,wN∼π

[
N−i∑
k=0

γkr̂(si+k, wi+k)

]

= Ewi+1,...,wN∼π

[
N−i∑
k=0

γkr(si+k, wi+k)

]
− ηEwi+1,...,wN∼π

[
N−i∑
k=0

γkKL [π(· | si+k), π0(· | si+k)]

]

= Ewi+1,...,wN∼π

[
γN−ir(s0, a)

]
− ηEwi+1,...,wN∼π

[
N−i∑
k=0

γkKL [π(· | si+k), π0(· | si+k)]

]

= Ewi+1,...,wN∼π

[
γN−ir(s0, a)− η

N−i∑
k=0

γkKL [π(· | si+k), π0(· | si+k)]

]
.

(7)
For CORY, pioneer and observer share the same task reward rCORY, but their Q-functions have
slightly different forms due to their different inputs. For simplicity, we define a uniform state
s̃0 ≜ (s0, a1) for the observer, and s̃0 ≜ s0 for the pioneer. Then, denoting the parameterized policy
as πθ, the Q-functions for them can be expressed in an uniform way.

Qπθ
(s̃i, wi) = Ewi+1,...,wN∼πθ

[
γN−irCORY(s0, a1, a2)− η

N−i∑
k=0

γkKL [πθ(· | s̃i+k), π0(· | s̃i+k)]

]
.

(8)
Similarly, CORY’s uniform state value function can be expressed as

Vπθ
(s̃i) =

∑
wi∈V

πθ(wi | s̃i)Qπθ
(s̃i, wi). (9)

In practice, both the pioneer and the observer in CORY are optimised using PPO independently.
During the training phase, a value head is attached to the last hidden layer of the policy network to
predict the current state value. The loss function is:

LV
πθ

= Eπθ
[Vπθ

(s̃i)− Vϕ(s̃i)]
2, (10)

where Vϕ(s̃i) is the predicted state value, ϕ represents the parameters of the corresponding value
network. For policy loss, the optimisation objective with clip is used.

LP
πθ

= Eπ

[
min

(
πθ(wi | s̃i)
πθold(wi | s̃i)

Âπθ
(s̃i, wi), clip(

πθ(wi | s̃i)
πθold(wi | s̃i)

, 1− ϵ, 1 + ϵ)Âπθ
(s̃i, wi)

)]
,

(11)
where πθold is the older policy that collects data. The importance ratio πθ(wi|s̃i)

πθold
(wi|s̃i) is used to estimate

Âπθ
under πθ on data collected via πθold . It reflects how much the current policy deviates relative to

the older policy. Âπθ
is the advantage function, given δi = r̂(s̃i, wi) + γVϕ(s̃i+1)− Vϕ(s̃i),

Âπθ
(s̃i, wi) = δi + (γλ)δi+1 + · · ·+ (γλ)N−i+1δN−1. (12)

Ultimately, with a value loss coefficient β, the pioneer and the observer are fine-tuned by maximising
the following objective

L(θ, ϕ) = LP
πθ
− βLV

πθ
. (13)

Ideally, after the optimisation, the optimal token-level policy π∗ is obtained, which in turn naturally
leads to the optimal sentence-level policy.

π∗(a|s̃0) =
N∏
i=1

π∗(wi|s̃0, w1:i−1). (14)
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C Algorithm Details

C.1 Algorithm of CORY

Algorithm 1 Coevolving with the Other You
Input: Pre-trained LLM π0, task reward model r, query data set DQ, period of role exchange TREx.
Output: Fine-tuned LLMs πθ1 and πθ2 .
Initialization: Duplicate π0 into a pioneer πpio(·|·; θ1) and an observer πobs(·|·, ·; θ2), initialize the
pioneer buffer Dpio ← ∅ and the observer buffer Dobs ← ∅.
1: Set k ← 0.
2: for each iteration do
3: Set Dpio ← ∅ and Dobs ← ∅.
4: Sample a task query batch BQ from DQ.
5: for each s0 in BQ do
6: a1 ∼ πpio(·|s0; θ1).
7: rpio ← r(s0, a1).
8: a2 ∼ πobs(·|s0, a1; θ2).
9: robs ← r(s0, a1).

10: rCORY ← rpio + robs.
11: Set s̃0 ← s0 and update memory Dpio ← Dpio ∪ {(s̃0, a1, rCORY)}.
12: Set s̃0 ← (s0, a1) and update memory Dobs ← Dobs ∪ {(s̃0, a2, rCORY)}.
13: end for
14: Update θ1 through Algorithm C.2 on Dpio.
15: Update θ2 through Algorithm C.2 on Dobs.
16: if (k + 1)%TREx = 0 then
17: Set θnew1 ← θ1 and θnew2 ← θ2.
18: θ2 ← θnew1 .
19: θ1 ← θnew2 .
20: end if
21: k ← k + 1.
22: end for

C.2 Token-Level Policy Update

Algorithm 2 PPO-based Token-Level Policy Update
Input: Target LLM πθ, reference LLM π0, sentence-level data buffer D, max token length of action

N , learning rate α, KL coefficient η.
Output: The updated parameters of the target LLM θ.
Initialization: Initialize the value network Vϕ and the token-level data buffer DT ← ∅.
1: for (s̃0, a, rCORY) in D do
2: DT ← ∅.
3: for i = 1, 2, · · · , N do
4: rKL ← KL(πθ(·|s̃0, a[1 : i− 1]), π0(·|s̃0, a[1 : i− 1])).
5: si ← (s̃0, a[1 : i− 1]).
6: ai ← a[i].
7: si+1 ← (s̃0, a[1 : i]).
8: if i < N then
9: ri ← −η · rKL.

10: else
11: ri ← rCORY − η · rKL.
12: end if
13: DT ← DT ∪ {(si, ai, ri, si+1)}.
14: end for
15: Compute advantage estimate Âπθ

via GAE on DT . (Equation 12)
16: θ ← θ + α · ∇θL(θ, ϕ). (Equation 13)
17: ϕ← ϕ+ α · ∇ϕL(θ, ϕ). (Equation 13)
18: end for
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D Qualitative Analysis of Experiment Results.

We compare GPT2-Large models fine-tuned with PPO and CORY on IMDB Review dataset, along
with the original model (Table 3). The input review snippet consists of the first few words of a movie
review. The goal of LLMs is to complete the sentence in a positive direction. Comparing results
before and after fine-tuning, sentences are often incomplete and occasionally contain grammatical
errors due to the limitations of GPT2-Large. However, this does not affect our horizontal comparison
on the same baseline. It is evident that the sentences generated by the fine-tuned models are indeed
more positive. Comparing PPO and CORY, we find that PPO experiences distribution collapse.
While its task reward is comparable to CORY, its KL divergence is significantly larger (Figure 12).
Sentences generated by CORY are more positive. Although there are occasional grammatical errors,
they are similar to those in the pre-trained model, indicating that CORY effectively avoids distribution
collapse.

We also compared the Llama-2-7B-chat models fine-tuned with PPO and CORY on GSM8K. Due to
PPO’s sensitivity to parameters, which results in either stable training or distribution collapse, we
divided the comparison into two tables. When PPO trains stably (Table 4), the quality of the generated
answer is similar to CORY, though slightly less accurate. When PPO experiences distribution collapse
(Table 5), it tends to generate particularly long outputs until reaching the maximum token limit. This
is because the probability of the end-of-sentence token </s> in the token-level policy decreases
significantly compared to its initial value, preventing sentence completion. Due to the distribution
collapse, the in-context learning ability of PPO is also impaired. It generates another Question after
generating an Answer. In contrast, CORY’s performance is much more stable.

Table 3: Examples of IMDB Review. GPT2-Large is fine-tuned with PPO and CORY respectively.

Review snippet This is one of Jackies

GPT2-Large ’ last regrets about running. (

PPO marvelous marvelous splendid marvelous marvelous magnificent awesome
marvelous stunning excellent phenomenal spectacular beautiful

CORY Cruise movies are world famous worldwide has

Review snippet I find it hard to believe

GPT2-Large that someone could have survived three sets

PPO amazing marvelous marvelous marvelous marvelous spectacular terrific
beautiful magnificent marvelous fantastic wonderful fabulous

CORY that we’ve all had wonderful amazing

Review snippet This movie was highly entertaining. The

GPT2-Large characters were not only great, guests

PPO unacceptable THANK!! wonderful A BEST

CORY film was highly acclaimed captivating enjoy
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Table 4: Examples of GSM8K when PPO fine-tuning is stable.

Question George wants to borrow $100 from a loan shark. The finance fee starts at 5%
and doubles every week. If George plans to borrow for 2 weeks, how much in
fees will he have to pay?

PPO The finance fee starts at 5%, so after one week it would be 10%. After two
weeks, the fee would be 20%. So, George would have to pay (100 x 10%) + (100
x 20%) = 200 in fees.

CORY At first, the finance fee is 5%. So George will pay $5 in fees. Then, the next
week, the fee will be doubled to $10. George will pay another $10 in fees.
Therefore, George will pay a total of $15 in fees.

Question Lorin has 4 black marbles. Jimmy has 22 yellow marbles. Alex had twice as
many black marbles as Lorin and one half as many yellow marbles as Jimmy.
How many marbles does Alex have?

PPO Alex has 8 black marbles (twice as many as Lorin). Since Alex has half as many
yellow marbles as Jimmy, Alex has 11 yellow marbles (half of 22). So Alex has
a total of 8 + 11 = 19 marbles.

CORY Alex has 8 black marbles (twice as many as Lorin). Since Alex also has one half
as many yellow marbles as Jimmy, Alex has 11 yellow marbles (half of 22). So,
in total, Alex has 8 + 11 = 19 marbles.

Question Bill is trying to control the pests in his garden. Each spider he introduces eats
7 bugs, and each time he sprays the garden he reduces the total bug population
to 80% of what it was previously. If the garden has 400 bugs to start, and Bill
sprays once and introduces 12 spiders, how many bugs are left?

PPO The number of bugs in the garden before Bill sprayed is 400. When Bill sprays,
the total bug population is reduced to 80% of its original value, which means
there are 320 bugs left (400 x 80%). Then, Bill introduces 12 spiders, which eat
7 bugs each, so there are 7 + 84 = 91 bugs left in the garden.

CORY First, let’s find out how many bugs are left after Bill sprays by multiplying the
previous number of bugs by 80%. So, 400 x 0.8 = 320 bugs. Now, let’s find out
how many bugs each spider can eat. Each spider can eat 7 bugs, so 12 spiders
can eat 7 x 12 = 84 bugs. Since Bill introduced 12 spiders, there are now 320 -
84 = 236 bugs left in the garden.

Question Mira jogs every morning. She jogs 5 miles per hour. If she jogs for 2 hours every
morning, how many miles can she jog for five days?

PPO If Mira jogs at a rate of 5 miles per hour, and she jogs for 2 hours each day, then
she will have jogged a total distance of 10 miles (2 hours x 5 miles/hour). If she
does this for 5 days, then she will have jogged a total distance of 50 miles (10
miles x 5 days).

CORY Mira jogs at a rate of 5 miles per hour, so if she jogs for 2 hours, she will have
jogged 10 miles (2 hours x 5 miles/hour). If she does this 5 days in a row, she
will have jogged a total of 50 miles (10 miles/day x 5 days).
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Table 5: Examples of GSM8K when PPO leads to distribution collapse.

Question Adam bought 3 kilograms of nuts and 2.5 kilograms of dried fruits at a store.
One kilogram of nuts costs $12 and one kilogram of dried fruit costs $8. How
much did his purchases cost?

PPO First, we need to find out how many kilograms of each type of food Adam
bought. We can do this by dividing the amount of each type of food by its
price per kilogram. 3 / $12 = x 2.5 / $8 = y. Then we can find the total cost by
multiplying the number of kilograms by their prices: x x $12 + y x $8.
Question: Sarah had 30 hours of vacation time left before she could take another
day off. She wanted to know how many days she could go on a trip for without
using up all her vacation time. Can you help Sarah figure out how many days
she can go on a trip?
Answer: To find out how many days Sarah can go on a trip, we first need to
divide her total vacation time (30) by the number of days she wants to go on the
trip (let’s call it x). 30 / x = 5. Now we can see how many hours Sarah will have
left after her trip by multiplying the number of days by the number of hours in
each day: x x 24 (since there are 24 hours in each day

CORY Sara’s sister had 4 small notebooks in her closet at first. Then she ordered 6 more
notebooks, so now she has 4 + 6 = 10 notebooks. However, she lost 2 notebooks,
so now she has 10 - 2 = 8 notebooks.

Question Belinda can throw a ball at a speed of 20 feet/second. If the ball flies for 8 seconds
before hitting the ground, and Belinda’s border collie can run 5 feet/second, how
many seconds will it take the border collie to catch up to the ball?

PPO To find out how long it will take the border collie to catch up to the ball, we
need to use multiplication and division. We know that the ball travels 20 feet per
second, so first we will divide by the speed of the dog to find out how far the dog
needs to run in one second. 20 feet / 5 feet/second = 4 seconds.
Now we will find out how long this takes in total by multiplying the number of
seconds by the time the ball is in the air. 8 seconds x 4 seconds = 32 seconds.
Therefore, it will take the border collie 32 seconds to catch up to the ball.
Question: Sarah can paint a room in 6 hours. If she works on it for 4 hours every
day for a week, how many hours will it take her to paint another similar-sized
room?
Answer: To find out how many hours it will take Sarah to paint another room,
we need to use the information we have about the first room. Let’s call the size
of the first room “x”. We are told that she can paint “x” in 6 hours. To find out
how many hours it will

CORY We know that the ball travels at a speed of 20 feet/second, so it will cover 20 feet
in 1 second. The ball flies for 8 seconds before hitting the ground, so it covers 8
x 20 = 160 feet.
The border collie runs at a speed of 5 feet/second, so it will cover 5 feet in 1
second. To find out how long it takes the border collie to catch up to the ball, we
divide the distance the ball traveled by the speed of the border collie: 160 feet /
5 feet/second = 32 seconds.
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E Supplementary Experiments

E.1 Robustness of CORY

We conduct robustness experiments on the GSM8K dataset, focusing on the impact of learning rate.
In Figures 7 and 8, we set the learning rates to 1e-4 and 1e-5, respectively, using PPO and CORY
for fine-tuning the Llama-2-7b-chat model, while keeping all other hyperparameters consistent with
those in Appendix A.1. Our findings indicate that CORY exhibits robustness, maintaining stable
training across different learning rates. Its KL divergence and task reward converge around the 10th
iteration, with the KL divergence remaining at a relatively low value. In contrast, with a learning
rate of 1e-4, PPO leads to distribution collapse. PPO achieves stable training and relatively good
performance only with a learning rate of 1e-5, but its KL divergence shows an accelerating upward
trend even after 100 iterations, indicating instability and the risk of distribution collapse.
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Figure 7: Training curves under objective rewards on GSM8K. The fine-tuned model is Llama-2-7b-
chat. Learning rate α is set to 1e-4.
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Figure 8: Training curves under objective rewards on GSM8K. The fine-tuned model is Llama-2-7b-
chat. Learning rate α is set to 1e-5.
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Figure 9: Training curves under objective rewards on GSM8K. The fine-tuned model is Llama-2-13b-
chat. Learning rate α is set to 1e-4.
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Figure 10: Training curves under objective rewards on GSM8K. The fine-tuned model is Llama-2-
13b-chat. Learning rate α is set to 1e-5.

In Figures 9 and 10, we again set the learning rates to 1e-4 and 1e-5, respectively, using PPO and
CORY to fine-tune the Llama-2-13b-chat model, with all other hyperparameters consistent with those
in Appendix A.1. CORY ensures stability at both learning rates, achieving good task reward and
low KL divergence with a learning rate of 1e-4. Although the task reward does not improve with
a learning rate of 1e-5, both the KL divergence and task reward curves stabilize, indicating that
CORY avoids distribution collapse even under inappropriate hyperparameter settings. In contrast,
PPO rapidly leads to distribution collapse with a learning rate of 1e-4. With a learning rate of 1e-5,
the task reward increases steadily, but the KL divergence curve shows an accelerating upward trend,
indicating the risk of distribution collapse.

The above analysis demonstrates the superior robustness and stability of CORY. Furthermore, com-
paring the KL divergence and task reward curves across all figures reveals that PPO struggles to
balance task reward and KL divergence, whereas CORY consistently maintains a balance between
the two, as discussed in Section 3.2.

E.2 Different Reward Settings

To investigate the effect of the reward setting in CORY, we modify the original reward setting
Rself + Rother to a Rself + λRother. Adjusting λ in the set {-5,-3, -1,1,3,5}, we could represent
varying degrees of competition and cooperation. Additionally, to mitigate the impact of reward
magnitude on training, we normalized the reward values. As shown in Figure E.2, the task rewards in
competitive settings were significantly lower than those in cooperative settings.
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Figure 11: Cooperative and competitive settings between two LLMs. The figure only displays the
performance curve of LLM1 for clarity.
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E.3 Additional Baselines

We conduct a comparison to a strong baseline Elastic Reset (ER) [Noukhovitch et al., 2024] and RE-
INFORCE. ER-n denotes resetting every n epochs, with n set to 17 for reproducing ER’s performance
on IMDB as its original paper, and to 40 on GSM8K. As illustrated in Figure E.3, REINFORCE
is more prone to distribution collapse than PPO. Although ER could recover performance to some
extent with an appropriate reset frequency after distribution collapse, the volatility of its training
made it challenging to determine when to stop training and save parameter. In contrast, CORY was
able to stabilize the KL divergence and task reward effectively.
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Figure 12: Comparing to REINFORCE and ER on IMDB and GSM8K datasets.

F Limitations

Although our method shows promising results in training robustness, policy optimality, and avoiding
distribution collapse, it requires duplicating the LLM into two copies, doubling the computational
resources needed. This issue could be alleviated through technical solutions like parameter sharing.

G Broader Impacts

A better RL fine-tuning method can improve the performance of LLMs in specialized tasks such as
robot control and code generation. Assume a well-constructed reward function, higher rewards do
lead to better policies. There exists an optimal policy that maximizes this function. If RL fine-tuning
is sufficiently advanced, it could theoretically improve the capabilities of an LLM in a specific task
beyond the human level, once the reward exceeds a certain threshold.

A major concern is the potential of abuse, including the generation of misleading and harmful content.
To address this issue, value alignment techniques could be implemented to ensure that the model’s
goals are in line with human values. In addition, implementing monitoring mechanisms, such as
real-time detection of LLM-generated content, could be beneficial.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Both the abstract and introduction clearly state that our main contribution
and scope: extending the RL fine-tuning of LLMs into a sequential cooperative MARL
framework.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Appendix F.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

23

15519 https://doi.org/10.52202/079017-0495



Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper includes detailed descriptions of the experimental setup, algorithms,
model architectures in Section 4.1 and Section 4.2. Hyperparameters used are detailed in
Appendix A.1. Pseudocodes are detailed in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided open access to both the data and code necessary to reproduce
our main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings are clearly stated in Section 4. All hyperparameters
are detailed in Appendix A.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All training curves in Section 4 are plotted with the mean ± std across three
random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All necessary information are provided in Appendix A.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research fully adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our paper thoroughly discusses both the potential positive and negative societal
impacts of our work in Appendix G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not involve the release of data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All existing assets used in the paper, including code, data, and models, have
been properly credited to their original creators in Section 4.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing experiments or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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