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Abstract

EEVR (Emotion Elicitation in Virtual Reality) is a novel dataset specifically de-
signed for language supervision-based pre-training of emotion recognition tasks,
such as valence and arousal classification. It features high-quality physiological
signals, including electrodermal activity (EDA) and photoplethysmography (PPG),
acquired through emotion elicitation via 360-degree virtual reality (VR) videos.
Additionally, it includes subject-wise textual descriptions of emotions experienced
during each stimulus gathered from qualitative interviews. The dataset consists
of recordings from 37 participants and is the first dataset to pair raw text with
physiological signals, providing additional contextual information that objective
labels cannot offer. To leverage this dataset, we introduced the Contrastive Lan-
guage Signal Pre-training (CLSP) method, which jointly learns representations
using pairs of physiological signals and textual descriptions. Our results show
that integrating self-reported textual descriptions with physiological signals sig-
nificantly improves performance on emotion recognition tasks, such as arousal
and valence classification. Moreover, our pre-trained CLSP model demonstrates
strong zero-shot transferability to existing datasets, outperforming supervised base-
line models, suggesting that the representations learned by our method are more
contextualized and generalized. The dataset also includes baseline models for
arousal, valence, and emotion classification, as well as code for data cleaning
and feature extraction. Further details and access to the dataset are available at
https://melangelabiiitd.github.io/EEVR/.

1 Introduction

Recently, there has been a growing emphasis on maintaining mental well-being, as good mental
health is essential for daily functioning and overall quality of life (Izutsu et al.|(2015)). However,
continuously monitoring mental health can be challenging, particularly with the demands of busy
schedules. This lack of consistent monitoring can lead to the development of serious mental health
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issues, which can significantly impact one’s life. Various wearable devices and mobile applications
have been developed in the past to help monitor mental well-being. In these applications, various
kinds of physical and behavioural data are collected to serve as proxies for assessing shifts in mental
well-being. These include facial images, facial videos, audio recordings, text, mobile phone data, and
physiological signals (Wang et al.|(2014); Thieme et al.|(2020)). Lately, Deep Learning (DL) and
Machine Learning (ML) techniques have been increasingly employed to predict various aspects of
mental well-being using these proxies (Thieme et al.|(2020); Saganowski et al.| (2023));|Ghandeharioun
et al.| (2017)). While most of the present proxies have been employed in the past to train DL and
ML models, creating a robust model for everyday use necessitates modalities that don’t impede
users’ movement or privacy and seamlessly integrate with their lifestyles. Physiological signal-based
data offers these advantages over other modalities while mitigating potential data manipulation by
subjects, a concern present with other modalities.

Present methods of collecting physiological emotion data typically rely on self-reports using standard
emotion questionnaires or scales based on emotional theories or stimulus-based labels (e.g., data
collected during a relaxing video is annotated as no stress). Previous studies include objective
scales such as Visual Analogue Scales (VAS), the Positive and Negative Affect Schedule (PANAS),
the Self-Assessment Manikin (SAM) scale, the Likert scale for basic emotions, and standardized
questionnaires like the State-Trait Anxiety Inventory (STAI) are commonly used in previous studies.
However, stimulus-based labels, which annotate data based on the type of stressor, often fail to
reflect the subject’s true emotional state. Similarly, objective annotations alone do not capture the
nuanced details of emotions and are prone to human error. These methods may miss key emotional
experiences, such as mixed or fleeting emotions, and often fail to capture the absence of emotion
altogether, limiting the accuracy and depth of emotion recognition.

To address these limitations, this study introduces EEVR, a physiological signal-based emotion
dataset collected in laboratory settings using 360° VR audiovisual stimuli. EEVR includes
data from the two most commonly available physiological sensors in commercial wearable de-
vices—Photoplethysmography (PPG) and Electrodermal Activity (EDA)—which have been widely
collected in previous datasets. Emotional annotations were obtained through subjective evaluations
using the PANAS and SAM emotion scales, along with self-reported raw textual descriptions of
emotions felt by subjects during stimulus exposure. These descriptions were gathered through semi-
structured qualitative interviews, providing a more contextualized understanding of emotions and
allowing participants to elaborate on their emotional experiences in detail. EEVR is the first dataset to
collect raw textual data for broader supervision, capturing the presence or absence of emotions expe-
rienced during the stimulus. This approach to collecting subjective textual responses to emotions has
not been explored before. EEVR includes data from 37 participants who experienced emotions across
all four quadrants of Russell’s circumplex model. Additionally, it contains personality scores for each
subject, collected using the Big Five Inventory 10 Item Scale (BFI-10) (Rammstedt et al.| (2013))),
and the psychological well-being details of each subject using the General Health Questionnaire-12
(GHQ-12) (Gureje and Obikoya (1990)).

Through this work, we make the following contributions:

* A novel multimodal physiological signal dataset collected in an immersive lab setting with
aligned raw textual descriptions of emotions felt and self-reported valence and arousal
scores.

* A readily replicable experimental procedure for capturing physiological response and textual
descriptions within lab settings.

* We provide guidance on utilizing the dataset, along with open-source access to baseline
models and the Contrastive Language-Signal Pre-training (CLSP) models, which leverage
text supervision to learn more contextualized representations of emotions by combining
physiological signals with text data.

2 Related Work

We have compared our dataset with previous datasets that have collected physiological signals for
emotion recognition, as shown in Table|l| Previous works have combined physiological data with
other modalities like video and audio. For instance, the MAHNOB-HCI (Soleymani et al.|(2012))
dataset includes facial videos, audio inputs, eye-gaze data, and physiological signals from both the
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Dataset #Subjects  Stimuli Data Modalities Annotations
ECG, GSR/EDA, RESP,
- TEMP, EYE GAZING, Emotions, Arousal,
MANHOB HCI 27 Audiovisual EEG, Facial Expressions Valence, Dominance.
and Audio.
EEG, ECG, PPG, Arousal, Valence,
DEAP 32 Music Video clip GSR/EDA, EMG (Trapezius, Liking, Dominance
Zygomaticus Muscle). and Familiarity.
ECG, EDA, EMG, BVP, Stressor-based
WESAD 15 TSST, Audiovisual Resplrathn, Temperature, PANAS, STAL SAM.
Acceleration.
CLAS 62 Cognitive load, ECG, PPG, EDA, Acceleration.  SAM.
Audiovisual
Qfﬁce Wprk with ECG, EDA, Eace and NASA task load,
SWELL-KW 25 interruptions and upper body video,
. . SAM, Stress.
time pressure Posture, Computer logging.
PPG, EDA, BVP,
Temperature, Acceleration Arousal, Valence,
EMOGNITION 43 Audiovisual p ’ ’ Avoidance Approach
cardiac output measurement, S )
. . Motivation, Emotions.
Facial Expression.
PANAS, SAM,
AMIGOS 40 Audiovisual EEG, ECG, EDA/GSR. Liking, Familiarity,
Personality, Emotions.
.. GSR, Frontal EEG, SAM, Familiarity,
ASCERTAIN 58 Audiovisual ECG, Facial Landmarks. Personality, Emotions.
DREAMER 23 Audiovisual EEG, ECG. SAM.
10 Minute long PPG, EDA, BVP, Arousal. Valence
KEMOCON 32 paired debate Temperature, Acceleration, Emo ﬁorial Labelsz
on social issues. EEG, ECG. -
BIRAFFE2 103 Music, Images, Games Lo 0 DA, Gamepad SAM, Personality,
Acceleration, Gyroscope. Game experience.
CASE 30 Audiovisual £CG, BVR EMG, EDAGSR, — am.
espiration, Temperature.
Cognitive load ECG, EDA,
StressID 65 Audio-Visual Respiration, Speech, SAM, Stress.
Public Speaking face video.
VREED 34 360 degree VR ECG, EDA, Eye Tracking. SAM, Emotions.
Emotions, Arousal,
Valence, Dominance
EEVR (Ours) 37 360 degree VR PPG, EDA. Familiarity, Liking,

Personality, GHQ-12,
Textual Description.

Table 1: EEVR in comparison with other related datasets

peripheral and central nervous systems. Similarly, the DEAP (Koelstra et al.|(2012)) dataset was col-
lected using musical video clips in laboratory settings containing physiological signal data. However,
the controlled environment of these datasets limits their ecological validity. The EMOGNITION
(Saganowski et al.| (2022)) dataset focuses on nine discrete emotions and collects both dimensional
and discrete emotion annotations, emphasizing positive emotions, which are often overlooked. Other
notable datasets that gather physiological signals include AMIGOS (Miranda-Correa et al.| (2021)),
ASCERTAIN (Subramanian et al.| (2018))), DREAMER (Katsigiannis and Ramzan|(2017)), and CASE
(Sharma et al.|(2019)). These datasets typically use non-immersive audiovisual stimuli in lab settings
to elicit emotions, which may not reflect real-world experiences. Additionally, datasets like WESAD
(Schmudt et al.| (2018]))), CLAS (Markova et al.| (2019)), KEMOCON (Park et al. (2020))), StressID
(Chaptoukaev et al.| (2024)) SWELL-Knowledge Work (Koldijk et al.[(2014)), and BIRAFFE2 (Kutt;
et al.| (2022)) collect peripheral physiological data through constrained tasks alongside audiovisual
stimuli. These tasks include the Trier Social Stress Test (TSST), logic and math problems, the Stroop
test, debates on social topics, public speaking, office work with interruptions, and playing games.
Although these tasks can induce stress, they often restrict emotional responses to specific settings and
fail to capture a broad range of emotions. Further constrained settings in real life are also used for
collecting emotion data, such as the NURSE dataset collected in hospital settings during COVID 19
(Hosseint et al.|(2022))). VR-based emotion elicitation has recently become popular due to its higher
ecological validity and capability to provide high immersion. For example, the VREED dataset
(Tabbaa et al.|(2022)) includes physiological signals and eye-gaze data from 34 participants collected
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using VR-based audiovisual stimuli, providing higher immersion than video or audio-based stimuli
in lab settings. Further existing literature has also highlighted the role of perceptions in emotion
data (Markowitz and Bailenson| (2023)); Diemer et al.|(2015)); Barrett et al.|(2011))), as how a person
interprets or perceives a stimulus or real-life situation directly influences their emotional response
to it, which is often not captured in objective labels. Moreover, recent theories of emotion, such as
the appraisal theory and constructivist theory of emotions, have also emphasized the importance of
cognitive processes in shaping emotional experiences |Lazarus|(1991)); Barrett and Russell (2014)
that is often not captured in prior dataset collection. Perception in prior work is often associated
with collecting context data in the form of personality details|Subramanian et al.| (2018), activity data
Gjoreski et al.|(2017) or context as scene [Thuseethan et al.| (2022). However, none of the prior work
has collected or considered participant’s perceptions as context. This suggests the importance of
collecting elaborate textual descriptions capturing participants’ perceptions towards the stimulus as
part of emotion data collection. EEVR aims to fill this gap by providing a novel dataset that aligns
qualitative textual descriptions of participants’ perspectives for each recorded physiological signal
segment.

Motivation for Paired Textual Descriptions. Supervision through language or text has become a
focal point in computer vision after the introduction of CLIP (Radford et al.|(2021))). The emergence of
large language models has also spurred an increase in research exploring language-guided supervision.
This trend extends beyond vision and language, with modalities like audio (Elizalde et al.|(2022)) and
video (Wang et al.|(2023)]) leveraging language supervision for pre-training to enhance generalization
and usability. Concurrently, text-based pre-training methods have revolutionized the NLP domain
in recent years. Despite the prominence of such approaches in various fields, there remains a
notable gap in utilizing language-guided supervision for emotional recognition through physiological
signals. While previous research has looked into leveraging text data (such as social media posts, text
messages, and suicide notes) for emotion recognition (Thieme et al.|(2020)), none of these efforts
involved recording self-reported emotional descriptions from subjects alongside the collection of
physiological signal data. Therefore, the EEVR dataset is an initiative in this regard, prompting new
avenues for collecting emotional data based on physiological signals.

3 EEVR Dataset

3.1 Experimental Protocol

Our experiment protocol to collect the EEVR dataset is illustrated in Figure[T] The experiment was
conducted using VR 360° audiovisual stimuli. The stimuli consist of N=8 short videos (two videos
from each quadrant of the Russell circumplex model (Russell et al.|(1989))) covering all emotions.
Next, we explain the data collection procedure as follows:

& & L & 8&

Preis;l:?iZigg:tsentl i Study Consent, VR Vi ®.®\ post exposure | | VS O r5
! " | | Baseline Data o V2 ® R2' | questionnaire || V6 ® R6 Qualitative
Background, H Pre-Exposure Familiarity followed by
Rest Time

GHQ : Ratings Collection Task Vs Q R now e
BFIIO i Ve O R o
® s s IE
Time

Figure 1: Illustration of our Experiment protocol for data collection.

1. Pre-Study Survey: The data collection is initiated by collecting participants’ consent. Then,
we collected participants’ background details (gender, age, educational background, and
prior VR exposure), personality scores using BFI-10 questionnaires, and information on
prior psychological well-being using GHQ-12, a popular screening questionnaire designed
to identify common psychiatric conditions within non-psychiatric clinical and research
settings. We have used over the past week version of the GHQ-12 questionnaire to collect
participants’ psychological well-being before participating in our study. GHQ-12 helps
mitigate the bias that might be introduced if the participant experienced some psychological
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lows or highs prior to data collection. The GHQ-12 and personality scores were added as
additional contextual details alongside other participant characteristics in our dataset.

2. Pre-VR exposure: Following the pre-study survey, participants were introduced to the
experiment protocol and sensor setup along with instructions for data collection and the
study’s possible risks or discomfort (more details in section 4.1 of supplementary). Following
instructions, participants pre-exposure ratings were gathered. This included PANAS, SAM,
and Virtual Reality Sickness Questionnaire (VRSQ) (Kim et al.[(2018))) scales to collect
participants’ baseline emotions and pre-VR sickness and fatigue symptoms, if any. The
PANAS scale was used to collect positive and negative affect readings on a 5-point scale
with ten positive (Interested, Strong, Enthusiastic, Proud, Inspired, Determined, Alert,
Attentive, Active) and ten negative (Distressed, Irritable, Guilty, Scared, Upset, Hostile,
Jittery, Ashamed, Nervous, Afraid) emotions. The SAM scale was used to collect scores for
emotions’ valence, arousal, and dominance dimensions. Following baseline ratings, PPG and
EDA sensors were attached to the participant’s non-dominant hand fingers. Subsequently,
participants were asked to relax for 3 minutes of baseline data collection. More details on
scales are provided in supplementary section 4.4.

3. VR Familiarity: Following baseline, participants were familiarized with the VR environ-
ment to mitigate any bias that may arise due to VR familiarity by making them initially sit
in a VR waiting room to acclimate to the technology, exploring the surroundings by looking
around for approx 4 minutes. Following this, participants transitioned to familiarizing
themselves with the VR controller by engaging in a simple game where they used the VR
controller to pick up and throw a ball into a box within the VR room. More details on the
VR module are provided in supplementary section 4.3.

4. VR Stimulus Exposure: Participants were instructed to choose the assigned playlist after
the VR familiarity task. Each playlist contained eight videos retrieved from a public database
of annotated 360° Videos (L1 et al. (2017)). These videos were selected to elicit emotions
from all four emotional quadrants of the Russell circumplex model (Russell et al.| (1989))).
The circumplex model organizes emotions based on two dimensions: valence and arousal.
Thus, videos from four categories were shown to participants: High Valence-High Arousal
(HVHA): elicits high energy positive emotions (such as excitement, Joy) High Valence-Low
Arousal (HVLA): elicits low energy positive emotions (such as calmness, relaxation) Low
Valence-High Arousal (LVHA): elicits high energy negative emotions (such as stress,
anger) Low Valence-Low Arousal (LVLA): elicits low energy negative emotions (such as
boredom, depression)

Following each VR video, post-exposure ratings were collected from subjects to annotate
their emotions during the VR exposure. The post-exposure questionnaire was the same
as the pre-exposure, with additional questions about familiarity and liking (Koelstra et al.
(2012)) of content. The familiarity score was collected on a 1-5 scale. Between subsequent
VR videos and self-reporting, participants were given rest periods to avoid VR sickness or
fatigue. Additionally, participants were asked to fill VRSQ after completing the fourth and
eighth VR videos. More details on stimulus selection, stimulus order, and playlist creation
are provided in section 4.2 of the supplementary document.

5. Qualitative Interview: At the end of physiological data collection, the participant’s sensors
were removed following the qualitative interview. The semi-structured interviews allowed us
to adapt the questions based on the participants’ feedback. The objective of the interview was
to prompt the participants to articulate the emotions that they experienced while watching
the VR stimulus and the reason behind those emotions. We used a monitor to show the VR
videos from the assigned playlist in order to support the participants in recalling the stimulus
while explaining the emotions. The questions like, "What was the major emotion felt in this
video (referring to the video)?" and Were there any mixed emotions that you (participant)
felt while being exposed to stimulus were asked to capture the subjective experiences. The
interview was audio-recorded after obtaining consent from participants. Later, the audio
recording is converted into text during dataset preparation using Google speech-to-text API
ﬂ The data is then manually cleaned to extract each subject’s response to the interviewer’s
questions.

https://cloud.google. com/speech-to-text
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3.2 Experimental Setup

EEVR consists of two physiological signals: Electrodermal Activity (EDA) and Photoplethysmogra-
phy (PPG). The physiological signals are recorded using the 4-channel Biopac MP36’|system. The
Biopac MP36 consists of 4 channels to collect a maximum of four synchronized signals simultane-
ously. The MP36 system was connected to BSL4 data acquisition software to visualize and store
the physiological signal data and to the peripheral PPG and EDA sensors. The EDA sensor module
(SS57LA Hardware module E]) was attached to the index and middle fingers (Tabbaa et al.| (2022)) of
the participant’s non-dominant hand, utilizing EL507 Electrodes for collecting users’ skin electrical
conductance. The PPG sensor module (SS4LA Hardware module E]) was attached to the participant’s
non-dominant hand ring finger. Non-dominant was used to attach sensors for minimizing noise due to
motion artefacts. Before attaching the sensors, Isotonic Gel was applied to EDA electrodes to ensure
minimal noise in the collected data. The biopac MP36 has been used in prior research for collecting
physiological signal data (Shafiq and Veluvolu| (2017); [Zalabarria et al.| (2020); |Aeimpreeda et al.
(2020); Maheshkumar et al.|(2016)). It has a resolution of 2000 Hz for all acquired physiological
signals. For 360° video stimulus, a Meta Quest Pro headset was used. This headset has 2 x LCD
panels with 1800 x 1920 pixels per eye, a refresh rate of 90Hz, and a 106° Horizontal x 96° Vertical
Field of view. It incorporates eye relief adjustment, lens spacing, and spatial audio support. We
have used the OpenXR plugin to integrate the Meta Quest pro headset with the Unity application.
OpenXR plugin also helped us with hand gestures and controls for interacting with the application’s
user interface. Pre and post-exposure ratings were collected using iPad Pro Tablet.

3.3 Participants and Experiment Details

EEVR comprised 37 healthy participants (21 males, 16 females) aged 18-33 (M=23.1, SD=4.02).
Participants were from varying educational backgrounds - Bachelor (24), Master (8), Senior High
School (4) and Doctorate (3). Our exclusion criteria exclude individuals with experience or a history
of heart issues, heart arrhythmia, high blood pressure, medical conditions affecting equilibrium,
visual or auditory impairments, neurological ailments, cognitive challenges, psychological issues,
or diagnosed depression, as per the guidelines laid out in (Tabbaa et al.[(2022)). Additionally,
participants with low proficiency in the English language were not included in the study to avoid
any impact of language understanding on the participants. All participants included in the study
were requested to sign the consent form. Participants were also instructed to forbid any caffeine
intake and refrain from exercising 3 hours before the experiment. The study was conducted in an
institute research lab with minimal disturbance. The experiment setup (room temperature and sitting
arrangements) remained the same for all the participants. The experiment was conducted with the
experimenters present in the lab.

3.4 Dataset Description

The EEVR dataset comprises 296 emotion tasks plus 37 baselines, with each of the 37 participants
experiencing eight VR 360° videos. These tasks aim to gather physiological data, totaling approxi-
mately 797 minutes and 83 seconds, including each participant contributing 3 minutes of baseline data.
Along with physiological data, 296 textual descriptions were collected from 37 participants through
interviews. The physiological data segment was identified with video_ID and subject_ID. The EDA
and PPG data were originally collected at a sampling frequency 2000Hz but were downsampled to
15.625Hz for EDA and 125Hz for PPG data. The downsampling was done to reduce computation
costs while maintaining the data quality. Prior work has utilized EDA data at a sampling frequency
of 4Hz and PPG of 64Hz minimum (Schmidt et al.|(2018))). More details about dataset preparation,
cleaning, and analysis are provided in the supplementary section 5.

3.5 Annotation

All physiological data segments (Participant_ID - Video_ID) are annotated with self-reported ratings
of arousal, valence, dominance (using SAM scale), discrete emotional ratings using PANAS (further
used to calculate positive and negative affect scores), and additionally, we have a qualitative textual
description for each data segment. Moreover, liking and familiarity scores on a scale of 1-5 are

*https://www.biopac.com/product/mp36r-systems/
*https://www.biopac.com/product/eda-lead-bsl/
https://www.biopac.com/product/photoplethysmogram-for-pulse-waveform-bsl/
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also present for each segment. Further, we have personality scores and GHQ-12 ratings for each
participant. More details on the affect score and GHQ score calculation and annotation analysis have
been added to the supplementary sections 4.4 and 5.1.

Labels for Supervised Learning: For supervised learning, we propose three 2-class labels based on
both participants’ responses to arousal, valence questionnaire, and based on stimulus annotations.
The arousal data was collected on a scale of 1-5, which was further divided into binary classes by
considering data with 0-3 ratings as low arousal and 4-5 as high arousal; we followed a similar process
for categorizing valence data. The physiological data collected during video stimulus from LVHA,
LVLA, and baseline are annotated as negative emotions, while the videos from HVHA and HVLA
are annotated as positive, creating binary classes. The baseline was annotated as negative valence,
considering the stress that participants may undergo due to the sensor attachment procedure and
activities before the experiment. Upon analysis, we found our arousal labels were skewed compared
to other labels. To overcome this skewness, we have used oversampling for the arousal labels.

4 Experiments

4.1 Baseline

We conducted baseline classification for three tasks: Arousal Classification, Valence Classification,
and Stimulus-label-based Emotion Classification. Each task involved binary labels. We have
performed baseline classification separately for each data modality: EDA and PPG for all three
labels. Followed by multimodal classification of physiological signals combining EDA and PPG data.
All physiological signal-based baseline experiments were conducted using Leave-one-subject-out
(LOSO) cross-validation (Saganowski et al.| (2023)). All the results are presented in Table [Z] as
the average performance across all LOSO subjects, calculated over three different seed values. To
validate our text data, we also performed baseline classification tasks for only text data, and the
results are presented in Table E} Next, we conducted contrastive training (Radford et al.|(2021)) to
present our pre-training method using the paired physiological signals and textual data. The baseline
results with or without contrastive training on 296 (excluding baseline samples) text-physiological
signal pairs are presented in Table [3] The code for all baseline implementations is present here
https://github.com/alchemy18/EEVR/. Next, we present more details on physiological signals,
text, and contrastive baseline.

Modality Models Stimulus-label Valence Arousal
Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score
Logistic Regression 86.78 £ 0 0.82+0 61.56 0 0.71+0 47410 0.36 £0
Decision Tree 85.09 £0.17 0.83+0 5846+1.06 0.64+0.01 5405+1.12  0.35+0.02
Random Forest 90.79 £ 0.46  0.89 £0.01 60.26 + 1.81 0.66 +0.01 5723+1.19  0.28+0.04
EDA LDA 87.69+0 0.85+0 61.86 +0 0.69+0 48970 037+0
XGBoost 90.69+0.52 0.89+0.01 59.76+0.52 0.66+0.01 56.61+034  0.37+0.01
SVM 85.29+0 0.81+0 59.16 0 0.71+0 51.66 +0 044 +0
MLP 87.39+0 0850 61.86 £0 0.68+0 57.27+0 0.39+0
Logistic Regression 81.08 £0 0.77+£0 61260 0.70+0 56.29 £ 0 042+0
Decision Tree 68.87 +£0.35 0.65+0 5435+030 059+0.01 4943+032  0.26+0.01
Random Forest 75.88+0.35  0.69 £0.01 61.66 +1.93 070+ 0 4927042  0.18+0.01
PPG LDA 81.08 + 0 0.78+0 5896+ 1.73  0.67+0.06 5447+3.72  0.40%0.02
XGBoost 49.44+0 0.68 +0 5726+0.76  0.64+0.01  47.89 +7.57 0.26 £0.13
SVM 80.48 0 0.75+0 59.86+191 0.70+£0.05 47.99+3.78 0.32+0.10
MLP 78.68 £0 0.75+0 56.76 £ 0 0.66+0 54.16 £0 0.38+0
Logistic Regression 85.89+0 0.82+0 60.06 +0 0.69£0 5523+0 041+0
Decision Tree 83.78+0.80 0.83+0.01  62.77 £0.30 0.66+0 58.13+0.70  0.40+0.01
Random Forest 90.69 + 0 0890 61.06+1.35 0.70+£0.01 5678 +£1.56  0.26 £0.01
PPG + EDA LDA 84.89+139 082£0.01 5756+295 0.66+0.06 5548+1.04  0.42+%0.01
XGBoost 87.19+2.73 085+0.03 61.36+479 0.67+0.04 58.0 + 1.66 0.36 £ 0.06
SVM 87.29+139 0.84+0.02 62.16+2.08 0.72+0.02 5597+344  0.38+0.04
MLP 83.48+0 0810 58.86 £0 0.63+0 56.89 + 1.47 0.36 +0.03
Text DistillBert 97.44+0.69 0.97+0.01 91.73+1.73 0.88+0.02 89.94+1.17 0.88 + 0.02

XLMBert-a Base 97.32+0.34 0970 89.46+1.60 0.70+0.15  76.50+9.59 0.70 £0.15

Table 2: Results for Arousal Classification, Valence Classification, and Stimulus-label-based Emotion Classifi-
cation on EDA, PPG and Text Data
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4.1.1 Physiological Signal Baseline

We present our baseline model using hand-crafted features from our physiological signal data, similar
to prior work on emotion recognition (Schmidt et al.| (2018)); Shukla et al.| (2021); Ninh et al.[(2022);
Chaptoukaev et al.|(2024))). To extract our features, we performed the following steps: First, each
EDA and PPG data segment is filtered. EDA data is filtered using a low-pass filter with a SHz cutoff
frequency and a 4th-order Butterworth filter, while PPG data is cleaned using a bandpass filter. Next,
the EDA data is decomposed into tonic and phasic components, referred to as skin conductance level
(SCL) and skin conductance response (SCR) using cvxEDA, a convex optimization-based approach
(Greco et al.[(2015)). We then extracted statistical features, including dynamic range and slope,
from both SCR and SCL components and time-domain features from SCR, such as the number of
peaks, average amplitude, and duration. For PPG data, feature extraction is performed using the
Neurokit Library (Makowski et al.|(2021)) to extract HRV-related time domain, frequency domain,
and non-linear features. After feature extraction, the features are normalized participant-wise using
min-max scaling. Classical machine learning algorithms are then applied to the extracted features for
all three classification tasks. We combine the handcrafted features from both modalities to train our
multimodal machine-learning models using both EDA and PPG data. All machine learning models
are trained using default hyperparameters from sklearn. For the training MLP, we used two hidden
layers with 50 and 100 dimensions. All classification models are trained using the following seeds:
42,43, and 111. Results are presented in table [2]and additional details about experiments are provided
in supplementary section 5.5.

4.1.2 Textual Data Baseline

Next, we performed the three classification tasks on our textual data (for 296 samples excluding
baseline). We followed the standard text classification pipeline, starting with data preprocessing,
which includes data cleaning (removing stopwords and punctuation, converting to lowercase) and
lemmatization. Following this, we applied tokenization, and then we fine-tuned two pre-trained
models (DistilBERT (Sanh et al.[|(2019)) and XLM-RoBERTa Base (Conneau et al.|(2019)))) for the
classification tasks. For our experiments, we have generated five random splits, with 80% of the data
used for training and 20% for testing. Results are presented in table 2]

Positive Class
Text Data of Text
gt || (G — |0 Gl 1™ _ (casa_type) " | Encoder
Negative Class
1 B 1Tz | 1.Tn

f Leave-One signal
Handcrafted | 3| Sianat -Subject-Out  f—> Sq Silh - Sile
’\I Encoder Features Encoder J,

Class
Prediction

Figure 2: The Architecture for Contrastive-Language Singal Pre-Training (CLSP).

4.2 Contrastive Language-Signal Pre-training

To underscore the importance of integrating textual descriptions in emotion recognition, we introduce
the Contrastive Language-Signal Pre-training (CLSP) method for extracting more contextualized
representations. The model was trained on physiological signals and text pairs to learn a joint
embedding space, where both modalities are closely aligned using a contrastive loss function Radford
et al.| (2021). Following pre-training, we evaluated the model’s performance on test subject data
using the leave-one-subject-out cross-validation approach, leveraging minimal labels generated in
the format "Data of {class_Type}" (e.g., "Data of positive emotion class"). CLSP employs separate
neural networks to process the handcrafted features of physiological signals (PPG and EDA signal
data) and text data. For signal data, linear layers with hidden dimensions of 50 and 100 are utilized,
while the text data is processed using a pre-trained DistilBERT (transformer-based language model).
These extracted feature representations are then used to optimize a contrastive objective, maximizing
the similarity between positive pairs and minimizing it for negative pairs. The detailed architecture is
depicted in Figure 2] and our results for CLSP are summarized in table 3] We found that the emotion
recognition for arousal and valence tasks using the CLSP method led to significant improvement in
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classification results compared to without-text-supervision (Hand-crafted features + Neural Network
(two linear layers of dimensions 50, 100)) training. This highlights the effectiveness of incorporating
qualitative textual descriptions into physiological signal-based emotion representation learning.
Further experimental details and comprehensive discussions are provided in Supplementary Section
5.5.

Modality Model Stimulus-label Valence Arousal
Accuracy F1Score Accuracy F1Score Accuracy F1 Score

EDA HC+NN 87.39 0.85 61.86 0.68 57.27 0.39
PPG HC+NN 78.68 0.75 56.76 0.66 54.16 0.38
EDA+PPG HC+NN 83.48 0.81 58.86 0.63 58.58 0.40
EDA+Text CLSP 64.19 0.68 70.38 0.73 77.25 0.81
PPG+Text CLSP 56.95 0.53 64.74 0.64 69.91 0.62
EDA+PPG+Text CLSP 53.50 0.48 64.87 0.60 69.64 0.64

Table 3: Results for Physiological Baseline without text using Hand-crafted features + NN and with text using
CLSP on 296 text-signal pairs for seed=43 and epoch=15.

4.3 Zero-Shot Transfer

To assess the generalization capabilities of our pre-trained CLSP models across datasets collected in
varied environments, we conducted a zero-shot transferability evaluation on our pre-trained model. For
these experiments, we utilized three datasets representing distinct data collection settings: Emognition,
acquired using 2D video stimuli in laboratory settings (Saganowski et al.|(2022)), WESAD, gathered
using the TSST psychological task and video stimuli within controlled lab conditions (Schmidt et al.
(2018))), and NURSE, recorded in real-life hospital environments during the COVID-19 pandemic
(Hosseini et al.|(2022)). As detailed in Table [Z_fl, our pre-trained model demonstrated the ability to
predict emotions in these new domains with accuracy comparable to the baseline models, and in
several instances, it even surpassed the performance of supervised baselines. These findings show
the effectiveness of integrating text-based emotion descriptions for learning representations that
transfer robustly across diverse data domains, irrespective of the environment, device, or participant
demographics. To ensure fair comparisons, we employed a standardized pipeline encompassing data
cleaning, participant-wise normalization, feature extraction, and classification across all experiments.

. Arousal Valence

Dataset (Signal Type) Method Accuracy F1 Score Accuracy F1 Score
» MLP 52.80 0.57 61.89 0.36
Emognition (EDA) Zero-shot CLSP 5323 0.59 50.32 0.49
. MLP 49.94 0.53 50.63 0.28
Emognition (PPG) Zero-shot CLSP  48.19 0.47 51.88 0.41
. MLP 51.53 0.54 55.12 0.34
Emognition (EDA +PPG) 7 0 ot CLSP  50.94 0.52 53.58 0.41
MLP 85.00 0.84 96.67 0.97
WESAD (EDA) Zero-shot CLSP 5333 0.67 51.67 0.67
MLP 80.00 0.80 75.00 0.75
WESAD (PPG) Zero-shot CLSP  70.00 0.68 66.67 0.72
MLP 91.67 0.91 98.33 0.98
WESAD (EDA +PPG) 0 chot CLSP  75.00 071 86.67 0.86
MLP 39.88 032 71.83 0.03
Nurse (EDA) Zero-shot CLSP  55.48 0.58 84.93 0.20
MLP 45.10 0.38 72.08 0.05
Nurse (PPG) Zero-shot CLSP  53.08 0.48 75.34 023
MLP 4835 043 76.04 0.23
Nurse (EDA +PPG) ;. chot CLSP  53.08 045 84.59 0.42

Table 4: Zero-shot transferability results of our pre-trained model (CLSP) compared to supervised
baseline model trained on existing datasets (Emognition, WESAD, and Nurse)
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5 Limitations

EEVR dataset is collected using pre-annotated virtual reality videos within controlled laboratory
settings. The experiment design does not consider the influence of external factors that may impact
participants’ emotional responses to immersive stimuli and assumes isolated responses to stimuli.
Factors such as VR sickness, familiarity with VR technology, and attitudes toward this new technology
may also affect participants’ emotional responses. Furthermore, the placement of sensors and the
VR headset can cause discomfort. Therefore, the signals recorded in this setting may not necessarily
replicate real-life responses from all participants. Moreover, training based on participants’ ratings
is susceptible to participant bias, which may affect subsequent results. To address the subjectivity
of emotional responses, we have collected qualitative responses in the form of textual descriptions,
providing rich contextual annotations alongside objective ratings. Additionally, EEVR contains data
from a privileged set (upper middle class, educated) of the audience and does not represent other
sections of society and thus is biased towards a specific society group.

6 Ethical Considerations and Dataset Accessibility

EEVR study is approved by the Institution review board E] of IIIT-Delhi registered with the National
Ethics Committee Registry for Biomedical and Health Research (NECRBHR). All participants in
this study provided explicit consent for recording their physiological signals and audio data during
qualitative interviews and for releasing this data for research purposes. To protect their identities,
participants were pseudonymized using numerical identifiers. The audio data was transcribed,
manually checked for any identifying information, and included as textual descriptions devoid of
sensitive content. Participants received merchandise goodies worth 5.39 USD for their participation.
The dataset is available for download under a CC BY-NC-SA license for non-commercial research
purposes on our website. The codes for data cleaning, feature extraction, and classification are
open-source and can be accessed. The open-source code can be accessed through the following
repository. Our dataset does not have any direct negative impact on society and is designed and made
open source, keeping users’ privacy in mind.

7 Conclusion

Understanding emotions is vital for effectively addressing mental health challenges. While self-
reports are considered the optimal method for collecting emotional data, they often use objective
scales that can oversimplify emotions, which are inherently continuous, resulting in the loss of
valuable information. In EEVR, we stress the importance of collecting elaborate self-reports in
the form of text or audio data. This kind of self-report provides rich contextual information that
reveals better correlations between physiological signals and emotions. Our experimental protocol is
easily replicable in lab settings and can be extended to daily-life data collection through chatbots and
audio input-based companion applications. The EEVR dataset is a valuable resource for machine
learning researchers working with physiological data, enabling them to build upon existing baselines
or develop their own algorithms. Pairing physiological signals with textual descriptions facilitates
the development of advanced emotion recognition algorithms using wearable devices. This dataset
enhances understanding of emotions and their correlations with participants’ behavioral character-
istics, such as psychological well-being, personality, and physiological changes. Additionally, the
open-source baseline codes and easy accessibility of the EEVR dataset support future reproducibility
and encourage new initiatives leveraging this dataset.
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