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Abstract

The ability to conduct interventions plays a pivotal role in learning causal rela-
tionships among variables, thus facilitating applications across diverse scientific
disciplines such as genomics, economics, and machine learning. However, in
many instances within these applications, the process of generating interventional
data is subject to noise: rather than data being sampled directly from the intended
interventional distribution, interventions often yield data sampled from a blend of
both intended and unintended interventional distributions.
We consider the fundamental challenge of disentangling mixed interventional and
observational data within linear Structural Equation Models (SEMs) with Gaussian
additive noise without the knowledge of the true causal graph. We demonstrate that
conducting interventions, whether do or soft, yields distributions with sufficient
diversity and properties conducive to efficiently recovering each component within
the mixture. Furthermore, we establish that the sample complexity required to
disentangle mixed data inversely correlates with the extent of change induced by an
intervention in the equations governing the affected variable values. As a result, the
causal graph can be identified up to its interventional Markov Equivalence Class,
similar to scenarios where no noise influences the generation of interventional data.
We further support our theoretical findings by conducting simulations wherein we
perform causal discovery from such mixed data.

1 Introduction

Interventions are experiments that can help us understand the mechanisms governing complex
systems and also modify these systems to achieve desired outcomes [1, 5, 21]. For example, in causal
discovery, interventions are used to infer causal relationships between variables of interest, which has
applications in various fields such as biology [5, 12], economics [8], and psychology [13, 21].

Given their extensive applications, there has been significant research in developing methods and
experimental design strategies to conduct interventions under different scenarios [32, 24]. Despite
significant efforts to develop sophisticated experimental techniques to perform interventions, they
often encounter noise [4, 6, 30]. For example, the CRISPR technology, extensively used to perform
gene perturbations (or interventions), is known to have off-target effects, meaning the interventions
do not always occur on the intended genes [6, 30]. Consequently, in many applications, performing
interventions generates data from a mixture of intended and unintended interventional distributions.
Analyzing such mixed data directly can lead to incorrect conclusions, adversely affecting downstream
applications. Hence, it is essential to disentangle the mixture and recover the components correspond-
ing to each individual intervention for further use in downstream tasks like causal discovery.
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In our work, we formally address the challenge of disentangling mixtures of unknown interventional
and observational distributions within the framework of linear structural equation models (Linear-
SEM) with additive Gaussian noise. Given iid samples from a mixture with a fixed number of
components as input, we present an efficient algorithm that can learn each individual component. Our
results are applicable to both do and more general soft interventions.

We chose to study our problem in the Linear-SEM with additive Gaussian noise framework for
its fundamental importance in the causal discovery literature. Shimizu et al. [25] showed that
observational data is sufficient for learning the underlying causal graph when the data-generating
process is a Linear-SEM with additive non-Gaussian noise with no latent confounders. However,
in the same setting with Gaussian noise, the causal graph is only identifiable up to its Markov
Equivalence Class (MEC) [18, 25]. Thus, performing interventions (possibly noisy) is necessary to
identify the causal graph, making it an interesting framework for our problem.

Our contributions First, we show that given samples from a mixture of unknown interventions
within the framework of Linear-SEM with additive Gaussian noise, there exists an efficient algorithm
to uniquely recover the individual components of the mixture. The sample complexity of our
procedure scales polynomially with the dimensionality of the problem and inversely polynomially
with the accuracy parameter and the magnitude of changes induced by each intervention. Our findings
indicate that the recovery error for each individual interventional distribution approaches zero as
the number of samples increases. Therefore, in the infinite sample regime, we can recover the true
interventional distributions, even when the targets of the interventions are unknown. Second, if the
input distributions satisfy a strong interventional faithfulness assumption (as defined in Squires et al.
[26]), we can utilize the results from [26] to identify the targets of the interventions, thereby enabling
causal discovery using these accurately recovered interventional distributions. Finally, we conduct a
simulation study to validate our theoretical findings. We show that as sample size increases, one can
recover the mixture parameters, identify the unknown intervention targets, and learn the underlying
causal graph with high accuracy.

2 Prior Work

Mixture of DAGs and Interventions. There has been a lot of interest in understanding the mixture
distribution arising from a collection of directed acyclic graphs (DAGs) [27, 23, 29, 14, 9, 28]. Saeed
et al. [23] studied the distribution arising from a mixture of multiple DAGs with common topological
order, thus a generalization of our problem. Their method identifies the variables whose conditional
distribution across DAGs varies. However, there is no theoretical guarantee for the identifiability
of the mixture’s components. Like us, Kumar and Sinha [14] also studied the mixture arising from
interventions on a causal graph and gives an algorithm to identify the mixture component. However,
they assume knowledge of the correct topological order and sample access to the observational
distribution. Thiesson et al. [28] also studied the problem of learning a mixture of DAGs using the
Expectation-Maximization (EM) framework. However, there is no theoretical guarantee about the
identifiability of individual components.

Learning Mixture of Gaussians. Learning a mixture of Gaussians is a heavily studied problem [2,
7, 15, 11]. There exist efficient algorithms both in terms of runtime and sample complexity for a fixed
number of components in the mixture [11, 15, 2]. Ge et al. [7] gave an efficient algorithm for the case
when the number of components is almost

√
n where n is the dimension of the variables. However,

this method only guarantees identifiability in the perturbative setting, where the true parameters are
randomly perturbed before the samples are generated.

Causal Discovery with Unknown Interventions. Recent years have seen the development of
methods that perform causal discovery with observational and multiple unknown interventional
data [16, 26, 10]. Squires et al. [26] takes multiple but segregated datasets from unknown interven-
tional distributions and aims to identify the unknown interventions and learn the underlying causal
graph up to its interventional MEC (I-MEC). Jaber et al. [10] considers the same problem of causal
discovery with unknown soft interventions in non-Markovian systems (i.e., latent common cause
models). However, they also assume that the interventional and/or observational data is already
segregated. To our knowledge, no prior works consider directly learning the causal graph from a
mixture of interventions.

2

16539https://doi.org/10.52202/079017-0527



3 Notation and Preliminaries

Notation. We use the upper-case letter X to denote a random variable and lower-case “x” to denote
the value taken by the random variable X . Let, the uppercase bold-face letter X denote a set of
random variables and the lowercase bold-face letter x denote the corresponding value taken by X .
Let the conditional probability function P(X = x|Y = y) be denoted by P(x|y). We use the
calligraphic letter S to denote a set and |S| to denote the cardinality of the set S. Let [n] denote the
set of natural numbers {1, . . . , n}. For any vector v, we use the notation [v]j to denote it’s jth entry
and for any matrix M we use [M ]i,j to denote the entry in the ith row and jth column of M . We use
R+ to denote positive scalars.

Structural Equation Model (SEM) Following Definition 7.1.1 in Pearl [18], let a causal model
(or SEM) be defined by a 3-tuple M = ⟨V ,U ,F⟩, where V = {V1, . . . , Vn} denotes the set of
observed (endogenous) variables and U = {U1, . . . , Un} denotes the set of unobserved (exogenous)
variables that represent noise, anomalies or assumptions. Next, F denotes a set of n functions
{f1, . . . , fn}, each describing the causal relationships between the random variables having the form:

vi = fi(pa(Vi),ui),

where Ui ⊆ U and pa(Vi) ⊆ V are such that the associated causal graph (defined next) is acyclic.
A causal graph GM

1 is a directed acyclic graph (DAG), where the nodes are the variables V and the
edges U with edges pointing from pa(Vi) to Vi for all i ∈ [n].

Linear-SEM (with causal sufficiency) In this work, we study a special class of such causal models
(Gaussian Linear-SEMs) where the function class of each fi is restricted to be linear and of the form

vi = fi(pa(Vi),ui) =
∑

vj∈pa(Vi)

αijvj + ui,

where αij ̸= 0,∀Vj ∈ pa(Vi). The causal Sufficiency assumption states that Ui = {Ui}, i.e., Ui is
the only exogenous variable that causally affects the endogenous variable Vi. This is equivalent to the
absence of any latent confounder (Chapter 9 in [20]). In our work, we consider causally-sufficient
Linear-SEMs; with a slight abuse of nomeclature, we will call them Linear-SEMs. The functional
relationship between the exogenous and endogenous variables is deterministic, and the system’s
stochasticity comes from a probability distribution over the exogenous noise variables U . Thus, the
probability distribution over the exogenous variable P(U) defines a probability distribution over the
endogenous variable P(V ). Without loss of generality, let the nodes {V1, . . . , Vn} of the underlying
causal graph be topologically ordered. Then, we can equivalently write the above set of equations as:

v = Av + u =⇒ v = (I −A)−1u, (1)
where A, with Aij = αij ,contains the causal effects between the endogenous variables. Thus, the
matrix A, hereafter described as the adjacency matrix, characterizes the causal relationships between
the endogenous variables (V ), where Aij ̸= 0 denotes an edge between the variable Vi and Vj in G.

Linear-SEM with additive Gaussian Noise We further specialize the exogenous variable ui
(henceforth referred to as noise variable) to be Gaussian with mean µi and variance σi, i.e. ui ∼
N (µi, σi). Thus, the joint distribution of the exogenous variables is given by a multivariate Gaussian
distribution u ∼ N (µ, D) where [µ]i = µi and the covariance is given by a diagonal matrix D with
[D]ii = σi. Thus, the endogenous variables also follow a multivariate Gaussian distribution with
P(v) = N (m, S), where m ≜ Bµi S ≜ BDBT and B ≜ (I − A)−1. Causal discovery aims to
identify the unknown adjacency matrix A given observational or other auxiliary data.

Interventions. Following Definition 7.1.2 from Pearl [18], the new causal model describing the
interventional distribution, where the variables in a set I are set to a particular value, is given by
MI = ⟨U , V,FI⟩, where FI = {fj : Vj /∈ I} ∪ {f ′i : Vi ∈ I} and the functional relationship of
every node Vi ∈ I with their parents and corresponding exogenous variable Ui is changed from fi to
f ′i . In particular, the functional relationship of node Vi is changed to

vi =
∑

vj∈pa(Vi)

αij
′vj + ui

′ (2)

1We will drop the subscript M when it is clear from context
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where ui′ ∼ N (µi
′, σi

′). Such interventions are broadly referred to as “soft". Several other kinds of
interventions are also defined in the literature, e.g., do, uncertain, soft etc. [3]. We consider three
different types of widely studied specializations of soft interventions in our work:

(1) shift: the mean of the noise distribution is shifted by a particular value, i.e., µi
′ = µi + κ for

some κ ∈ R, and everything else remains the same, i.e., σ′
i = σi and aij ′ = aij ,∀j ∈ [n].

(2) stochastic do (henceforth referred as stochastic): where all the incoming edges from parents
are broken, i.e., αij

′ = 0, and ui′ ∼ N (µi
′, σi

′).
(3) do: in addition to breaking all incoming edges, i.e., αij

′ = 0, we also set the variance of the
noise distribution to 0 and the mean to any value of choice, i.e., ui ∼ N (µi

′, 0).

Atomic Interventions In this work, we consider soft interventions where only one node is inter-
vened at a time, i.e., |I| = 1. Thus after a soft intervention on node Vi, the adjacency matrix is
modified such that Ai ≜ A− ei(ai − a′

i)
T = A− eic

T
i

2, where cTi ≜ (ai − a′
i)

T , aT
i is the ith

row of matrix A and a
′T
i is the new row after intervention such that [ai]k = 0,∀k ≥ i, and ei is the

unit vector with entry 1 at the ith position and 0 otherwise. Thus, the linear SEM from Eq. 1 is:

vi = (I −Ai)
−1ui = (I −A+ eic

T
i )

−1ui, (3)

where ui ∼ N (µi, Di), µi = µ+ γiei for some γi ∈ R, Di = D − δieie
T
i where δi ≜ (σi − σ

′

i),
is a diagonal matrix with the ith diagonal entry as σ

′

i and rest is same as D. Thus, the interventional
distribution of the endogenous variables is also a multivariate Gaussian distribution, i.e., Pi(V ) =

N (mi, Si) where mi ≜ Biµi, Si ≜ BiDiB
T
i and Bi ≜ (I −A+ eic

T
i )

−1.

4 Problem Formulation and Main Results

In §4.1, we begin by formulating the problem of learning the mixture of interventions and then
state our main result on the identifiability of parameters of the mixture. As a consequence of our
identifiability result, under an interventional faithfulness assumption (Squires et al. [26]), we show
in §4.2 that the underlying true causal graph can be identified up to its I-MEC using a mixture of
unknown interventions, thereby obtaining the same identifiability results as in the unmixed setting.

4.1 Learning a Mixture of Interventions

We begin by formally defining the mixture of interventions over Linear-SEM with additive Gaussian
noise and then state the main result of our paper — a mixture of interventions can be uniquely
identified under a mild assumption discussed below.

Definition 4.1 (Mixture of Soft Atomic Interventions). Let M = ⟨V ,U ,F⟩ be an unknown
Gaussian Linear SEM where the distribution of the endogenous variables is given by P(V ) (see §3).
Let I = {i1, . . . , iK}, hereafter referred to as intervention target set, be a set of unknown soft atomic
interventions where each ik generates a new interventional distribution Pi(V ). Then, the mixture of
soft atomic intervention is defined as:

Pmix(V ) =
∑
ik∈I

πikPik(V ) (4)

where πik ∈ R+, henceforth referred to as mixing weight, is a positive scalar such that
∑

ik∈I πik =

1, ik ∈ [n] ∪ {0} where n = |V | is the number of endogenous variables. We also allow ik = 0,
which denotes the setting when none of the nodes is intervened, i.e., P0(V ) ≜ P(V ). Using Eq. 1
and 3, a mixture defined over a linear SEM with additive Gaussian noise is a mixture of Gaussians
with parameters θ = {(mik , Sik , πik)}ik∈I where Pik(V ) = N (mik , Sik).

Having defined a mixture of interventions, we then aim to answer the following questions: (1) Does
there exist an algorithm that can uniquely identify the parameters (θ) of the mixture of interventions
under an infinite sample limit? (2) What is the run time and sample complexity of such an algorithm?
It is immediate that if the intervention doesn’t change the causal mechanism in any way, then the

2We have used the subscript “i" notation in Ai to denote the adjacency matrix of the intervened distribution.
We will use a similar subscript notation to represent other variables related to intervened distributions
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interventional distribution is equal to the observational distribution, and we would not be able to
distinguish between them. This discussion suggests that it is necessary to put an additional constraint
on the interventions performed. Below, we formally state the assumption that will ensure this and
that it is sufficient for the identifiability of mixture distribution.

Assumption 4.1 (Effective Intervention). Let Pi(V ) = N (mi, Si) be an interventional distribution
after intervening on node vi, where mi = Biµi = Bi(µ + γkei), Bi = (I − A + eic

T
i ) and

ci = (ai − a′
i), Sk = BiDiB

T
i and Di = D − δieie

T
i (see atomic intervention paragraph in §3).

Then, at least one of the following holds: γi ̸= 0 or ∥ci∥ ≠ 0 or δi ̸= 0.

Now, we are ready to state the main result of our work that will help us answer the above questions.
For an exact expression of sample complexity and runtime, see Lemma 5.1.

Theorem 4.1 (Identifiability of Mixture Parameters). Let Pmix(V ) be a mixture of soft atomic
interventions defined over a Linear-SEM with additive Gaussian noise with “n” endogenous variables
(Definition 4.1) such that the number of components |I| is fixed. Given Assumption 4.1 is satisfied and
the causal graph corresponding to M doesn’t violate faithfulness, then there exists an efficient algo-
rithm that runs in time polynomial in n, requires poly

(
n, 1ϵ ,

1
δ ,

1

min
({

poly(∥cik
∥,δik ,γik

, 1
∥A∥F

)
}

ik∈I

))
samples where A is the adjacency matrix of underlying graph and with probability greater than
(1− δ) recovers the mixture parameters θ̂ = {(m̂1, Ŝ1, π̂1), . . . , (m̂|I|, Ŝ|I|, π̂|I|)} such that∑

ik∈I

(
∥mik − m̂ρ(ik)∥

2 + ∥Sik − Ŝρ(ik)∥
2 + |πik − π̂ρ(ik)|

2
)
≤ ϵ2

for some permutation ρ : {1, 2, . . . , |I|} → {1, 2, . . . , |I|} and arbitrarily small ϵ > 0.

4.2 Causal Discovery with Mixture of Interventions

Theorem 4.1 helps us separate the mixture of interventions Pmix(V ) and provides us with the
parameters {(mi, Si)}i∈I of the distribution of all the components in the mixture. However, it does
not reveal which nodes were intervened, corresponding to the different components recovered from
the mixture. There has been recent progress in performing causal discovery with a disentangled set of
unknown interventional distributions [26, 16]. Specifically, Squires et al. [26] proposes an algorithm
(UT-IGSP) that greedily searches over the space of permutations to determine the I-MEC and the
unknown intervention target of each component. UT-IGSP is consistent, i.e., it will output the correct
I-MEC as the sample size goes to infinity. Thus, combining Theorem 4.1 with the UT-IGSP algorithm
implies that, as sample size goes to infinity, we can recover the underlying causal graph up to its
I-MEC given a mixture of interventions over a Linear-SEM with additive Gaussian noise:

Corollary 4.1.1 (Mixture-MEC). Given samples from a mixture of interventions Pmix(V ) over
a linear-SEM with additive Gaussian noise and samples from the observational distribution P(V ),
there exists a consistent algorithm that will identify the I-MEC of the underlying causal graph under
the I-faithfulness assumption (defined in Squires et al. [26]) (and restated in §A.1).

Proof. The proof follows from the identifiability of the parameters of the mixture distribution
(Theorem 4.1) and the consistency of UT-IGSP given by Squires et al. [26].

Remark. The I-faithfulness assumption imposes certain restrictions on both observational and
interventional distributions. However, as noted by Squires et al. [26], in the case of Linear Gaussian
distributions, the set of distributions excluded by this assumption is of measure zero. This is because
the Linear Gaussian distributions, defined by a matrix A, that do not meet this assumption are subject
to multiple polynomial constraints of the form p(A) = 0. It is a well-known result that for a random
matrix A, the set of matrices that satisfy such polynomial equalities has measure zero [17].

5 Proof Sketch of Theorem 4.1

Here we provide an overview of the proof of Theorem 4.1. Definition 4.1 tells us that the mixture
of interventions defined over a Linear-SEM with additive Gaussian noise is a mixture of Gaus-
sians. Learning mixtures of Gaussian is well-studied in the literature [2, 15, 7]. Since most of

5

16542 https://doi.org/10.52202/079017-0527



these approaches require some form of separability between the distribution of components or the
parameters of the distributions, in the following lemma we will first show that the covariance matrix
and the mean of any interventional or observational distribution taken pairwise is well-separated
when Assumption 4.1 holds. In particular, this seperation of parameters will ensure that the Gaussian
mixture can be uniquely identified using the results from Belkin and Sinha [2].

Lemma 5.1. [Parameter Separation] Let P0(V ) denote the observational distribution of a linear
SEM with additive Gaussian noise “M” (see §3) with “n" endogenous variables. For some i, j ∈
[n] ∪ {0}, let Pi(V ) = N (mi, Si) and Pj(V ) = N (mj , Sj) be two interventional distributions
(observational if one of “i” or “j” =0). Then the separation between covariance Si and Sj and mean
mi and mj is lower bounded by:

∥Si − Sj∥2F + ∥mi −mj∥2F ≥ f(B,D)
(
∥ci∥2 + ∥cj∥2

)
+ h(B,D,µ)

(
γ2i + γ2j

)
+ g(B)

(
|δi|min

(
|δi|, λmin(D)

)
+ |δj |min

(
|δj |, λmin(D)

))
,

where after intervention on node k ∈ {i, j}, ∥ck∥ is the norm of the perturbation (or change) in the
kth row of the adjacency matrix, γk is the perturbation in the mean and |δk| is the perturbation in the
variance of the noise distribution of node k (as defined in the Atomic Intervention paragraph of §3).
Also, B = (I −A)−1, and D and µ are the covariance matrix and mean of the noise distribution in
M, respectively. Furthermore, “f”, “g”, and “h” are positive valued polynomial functions of B, µ
and smallest eigenvalue of D (see the proof in §A.2 for the exact expressions).

Remark. If one of the distributions is observational, i.e., say i = 0, then the above bound holds
with ∥ci∥2 = 0, γi = 0, and |δi| = 0.

Remark. Different types of interventions will allow us to change certain parameters in the above
bound. Let the exogenous noise variables ui ∼ N (µi, σi) when not intervened. Now, if we intervene
on node vi, then the new noise variable has distribution u′i ∼ N (µi + γi, σ

′
i) given as follows for

different intervention types:
(1) do intervention: ∥ci∥ ≠ 0 if vi is not a root node, |δi| ≠ 0 if σi ̸= 0, and γi ̸= 0 if the value

of node vi is set to any value other than µi.
(2) stochastic intervention: ∥ci∥ ≠ 0 if vi is not a root node.
(3) shift intervention: γi ̸= 0.
(4) soft intervention is the most general case, and nothing is guaranteed to be non-zero.

Next, we restate a definition from Belkin and Sinha [2] that defines the radius of identifiability (R(θ))
of a probability distribution. If R(θ) > 0, this implies that we can uniquely identify the distribution.

Definition 5.1. Let Pθ, θ ∈ Θ, be a family of probability distributions. For each θ we define the
radius of identifiabiity R(θ) as the supremum of the following set:

{r > 0 | ∀θ1 ̸= θ2, (∥θ1 − θ∥ < r, ∥θ2 − θ∥ < r) =⇒ (Pθ1 ̸= Pθ2)}.
In other words, R(θ) is the largest number, such that the open ball of radius R(θ) around θ intersected
with Θ is an identifiable (sub) family of the probability distribution. If no such ball exists, R(θ) = 0.

Next, we restate a result from [2] adapted to our setting, which shows that there exists an efficient
algorithm for disentangling a mixture of Gaussians as long as the parameters are separated, which
will ensure that the radius of identifiability R(θ) > 0.

Theorem 5.2 (Theorem 3.1 in Belkin and Sinha [2]). Let Pmix(V ) be a mixture of Gaussians
with parameters θ = {(m1, S1, π1), . . . , (m|I|, S|I|, π|I|)} ∈ Θ where Θ is the set of parameters
within a ball of radius Q. Then, there exists an algorithm which given ϵ > 0 and 0 < δ < 1
and poly

(
n,max( 1ϵ ,

1
R(Θ) ),

1
δ , Q

)
samples from Pmix(V ), with probability greater than (1 − δ),

outputs a parameter vector θ̂ = θ̂ = (m̂1, Ŝ1, π̂1), . . . , (m̂|I|, Ŝ|I|, π̂|I|) ∈ Θ such that there exists
a permutation ρ : {1, . . . , |I|} → {1, . . . , |I|} satisfying:∑

ik∈I

(
∥mik − m̂ρ(ik)∥

2 + ∥Sik − Ŝρ(ik)∥
2 + |πik − π̂ρ(ik)|

2
)
≤ ϵ2,

where the radius of identifiability R(θ) is lower bounded by:(
R(θ)

)2 ≥ min
(1
4
min
i ̸=j

(∥mi −mj∥2 + ∥Si − Sj∥2),min
i
πi

)
.
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Algorithm 1: Mixture-UTIGSP
input :mixed dataset (Dmix), observational data (Dobs), number of nodes (n), cutoff ratio (τ )
output :Mixture Distribution Parameters (θ), Intervention Targets (I), causal graph (Ĝ)

1. Esstimate θk ≜
{
(µ̂1, Ŝ1), . . . (µ̂k, Ŝk)

}
= GaussianMixtureModel

(
Dmix,k

)
for each

possible number of component in the mixture i.e k ∈ [n+ 1]. Define Θ ≜ {θ1, . . . , θn+1}
be the set of estimated parameters and L = {l1, . . . , ln+1} be the log-likelihood of the
mixture data corresponding to the models with a different number of components.

2. To estimate the number of components in the mixture (k∗) iterate over k = (n+ 1) to 2:
(a) stop where the relative change in the likelihood increases above a cutoff ratio i.e

|lk−lk−1|
lk

> τ

(b) k∗ = k if the stopping criteria is met otherwise k∗ = 1.

3. I, Ĝ = UT-IGSP
(
Dobs, θk∗

)
[26]

return Θ, I, Ĝ

Our Theorem 4.1 along with Assumption 4.1 states that for every pair i, j ∈ ([n] ∪ {0})⊗2 we
have ∥Si − Sj∥2F + ∥mi − mj∥2F > 0. Also, by construction of the mixture of interventions
(in Definition 4.1), we have πi > 0,∀i ∈ [n] ∪ {0}. This implies that the radius of convergence
R(θ) > 0 and thus the parameters of the mixture of interventions P(V ) can be identified uniquely
given samples from the mixture distribution with sample size inversely proportional to R(θ).

6 Empirical Results

6.1 Experiment on Simulated Datasets

Proposition 4.1.1 establishes that given samples from the mixture distribution, one can identify the
underlying causal graph up to its I-MEC. To learn the causal graph, we first disentangle the mixture.
Theorem 4.1 and 5.2 show that the sample complexity of our mixture disentangling algorithm is
inversely proportional to various parameters of the underlying system and the intervention parameters
(γ, |δ| and ∥c∥). Our simulation study further validates our theoretical results and characterizes the
end-to-end performance of identifying the causal graph with such mixture data and its dependence on
the above-mentioned parameters.

Simulation Setup We consider data generated from a Linear-SEM with additive Gaussian noise,
x = (I−A)−1η (see §3), with n endogenous variables and corresponding exogenous (noise) variables.
Here η ∼ N (0, D), where the noise covariance matrix is diagonal with entriesD = diag(σ2, . . . , σ2)
and σ = 1 unless otherwise specified. A is the (lower-triangular) weighted adjacency matrix whose
weights are sampled in the range [−1,−0.5]∪ [0.5, 1] bounded away from 0. Let G∗ denote the causal
graph corresponding to this linear SEM with edge i→ j ⇔ Aji > 0. By sampling from the resulting
multivariate Gaussian distribution, we obtain observational data. Next, for each causal graph, we
generate separate interventional data by intervening on a given set of nodes in the graph one at a
time (atomic interventions), which is again a Gaussian distribution but with different parameters (see
Atomic Intervention paragraph in §3). We experiment with two settings:

(1) all: where we perform an atomic intervention on all nodes in the graph.
(2) half : where we perform an atomic intervention on a randomly selected half of the nodes.

Then, the mixed data is generated by pooling all the individual atomic interventions and observational
data with equal proportions into a single dataset. The decision to use equal proportions of samples
from all components is solely intended to simplify the design choices for the experiment setup. In our
experiment, we vary the total number of samples in the mixed dataset as N ∈ {210, 211, . . . , 217}. In
particular, we perform two kinds of atomic interventions: “do" and “stochastic" (see Interventions
paragraph in §3 for a formal definition). The initial noise distribution for all the nodes is univariate
Gaussian distribution N (0, 1). In our experiments for do interventions, instead of setting the final
variance of noise distribution to 0, we set it to a very small value of 10−9 for numerical stability.
Unless otherwise specified, we perform 10 runs for each experimental setting and plot the 0.05 and
0.95 quantiles. See B for additional details on the experimental setup.
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(a) num intervention = all (↓)

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

sample size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e 

Ja
cc

ar
d 

Si
m

ila
rit

y

num_node=(4,)
oracle:num_node=(4,)
num_node=(6,)
oracle:num_node=(6,)
num_node=(8,)
oracle:num_node=(8,)

(b) num intervention = all (↑)
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(d) num intervention = half (↓)
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(f) num intervention = half (↓)

Figure 1: Performance of Alg. 1 as we vary sample size and number of nodes: The first row
(a-c) shows the performance when the mixed data contains atomic intervention on all the nodes
and observational data. The second row (d-f) shows the performance when the number of atomic
interventions (chosen randomly) in mixed data is taken to be half of the number of nodes along with
observational data. The column shows different evaluation metrics, i.e., Parameter Estimation Error,
Average Jaccard Similarity, and SHD. The symbols (↑) represent higher is better, and (↑) represents
the opposite (see Evaluation metric paragraph in §6). In summary, performance improves for both
cases as the number of samples increases. However, the graph with more nodes requires a larger
sample to perform similarly. For a detailed discussion, see §6.1.

Method Description and Evaluation Metrics Given the mixed data generated from the underlying
true causal graph G∗, the goal is to estimate the underlying causal graph Ĝ. We break down the task
into two steps. First, we disentangle the mixture data and identify the parameters of the individual
interventional and/or observational distributions. Our theoretical result (Theorem 4.1) uses [2] for
identifiability of the parameters of a mixture of Gaussians. Since they only show the existence of such
an algorithm, we use the standard sklearn python package [19] that implements an EM algorithm to
estimate the parameters of the mixture. Importantly, our experiment doesn’t require prior knowledge
about the number of components (k) in the mixture. We train separate mixture models varying the
number of components. Then we select the optimal number of components using the log-likelihood
curve of the fitted Gaussian mixture model using a simple thresholding heuristic (see step 2 in Alg. 1).
We leave the exploration of better model selection criteria for future work. For all our simulation
experiments, unless otherwise specified, we use a cutoff threshold of 0.07, chosen arbitrarily. In §B,
we experiment with different values of this threshold and show that Mixture-UTIGSP is robust to
this choice. The intervention targets present in the mixture are still unknown at this step. Next, we
provide the estimated mixture parameters to an existing causal discovery algorithm with unknown
intervention targets (UT-IGSP [26]), which internally estimates the unknown intervention targets and
outputs one of the possible graphs from the estimated I-MEC. We assume that observational data is
given as an input to the UT-IGSP algorithm. The proposed algorithm is provided in Alg. 1. See B for
our hyperparameter choice and other experimental details.

Evaluation Metrics We evaluate the performance of Mixture-UTIGSP (Alg. 1) on three metrics:

Parameter Estimation Error: This metric measures the least absolute error between the estimated
parameters (mean and covariance matrix defining each individual distribution) after the first step
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Table 1: Performance of Alg. 1 on Protein Signalling Dataset [22]: We evaluate the performance of
Mixture-UTIGSP as we vary the cutoff ratio to select the number of component in the mixture. The
second column shows the number of estimated components where the actual number of components
in the mixture is 6. The third and fourth columns show the Jaccard Similarity of the identified
intervention target of Mixture-UTIGSP and oracle versions of the UT-IGSP algorithm. The fourth
and last column shows the SHD between the estimated and true causal graphs for both methods
respectively. Overall we observe that at a lower cutoff threshold Mixture-UTIGSP is able to perform
as well as the oracle UT-IGSP algorithm on all the metrics. See §B.2 for detailed discussion.

cutoff ratio Estimated/True
Component

JS Oracle JS SHD Oracle SHD

0.01 4/6 0.07 0.05 15 19
0.07 2/6 0.04 0.05 18 17
0.15 1/6 0.00 0.05 16 18
0.30 1/6 0.00 0.05 18 17

avg 2/6 0.03 0.05 16.75 17.75

of Mixture-UTIGSP matched with the ground truth parameters considering all possible matchings
between the components averaged over all runs. See §B.5 for details.

Average Jaccard Similarity (JS): We measure the average Jaccard similarity between the estimated
intervention target and the corresponding ground truth (atomic) intervention target. We use the
matching between the estimated and ground truth components found while calculating the parameter
estimation error averaged over all runs. See §B.5 for details.

Average Structural Hamming Distance (SHD): Given the estimated and ground truth graphs, we
compute the SHD between the two graphs averaged over all runs.

Results Fig. 1 shows the performance of Alg. 1 in the two settings, “all" in the first row and “half"
in the second row (see Simulation setup above). The first column shows the performance of the first
step of Alg. 1 where the mixture parameters are identified. We observe that parameter estimation
error decreases as the number of samples increases in both settings. As expected, larger graphs
require a larger sample size to perform similarly to smaller-sized graphs within each setting.

Step 1 of our Alg. 1 only recovers the parameters ({(mi, Si)}ki=1) of the components present in the
mixture distribution. In step 2 of our Alg. 1, we call UT-IGSP [26] that identifies the individual
intervention targets from the estimated distribution parameters and also returns a causal graph from
the estimated I-MEC. Fig. 1b and 1e show the average Jaccard Similarity between the ground truth
and the estimated intervention targets. The colored lines denote experiments on graphs with different
numbers of nodes. The corresponding dotted lines show the oracle performance of UT-IGSP when
the separated ground truth mixture distributions were given as input. As expected, in both the settings
(Fig. 1b and 1e), the oracle version performs much better compared to its non-oracle counterpart for
small sample sizes (210 to 214) but performs similarly as sample size increases.

Finally, in the third column (Fig. 1c and 1f), we calculate the SHD between the estimated causal
graph Ĝ and the ground truth causal graph G∗. The SHD of the graph estimated by Mixture-UTIGSP
and the oracle version are similar for different node settings and all sample sizes. This suggests that
small errors in the estimation of the parameters of the mixture distribution don’t affect the estimation
of the underlying causal graph.

Additional Experiments: In §B, we provide details on the experimental setup and additional results.
In Fig. 2, we plot two additional metrics for the simulation experiments. The first metric is the number
of estimated components in the mixture and the second metric is the the error in estimation of the
mixing coefficient. In Fig. 3, we study the sensitivity of the cutoff ratio used by Mixture-UTIGSP to
select the number of components in the mixture. Next, in Fig. 4, we evaluate the performance of our
Alg. 1 as we vary the density, i.e., the expected number of edges in the graph. In Fig. 6, we show
how the sparsity of the graph and other intervention parameters like the value of the new mean and
variance of the noise distribution after intervention affects the performance of Alg. 1.
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6.2 Experiment on Biological Dataset

We evaluate our method on the Protein Signaling dataset [22] to demonstrate real-world applicability.
The dataset is collected from flow cytometry measurement of 11 phosphorylated proteins and
phospholipids and is widely used in causal discovery literature [31, 26]. The dataset consists of 5846
measurements with different experimental conditions and perturbations. Following Wang et al. [31],
we define the subset of the dataset as observational, where only the receptor enzymes were perturbed
in the experiment. Next, we select other 5 subsets of the dataset where a signaling protein is also
perturbed in addition to the receptor enzyme. The observational dataset consists of 1755 samples,
and the 5 interventional datasets have 911, 723, 810, 799, and 848 samples, respectively. The mixed
dataset is created by merging all the observational and interventional datasets.

The total number of nodes in the underlying causal graph is 11. Thus, the maximum number
of possible components in the mixture is 12 (11 single-node interventional distribution and one
observational). In the mixture dataset described above, we have 6 components (1 observational and 5
interventional). The second column in Table 1 shows that Mixture-UTIGSP recovers 4 components
close to the ground truth 6 when the cutoff ratio is 0.01 (step 2 of Alg. 1). Next, we give the
disentangled dataset from the first step of our algorithm to identify the unknown target. Though the
Jaccard similarity of the recovered target is not very high (average of 0.03 shown in the last row of
the third column, where the maximum value is 1.0), it is similar to that of the oracle performance
of UT-IGSP when the disentangled ground truth mixture distributions were given as input. This
shows that it is difficult to identify the correct intervention targets even with correctly disentangled
data. Also, the SHD between the recovered graph and the widely accepted ground truth graph for
Mixture-UTIGSP (ours) and UT-IGSP (oracle) is very close. Overall, at a lower cutoff ratio, the
performance of Mixture-UTIGSP is close to the Oracle UT-IGSP algorithm. Unlike the simulation
case (see Fig. 3), Mixture-UTIGSP’s performance is sensitive to the choice of the cutoff ratio on
this dataset. In Fig. 5, we plot the ground truth graph curated by the domain expert alongside the
estimated causal graph for visualization.

7 Conclusion

We studied the problem of learning the mixture distribution generated from observational and/or
multiple unknown interventional distributions generated from the underlying causal graph. We show
that the parameters of the mixture distribution can be uniquely identified under the mild assumption
that ensures that any intervention changes the distribution of the observed variables. As a consequence
of our identifiability result, under an interventional faithfulness assumption (Squires et al. [26]), we
show that the underlying true causal graph can be identified up to its I-MEC based on a mixture of
unknown interventions, thereby obtaining the same identifiability results as in the unmixed setting.
Finally, we conduct a simulation study to validate our findings empirically. We demonstrate that as
the sample size increases, we obtain parameter estimates of the mixture distribution that are closer to
the ground truth and, as a result, we eventually recover the correct underlying causal graph.

8 Limitations and Future Work

Since our work is the first to study the problem of a mixture of causal interventions without assuming
knowledge of causal graphs, we have restricted our attention to one particular family of causal
models—Linear-SEM with additive Gaussian noise. In the future, it would be interesting to study
this problem for a more general family of causal models. Further, our work uses Belkin and Sinha
[2] for identifying the parameters of a mixture of Gaussians, which assumes that the number of
components in the mixture is fixed. Recent progress in [7] gives an efficient algorithm for recovering
the parameters when the number of components is almost

√
n, where n is the number of variables.

However, they only work in perturbative settings, and proving the result for non-perturbative settings
is out of the scope of the current paper. Finally, to identify the parameters of the mixture distribution in
our empirical study, we use heuristics to estimate the number of components. It would be interesting
to explore other methods to automatically select the number of components.
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A Missing Proofs

A.1 I-faithfulness in UT-IGSP algorithm.

Here, we restate the assumption from Squires et al. [26] that is needed for consistency of the UT-IGSP
algorithm:

Assumption A.1 (I-faithfulness assumption). Let I be a list of intervention targets. The set of
distributions {fobs} ∪ {f I}II is I-faithful with respect to a DAG G if fobs is faithful with respect to
G and for any Ik ∈ I and disjoint A,C ⊆ [p], we have that (A ⊥⊥ ζk|C ∪ ζI\{k})GI if and only if
fk(xA|xC) = fobs(xA|xC).

A.2 Proof of Lemma 5.1

Lemma 5.1. [Parameter Separation] Let P0(V ) denote the observational distribution of a linear
SEM with additive Gaussian noise “M” (see §3) with “n" endogenous variables. For some i, j ∈
[n] ∪ {0}, let Pi(V ) = N (mi, Si) and Pj(V ) = N (mj , Sj) be two interventional distributions
(observational if one of “i” or “j” =0). Then the separation between covariance Si and Sj and mean
mi and mj is lower bounded by:

∥Si − Sj∥2F + ∥mi −mj∥2F ≥ f(B,D)
(
∥ci∥2 + ∥cj∥2

)
+ h(B,D,µ)

(
γ2i + γ2j

)
+ g(B)

(
|δi|min

(
|δi|, λmin(D)

)
+ |δj |min

(
|δj |, λmin(D)

))
,

where after intervention on node k ∈ {i, j}, ∥ck∥ is the norm of the perturbation (or change) in the
kth row of the adjacency matrix, γk is the perturbation in the mean and |δk| is the perturbation in the
variance of the noise distribution of node k (as defined in the Atomic Intervention paragraph of §3).
Also, B = (I −A)−1, and D and µ are the covariance matrix and mean of the noise distribution in
M, respectively. Furthermore, “f”, “g”, and “h” are positive valued polynomial functions of B, µ
and smallest eigenvalue of D (see the proof in §A.2 for the exact expressions).

Proof. First, we state a lemma that will give us a lower bound on the separation between the
covariance matrix of two intervention distributions (or one could be observational). The proof is
given in §A.3.

Lemma A.1 (Minimum Covariance Separation). Let Si and Sj be the covariance matrix of the
Gaussian distribution corresponding to intervention on node Vi and Vj in the causal graph. Let,
without loss of generality, Vi be topologically greater than Vj in the causal graph. LetB = (I−A)−1,
D = diag(σ1, . . . , σn) be the covariance matrix of the noise distribution, let S = BDBT be the
covariance matrix of the observed distribution P (V ), and let ci = ai − a′

i be the soft intervention
performed on node Vi (see §3 for definitions). Then we have:

∥Si − Sj∥2F ≥ f(B,D)
(
∥ci∥2 + ∥cj∥2

)
+ g(B)

(
|δi|min

(
|δi|, λmin(D)

)
+ |δj |min

(
|δj |, λmin(D)

))
.

If one of the covariance matrices is from the observational distribution, i.e., say Sj = S then the
above lower bounds still holds with ∥cj∥ = 0 and δj = 0.

Using the above Lemma A.1 and substituting the explicit form of f(B,D) from Eq. 19 we obtain:

∥Si − Sj∥2F ≥ f(B,D)
(
∥ci∥2 + ∥cj∥2

)
+ g(B)

(
|δi|min

(
|δi|, λmin(D)

)
+ |δj |min

(
|δj |, λmin(D)

))
︸ ︷︷ ︸

≜ω

≥ f(B,D)

2

(
∥ci∥2 + ∥cj∥2

)
+ ω︸ ︷︷ ︸

≜ζ

+
λ2min(D)

(
∥ci∥2 + ∥cj∥2

)
8∥B−1∥4F

.

(5)
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Next, we state another lemma that will give us a lower bound on the separation of the mean of two
interventional distributions (or one of them could be observational). The proof of the lemma below is
given in §A.5.

Lemma A.2 (Minimum Mean Separation). Let mi and mj denote the mean of the Gaussian
distribution corresponding to the intervention on node Vi and Vj in the causal graph. Then we have:

∥mi−mj∥2F ≥



γ2
i

4∥B−1∥2
F
+

γ2
j

4∥B−1∥2
F
, ψ+

i , ψ
+
j are active

γ2
i

4∥B−1∥2
F
, ψ+

i , ψ
−
j are active and

γ2
j

4∥Bµ∥2 ≤ ∥cj∥2
γ2
j

4∥B−1∥2
F
, ψ−

i , ψ
+
j are active and γ2

i

4∥Bµ∥2 ≤ ∥ci∥2

0, ψ−
i , ψ

−
j are active and γ2

i

4∥Bµ∥2 ≤ ∥ci∥2,
γ2
j

4∥Bµ∥2 ≤ ∥cj∥2

where ψ+
i ≜

(
|cTi Bµ| < |γi|

2 or |cTi Bµ| > 3|γi|
2

)
, ψ−

i ≜ |γi|
2 ≤ |cTi Bµ| ≤ 3|γi|

2 and similarly for

ψ+
j and ψ−

j . If one of the means say mj is from the observational distribution, i.e., mj = m = Bµ,
then setting γj = 0 above will give the appropriate bounds and only case 2 and 4 are applicable.

Now, From Case 1 of the above Lemma A.2 (Eq. 42, ψ+
i , ψ

+
j is active) and above equation we have:

∥Si − Sj∥2F + ∥mi −mj∥2F ≥ ζ +
λ2min(D)

(
∥ci∥2 + ∥cj∥2

)
8∥B−1∥4F

+
γ2i

4∥B−1∥2F
+

γ2j
4∥B−1∥2F

.

(6)

From Case 2 of the above Lemma A.2 (Eq. 42, ψ+
i , ψ

−
j is active) and using

γ2
j

4∥Bµ∥2 ≤ ∥cj∥2 we
have:

∥Si − Sj∥2F + ∥mi −mj∥2F ≥ ζ +
λ2min(D)∥ci∥2

8∥B−1∥4F
+

γ2i
4∥B−1∥2F

+
λ2min(D)γ2j

32∥B−1∥4F ∥Bµ∥2
. (7)

From Case 3 of the above Lemma A.2 (Eq. 42, ψ−
i , ψ

+
j is active) and using γ2

i

4∥Bµ∥2 ≤ ∥ci∥2 we
have:

∥Si − Sj∥2F + ∥mi −mj∥2F ≥ ζ +
λ2min(D)∥cj∥2

8∥B−1∥4F
+

γ2j
4∥B−1∥2F

+
λ2min(D)γ2i

32∥B−1∥4F ∥Bµ∥2
. (8)

Similarly, for Case 4 and using γ2
i

4∥Bµ∥2 ≤ ∥ci∥2 and
γ2
j

4∥Bµ∥2 ≤ ∥cj∥2 we have:

∥Si − Sj∥2F + ∥mi −mj∥2F ≥ ζ +
λ2min(D)γ2i

32∥B−1∥4F ∥Bµ∥2
+

λ2min(D)γ2j
32∥B−1∥4F ∥Bµ∥2

. (9)

Next, combining Eq. 6, 7, 8, 9 we have:

∥Si − Sj∥2F + ∥mi −mj∥2F ≥ ζ +
γ2i + γ2j

max
(
4∥B−1∥2F ,

32∥B−1∥4
F ∥Bµ∥2

λ2
min(D)

)
≥ f(B,D)

2

(
∥ci∥2 + ∥cj∥2

)
+ g(B,D)

(
|δi|+ |δj |

)
+ h(B,D,µ)(γ2i + γ2j ).

(10)

For the case when one of the distributions is observational, say w.l.o.g. Sj = S and mj = m, then
the same analysis holds since cj = 0 and δj = 0 (from Lemma A.1) and only the analyses of case 2
and case 4 are applicable (from Lemma A.2), thereby completing the proof.

A.3 Proof of Lemma A.1

Proof. Without loss of generality, throughout our analysis, we will assume that the endogenous
variables V1, . . . , Vn are topologically ordered based on the underlying causal graph. Thus, the
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corresponding adjacency matrix A is lower triangular. The value of ∥Si −Sj∥2F will be unaffected by
any permutation of the node order in the matrix A as shown next. Let Ã = PAPT be the adjacency
matrix when the nodes are permuted by the permutation matrix P where PPT = I . Also, let
the corresponding permuted covariance matrix be S̃ = B̃D̃B̃T where B̃ = (I − Ã)−1 = P (I −
A)−1PT = PBPT =⇒ S̃ = PBPTPDPTPBTPT = PBDBTPT = PSPT . Similarly, we
have S̃i = PSiP

T and S̃j = PSjP
T . Now we have:

∥S̃i − S̃j∥2F = ∥P (Si − Sj)P
T ∥2F = ∥Si − Sj∥2F , (11)

since the permutation matrix only permutes the row and column in the above equation, the Frobenius
norm remains the same.

First, we state a lemma that characterizes the covariance matrix Si of the interventional distribution.
The proof of this lemma can be found in §A.4.

Lemma A.3 (Covariance Matrix Update). Let Pi(V ) = N (mi, Si) be an interventional distri-
bution and let the endogenous nodes V1, . . .Vn be topologically ordered based on the underlying
causal graph, then we have:

Si =

{
S − δirir

T
i , for root node

BiDB
T
i − δirir

T
i , otherwise

where ri = Bei, δi = σi − σ′
i , Bi = B −Beic

T
i B, B = (I −A)−1, S is the covariance matrix of

the observational distribution and D is the covariance matrix of the observational noise distribution
(see Atomic Intervention paragraph in §3).

Thus from the above Lemma A.3, we have Si = BiDB
T
i − δiviv

T
i . Substituting the value of Bi

from the above lemma again we get:

Si = BDBT −BDuiv
T
i − viu

T
i DB

T + ηiviv
T
i − δiviv

T
i

= S −BDBT cie
T
i B

T −Beic
T
i BDB

T + ηiBeie
T
i B

T − δiBeie
T
i B

T ,
(12)

where ui = BT ci, vi = Bei, ηi = uT
i Dui = cTi Sci. Next, multiplying the LHS and RHS of the

above equation with B−1 and B−T we get:

B−1(Si − S)B−T = ηieie
T
i −DBT cie

T
i − eic

T
i BD − δieie

T
i . (13)

The absolute value of (i, k)th (k ∈ [n]) entry of this matrix is given by:

eTi B
−1(Si − S)B−Tek =

{
−Dkkc

T
i Bek, k ̸= i

ηi − 2Dii����: 0
cTi Bei − δi = ηi − δi, k = i

(14)

where in the second case cTi Bei = 0 and Dkk = σk is the kth diagonal entry of the matrix D.
Similarly, the (j, k)th entry of this matrix is given by:

eTj B
−1(Si − S)B−Tek =

{
0, k ̸= i

−Djje
T
j B

T ci k = i
(15)

Similarly, the covariance matrix of node Vj and j ̸= i is given by:

Sj = S −BDBT cje
T
j B

T −Bejc
T
j BDB

T + ηjBeje
T
j B

T − δjBeje
T
j B

T

B−1(Sj − S)B−T = ηjeje
T
j −DBT cje

T
j − ejc

T
j BD − δjeje

T
j .

(16)
Thus the absolute value of the (i, k)th entry of the above matrix is given by:

|eTi B−1(Sj − S)B−Tek| = |DiieiB
T cj(e

T
j ek)| = 0, (17)

since we had assumed without loss of generality that Vj ≺ Vi =⇒ eiB
T cj = 0. Similarly, the

(j, k)th entry of this matrix is given by:

eTj B
−1(Sj − S)B−Tek =

{
−Dkkc

T
j Bek, k ̸= j

ηj − 2Djje
T
j B

T cj − δj = ηj − δj k = j
(18)
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where in the second case eTj B
T cj = 0. Thus, taking the difference of the ith and jth row of both the

matrix (from Eq. 14, 15, 17 and 18 and using the fact that cTi Bei = 0, cTj Bej = 0 and cTj Bei = 0
since without loss of generality we have Vj ≺ Vi) we obtain the following lower bound:

∥B−1(Si − Sj)B
−T ∥2F ≥

∑
k

(eiB
−1(Si − Sj)B

−T ek)
2 +

∑
k

(ejB
−1(Si − Sj)B

−T ek)
2

≥

[
n∑

k=1

(Dkkc
T
i Bek)

2 + (ηi − δi)
2

]

+

[∑
k ̸=i

(Dkkc
T
j Bek)

2 + (Djje
T
j B

T ci −�����:0
Diic

T
j Bei)

2 + (ηj − δj)
2

]

=

n∑
k=1

D2
kkc

T
i Beke

T
kB

T ci + (ηi − δi)
2

+
n∑

k=1

D2
kkc

T
j Beke

T
kB

T cj + (ηj − δj)
2 + (Djje

T
j B

T ci)
2

≥ λmin(D)cTi B
( n∑

k=1

Dkkeke
T
k

)
BT ci + (ηi − δi)

2

+ λmin(D)cTj B
( n∑

k=1

Dkkeke
T
k

)
BT cj + (ηj − δj)

2

= λmin(D)cTi BDB
T ci + (ηi − δi)

2

+ λmin(D)cTj BDB
T cj + (ηj − δj)

2

= λmin(D)cTi Sci + (ηi − δi)
2 + λmin(D)cTj Scj + (ηj − δj)

2

= λmin(D)ηi + (ηi − δi)
2 + λmin(D)ηj + (ηj − δj)

2

≥ λmin(D)
(ηi + ηj)

4
+

|δi|
4

min
(
|δi|, λmin(D)

)
+

|δj |
4

min
(
|δj |, λmin(D)

)
(19)

after substituting ηi = cTi Sci ≥ λmin(S)∥ci∥2, ηj = cTj Scj ≥ λmin(S)∥cj∥2 and using
Lemma A.4 that gives us a lower bound for the second and third term. Thus, we obtain:

∥Si − Sj∥2F ≥
λmin(D)

(
λmin(S)(∥ci∥2 + ∥cj∥2)

)
4∥B−1∥4F

+
|δi|

4∥B−1∥4F
min

(
|δi|, λmin(D)

)
+

|δj |
4∥B−1∥4F

min
(
|δj |, λmin(D)

)

≥
λ2min(D)

(
∥ci∥2 + ∥cj∥2

)
4∥B−1∥4F

+
|δi|

4∥B−1∥4F
min

(
|δi|, λmin(D)

)
+

|δj |
4∥B−1∥4F

min
(
|δj |, λmin(D)

)
,

(20)

where λmin(S) ≥ λmin(D)λ2min(B) = λmin(D) (∵ λmin(ST ) ≥ λmin(S)λmin(T ) and
λmin(B) = λmin(B

T ) = 1 since it is a lower triangular matrix where all diagonal entries are
1) and ∥ST∥F ≤ ∥S∥F ∥T∥F . For the case when one of the covariance matrices is S corresponding
to no intervention and the other is Si corresponding to intervention on node Vi, then from Eq. 14 and
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the following similar analysis we have:

∥B−1(Si − S)B−T ∥2F ≥

[
n∑

k=1

(Dkkc
T
i Bek)

2 + (ηi − δi)
2

]

≥ λmin(D)
ηi
4

+
|δi|
4

min
(
|δi|, λmin(D)

)
∥Si − S∥2F ≥

λ2min(D)∥ci∥2 + |δi|min
(
|δi|, λmin(D)

)
4∥B−1∥4F

,

(21)

thereby completing our proof of this lemma.

Lemma A.4. Given λ ≥ 0 and η ≥ 0, the following inequality holds true:

λη + (η − δ)2 ≥ λη

4
+

|δ|
4

min
(
|δ|, λ

)
. (22)

Proof. Case 1:
(
δ < 0

)
Let T ≜ λη + (η − δ)2, then we have T ≥ λη + δ2 ≥ λη + δ2/4.

Case 2:
(
δ > 0 and [0 ≤ η < δ/2 or η > 3δ/2]

)
Again in this case T ≥ λη + δ2/4.

Case 3:
(
δ > 0 and δ/2 ≤ η ≤ 3δ/2

)
In this case, we have T ≥ λη. Also, we have η > δ/2 =⇒

T ≥ λδ/2 which together implies:

T ≥ max
(
λη, λ

δ

2

)
≥ λη

2
+
λδ

4
.

(23)

Thus, combining the above three cases we have the following lower bound on the value of T :

T ≥ min
(
λη +

δ2

4
,
λη

2
+

|δ|
4

)
≥ λη

4
+ min

(δ2
4
,
λ|δ|
4

)
=
λη

4
+

|δ|
4

min
(
|δ|, λ

)
,

(24)

which completes the proof.

A.4 Proof of Lemma A.3

Proof. From Eq. 3, we have Si = BiDiB
T
i where Bi = (I − A+ eic

T
i )

−1 and Di = D − (σi −
σ

′

i)eie
T
i ≜ D − δieie

T
i . Since eic

T
i is a rank-1 update to the (I-A) matrix, using the Sherman-

Morrison identity we obtain:

Bi = (I −A+ eic
T
i )

−1

= (I −A)−1 − (I −A)−1eic
T
i (I −A)−1

1 + cTi (I −A)−1ei

= B − Beic
T
i B

1 + cTi Bei

= B −Beic
T
i B

≜ B − riq
T
i ,

(25)

where ri ≜
Bei

di
, scalar di ≜ 1 + cTi Bei = 1 and qi ≜ BT ci. The scalar di = 1 since qT

i ei =

cTi Bei = 0 given by the following lemma:
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Lemma A.5. Let A and B be a lower triangular matrix and ci be a vector such that ci = ai−a
′

i and
[ci]t = 0,∀t ≥ i (see Atomic Interventions paragraph of §3 for definition), then qT

i ei = cTi Bei = 0.
Also, if ci ̸= 0, then qi = BT ci ̸= 0.

The proof of the above lemma can be found below after the proof of the current lemma. Next, Si is
given by:

Si = BiDiB
T
i

= Bi(D − δieie
T
i )B

T
i

= BiDB
T
i︸ ︷︷ ︸

term 1

−δiBieie
T
i B

T
i︸ ︷︷ ︸

term 2

.
(26)

If the intervened node Vi is one of root nodes of the underlying unknown causal graph, then
ci = 0 =⇒ qi = BT ci = 0 =⇒ Bi = B (from Eq. 25), and thus:

BiDB
T
i = BDBT = S, (27)

where S is the covariance matrix of the observational distribution. Otherwise, for non-root nodes,
term 1 in the above equation is:

BiDBi = (B − riq
T
i )D(B − riq

T
i )

T

= BDBT −BDqir
T
i − (BDqir

T
i )

T + riq
T
i Dqir

T
i

= S −wir
T
i − riw

T
i + ηirir

T
i

(28)

where wi = BDqi and scalar ηi = qT
i Dqi. Next simplifying term 2 in Eq. 26 we get:

Biei(Biei)
T =

(
Bei − riq

T
i ei

)(
Bei − riq

T
i ei

)T

= Beie
T
i B

T = rir
T
i

(29)

since qT
i ei = cTi Bei = 0 from Lemma A.5 and ri ≜ Bei (from Eq. 25). Thus the covariance

matrix of the endogenous variables in the intervened distribution is given by:

Si =

{
S − δirir

T
i , for root node

BiDB
T
i − δirir

T
i , otherwise

(30)

thereby completing our proof.

Proof of Lemma A.5. Showing qi ̸= 0: We are given that B is a lower triangular matrix with non-
zero diagonal entries. Also, ci = ai − a

′

i ̸= 0 and [ci]t = 0,∀t ≥ i =⇒ ∃t s.t. [ci]t ̸= 0 and let t∗

be that last index where ci is non-zero. Now lets look at the [BT ci]t∗ = ct∗ · [BT ]t∗,t∗ ̸= 0 since
BT is a upper triangular matrix and [ci]t∗ ̸= 0.

Showing qT
i ei = 0: Bei is the ith column of the lower triangular matrix B =⇒ [Bei]t = 0,∀t <

i =⇒ cTi Bei = 0 since [ci]t = 0,∀t ≥ i.

A.5 Proof of Lemma A.2

Proof. Similar to the proof of Lemma A.1, without loss of generality, we will assume that the
endogenous variables are topologically ordered based on the underlying causal graph such that the
adjacency matrix A is lower triangular. The permutation matrix will only permute the rows of the
mean vectors mi and mj ; hence, there will be no effect on the value of ∥mi −mj∥2F .

Now, let the mean of the Gaussian distribution corresponding to intervention on node Vi be given by
(see Atomic Intervention paragraph in §3 for definition):

mi = Biµi = (B −Beic
T
i B)(µ+ γiei)

=⇒ B−1mi = (I − eic
T
i B)(µ+ γiei),

(31)

where Bi = (I − Ai)
−1 = B − Beic

T
i B (from Lemma A.3), µi is the new mean vector for the

noise distribution, µ is the mean vector of the observational noise distribution and γiei is the update
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to the mean of the noise distribution when intervening on node Vi. Similarly, the mean corresponding
to the intervened distribution on node Vj is given by:

mj = Bjµj = (B −Bejc
T
j B)(µ+ γjej)

=⇒ B−1mj = (I − ejc
T
j B)(µ+ γjej).

(32)

Looking at the ith entry of the vector B−1mi, we get:

eTi B
−1mi = eTi µ− cTi Bµ+ γi −����*

0
cTi Bei,

(33)

and the ith entry of the vector B−1mj is given by:

eTi B
−1mj = eTi µ. (34)

Similarly, the jth entry of the vector B−1mi is given by:

eTj B
−1mi = eTj µ, (35)

and the ith entry of the vector B−1mj is given by:

eTj B
−1mj = eTj µ− cTj Bµ+ γj −��

��*
0

cTj Bej .
(36)

Thus, the difference in the mean of both distributions can be lower bounded by:

∥B−1(mi −mj)∥2F ≥ (γi − cTi Bµ)2 + (γj − cTj Bµ)2. (37)

Now based on the value of |γ|i and |cTi Bµ|, we have:

(γi − cTi Bµ)2 ≥

{
γ2
i

4 , ψ+
i ≜ |cTi Bµ| < |γi|

2 or |cTi Bµ| > 3|γi|
2

0, ψ−
i ≜ |γi|

2 ≤ |cTi Bµ| ≤ 3|γi|
2 ,

(38)

where ψ+
i and ψ−

i are used to denote two different mutually exclusive different events for ease of
exposition later. In the case when ψ−

i is true, we have:

γ2i
4

≤ (cTi Bµ)2 ≤ ∥ci∥2∥Bµ∥2 (Cauchy-Schwarz)

γ2i
4∥Bµ∥2

≤ ∥ci∥2.
(39)

Similarly, we have:

(γj − cTj Bµ)2 ≥

{
γ2
j

4 , ψ+
j ≜ |cTj Bµ| < |γj |

2 or |cTj Bµ| > 3|γj |
2

0, ψ−
j ≜ |γj |

2 ≤ |cTj Bµ| ≤ 3|γj |
2 ,

(40)

and in the event when ψ−
j is true, we have:

γ2j
4

≤ (cTj Bµ)2 ≤ ∥cj∥2∥Bµ∥2 (Cauchy-Schwarz)

γ2j
4∥Bµ∥2

≤ ∥cj∥2.
(41)

Combining Eq. 38 and 40 and using ∥B−1(mi −mj)∥F ≤ ∥B−1∥F ∥mi −mj∥F , we have:

∥mi −mj∥2F ≥



γ2
i

4∥B−1∥2
F
+

γ2
j

4∥B−1∥2
F
, ψ+

i , ψ
+
j are active

γ2
i

4∥B−1∥2
F
, ψ+

i , ψ
−
j are active, Eq. 41 holds

γ2
j

4∥B−1∥2
F
, ψ−

i , ψ
+
j are active, Eq. 39 holds

0, ψ−
i , ψ

−
j are active, Eq. 39 and 41 holds.

(42)
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For the case when one of the mean say mj is observational then:

mj = m = Bµ

=⇒ B−1mj = µ.
(43)

Thus the ith and jth entry of mj is eTi µ and eTj µ, respectively. Thus using Eq. 33 and 35 we get:

∥B−1(mi −mj)∥2F ≥ (γi − cTi Bµ)2. (44)

Then again, following a similar analysis as in Eq. 38 and 39 we have the following cases:

∥mi −mj∥2F ≥

{
γ2
i

4∥B−1∥2
F
, ψ+

i is active

0, ψ−
i is active, Eq. 39 holds,

(45)

which is equivalent to say that only case 2 and 4 are applicable in Eq. 42. This completes the
proof.

B Setup and Additional Empirical Result

B.1 Experimental Setup Discussion - Simulation

Random Graph Generation: As mentioned in the Simulation setup in §6, we randomly generate
the adjacency matrix A of the causal graphs used to simulate the mixture distribution. All the weights
in the adjacency matrix are sampled in the range [−1,−0.5] ∪ [0.5, 1] bounded away from zero. This
gives us a complete graph of all nodes. Thus, to introduce sparsity in the graph, we only keep an edge
with probability ζ by setting the corresponding value in the adjacency matrix to zero if the edge is
removed. Unless otherwise specified, we set ζ = 0.8 for all our experiments.

Step 1 of Alg. 1: We use the GaussianMixture class from the scikit-learn Python package to
disentangle the components of the mixture. For all our experiments, we use the default tol = 10−3

used by GaussianMixture to decide on convergence of the underlying EM algorithm.

Step 2 of Alg. 1: We run the UT-IGSP algorithm in Step 2 of our Alg. 1 with the standard parameter
mentioned in the documentation. Specifically, we use α = 10−3 for both MemoizedCITester and
MemoizedInvarianceTester functions used by UT-IGSP.

Specific to results in Appendix Unless otherwise specified, for all the results in the appendix we
run all the experiments for 5 random settings. We ignore the error bars in the appendix for clarity in
exposition. Also for all the experiments, the half-intervention setting i.e. where the mixture contains
intervention on half of the randomly selected nodes is considered.

B.2 Experimental Setup Discussion - Biology Dataset

Dataset: In the interventional data the signaling protein is also perturbed along with the receptor
enzymes. The different perturbed signaling proteins (along with the number of samples corresponding)
are: Akt (911), PKC (723), PIP2 (810), Mek (799), PIP3 (848). The observational data contained
1755 samples so overall 5846 samples were used for our experiments. For details see Wang et al. [31]
and Sachs et al. [22].

B.3 Code

The source code to all the experiments can be found in the following GitHub repository:
https://github.com/BigBang0072/mixture_mec

B.4 Computational Resources

We use an internal cluster of CPUs to run all our experiments. We run 10 random runs for each of the
experimental configurations and report the mean (as points) and 5th and 95th quantiles as error bars
for all our experiments in the main paper, and we report only mean the mean for the experiments in
the appendix to declutter the figures.
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(d) num interventions = half

Figure 2: Other Evaluations Metrics for the simulation experiments in Fig. 1: The top row denotes
the corresponding metrics for all interventions in the mixture setting and the bottom row to the half
setting. The first column shows the number of components estimated by our algorithm Mixture-
UTIGSP. For the all setting, the actual number of components corresponding to the system with nodes
4,6 and 8 are 5,7,9 respectively (one intervention on each node + one observational distribution). We
observe that Mixture-UTIGSP is able to correctly estimate the number of components even with a
small number of samples. Similarly, for half setting, the actual number of components corresponding
to the system with nodes 4,6 and 8 are 3,4,5 respectively (intervention on half of node and one
observational distribution). Even for this case Mixture-UTIGSP is able to correctly estimate the
number of components. The second column shows the error in the estimation of the mixing coefficient
(πi’s, see Definition 4.1). For both cases, we observe that the error in the estimation of the mixing
coefficient goes to zero as the sample size increases.

B.5 Evaluation Metric

Parameter Estimation Error Given the mixture distribution, the first step of our Alg. 1 estimates
the parameters of every interventional and observational distribution present in the mixture (mixing
weight πi, mean mi and covariance matrix Si). Alg. 1 returns the maximum number of possible
components, i.e. k = n+ 1, by default. For all our experiments, we used this default value and left
searching over the number of components for future work. To calculate the parameter estimation
error, we first find the best match of the estimated parameters with the ground truth parameters based
on the minimum error between the mean and covariance matrix. More specifically, let k∗ be the
ground truth number of components in the mixture. Then, we iterate over all possible k∗ sized subsets
of the estimated parameters and choose the one with the smallest absolute error sum between the
mean and covariance matrix. Formally:

Parameter Estimation Error ≜ min

{
k∗∑
i=1

(
|mi−m̂ρ(i)|+|Si−Ŝρ(i)|

)
: ρ ∈ perm([n+1])

}
(46)
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Figure 3: Performance of Alg. 1 as we change the cutoff ratio used for automatic component
selection: We consider graphs with 6 nodes in this experiment with half intervention setting. In step
2 of Mixture-UTIGSP, we select the number of components using the log-likelihood curve. We scan
the curve starting from the mixture model with the largest number of components to the smallest and
stop where the relative change in the likelihood increases above a cutoff ratio (to select the elbow
point of the curve). The cutoff ratio in the algorithm is chosen to be an arbitrary number close to zero.
Here we compare the performance of Mixture-UTIGSP on all three metrics for the half setting of
Fig. 1 as we vary the cutoff ratio. We observe that for the cutoff ratio close to zero i.e. 0.01, 0.15,0.3
the performance remains similar showing that the model selection criteria are robust to the selected
cutoff ratio. The number of nodes

where perm([n+ 1]) represents all possible permutations of the indices [0, 1, . . . , n] and ρ∗ is the
corresponding permutation with the minimum error.

Average Jaccard Similarity (JS) In step 2 of our Alg. 1, UT-IGSP estimates the unknown inter-
ventional targets for each of the individual components disentangled in Step 1. We use the same
matching (ρ∗) found in the parameter estimation error step (as mentioned above) to calculate the
Jaccard similarity between the estimated and ground truth intervention target for that component.
Formally:

Avg. Jaccard Similarity ≜
1

k∗

k∗∑
i=1

JS(ti, t̂ρ(i)) =
1

k∗

k∗∑
i=1

|ti ∩ t̂ρ∗(i)|
|ti ∪ t̂ρ∗(i)|

, (47)

where ti is the ground truth intervention target set and t̂j is the estimated target set. For the case
when both ti = t̂i = ϕ, then JS(ti, t̂i) ≜ 1.

23

16560 https://doi.org/10.52202/079017-0527



10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

sample size

0

5

10

15

20

25
Pa

ra
m

et
er

 E
st

im
at

ion
 E

rro
r graph density=(0.1,)

graph density=(0.4,)
graph density=(0.6,)
graph density=(1.0,)

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

sample size

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e 

Ja
cc

ar
d 

Si
m

ila
rit

y

graph density=(0.1,)
graph density=(0.4,)
graph density=(0.6,)
graph density=(1.0,)

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

13
10

72

26
21

44

52
42

88

10
48

57
6

sample size

0

2

4

6

8

SH
D

graph density=(0.1,)
graph density=(0.4,)
graph density=(0.6,)
graph density=(1.0,)

Figure 4: Performance of Alg. 1 as we change the density of the underlying true causal graph:
The mixture data contains atomic interventions on all nodes as well as observational data (half setting
as described in the results in §6). The column shows different evaluation metrics, i.e., Parameter
Estimation Error, Average Jaccard Similarity, and SHD (see Evaluation metric paragraph in §6). In
this experiment, we vary the density of the underlying causal graph by keeping the edges in a fully
connected graph with a fixed probability, labeled as density in the legend of the above plots (see
random graph generation paragraph in §B.1 for details). The maximum possible density is 1, i.e.,
the probability of keeping an edge is 1, corresponding to a fully connected graph, and the lowest
possible density is 0. We observe that as the density of the graph increases, we require more samples
to achieve similar performance to less dense graphs on all three metrics. Our Theorem 4.1 shows that
the sample complexity required for estimating the parameters of the mixture is proportional to the
norm of the adjacency matrix ∥A∥ and as the density of the graph increases ∥A∥ increases. Thus, as
the density increases, we require more samples to achieve a similar performance in estimating the
parameters of the mixture, as seen in the parameter estimation error plot above.
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(a) Domain Expert Graph
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(b) Mixture-UTIGSP (Ours)
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(c) UTIGSP (Oracle)

Figure 5: Ground truth and estimated causal graph for Protein signaling dataset [22]: Fig 5a
is the graph created with the help of domain experts for this problem [31]. 5b shows the graph
estimated by our Mixture-UTIGSP and 5c is the graph estimated by oracle UT-IGSP when they
are given the ground truth disentangled mixture. The blue colored arrow in 1b and 1c shows the
correctly recovered edges in the domain expert graph. Green shows the edges with the same skeleton
in the domain expert graph but in a reversed direction. The red shows the edges that are incorrectly
added in the estimated graph. We observe that Mixture-UTIGSP correctly identifies two more edges
(PKA->ERK and PKA-> Akt) as compared to an oracle which could be due to randomness in the
UTIGSP algorithm. For this estimation, the best-performing cutoff of 0.01 was selected (see Table 1).
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(a) Varying the mean of the noise distribution (|γi|): The initial mean of the noise distribution is 0.0 for all the
nodes. Upon intervening on a node to generate the interventional distribution, we change the mean of the noise
to a different value. The variance of the noise distribution of the intervened node is kept the same as the initial
distribution i.e. 1.0. From Theorem 4.1, we expect that as the new mean increases further from the initial mean
= 0.0, the parameter estimation error should be lower for a given sample size and lead to better performance in
intervention target estimation and causal discovery. As expected, the setting with the smallest change in the
mean of the noise distribution (blue curve) has the worst performance. The case when the new noise mean is
10.0 (orange curve) is unusual where we see an unexpected increase in parameter estimation error.
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(b) Varying the variance of the noise distribution (|δi|): The initial variance of the noise distribution is 1.0 for all
nodes, and we change the variance of the new noise distribution upon intervention in this experiment. The mean
of the noise distribution of the intervened distribution is kept the same as the initial distribution i.e. 0.0. From
Theorem 4.1, we see that sample complexity to recover the parameters of the mixture distribution is inversely
proportional to the change in the noise variance |δi|. Thus, we expect that the performance of Alg. 1 should
improve as the new noise variance moves away from the initial noise variance 1.0. We can see in the above
plot that the performance of the green curve (δi = 0) is worst in terms of the Jaccard similarity and SHD of
the recovered graph, validating our expectation. Parameter estimation cannot be directly compared since as the
variance increases, the norm of the covariance matrix increases, and thus, the overall error in the estimation error
increases. We observe that compared to changing the mean (Fig. 6a) increasing the variance gives slightly lower
performance gains.

Figure 6: Performance of Alg. 1 as we change different parameters of interventions: We consider
graphs with 6 nodes in this experiment. The mean of all noise distributions without any intervention
is 0.0, and the variance is 1.0. The mixture data contains atomic interventions on all nodes and
observational data (half setting as described in results in §6). The column shows different evaluation
metrics, i.e., Parameter Estimation Error, Average Jaccard Similarity, and SHD (see evaluation metric
paragraph in §6). From Theorem 4.1, we observe that the sample complexity for recovering the
parameters of the mixture is inversely proportional to the change in the mean of the noise distribution
γ2i and change in the variance of the noise distribution |δi|. In this experiment, we vary these two
parameters one at a time and empirically validate this observation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have given all the proof for our theoretical result (§5) and validated the
theoretical claims with empirical results §6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See §8.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We have provided all the assumptions and proof of our theoretical result in §4,
5 and A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See §6 and B for the full details of empirical results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: See §B for the GitHub link.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See §6 and B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the 5th and 95th quantile of all the metrics from the 10 different
random runs in the main. In the appendix we don’t plot the error bars for clarity of exposition.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See §B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we do.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We theoretically study the problem in a simple setting that might not be directly
applicable in real-world scenarios.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We don’t release any data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: To the best of our knowledge, we have cited all the prior work and any package
or library used in our empirical study.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We are not releasing any new assets right now along with our paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work doesn’t involve any human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work doesn’t need this.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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