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Abstract
Auto-labeling is an important family of techniques that produce labeled training
sets with minimum manual annotation. A prominent variant, threshold-based
auto-labeling (TBAL), works by finding thresholds on a model’s confidence scores
above which it can accurately automatically label unlabeled data. However, many
models are known to produce overconfident scores, leading to poor TBAL per-
formance. While a natural idea is to apply off-the-shelf calibration methods to
alleviate the overconfidence issue, we show that such methods fall short. Rather
than experimenting with ad-hoc choices of confidence functions, we propose a
framework for studying the optimal TBAL confidence function. We develop a
tractable version of the framework to obtain Colander (Confidence functions for
Efficient and Reliable Auto-labeling), a new post-hoc method specifically designed
to maximize performance in TBAL systems. We perform an extensive empirical
evaluation of Colander and compare it against methods designed for calibration.
Colander achieves up to 60% improvement on coverage over the baselines while
maintaining error level below 5% and using the same amount of labeled data.

1 Introduction

The demand for labeled data in machine learning (ML) is perpetual. Obtaining it is expensive and
time-consuming, creating a bottleneck in ML workflows. Threshold-based auto-labeling (TBAL) is a
promising solution to obtain high-quality labeled data at low cost [47, 42, 56]. A TBAL system (Fig.
1) takes unlabeled data as input and outputs a labeled dataset. It works iteratively: in each iteration,
it acquires human labels for a small chunk of data to train a model, then auto-labels points using
the model’s predictions where its confidence scores are above a certain threshold. The threshold is
determined using validation data so that the auto-labeled points meet a desired accuracy criteria. The
goal is to maximize coverage—the fraction of points automatically labeled (out of the total)—while
maintaining accuracy. TBAL powers industry products like Amazon SageMaker Ground Truth [47].

The confidence function is critical to the TBAL workflow (Figure 1). Existing TBAL systems rely on
common choices like softmax outputs from neural networks [42, 56]. These functions are not well
aligned with the objective of the auto-labeling system. Using them results in substantially suboptimal
coverage (Figure 2(a)). For this reason, we ask:
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What are the right choices of confidence functions for TBAL and how can we obtain them?

Threshold-based Auto-labeling System

Unlabeled Data

Labeled Data

Train Model (ERM)Get Human-labeled Data Find Auto-labeling  
Threshold 

Superlevel sets on 
the confidence scores

Auto-label points with confidence 

Figure 1: High-level diagram of TBAL system.

An ideal confidence function for auto-
labeling will achieve the maximum
coverage at a given auto-labeling er-
ror tolerance and thus will bring down
the labeling cost significantly. Finding
such an ideal function, however, is dif-
ficult because of the inherent tension
between accuracy and coverage. The
models used in auto-labeling are often
highly inaccurate so achieving a certain
error guarantee is easier when being
conservative in terms of confidence—
but this reduces coverage. Conversely,
high coverage may appear to require
lowering the requirements in confi-
dence, but this may easily lead to overshooting the desired error level. This is compounded by
the fact that TBAL is iterative, so even small deviations in error levels can cascade in future iterations.

Overconfidence may further stymie hopes of balancing accuracy and coverage. While overconfidence
is a challenge in general, it is exacerbated in TBAL: since models are trained on a small amount of
labeled data, they are often inaccurate, making the problem of designing confidence functions even
more challenging. Common choices produce overconfident scores, i.e., high scores for both correct
and incorrect predictions [51, 38, 17, 16, 3]. Fig. 2(a) shows that softmax scores are overconfident,
resulting in poor auto-labeling performance.

Several methods have been introduced to address overconfidence, including a variety of calibration
techniques [12]. Applying these can nevertheless miss out on significant performance (Figure 2(b))
since the calibration goal differs from auto-labeling. From the auto-labeling standpoint, we seek
minimum overlap between the correct and incorrect model prediction scores. Other approaches
[6, 35] bake the objective of separating scores into model training or use different optimization
procedures [64] that encourage separation. We observe that these do not help TBAL either, since,
after some point, the model is correct on almost all the training points, making it hard to train it to
discriminate between its own correct and incorrect predictions.

We tackle these challenges by proposing a framework to learn suitable confidence functions for
TBAL. In particular, we express the auto-labeling objective as an optimization problem over the space
of confidence functions and thresholds. Our framework subsumes existing methods, i.e., they are
points in the space of solutions. The resulting method, Colander (Confidence functions for Efficient
and Reliable Auto-labeling), relies on a practical surrogate to the framework that can be used to learn
optimal confidence functions for auto-labeling. Using these learned functions in TBAL can achieve
up to 60% improvement in coverage versus baselines like softmax, temperature scaling [12], CRL
[35] and FMFP [64]. We summarize our contributions as follows,

1. We propose a principled framework to study the choices of confidence functions suitable for
auto-labeling and provide a practical method (Colander) to learn confidence functions for
efficient and reliable auto-labeling.

2. We systematically study commonly used choices of scoring functions and calibration methods
and demonstrate that they lead to poor auto-labeling performance.

3. Through extensive empirical evaluation on real-world datasets, we show that using the confidence
scores obtained using our procedure boosts auto-labeling performance significantly in comparison
to common choices of confidence functions and calibration methods.

2 Background and Motivation

We provide notation, background on TBAL and its relationship to other methods, and describe the
importance of confidence functions.

2
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(a) Softmax (b) Temp. Scaling (c) Colander (Ours) (d) Coverage (e) Auto-labeling Err.

Figure 2: Scores distributions (Kernel Density Estimates) of a CNN model trained on CIFAR-10 data.
(a) softmax scores of the vanilla training procedure (SGD) (b) scores after post-hoc calibration using
temperature scaling and (c) scores from our Colander procedure applied on the same model. For
training the CNN model we use 4000 points drawn randomly and 1000 validation points (of which
500 are used for Temp. Scaling and Colander ). The test accuracy of the model is 55%. Figures (d)
and (e) show the coverage and auto-labeling error of these methods. The dotted-red line corresponds
to a user-given error tolerance of 5%.

Notation. Let [m] := {1, 2, . . . ,m} for any natural number m. Let Xu be a set of unlabeled points
drawn from some instance space X. Let Y = {1, . . . , k} be the label space. There is an unknown
ground truth labeling function f∗ : X → Y. Let O be a noiseless oracle that provides the true
label for any point x ∈ X. Denote the model (hypothesis) class by H, where each h ∈ H is a
function h : X → Y. Each classifier h also has an associated confidence function g : X → ∆k

that quantifies the confidence of the prediction by model h ∈ H on any data point x ∈ X. Here,
∆k is a (k − 1)-dimensional probability simplex. Let v[i] denote the ith component for any vector
v ∈ Rd. For any point x ∈X the prediction is ŷ := h(x) and the associated confidence is g(x)[ŷ].
The vector t denotes scores over k-classes, and t[y] denotes its yth entry, i.e., score for class y. Table
3 (in Appendix B.4) contains a summary of the notation.

Threshold-based auto-labeling. It seeks to obtain labeled datasets while reducing the labeling
burden on humans (Figure 1). The input is a pool of unlabeled data Xu. It outputs, for each x ∈ Xu,
a label ỹ ∈ Y. The output label could be either y, from the oracle (human), or ŷ, from the model. Let
Nu be the number of unlabeled points, A ⊆ [Nu] the set of indices of auto-labeled points, and Xu(A)
be these points. Let Na be the size of the auto-labeled set A. The auto-labeling error, denoted by
Ê(Xu(A)), and the coverage, denoted by P̂(Xu(A)), are defined as follows:

Ê(Xu(A)) :=
1

Na

∑
i∈A

1(ỹi ̸= f∗(xi)), and P̂(Xu(A)) := |A|/Nu = Na/Nu. (1)

The goal of an auto-labeling algorithm is to label the dataset so that Ê(Xu(A)) ≤ ϵa while maximizing
coverage P̂(Xu(A)) for a user-given error tolerance parameter ϵa ∈ [0, 1]. As depicted in Figure 1,
the TBAL algorithm proceeds iteratively. In each iteration, it queries labels for a subset of unlabeled
points from the oracle. It trains a classifier from the model class H on the oracle-labeled data
acquired till that iteration. It then uses the model’s confidence scores on the validation data to
identify the region in the instance space, where the current classifier is confidently accurate and
automatically labels the points in this region. The auto-labeled points are removed from the unlabeled
pool. Similarly, to maintain parity between the validation and unlabeled data in the next round, the
validation points in the auto-labeling region are removed as well. These steps are executed in a loop
until all the data is labeled or the budget to query oracle labels is exhausted.

Fundamental differences between TBAL, self-training and active learning. At first glance,
TBAL may appear similar to active learning (AL) [46], self-training (ST) [2], and selective classifica-
tion (SC) [10]. However, as described in [56], it is a fundamentally different technique designed with
different goals. Perhaps the most substantial difference is that TBAL’s aim is to create accurately
labeled datasets, while the goal in AL and ST is to learn the best (in terms of generalization error)
possible classifier in a given model class with limited ground truth labels. This difference is most
substantial in the settings where AL converges to a bad classifier, e.g., due to incorrect choice of the
model class, sampling bias, etc. [56] illustrates this notion with a scenario where TBAL coverage is
above 95% while the other techniques average around 20%. See Appendix A.1 for details.

3
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Threshold-based Auto-labeling System + Colander

Unlabeled Data

Labeled Data

Train Model
Get Human-
labeled Data

Auto-label points with confidence  

Learn confidence function for auto-labeling

Colander

Estimate Thresholds

Estimate errors on superlevel sets of the confidence scores

Figure 3: Threshold-based Auto-labeling with Colander: takes unlabeled data as input, selects a
small subset of data points, and obtains human labels for them to create D

(i)
train and D

(i)
val for the ith

iteration. Trains model ĥi on D
(i)
train. In contrast to the standard TBAL procedure, here we randomly

split D(i)
val into two parts, D(i)

cal and D
(i)
th . Colander kicks in, takes ĥi and D

(i)
cal as input and learns a

coverage maximizing confidence function ĝi for ĥi. Using D
(i)
th and ĝi auto-labeling thresholds t̂i

are determined to ensure the auto-labeled data has error at most ϵa (a user-given parameter). After
obtaining the thresholds the rest of the steps are the same as standard TBAL. The whole workflow
runs until all the data is labeled or another stopping criterion is met.

Problems with confidence functions in TBAL. The success of TBAL hinges on the ability of
the classifier’s confidence scores to distinguish between correct and incorrect labels. Prior works on
TBAL [56, 42] train the model with stochastic gradient descent (SGD) and use the softmax output
of the model as confidence scores, which are known to be overconfident [38]. A natural choice to
mitigate this problem is to use post-hoc calibration techniques, e.g., temperature scaling [12]. We
evaluate these choices by running TBAL for a single round on the CIFAR-10 [24] dataset with a
SimpleCNN model with 5.8M parameters [20] with error threshold 5%. Details are in Appendix A.2.

In Figures 2(d) and 2(e) we observe that using softmax scores from the classifier only produces
2.9% coverage while the error threshold is violated with 10% error. Using temperature scaling only
increases the coverage marginally to 4.9% and still violates the threshold with error 14%. Looking
closer at the scores for correct versus incorrect examples on validation data, we observe a large
overlap for softmax (Figure 2(a)) and a marginal shift with considerable overlap for temperature
scaling (Figure 2(b)). To overcome this challenge, we propose a novel framework (Section 3) to
learn such confidence functions in a principled way. Our method in this example can achieve 50%
coverage with an error of 3.4% within the desired threshold (Figure 2(c)).

3 Proposed Method (Colander)

The observations in Figure 2(a) and 2(b) suggest that fixed choices of confidence functions can
leave significant coverage on the table. To find a better choice in a principled manner, we develop a
framework based on auto-labeling objectives—maximizing coverage while having bounded auto-
labeling error. We instantiate it by using empirical estimates and easy-to-optimize surrogates. We use
the overall TBAL workflow from [56] and introduce our method to replace the confidence (scoring)
function after training the classifier.

3.1 Auto-labeling optimization framework

In any iteration of TBAL, we have a model h trained on a subset of data labeled by the oracle. This
model may not be highly accurate. However, it could be accurate in some regions of the instance
space, and with the help of a confidence function g, we want to identify the points where the model is
correct and auto-label them. As we saw earlier, arbitrary choices of g perform poorly on this task.
Instead, we propose a framework to find the right function from a sufficiently rich family.

4
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Optimal confidence function. To find a confidence function aligned with our objective, we consider
a space of thresholds T (e.g. [0, 1]) and functions G : X → T k, where T k is the k−dimensional
product space of T . We express the auto-labeling objective as an optimization problem (P1):

argmax
g∈G,t∈Tk

P(g, t | h) s.t. E(g, t | h) ≤ ϵa. (P1)

Here P(g, t|h) and E(g, t | h) are the population level coverage and auto-labeling error which are
defined as follows,

P(g, t | h) := Px

(
g(x)[ŷ] ≥ t[ŷ]

)
and E(g, t | h) := Px

(
y ̸= ŷ | g(x)[ŷ] ≥ t[ŷ]

)
. (2)

The optimal g⋆ and t⋆ that achieve the maximum coverage while satisfying the auto-labeling error
constraint belong to the solution(s) of this optimization problem.

3.2 Practical method to learn confidence functions

The framework provides a theoretical characterization of the optimal confidence functions and
thresholds for TBAL. However, it is impractical since the distributions and f⋆ are unknown. Next, we
give a practical method based on the above framework to learn confidence functions for TBAL.

Empirical optimization problem. Since we do not know the distributions of x and f⋆, we use
estimates of coverage and auto-labeling errors on a fraction of validation data to solve the optimization
problem. Let D be some finite number of labeled samples, and then the empirical coverage and
auto-labeling error are defined as follows,

P̂(g, t | h, D) :=
1

|D|
∑

(x,y)∈D

1
(
g(x)[ŷ] ≥ t[ŷ]

)
, (3)

Ê(g, t | h, D) :=

∑
(x,y)∈D 1

(
y ̸= ŷ ∧ g(x)[ŷ] ≥ t[ŷ]

)∑
(x,y)∈D 1

(
g(x)[ŷ] ≥ t[ŷ]

) . (4)

We randomly split the validation data into two parts Dcal and Dth and use Dcal to compute P̂(g, t |
h, Dcal) and Ê(g, t | h, Dcal). Using these estimates, we now seek to solve the following problem,

argmax
g∈G,t∈Tk

P̂(g, t | h, Dcal) s.t. Ê(g, t | h, Dcal) ≤ ϵa. (P2)

Nevertheless, the presence of 0-1 variables means the problem remains challenging.

Surrogate optimization problem. To make the optimization (P2) tractable using gradient-
based methods, we introduce differentiable surrogates for the 0-1 variables. Let σ(α, z) :=
1/(1 + exp(−αz)) denote the sigmoid function on R with scale parameter α ∈ R. It is easy
to see that, for any g, y and t, g(x)[y] ≥ t[y] ⇐⇒ σ(α, g(x)[y]− t[y]) ≥ 1/2. Using this fact, we
define the following surrogates of the auto-labeling error and coverage:

P̃(g, t|h, Dcal) :=
1

|Dcal|
∑

(x,y)∈Dcal

σ
(
α, g(x)[ŷ]− t[ŷ]

)
, (5)

Ẽ(g, t | h, Dcal) :=

∑
(x,y)∈Dcal

1
(
y ̸= ŷ

)
σ
(
α, g(x)[ŷ]− t[ŷ]

)∑
(x,y)∈Dcal

σ
(
α, g(x)[ŷ]− t[ŷ]

) , (6)

and the surrogate optimization problem as follows,

argmin
g∈G,t∈Tk

−P̃(g, t | h, Dcal) + λ Ẽ(g, t | h, Dcal) (P3)

Here, λ ∈ R+ is the penalty term controlling the relative importance of the auto-labeling error and
coverage. We tune it with the procedure discussed in Section 4.3. The gap between the surrogate and
actual coverage diminishes as α→∞. We discuss this in the Appendix.
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Choice of G. Our framework is flexible with respect to the choice of function class G. In this
work, we use neural networks with at least two layers on model class H. We use representations
from the last two layers as input for the functions in G (Figure 4). Let z(1)(x; h) ∈ Rk and
z(2)(x;h) ∈ Rd2 be the outputs of the last and the second-last layer of the net h for input x and
let z(x;h) := [z(1)(x; h), z(2)(x; h)] denote the concatenation. This input is passed to network
Gnn2

: Rk+d2 7→ ∆k; it outputs confidence scores for the k classes. Specifically g is defined as
g(x) := softmax

(
W2tanh(W1z(x; h))

)
. Here W1 ∈ R(k+d2)×2(k+d2) and R2(k+d2)×k are the

learnable weight matrices. As usual, for v ∈ Rd, softmax(v)[i] := exp(v[i])/(
∑

j exp(v[j])) and
tanh(v)[i] := (exp(2v[i])− 1)/(exp(2v[i]) + 1).

Figure 4: Our choice of g function.

We emphasize, Colander can use any function class
for G : X → T k. Here, we chose 2-layer nets and
successfully used the same across all experiments, thus
we may not need an exhaustive architecture search.
Intuitively, we do not need a large network for g since
h already performs the heavier representation learning
work. As a result, simple models are preferable to avoid
overfitting and to reduce training time since post-hoc
methods should be fast.

Solving the surrogate optimization. The optimiza-
tion problem (P3) is nonconvex. Nevertheless, it is
differentiable and we can apply gradient-based meth-
ods. We solve for g and t simultaneously using Adam
[23]. Training details, including hyperparameters, are
deferred to the Appendix.

3.3 TBAL procedure with Colander

We take the workflow of TBAL and plugin our method Colander to learn the new confidence
function and threshold. We discuss the updated workflow below and place the detailed Algorithms 1
and 2 in the Appendix B due to space constraints.

1. Initialization. First, select ns points randomly from Xu and obtain human labels for them to
create initial training data D

(1)
train. This is written as RANDOMQUERY(Xu, ns) in Algorithm 1. The

procedure RANDOMQUERY(Xu, ns) selects ns points randomly from Xu and obtains human labels
for them to create D

(1)
train. The steps of this procedure are detailed in Algorithm 4 in the Appendix B.

2. Train classification model. After obtaining human-labeled training data D
(i)
train for the current

round i, the procedure TRAINMODEL(H, D
(i)
train) trains a model from model class H on the training

data D(i)
train. Any training procedure can be used here. We use methods listed in Section ?? for model

training. This step outputs a model ĥi trained on D
(i)
train. Note, this model ĥi may not be highly

accurate due to several factors such as the small amount of training data, the choice of H, the training
algorithm, and its hyperparameters. Indeed, TBAL does not expect the model to have high accuracy
but it aims to identify and auto-label points where the model’s accuracy is at least 1− ϵa.

3. Learn new confidence function using Colander . The model ĥi obtained in the previous step
also produces softmax scores that can be used for auto-labeling. However, as we saw earlier in
Section 2, using these scores may lead to poor auto-labeling performance. Thus, we plug in our
procedure Colander to learn new scores designed to auto-label as many points as possible with the
current model ĥi while respecting the error constraint. We first randomly splits the validation data
D

(i)
val into D

(i)
cal and D

(i)
th using procedure RANDOMSPLIT(D

(i)
val, ν). The part D(i)

cal has a fraction ν

of the points from D
(i)
val. Then we consider problem P3 with ĥi and D

(i)
cal. We solve it to obtain the

post-hoc confidence function ĝi, which is expected to provide the most appropriate scores for TBAL.

We get thresholds t̂′i as output from Colander, and it is tempting to use these along with ĝi for
auto-labeling. However, these thresholds may violate the auto-labeling error constraint as they

6
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are obtained by solving the relaxed optimization problem. Thus, it is crucial to estimate reliable
thresholds t̂i from the held-out data D

(i)
th to ensure the auto-labeling error constraint is not violated.

4. Threshold estimation. The scores from the new confidence function ĝi on D
(i)
th are used to

estimate auto-labeling thresholds in Algorithm 2. This procedure finds thresholds for each class
separately. It first splits the points in D

(i)
th according to the ground truth class into subsets D(i,y)

th .
Then, for each class y, it finds the auto-labeling threshold t̂[y] by selecting the minimum threshold t

such that the estimate of auto-labeling error for class y, Êy(ĝi, t|ĥi, D
(i,y)
th ) plus a confidence interval

ζ̂(Êy(ĝi, t|ĥi, D
(i,y)
th )) estimated on points in D

(i,y)
th having scores above t, is at most the given error

tolerance ϵa. Here ζ̂(z) = C1

√
z(1− z) for z ∈ [0, 1] and C1 ≥ 0 is a hyperparameter.

5. Auto-labeling. This is a simple step. We compute the scores on the remaining unlabeled data
X

(i)
u using the function ĝi and any point x ∈ X

(i)
u having score above t̂[ŷ] is assigned auto-label

ŷ = ĥi(x), and the points that did not meet this criterion remain unlabeled.

6. Remove auto-labeled points. The points that got auto-labeled in the previous steps are removed
from the unlabeled pool. To make the validation data consistent with this unlabeled pool for the next
round, the points in the validation data that fall into the auto-labeling region are also removed.

7. Get more human-labeled data. Lastly, it calls the procedure ACTIVEQUERY(ĥi, X
(i)
u , nb) to

select nb points from the remaining unlabeled pool using an active learning strategy. This newly
acquired human-labeled data is added to the training data D(i)

train. The details of the querying strategy
are in Algorithm 3 Appendix B. Note, that the TBAL procedure is flexible to work with any choice of
active querying strategy. We pick a simple strategy based on random sampling from the points where
the classifier is most uncertain. To avoid confounding in TBAL with other scores we use the softmax
scores from the classifier to determine uncertainty here.

The procedure then moves to step 2 and runs the loop until there are no more unlabeled points left or
it has queried the stipulated number of human labels Nt.

4 Empirical Evaluation

We validate the following claims through extensive empirical evaluation,

C1. Colander learns better confidence functions for auto-labeling compared to standard training
and common post-hoc methods that seek to mitigate the overconfidence problem. Using it in TBAL
can boost the coverage significantly while keeping the auto-labeling error low.

C2. Colander is independent of any particular train-time method and thus should help improve the
performance when coupled with different train-time methods.

4.1 Baselines

We examine several train-time and post-hoc methods that improve confidence functions from the
calibration and ordinal ranking perspectives. Details of these methods are in the Appendix C.7.

Train-time methods. We use the following methods for training the model ĥ. Vanilla neural
networks are trained with the cross-entropy loss using stochastic gradient descent (SGD) [1, 4, 12].
Squentropy [19] adds the average square loss over the incorrect classes to the cross-entropy loss to
improve the calibration and accuracy of the model. Correctness Ranking Loss (CRL) [35] aligns the
confidence scores of the model with the ordinal rankings criterion via regularization. FMFP [64]
aligns confidence scores with the ordinal rankings criterion by using sharpness-aware minimization
(SAM) [7] in lieu of SGD.

Post-hoc methods. We use the following methods for learning (or updating) the confidence function
ĝ after learning ĥ. Temperature scaling [12] is a variant of Platt scaling [41]. It rescales the logits
by a learnable scalar parameter. Top-Label Histogram-Binning [14] builds on the histogram-binning
method [62] and focuses on calibrating the scores of the predicted label assigned to unlabeled points.
Scaling-Binning [28] applies temperature scaling and then bins the confidence function values.
Dirichlet Calibration [26] models the distribution of predicted probability vectors separately on

7
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Dataset Model h N Nu K Nt Nv Nhyp Modality Preprocess Dimension

MNIST LeNet-5 70k 60k 10 500 500 500 Image None 1 × 28 × 28
CIFAR-10 CNN 50k 40k 10 10k 8k 2k Image None 3 × 32 × 32
Tiny-Imagenet MLP 110k 90k 200 10k 8k 2k Image CLIP 512
20 Newsgroup MLP 11.3k 9k 20 2k 1.6k 600 Text FlagEmb. 1,024

Table 1: Details of the dataset and model we used to evaluate the performance of our method and
other calibration methods. For the Tiny-Imagenet and 20 Newsgroup datasets, we use CLIP and
FlagEmbedding, respectively, to obtain the embeddings of these datasets and conduct auto-labeling
on the embedding space. For Tiny-Imagenet, we use a 3-layer perceptron with 1,000, 500, 300
neurons on each layer as model h; for 20 Newsgroup, we use a 3-layer perceptron with 1,000, 500,
30 neurons on each layer as model h.

instances of each class and assumes Dirichlet class conditional distributions. Adaptive Temperature
Scaling [21] builds on top of temperature scaling and considers that different samples contribute to
the calibration error differently. Each train-time method is piped with a post-hoc method, yielding a
total of 4× 6 = 24 methods.

4.2 Datasets and models

We evaluate the performance of auto-labeling on four datasets. Each is paired with a model for
auto-labeling: MNIST [30] is a hand-written digits dataset. We use the LeNet [31] for auto-labeling.
CIFAR-10 [24] is an image dataset with 10 classes. We use a CNN with approximately 5.8M
parameters [20] for auto-labeling. Tiny-ImageNet [29] is an image dataset comprising 100K images
across 200 classes. We use CLIP [43] to derive embeddings for the images in the dataset and use an
MLP model. 20 Newsgroups [34] is a natural language dataset comprising around 18K news posts
across 20 topics. We use the FlagEmbedding [58] to obtain text embeddings and use an MLP model.

4.3 Hyperparameter search and evaluation

The complexity of TBAL workflow and lack of labeled data make hyperparameter search and
evaluation challenging. Similar challenges have been observed in active learning [32]. We discuss
our practical approach and defer the details to Appendix C.10 and code2.

Hyperparameter search. We run only the first round of TBAL with each method using a hyper-
parameter combination 5 times and measure the mean auto-labeling error and mean coverage on
Dhyp, which represents a small part of the held-out human-labeled data. We pick the combination
that yields the lowest average auto-labeling error while maximizing the coverage. We first find the
best hyperparameters for each train-time method, fix those, and then search the hyperparameters
for the post-hoc methods. Note that the best hyperparameter for a post-hoc method depends on the
training-time method that it pipes to. The hyperparameter search spaces are in the Appendix C; and
the selected values used for each setting are in the supplementary material.

Performance evaluation. After fixing the hyper-parameters, we run TBAL with each combination
of train-time and post-hoc method on full Xu of size N , with a fixed budget of Nt labeled training
samples and Nv validation samples. The details of these values for each dataset are in Table 1
in Appendix C. Here, we know the ground truth labels for the points in Xu, so we measure the
auto-labeling error and coverage as defined in (1) and report them in Table 2.

4.4 Results and discussion
Our findings, shown in Table 2, are:

C1: Colander improves TBAL performance. Our approach aims to optimize the confidence
function to maximize coverage while minimizing errors. When applied to TBAL, we expect it to
yield substantial coverage enhancement and error reduction compared to vanilla training and softmax
scores. Indeed, the results in Table 2 corresponding to the vanilla training match our expectations. We
see across all data settings, our method achieves significantly higher coverage while keeping auto-
labeling error below the tolerance level of 5%. The improvements are even more pronounced when

2https://github.com/harit7/TBAL-Colander-NeurIPS-24
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Train-time Post-hoc MNIST CIFAR-10 20 Newsgroups Tiny-ImageNet
Err (↓) Cov (↑) Err (↓) Cov (↑) Err (↓) Cov (↑) Err (↓) Cov (↑)

Vanilla

Softmax 4.1±0.7 85.0±2.5 4.8±0.2 14.0±2.1 6.0±0.6 48.2±1.6 11.1±0.3 32.6±0.5

TS 7.8±0.6 94.2±0.5 7.3±0.3 23.2±0.7 9.7±0.6 60.7±2.3 16.3±0.5 37.4±1.5

Dirichlet 7.9±0.7 93.2±2.2 7.7±0.5 22.4±1.2 9.4±0.9 59.4±1.8 17.1±0.4 33.3±2.0

SB 6.7±0.5 92.6±1.5 6.1±0.4 18.6±1.1 8.1±0.6 58.1±1.8 15.7±0.6 35.4±1.2

Top-HB 7.4±1.4 93.1±3.6 6.0±0.7 15.6±1.9 9.2±1.0 59.0±2.0 16.6±0.5 37.6±2.2

AdaTS 7.5±0.9 92.8±2.0 8.6±0.6 16.9±1.0 9.6±1.1 61.8±3.3 15.9±0.7 36.7±1.9

Ours 4.2±1.5 95.6±1.4 3.0±0.2 78.5±0.2 2.5±1.1 80.6±0.7 1.4±2.1 59.2±0.8

CRL

Softmax 4.7±0.4 86.0±4.5 5.2±0.3 15.9±0.8 5.8±0.5 48.3±0.3 10.4±0.4 32.5±0.6

TS 8.0±0.8 94.8±0.8 6.8±0.8 20.3±1.1 9.5±1.0 61.7±1.6 15.8±0.6 37.4±1.7

Dirichlet 8.6±0.6 93.1±1.6 7.7±0.2 20.9±1.1 8.7±0.9 58.0±1.4 16.3±0.4 33.1±1.9

SB 7.4±0.8 93.1±2.7 5.9±0.9 17.9±1.5 8.9±1.1 57.9±3.9 15.0±0.4 35.5±1.2

Top-HB 7.7±0.8 94.1±1.5 4.4±0.5 12.3±0.4 8.8±1.0 58.8±2.7 16.5±0.5 38.9±1.6

AdaTS 7.8±0.7 94.3±1.2 8.8±0.4 17.1±1.2 9.1±0.8 60.8±1.9 16.2±0.4 38.9±1.2

Ours 4.5±1.4 95.6±1.3 2.2±0.6 77.9±0.2 1.8±1.2 81.3±0.5 2.8±2.1 61.2±1.4

FMFP

Softmax 4.8±0.8 84.2±4.1 4.9±0.4 15.6±1.7 5.4±0.7 45.4±1.9 10.5±0.3 32.4±1.4

TS 8.0±0.6 95.3±1.6 6.5±0.3 21.0±1.5 9.5±0.5 57.7±2.2 16.2±1.1 37.7±1.8

Dirichlet 8.2±1.3 94.0±2.2 6.9±0.4 21.7±1.2 8.9±1.0 56.6±2.4 17.4±0.8 33.0±1.8

SB 7.2±1.1 93.1±2.3 6.1±0.5 19.5±1.0 8.6±0.4 55.8±1.3 15.5±0.6 36.1±0.5

Top-HB 7.1±0.6 93.3±4.9 5.2±0.5 14.2±2.4 9.0±0.7 57.9±2.4 16.2±0.4 37.4±1.1

AdaTS 7.6±0.4 94.1±1.0 7.2±0.7 27.5±1.5 8.7±0.9 56.7±2.7 16.3±0.6 37.6±1.7

Ours 4.6±0.8 95.7±0.2 3.0±0.4 77.4±0.2 2.5±0.9 80.8±0.6 1.8±2.0 60.8±1.4

Squentropy

Softmax 3.7±1.0 88.2±3.9 5.2±0.5 21.2±1.8 4.6±0.4 52.0±1.2 7.8±0.3 36.2±0.8

TS 6.2±1.1 95.6±0.9 6.9±0.6 28.2±2.5 8.3±0.6 66.6±1.4 13.3±0.1 44.9±1.0

Dirichlet 6.5±1.2 95.9±0.8 7.3±0.3 29.4±1.1 7.8±0.6 64.0±1.3 14.1±0.3 42.5±0.7

SB 6.0±0.8 95.3±1.2 6.2±0.4 23.8±1.9 7.8±0.7 63.0±2.9 13.0±0.5 45.2±2.0

Top-HB 5.3±0.4 96.4±0.9 4.3±0.5 15.8±1.4 8.2±0.8 66.5±2.2 13.7±0.1 45.9±1.4

AdaTS 6.6±1.0 95.7±1.0 7.6±0.3 22.6±1.2 7.4±0.6 64.7±2.6 14.0±0.3 46.1±0.7

Ours 4.1±0.8 97.2±0.5 2.3±0.5 79.0±0.3 3.3±0.8 82.9±0.4 0.6±0.2 66.5±0.7

Table 2: In every round the error was enforced to be below 5%; ‘TS’ stands for Temperature Scaling,
‘SB’ stands for Scaling Binning, ‘Top-HB’ stands for Top-Label Histogram Binning. ‘AdaTS’ stands
for Adaptive Temperature Scaling. The column Err stands for auto-labeling error and Cov stands for
coverage. Each cell value is mean ± std. deviation on 5 repeated runs with different random seeds.

the datasets are more complex than MNIST. Also consistent with our expectation and observations in
Figure 2(b), the post-hoc calibration methods improve the coverage over using softmax scores but at
the cost of slightly higher error. While they are reasonable choices to apply in the TBAL pipeline,
they fall short of maximally improving TBAL performance due to the misalignment of goals.

C2: Colander is compatible with and improves over other train-time methods. Our method is
compatible with various choices of train-time methods, and if a train-time method (Squentropy here)
provides a better model relative to another train-time method (e.g., Vanilla), then our method exploits
this gain and pushes the performance even further. Across different train-time methods, we do not see
significant differences in the performance, except for Squentropy. Using Squentropy with softmax
improves the coverage by as high as 6-7% while dropping the auto-labeling error in contrast to
using softmax scores obtained with other train-time methods for the Tiny-ImageNet setting. This is
unexpected: Squentropy adds the average square loss over the incorrect classes as a regularizer, and it
has offered better accuracy and calibration compared to training with cross-entropy loss.

Train-time methods designed for ordinal ranking objective perform poorly in auto-labeling. CRL
and FMFP are state-of-the-art methods designed to produce scores aligned with the ordinal ranking
criteria. Ideally, if the scores satisfy this criterion, TBAL’s performance would improve. However,
we do not see any significant difference from the Vanilla method. Similar to the other baselines, their
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evaluation is focused on models trained on large amounts of data. But, in TBAL, we have less data
for training. The training error goes to zero after some rounds, and no information is left for the CRL
loss to distinguish between correct and incorrect predictions (i.e., count SGD mistakes). On the other
hand, FMFP is based on a hypothesis that training models using Sharpness Aware Minimizer (SAM)
could lead to scores satisfying the ordinal ranking criteria. However, this phenomenon is still not
well understood, especially in settings like ours with limited training data.

5 Related Work

Data labeling. We briefly discuss prominent methods for labeling. Crowdsourcing [45, 50] uses a
crowd of non-experts to complete a set of labeling tasks. Works in this domain focus on denoising the
obtained information, modeling label errors, and designing effective labeling tasks [11, 22, 33, 53,
52, 54, 5]. Weak supervision (WS), in contrast, emphasizes labeling through multiple inexpensive but
noisy sources, not necessarily human [44, 48, 55, 18, 49, 60, 63]. Works such as [44, 8] concentrate
on binary or multi-class labeling, while [48, 55] extend WS to structured prediction tasks.

Auto-labeling occupies an intermediate position between weak supervision and crowdsourcing in
terms of human dependency. It aims to minimize costs to obtain human labels while generating
high-quality labeled data using a specific model. [42] use a TBAL-like algorithm and explore the cost
of training for auto-labeling with large-scale model classes. Recent work [56] theoretically analyzes
the sample complexity of validation data required to guarantee the quality of auto-labeled data.

Overconfidence and calibration. The issue of overconfidence [51, 38, 16, 3] is detrimental in
several applications (such as robustness to out-of-distribution points [59, 57]), including ours. Many
solutions have emerged to mitigate the overconfidence and miscalibration problems. Gawlikowski
et al. [9] provide a comprehensive survey on uncertainty quantification and calibration techniques for
neural networks. Guo et al. [12] evaluated a variety of solutions ranging from the choice of network
architecture, model capacity, weight decay regularization [25], histogram-binning and isotonic
regression [61, 62] and temperature scaling [41, 39] which they found to be the most promising
solution. The solutions fall into two broad categories: train-time and post-hoc. Train-time solutions
modify the loss function, include additional regularization terms, or use different training procedures
[27, 37, 36, 19]. On the other hand, post-hoc methods such as top-label histogram-binning [13],
scaling binning [28], Dirichlet calibration [26] calibrate the scores directly or learn a model that
corrects miscalibrated confidence scores.

Beyond calibration. While calibration aims to match the confidence scores with a probability
of correctness, it is not the precise solution to the overconfidence problem in many applications,
including our setting. The desirable criteria for scores for TBAL are closely related to the ordinal
ranking criterion [17]. To get such scores, Corbière et al. [6] add a module in the net for failure
prediction, Zhu et al. [64] switch to sharpness aware minimization [7] to learn the model; CRL [35]
regularizes the loss.

6 Conclusion
We studied issues with confidence scoring functions used in threshold-based auto-labeling (TBAL).
We showed that the commonly used confidence functions and calibration methods can often be a
bottleneck, leading to poor performance. We proposed Colander to learn confidence functions that
are aligned with the TBAL objective. We evaluated our method extensively against common baselines
on several real-world datasets and found that it improves the performance of TBAL significantly
in comparison to the several common choices of confidence function. Our method is compatible
with several choices of methods used for training the classifier in TBAL and using it in conjunction
with them improves TBAL performance further. A limitation of Colander is that, similar to other
post-hoc methods it also requires validation data to learn the confidence function. Reducing (or
eliminating) this dependence on validation data could be an interesting future work.
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Supplementary Material Organization

The supplementary material is organized as follows. We provide deferred details of the background
and motivation section in Appendix A of the method in Appendix B. Then, in Appendix C, we
provide additional experimental results and details of the experiment protocol and hyperparameters
used for the experiments. Our code with instructions to run, is uploaded along with the paper.

A Appendix to the Background and Motivation Section

A.1 Detailed comparison with active learning and self-training

To illustrate the differences between TBAL and the combination of active learning (AL) and self-
training for the task of data labeling, we run an experiment on the 2 concentric circles data setting as
used in [56]. The details are as follows:

Data setting. We generate two concentric circles with points in the outer circle belonging to one
class and the inner circle belonging to the other class. The total number of points generated is 10,000
of which we use 2000 for validation.
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Figure 5: Results of experiment on 2-concentric circles to show
the differences between TBAL, AL and ST.

Methods. We run TBAL, AL+Self-
Training, and AL+Self-Training+SC,
using logistic regression. The com-
bination of AL+Self-Training means,
in each iteration, the algorithm
queries human-labeled data points and
pseudo-labels the points in the un-
labeled data using self-training and
adds both the human-labeled and
pseudo-labeled points in the training
pool. With this procedure, AL+Self-
Training first learns the best classifier
(ĥal−st) with the given budget of max-
imum training points (Nt) that can be
queried from humans. Then it auto-labels all the remaining unlabeled points with this classifier’s pre-
dictions. For AL+Self-Training+SC, we do selective auto-labeling using ĥal−st, i.e., only auto-label
the points where the classifier will have an error at most ϵa. We use ϵa =1% here.

Results and discussion. The Figure 5 shows auto-labeling error and coverage achieved by these
methods when run with different choices of human-labeled data budget for training. First, we can see
that even with linear classifiers TBAL is able to auto-label a huge chunk of the data (high coverage)
while maintaining auto-labeling error below the tolerance level of 1% On the other hand, methods
like AL+Self-Training (+SC) that try to first learn the optimal classifier in the given function class
either have high auto-labeling error or very low coverage. These results are also consistent with
the observations in [56] on the comparison between TBAL and AL, AL+SC. While such findings
confirm the notion that there are differences—and, at least in some settings, advantages—for the
TBAL approach compared to other techniques, we reiterate that our goal is to understand and improve
the role of the confidence function within TBAL, rather than comparing TBAL to other techniques.

A.2 Details of the motivating experiment in section 2

We run TBAL for a single round on the CIFAR-10 dataset with a SimpleCNN classification model
with around 5.8M parameters [20]. We randomly sampled 4,000 points for training the classifier and
randomly sampled 1,000 points as validation data. We train the model to zero training error using
minibatch SGD with learning rate 1e-3, weight decay 1e-3 [15, 25], momentum 0.9, and batch size
32. The trained model has validation accuracy around 55%, implying we could hope to get coverage
around 55%. We run the auto-labeling procedure with an error tolerance of 5%.
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B Additional Details on the Method

B.1 Detailed algorithms

See Algorithms 1, 2 and 3.

B.2 Tightness of surrogates.

The surrogate auto-labeling error and coverage introduced to relax the optimization problem (P2) is
indeed a good approximation of the actual auto-labeling error and coverage. To see this, we use a
toy data setting of x ∼ Uniform(0, 1) with 1−dimensional threshold classifier hθ(x) = 1(x ≥ θ).
For any x, let true labels y = h0.5(x) and consider the confidence function gw(x) = |w − x|. Let
ŷ = h0.25(x) and consider the points on the side where ŷ = 1. We plot actual and surrogate errors in
Figure 6(a) and the surrogate and actual coverage in Figure 6(a).
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Figure 6: Illustration of the tightness of surrogate error and
coverage functions based on the choice of α.

for three choices of α. As expected,
the gap between the surrogates and
the actual functions diminishes as we
increase the α.

B.3 Active querying strategy.

We employ the margin-random query
approach to select the next batch of
training data. This method involves
sorting points based on their margin
(uncertainty) scores and selecting the
top Cnb points, from which nb points
are randomly chosen. This strategy
provides a straightforward and com-
putationally efficient way to balance
the exploration-exploitation trade-off.
It’s important to acknowledge the ex-
istence of alternative active-querying
strategies; however, we adopt the
margin-random approach as our stan-
dard to maintain a focus on evalu-
ating various choices of confidence
functions for auto-labeling. Note
that while we use the new confidence
scores computed using post-hoc methods for auto-labeling, we do not use these scores in active
querying. Instead, we use the softmax scores from the model for this. We do this to avoid conflating
the study with the study of active querying strategies. We use C = 2 for all experiments.

15

15997 https://doi.org/10.52202/079017-0509



B.4 Glossary

The notation is summarized in Table 3 below.

Symbol Definition

1(E) indicator function of event E. It is 1 if E happens and 0 otherwise.
X feature space.
Y label space i.e. 1, 2, . . . k.
H hypothesis space (model class for the classifiers).
G class of confidence functions.
k number of classes.
x, y x is an element in X and y is its true label.
f∗ unknown groundtruth labeling function.
h a hypothesis (model) in H.
g confidence function g : X → ∆k.
ϵa auto-labeling error tolerance.

Xu given pool of unlabeled data points.
X

(i)
u unlabeled data left at the beginning of ith round.

A indices of points that are auto-labeled.
Xu(A) subset of points in Xu with indices in A, i.e. the set of auto-labeled points.
ĥ(i) ERM solution and auto-labeling thresholds respectively in ith round.
t k dimensional vector of thresholds.
t[y] yth entry of t i.e. the threshold for class y.
g(x)[y] the confidence score for class y output by confidence function g on data point x.
Nu number of unlabeled points, i.e. size of Xu.
Nt number of manually labeled points that can be used for training h.
Na Total auto-labeled points in Dout.
ν fraction of Dval that can be used for training post-hoc calibrator.
ỹi label assigned to the ith point by the algorithm. It could be either yi or ŷi.
yi groundtruth label for the ith point.
ŷi predicted label for the ith point by classifier.

D
(i)
query labeled data queried from oracle (human) in the ith round.

D
(i)
train training data to learn ĥ(i) in the ith round.

D
(i)
val validation data in the ith round.

D
(i)
cal calibration data in the ith round to learn a post-hoc g.

D
(i)
th part of validation data in the ith round to estimate threshold t.

D
(i)
auto part of X(i)

u that got auto-labeled in the ith round.
Dout Output labeled data, including auto-labeled and human labeled data.

E(g, t | h) population level auto-labeling error, see eq. (2).
P(g, t | h) population level auto-labeling coverage, see eq. (2).
Ê(g, t | h, D) estimated auto-labeling error, see eq. (4).
P̂(g, t | h, D) estimated auto-labeling coverage, see eq. (3).
Ẽ(g, t | h, D) surrogate estimated auto-labeling error, see eq. (6).
P̃(g, t | h, D) surrogate estimated auto-labeling coverage, see eq. (5).

Table 3: Glossary of variables and symbols used in this paper.
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Algorithm 1 Threshold-based Auto-Labeling (TBAL)

Input: Unlabeled data Xu, labeled validation data Dval, auto labeling error tolerance ϵa, Nt training
data query budget, seed data size ns, batch size for active query nb, calibration data fraction ν, space
of thresholds T , coverage lower bound ρ0, label space Y.

Output: Auto-labeled dataset Dout.

1: procedure TBAL(Xu, Dval, ϵa, Nt, ns, nb, ν, ρ0, T,Y)
2: ▷ /*** Initialization. ***/
3: D

(1)
query ← RANDOMQUERY(Xu, ns). ▷ Randomly select ns points and get human labels.

4: X
(1)
u ← Xu \ {x : (x, y) ∈ D

(1)
query}. ▷Remove these points from the unlabeled pool.

5: D
(1)
val ← Dval;D

(0)
train ← ∅. ▷Validation data for the first round is full Dval.

6: Dout ← D
(1)
query;n

(1)
t ← ns; i← 1. ▷Add human-labeled data to the output Dout.

7: ▷ /*** Run the auto-labeling loop. ***/
8: ▷ /* Until no more unlabeled points are left or the budget for training data is exhausted. */

9: while X
(i)
u ̸= ∅ and n

(i)
t ≤ Nt do

10: D
(i)
train ← D

(i−1)
train ∪D

(i)
query. ▷Include human-labeled points in the training data.

11: ĥi ← TRAINMODEL(H, D
(i)
train). ▷Train a classification model.

12: D
(i)
cal, D

(i)
th ← RANDOMSPLIT(D

(i)
val, ν). ▷Randomly split current validation data.

13: ▷ /*** Colander block, to learn the new confidence function ĝi. ***/

14: ĝi, t̂
′
i ← argming∈G,t∈Tk −P̃(g, t | ĥi, D

(i)
cal) + λ Ẽ(g, t | ĥi, D

(i)
cal). ▷ Colander .

15: ▷ /*** Estimate auto-labeling thresholds using ĝi and D
(i)
th . See Algorithm 2. ***/

16: t̂i ← ESTTHRESHOLD(ĝi, ĥi, D
(i)
th , ϵa, ρ0, T,Y).

17: ▷ /*** Auto-label the points having scores above the thresholds. ***/

18: D̃
(i)
u ← {(x, ĥi(x)) : x ∈ X

(i)
u }.

19: D
(i)
auto ← {(x, ŷ) ∈ D̃

(i)
u : ĝi(x)[ ŷ] ≥ t̂i[ ŷ] }.

20: X
(i)
u ← X

(i)
u \ {x : (x, ŷ) ∈ D

(i)
auto}. ▷Remove auto-labeled points from unlabeled set.

21: D̃
(i)
val ← {(x, ĥi(x)) : (x, y) ∈ D

(i)
val}.

22: D
(i+1)
val ← {(x, ŷ) ∈ D̃

(i)
val : ĝi(x)[ŷ] < t̂i[ŷ]}. ▷Remove validation points from the

auto-labeling region.
23: ▷ /*** Get the next batch of manually labeled data using an active querying strategy. ***/

24: D
(i+1)
query ← ACTIVEQUERY(ĥi, X

(i)
u , nb).

25: X
(i+1)
u ← X

(i)
u \ {x : (x, y) ∈ D

(i+1)
query}. ▷Remove human-labeled data from the

unlabeled pool.

26: Dout ← Dout ∪D
(i)
auto ∪D

(i+1)
query. ▷Add the auto-labeled and manually labeled points

in the output data.

27: n
(i+1)
t ← n

(i)
t + nb.

28: i ← i+ 1.
29: end while
30: return Dout.
31: end procedure
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Algorithm 2 Estimate Auto-Labeling Threshold

Input: Confidence function ĝi, classifier ĥi, Part of validation data D
(i)
th for threshold estimation,

auto labeling error tolerance ϵa, space of thresholds T , coverage lower bound ρ0, label space Y.
Output: Auto-labeling thresholds t̂i, where t̂i[y] is the threshold for class y.

1: procedure ESTTHRESHOLD(ĝi, ĥi, D
(i)
th , ϵa, ρ0, T,Y)

2: ▷ /*** Estimate thresholds for each class. ***/
3: for y ∈ Y do
4: D

(i,y)
th ← {(x′, y′) ∈ D

(i)
th : y′ = y}. ▷Group points class-wise.

5: ▷ /*** Only evaluate thresholds with est. coverage at least ρ0. ***/

6: T ′
y ← {t ∈ T : P̂

(
ĝi, t | ĥi, D

(i,y)
th

)
≥ ρ0} ∪ {∞}.

7: ▷ /*** Estimate auto-labeling error at each threshold. Pick the smallest threshold with the
sum of estimated error and C1 times the std. deviation is below ϵa. C1 is set to 0.25 here. ***/

8: t̂i[y] ← min{t ∈ T ′
y : Êy(ĝi, t|ĥi, D

(i,y)
th ) + C1ζ̂(Êy(ĝi, t|ĥi, D

(i,y)
th )) ≤ ϵa}.

9: end for
10: return t̂i.
11: end procedure

Algorithm 3 Active Querying Strategy to Acquire Human-labeled Samples for Training

Input: Classifier ĥi, unlabeled data X
(i)
u , batch size nb, constant C ≥ 1.

Output: D(i+1)
query, a subset of X(i)

u of size at most nb with human (groundtruth) labels.

1: procedure ACTIVEQUERY(ĥi, X
(i)
u , nb)

2: S
(i)
u ← Softmax scores from ĥi for all points in X

(i)
u .

3: X ′ ← Top C × nb points from X
(i)
u sorted in ascending order on the scores S(i)

u .
4: D

(i+1)
query ← RANDOMQUERY(X ′, nb).

5: return D
(i+1)
query.

6: end procedure

Algorithm 4 Select a Subset of Points Randomly and Obtain Human Labels
Input: X , n.
Output: D, a subset of X of size at most n with human (groundtruth) labels.

1: procedure RANDOMQUERY(X,n)
2: if then|X| > n
3: X ′′ ← randomly select n points from X .
4: else
5: X ′′ ← X.
6: end if
7: D ← {(x, human_label(x) : x ∈ X ′′}.
8: return D.
9: end procedure

18

16000https://doi.org/10.52202/079017-0509



C Additional Experiments and Details

C.1 Experiments on Nt, Nv and ν

We need to understand the effect of training data query budget i.e. Nt, the total validation data Nv,
and the data that can be used for calibrating the model i.e. the calibration data fraction ν on the
auto-labeling objective. As varying these hyperparameters on each train-time method is expensive,
we experimented with only Squentropy as it was the best-performing method across settings for
various datasets.

When we vary the budget for training data Nt, we observe from Figure 7 that our method does not
require a lot of data to train the base model, i.e. achieving low auto-labeling error and high coverage
with a low budget. While other methods benefit from having more training data for auto-labeling
objectives, it comes at the expense of reducing the available data for validation.

From Figure 8, we observe that, while the coverage of our method remains the same across different
Nv , it reduces for other methods. The cause of this phenomenon can be attributed to the fact that we
are borrowing the data from the training budget as it limits the performance of the base model, which
in turn limits the auto-labeling objective.

As we increase the percentage of data that can be used to calibrate the model, i.e., ν, we note from
Figure 9 that other methods improve the coverage, which can be understood from the fact that
when more data is available for calibrating the model, the model becomes better in terms of the
auto-labeling objective. But it’s interesting to note that even with a low calibration fraction, our
method achieves superior coverage compared to other methods. It is also important to note that the
auto-labeling error increases as we increase ν. This is because when ν increases, the number of data
points used to estimate the threshold decreases, leading to a less granular and precise threshold.

Feature Model Error Coverage
Pre-logits Two Layer 4.6 ± 0.3 82.8 ± 0.5
Logits Two Layer 3.2 ± 1.3 82.8 ± 0.3
Concat Two Layer 3.3 ± 0.8 82.9 ± 0.4

Table 4: Auto-labeling error and coverage for the 3 feature representations we could use for 20
Newsgroup. As we can see, the feature representation does not lead to a significant difference in
auto-labeling error and coverage.

Feature Model Error Coverage
Pre-logits Two Layer 2.1 ± 0.5 79.0 ± 0.2
Logits Two Layer 3.1 ± 0.4 76.5 ± 0.9
Concat Two Layer 2.3 ± 0.5 79.0 ± 0.3

Table 5: Auto-labeling error and coverage for the 3 feature representations we could use for CIFAR10
SimpleCNN. As we can see, the feature representation does not lead to a significant difference in
auto-labeling error and coverage.

C.2 Experiments on Colander input

Figure 4 illustrates that we could use logits (last layer’s representations), pre-logits (second last
layer’s representations), or the concatenation of these two as the input to g. To help us decide which
one we should use, we conduct a hyperparameter search for input features on the CIFAR-10 and
20 Newsgroup dataset using the Squentropy train-time method. Table 4 and 5 present the auto-
labeling error and coverage of using the 3 types of feature representations. As we can see, all feature
representation leads to a similar auto-labeling error and coverage, and in some cases, it is better to
include pre-logits as well. Thus, we use concatenated representation (Concat), for more flexibility.
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C.3 Experiments on ϵa

We run TBAL with five values of ϵa ∈ {0.01, 0.025, 0.05, 0.075, 0.1} and report the results in Table
6. As expected the auto-labeling error is high with larger values of and smaller with small ϵa.

Post-hoc ϵa = 0.01 ϵa = 0.025 ϵa = 0.05 ϵa = 0.075 ϵa = 0.1
Err (↓) Cov (↑) Err (↓) Cov (↑) Err (↓) Cov (↑) Err (↓) Cov (↑) Err (↓) Cov (↑)

Softmax 5.86 ± 0.38 12.73 ± 1.61 5.86 ± 0.38 12.73 ± 1.61 4.78 ± 0.21 14.01 ± 2.08 6.80 ± 0.47 16.73 ± 1.19 9.03 ± 0.17 21.28 ± 0.82

TS 8.19 ± 0.88 19.44 ± 1.16 8.19 ± 0.88 19.44 ± 1.16 7.26 ± 0.29 23.15 ± 0.7 9.24 ± 0.78 22.49 ± 0.74 11.63 ± 0.51 25.79 ± 1.97

Dirichlet 8.22 ± 0.4 16.94 ± 1.2 8.22 ± 0.4 16.94 ± 1.2 7.6 ± 0.48 22.36 ± 1.18 9.68 ± 0.82 18.65 ± 0.97 11.26 ± 1.16 24.91 ± 2.09

SB 6.15 ± 0.52 11.74 ± 0.57 6.15 ± 0.52 11.74 ± 0.57 6.09 ± 0.35 18.58 ± 1.13 7.81 ± 0.65 17.37 ± 1.3 9.13 ± 1.08 20.52 ± 1.11

Top-HB 5.76 ± 0.42 9.89 ± 0.55 5.76 ± 0.42 9.89 ± 0.55 5.95 ± 0.7 15.58 ± 1.92 7.45 ± 0.8 13.84 ± 0.78 8.71 ± 1.37 17.9 ± 0.56

Ours 1.2 ± 0.18 78.33 ± 0.76 1.32 ± 0.21 78.75 ± 0.4 2.96 ± 0.2 78.48 ± 0.17 4.3 ± 0.23 78.94 ± 0.42 6.29 ± 0.5 78.97 ± 0.46

Table 6: ϵa variation. Dataset: CIFAR-10, Train-time method: Vanilla.

C.4 Single vs multi-round TBAL

Figure 16: Per-epoch metrics for all post-hoc methods for CIFAR10
setting. (left) Auto-labeling accuracy (right) Coverage. Train-time
method is vanilla.

We further demonstrate that
the performance gains are
due to the use of Colander,
even if methods use mul-
tiple rounds. To do so,
we show the evolution of
coverage and error over
multiple rounds in Figure
16. The effects of using
Colander are visible from
the first round itself, and
the following rounds im-
prove performance further.
We also run a single round
(passive) variant of TBAL
where we sample all the
human-labeled points for
training (Nt) randomly at once, train a classifier, do auto-labeling, and then stop. This setting
avoids confounding due to multiple rounds. We observe that using Colander yields significantly
higher coverage in comparison to the baselines (see Table 7). This reinforces the fact that the gains
in the multi-round TBAL are directly due to Colander, while multiple rounds of data selection,
training, and auto-labeling are superior to this single round version.

C.5 Experiments on different architectures

Post-hoc Err (↓) Cov (↑)
Softmax 2.7 ± 0.54 11.06 ± 1.46
TS 3.04 ± 0.49 12.03 ± 1.98
Dirichlet 2.98 ± 0.32 11.22 ± 2.1
SB 2.72 ± 0.34 9.75 ± 1.33
Top-HB 1.83 ± 0.61 5.50 ± 1.08
Ours 2.02 ± 0.28 49.62 ± 0.69

Table 7: Results with single round
of auto-labeling. Dataset and model:
CIFAR-10 setting in the paper.

In TBAL it is not a priori clear what model the practi-
tioner should use. The overall system is flexible enough
to work with any chosen model class. Our focus is on
evaluating the effect of various training time and post-hoc
methods designed to improve the confidence functions for
any given model. To answer the query, we ran experi-
ments with Resnet18 and ViT models in the CIFAR-10
setting (see Table 8). As we expected there are variations
in the results in the baselines due to model choices but
our method maintains high performance irrespective of the
classification model used. This is due to its ability to learn
confidence scores tailored for TBAL.
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Post-hoc Err (↓) Cov (↑)
Softmax 14.02 ± 1.83 2.03 ± 0.31
TS 19.32 ± 2.51 2.54 ± 0.33
Dirichlet 17.27 ± 3.26 2.87 ± 0.55
SB 9.22 ± 10.91 0.46 ± 0.51
Top-HB 0.00 ± 0.00 0.00 ± 0.00
Ours 2.62 ± 0.32 75.56 ± 0.15

Post-hoc Err (↓) Cov (↑)
Softmax 4.48 ± 0.23 33.24 ± 1.14
TS 6.38 ± 0.47 39.14 ± 1.96
Dirichlet 6.30 ± 0.41 37.99 ± 1.47
SB 5.16 ± 0.23 35.32 ± 1.36
Top-HB 4.46 ± 0.40 29.66 ± 0.74
Ours 2.85 ± 0.25 78.56 ± 0.54

Table 8: Model variation. CIFAR-10 dataset with ViT (Left) and ResNet18 (Right), Train-time
method Vanilla.

Method Hyperparameter Values

Common

optimizer SGD
learning rate 0.001, 0.01, 0.1
batch size 32, 256
max epoch 50, 100
weight decay 0.001, 0.01, 0.1
momentum 0.9

CRL rank target softmax
rank weight 0.7, 0.8, 0.9

FMFP optimizer SAM

Table 9: Hyperparameters swept over for train-time methods. Those listed next to Common are the
hyperparameters for the four train-time methods: Vanilla, CRL, FMFP, and Squentropy. Therefore,
we do not list those again for each method. Note that for FMFP, we used SAM optimizer instead of
SGD. For each method, we swept through all possible combinations of the possible values for each
hyperparameter. Underlined values are only used on TinyImageNet since it is a complicated dataset
containing 200 classes.

C.6 Hyperparameters

The hyperparameters and their values we swept over are
listed in Table 9 and 10 for train-time and post-hoc methods, respectively.

C.7 Train-time and post-hoc methods

C.7.1 Train-time methods

1. Vanilla: Neural networks are commonly trained by minimizing the cross entropy loss using
stochastic gradient descent (SGD) with momentum [1, 4]. We refer to this as the Vanilla training
method. We also include weight decay to mitigate the overconfidence issue associated with this
method [12].

2. Squentropy [19]: This method adds the average square loss over the incorrect classes to the
cross-entropy loss. This simple modification to the Vanilla method leads to the end model with
better test accuracy and calibration.

3. Correctness Ranking Loss (CRL) [35]: This method includes a term in the loss function of
the vanilla training method so that the confidence scores of the model are aligned with the
ordinal rankings criterion [17, 6]. The confidence functions satisfying this criterion produce
high scores on points where the probability of correctness is high and low scores on points with
low probabilities of being correct.

4. FMFP [64] aims to align confidence scores with the ordinal rankings criterion. It uses Sharpness
Aware Minimizer (SAM) [7] to train the model, with the expectation that the flat minima would
benefit the ordinal rankings objective of the confidence function.
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C.7.2 Post-hoc methods

1. Temperature scaling [12]: This is a variant of Platt scaling [12], a classic and one of the easiest
parametric methods for post-hoc calibration. It rescales the logits by a learnable scalar parameter
and has been shown to work well for neural networks.

2. Top-Label Histogram-Binning [14]: Since TBAL assigns the top labels (predicted labels)
to the selected unlabeled points, it is appealing to only calibrate the scores of the predicted
label. Building upon a rich line of histogram-binning methods (non-parametric) for post-hoc
calibration [62], this method focuses on calibrating the scores of predicted labels.

3. Scaling-Binning [28]: This method combines parametric and non-parametric methods. It first
applies temperature scaling and then bins the confidence function values to ensure calibration.

4. Dirichlet Calibration [26]: This method models the distribution of predicted probability vectors
separately on instances of each class and assumes the class conditional distributions are Dirichlet
distributions with different parameters. It uses linear parameterization for the distributions,
which allows easy implementation in neural networks as additional layers and softmax output.

Note: For binning methods, uniform mass binning [62] has been a better choice over uniform width
binning. Hence, we use uniform mass binning as well.

C.8 Compute resources and time

Our experiments were conducted on machines equipped with the NVIDIA RTX A6000 and NVIDIA
GeForce RTX 4090 GPUs. The wall clock time of our method is similar to other post-hoc methods.
For instance, a single run on the CIFAR-10 setting on NVIDIA RTX A6000 takes around 1.5 hours
with post-hoc methods and roughly 1 hour without post-hoc methods. The additional time taken by
our method over the baselines not doing any post-hoc calibration is traded-off the by the quality and
quantity of the auto-labeled data it outputs. We leave a thorough benchmarking of wall clock time
and its optimization for future work.

C.9 Detailed dataset and model

1. The MNIST dataset [30] consists of 28× 28 grayscale images of hand-written digits across 10
classes. It was used alongside the LeNet5 [31], a convolutional neural network, for auto-labeling.

2. The CIFAR-10 dataset [24] contains 3× 32× 32 color images across 10 classes. We utilized
its raw pixel matrix in conjunction with SimpleCNN [20], a convolutional neural network with
approximately 5.8M parameters, for auto-labeling.

3. Tiny-ImageNet [29] is a color image dataset that consists of 100K images across 200 classes.
Instead of using the 3× 64× 64 raw pixel matrices as input, we utilized CLIP [43] to derive
embeddings within the R512 vector space. We used a 3-layer perceptron (1,000-500-300) as the
auto-labeling model.

4. 20 Newsgroups [34, 40] is a natural language dataset comprising around 18,000 news posts
across 20 topics. We used the FlagEmbedding [58] to map the textual data into R1024 embed-
dings. We used a 3-layer perceptron (1,000-500-30) as the auto-labeling model.

C.10 Detailed experiments protocol

We predefined TBAL hyperparameters for each dataset-model pair and the hyperparameters we will
sweep for each train-time and post-hoc method in Table 9 and Table 10 respectively. For a dataset-
model pair, initially, we perform a hyperparameter search for the train-time method. Subsequently,
we optimize the hyperparameters for post-hoc methods while keeping the train-time method fixed
with the previously found optimum hyperparameter for that dataset-model pair.

We fix the hyperparameters for the train-time method while searching hyperparameters for the post-
hoc method to alleviate computational budget throttle. We effectively reduce the search space to the
sum of the cardinalities of unique hyper-parameter combinations across the two methods instead of a
larger multiplicative product. Furthermore, due to the independent nature of these hyper-parameter
combinations, TBAL runs can be highly parallelized to expedite the search process.
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Since TBAL operates iteratively to acquire human labels for model training, selecting hyper-
parameters at each round of TBAL could quickly become intractable and lose its practical significance.
To better align with its practical usage, we only conducted a hyperparameter search for the initial
TBAL round. The specific set of hyperparameters used for the search are reported in Table 10.

After completing the hyperparameter search for train-time and post-hoc methods, the determined
hyperparameter combinations are subjected to a full evaluation across all iterations of TBAL. At
the end of each iteration, the auto-labeled points are evaluated against their ground truth labels to
determine their auto-labeling error. These points are then added to the auto-labeled set, where their
ratio to the total amount of unlabeled data determines the coverage. This iterative process continues
until all unlabeled data are exhaustively labeled by either the oracle or through auto-labeling in the
final iteration. The auto-labeling error and coverage at the final iteration of TBAL are then recorded.

Since TBAL incorporates randomized components as detailed in Algorithm 1, we ran the algorithm 5
times, each with a unique random seed while maintaining the same hyperparameter combination. We
then recorded the results from the final iteration of these runs and calculated the mean and standard
deviation of both auto-labeling error and coverage. These figures are reported in Table 2.

A limitation of the grid search approach in hyper-parameter optimization becomes apparent when our
predefined hyper-parameter choices result in sub-optimal coverage and auto-labeling errors. Using
these sub-optimal hyper-parameters can adversely affect the multi-round iterative process in TBAL,
prompting the need for repetitive searches to find more effective hyper-parameters. When encounter-
ing such scenarios, TBAL users should explore additional hyper-parameter options until satisfactory
performance is achieved in the initial round. However, we opted for a more straightforward approach
to hyper-parameter selection, mindful of the computational demands of repeatedly optimizing mul-
tiple hyper-parameters across different methods. In scenarios expressed conditionally, we retained
the top-1 hyper-parameter combination for any given method if it achieved the highest coverage
while adhering to the specified error margin (ϵa). If no hyper-parameter combinations yielded an
auto-labeling error at most equal to the error margin (ϵa), we then chose the hyper-parameter combi-
nation with the lowest auto-labeling error, regardless of its coverage. In the case of ties, we resolved
them through random selection. This process results in obtaining singular values for each choice of
hyper-parameter after completing each method’s hyper-parameter search.
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D Broader Impact

This paper contributes to the advancement of the practice of creating labeled datasets in machine
learning. While our work has various possible societal implications, we do not identify any specific
concerns that require special attention in this context.

E NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: Our claims are backed by our novel technique in Section C and thorough empirical
evaluation in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contri-
butions made in the paper and important assumptions and limitations. A No or NA answer
to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss them briefly.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
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role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]

Justification: It is an empirical paper, it does not have theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the necessary details are provided in Section 4 and in the Appendix C. We have
also uploaded the code along with the submission.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good way
to accomplish this, but reproducibility can also be provided via detailed instructions for
how to replicate the results, access to a hosted model (e.g., in the case of a large language
model), releasing of a model checkpoint, or other means that are appropriate to the research
performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We use publicly available datasets and uploaded the code as supplementary
material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparame-
ters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: These details are provided in the Section 4 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run each setting with multiple random seeds and report the mean, standard
deviations of the evaluation metrics.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: Provided in the Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have followed the NeurIPS Code of Ethics to the best of our knowledge.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: The paper has a brief discussion on the broader impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release such data or models that have high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: We have appropriately credited them along with citations.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code is well documented along with instructions to run.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: We did not use crowdsourcing or human subjects in the paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: We did not use crowdsourcing or human subjects in the paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Figure 7: Autolabeling error and coverage of different post-hoc methods on CIFAR-10 for various Nt

Figure 8: Autolabeling error and coverage of different post-hoc methods on CIFAR-10 for various
Nv

Figure 9: Autolabeling error and coverage of different post-hoc methods on CIFAR-10 for various ν
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Figure 10: Auto-labeling error and coverage for different post-hoc methods on CIFAR-10 while we
vary Nt. Nu = 40, 000 is the size of the given unlabeled pool.

Figure 11: Auto-labeling error and coverage for different post-hoc methods on Tiny-ImageNet while
we vary Nt. Nu = 90, 000 is the size of the given unlabeled pool.

Figure 12: Auto-labeling error and coverage for different post-hoc methods on 20 Newsgroups while
we vary Nt. Nu = 9, 052 is the size of the given unlabeled pool.
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Figure 13: Auto-labeling error and coverage for different post-hoc methods on CIFAR-10 while we
vary Nv . Nvmax = 8, 000 is the maximum number of points available for validation.

Figure 14: Auto-labeling error and coverage for different post-hoc methods on Tiny-ImageNet while
we vary Nv . Nvmax

= 18, 000 is the maximum number of points available for validation.

Figure 15: Auto-labeling error and coverage for different post-hoc methods on 20 Newsgroups while
we vary Nv . Nvmax

= 1, 600 is the maximum number of points available for validation.
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Method Hyperparameter Values
Temperature scaling optimizer Adam

learning rate 0.001, 0.01, 0.1
batch size 64
max epoch 500
weight decay 0.01, 0.1, 1

Top-label histogram binning points per bin 25, 50

Scaling-binning number of bins 15, 25
learning rate 0.001, 0.01, 0.1
batch size 64
max epoch 500
weight decay 0.01, 0.1, 1

Dirichlet calibration regularization parameter 0.001, 0.01, 0.1

Ours λ 10, 100
features key concat
class-wise independent
optimizer Adam
learning rate 0.01, 0.1
max epoch 500
weight decay 0.01, 0.1, 1
batch size 64
regularize false
α 0.01, 0.1, 1

Table 10: Hyperparamters swept over for post-hoc methods. For each method, we swept through all
possible combinations of the possible values for each hyperparameter.
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