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Abstract

We consider learning a sparse model from linear measurements taken by a net-
work of agents. Different from existing decentralized methods designed based
on the LASSO regression with explicit ℓ1 norm regularization, we exploit the
implicit regularization of the decentralized optimization method applied to an over-
parameterized nonconvex least squares formulation without sparse penalization.
Our first result shows that despite nonconvexity, if the network connectivity is good,
the well-known decentralized gradient descent algorithm (DGD) with small initial-
ization and early stopping can compute the statistically optimal solution. Sufficient
conditions on the initialization scale, choice of step size, network connectivity, and
stopping time are further provided to achieve convergence. Our result recovers the
convergence rate of gradient descent in the centralized setting, showing its tight-
ness. Based on the analysis of DGD, we further propose a communication-efficient
version, termed T-DGD, by truncating the iterates before transmission. In the high
signal-to-noise ratio (SNR) regime, we show that T-DGD achieves comparable
statistical accuracy to DGD, while the communication cost is logarithmic in the
number of parameters. Numerical results are provided to validate the effectiveness
of DGD and T-DGD for sparse learning through implicit regularization.

1 Introduction

Modern deep learning is generally in the over-parameterized regime where the models have signif-
icantly more parameters than available training examples [6, 41]. Although deep learning models
exhibit remarkable performance in multiple domains, the theoretical understanding of optimization
and generalization for deep learning is still limited. Recent studies show that despite being over-
parameterized, gradient-based methods applied to minimize the emperical loss exhibit the implicit
regularization phenomenon. For example, a line of works [3, 5, 11, 16] shows that with certain
initialization, networks trained with gradient descent (GD) land in the “kernel regime” and share
similar behaviors to the kernel method. However, the literature [2, 9, 24] suggests that kernel regime
analyses fall short in explaining the success of deep learning because neural networks analyzed in the
kernel regime are almost linearized, thus hindering feature learning from data. Further, many works
[35, 38, 40] start investigating the “rich regime”, showing that GD with small initialization induces
structures on the solution, such as sparsity and low-rankness, that better explains the generalization
capability of NNs. However, all aforementioned results are limited to the centralized setting, where
data are stored on a single machine. Practical constraints such as limited computing and storage
resources, data privacy and security, and regulation rules make the centralized learning framework
increasingly inadequate for contemporary applications. Although a variety of decentralized learning
algorithms can be applied to NN training, the questions of which solution they can converge, along
with its generalization performance, are largely unclear.
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In this paper, we study the sparse learning problem [34] in the overparameterized regime, which
shares many key characteristics with deep learning models but is more tractable to analyze, as a
prototype for understanding the computation and statistical guarantees of decentralized learning
algorithms. Specifically, we consider learning a sparse model w⋆ from its noisy linear measurements
over m agents. These agents communicate over an undirected connected mesh network without a
central coordinator, and each agent can only communicate with its one-hop neighbors. The i-th agent
has its own n samples {(xi,j , yi,j)}nj=1. Each j-th data pair (xi,j , yi,j) is generated according to the
noisy linear model

yi,j = xT
i,jw

⋆ + ξi,j , ∀i ∈ [m] and ∀j ∈ [n], (1)

where xi,j ∈ Rd and yi,j ∈ R denotes respectively the j-th feature and its corresponding response at
i-th agent, ξi,j is the observation noise, and w⋆ ∈ Rd is the sparse model parameter to be learned,
common to all agents, and has only s (s ≪ d) non-zero elements. We are interested in the high-
dimensional setting where the ambient dimension d is substantially larger than the total sample
size N := mn, i.e., d ≫ N . By re-parameterizing w = u ⊙ u − v ⊙ v, the loss function can be
formulated as minimizing the following regularization-free nonlinear least square problem:

F (u,v) :=
1

m

m∑
i=1

fi (u,v) , with fi (u,v) :=
1

n
∥Xi (u⊙ u− v ⊙ v)− yi∥

2
; ∀i ∈ [m],

(2)

where fi(u,v) corresponds to the loss function of i-th agent. Problem (2) can also regarded as the
supervised learning problem on the diagonal linear network of degree-2 [38].

Problem (2) is highly non-convex with u and v, however, recent works [12, 36, 42] demonstrate
that if the design matrix satisfies the restricted isometric property (RIP) condition, the centralized
GD without any regularization can yield the statistically optimal estimator with properly chosen
initialization scale, step size, and early stopping time. This intriguing phenomenon is derived from
the implicit regularization of GD. Roughly speaking, with small initialization, the gap |u2

i − v2i |
would increase with iteration for coordinate i such that w⋆

i ̸= 0, where the remaining ones stay small
enough before early stopping. As a result, GD identifies the support of w⋆ as the algorithm processes.
In the decentralized setting, general results from the pure optimization perspective can only certify
convergence to the stationary points, implying neither global optimality nor generalizability. Given
the encouraging result of GD achieved in the centralized setting, it is natural to ask if statistically
optimal solutions are also computable by decentralized gradient-type algorithms, which algorithm
can achieve the goal, and what are the regularity conditions.

This paper aims to analyse the renowned decentralized gradient algorithm (DGD) for minimizing (2)
over the undirected mesh networks. The main contributions of this paper are detailed as follows.

• Statistical guarantee. It is well established that even for convex objectives, DGD cannot compute
an exact minimizer. It only converges to the neighborhood of the solution whose radius depends
on the step size. However, we show that under specific conditions—namely, if the global design
matrix satisfies the RIP condition, the initialization scale is sufficiently small, and the network is
sufficiently connected—the solution computed by DGD with early stopping is statistically optimal.

• Computational complexity. Our convergence analysis reveals that the early stopping time increases
logarithmically with the ambient dimension d. While network connectivity does not affect statistical
error when it satisfies mild conditions, it does influence the stopping time of DGD to find the
optimal estimator. Networks with poor connectivity will delay the early stopping time, and thus
increase the iteration complexity.

• Technical analysis. Compared to the techniques used for analyzing the centralized GD [33, 38],
proving the convergence of DGD faces the following challenge. Because the consensus error terms
induced from the mesh network result in a perturbed version of the multiplicative update. Compared
with the exact multiplicative updates, the challenge is that the additional error term outside of
multiplication prevents applying the centralized analysis directly. In addition, the error terms
within the multiplication have more complicated consensus error terms than that of the centralized
setting, which requires bounding the consensus error terms carefully to control these error terms
that can achieve the same order statistical error. To achieve this goal, we separately control the
consensus errors on support S and non-support Sc by the magnitudes of parameters on support
S and non-support Sc, respectively. Our fine-grained analysis for consensus errors is distinct
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from existing decentralized optimization analyses that bound the consensus errors uniformly. The
additional error term also complicates the transfer of proof from the simplified non-negative w⋆

case to the general w⋆ setting as the centralized setting, we conduct a comprehensive induction
process to both u and v simultaneously for general w⋆.

• Truncated DGD. We propose a communication-efficient truncated DGD (T-DGD) method that at
each iteration, vectors being transmitted are truncated, keeping only s elements with the largest
magnitudes nonzero. We prove that if each agent has sufficient samples and the signal-to-noise ratio
is high enough, T-DGD can perform as well as the vanilla DGD while reducing communication
complexity to logarithmic dependence on ambient dimension d.

2 Related works

We categorize the existing works most relevant to our study into three main groups.

• Implicit regularizations for sparse regression. The recent study in [15] reparameterized the model
parameter through overparameterized Hadamard product and discovered encouraged empirical
performance by the first-order optimization algorithms. The statistical and convergence guarantees
for this phenomenon are established in [36, 42] under mild conditions. Woodworth et al. [38]
studied the impact of initialization scale on solutions. Scott et al.[27] demonstrated the benefit
of stochasticity of SGD in sparse regression and explored the impact of momentum in [25]. The
more recent process in understanding the linear diagonal networks can be found in references
[7, 10, 12, 19, 23, 26, 43]. To the best of our knowledge, existing works have only discussed
implicit regularizations induced by centralized optimization methods in linear diagonal networks.
However, the question of whether decentralized algorithms induce implicit regularizations, and
what type of implicit regularization they may induce has not been studied so far.

• Decentralized sparse regression with explicit regularization. For estimating ground truth w⋆ in
high-dimensional sparse linear regression under the decentralized setting, Ji et al. [18] proposed
DGD-CTA algorithm for tackling LASSO objective with consensus penalty and proved linear
convergence rate to the neighbor of the statistical optimal estimator, but the convergence rate has
polynomial dependence on ambient dimension d. Further Sun et al. [31] proposed the NetLASSO
based on the gradient tracking method and obtained d-independent convergence rate and optimal
statistical accuracy. To complement work [18], Ji et al. proposed DGD-ATC by mixing the local
gradients along iterations and achieved logarithmic dependence on d in [17]. Maros et al. [21]
proposed DGD2 method based on a double mixing for solving decentralized LASSO and obtained
similar theoretical guarantees in [17, 31]. To improve the computation efficiency, Maros et al.
[20] integrated accelerated proximal gradient descent with gradient tracking to solve decentralized
LASSO. Despite these developments, it remains unclear whether leveraging the unregularized over-
parameterization and implicit regularization of decentralized optimization methods can achieve the
optimal statistical guarantee over mesh networks.

• Implicit regularizations of decentralized optimization. Implicit bias or regularizations of central-
ized optimization methods for overparameterized models have been extensively studied [13, 30],
but only a few works have investigated the implicit regularization of decentralized optimization
methods. Richards et al. [29] studied the implicit regularization for decentralized stochastic
gradient descent for solving general unregularized convex problems. Zhu et al. [44] demonstrated
that decentralized stochastic gradient descent implicitly executes the sharpness-aware minimization
algorithm for general non-convex problems. Taheri et al. [33] studied the implicit regularization
of DGD in overparameterized classification for separable data. Recent work [22] demonstrated
the implicit regularization of the DGD2 in solving the overparameterized matrix sensing problem.
Different from these works, we establish the statistical and computational results for specific
non-convex sparse regression problem.

3 Preliminaries

In this section, we will introduce the basic notations used in this paper, and then formulate the DGD
for solving the problem (2). Finally, we provide the necessary assumptions and definitions for the
decentralized sparse regression problem.
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3.1 Notations

Throughout this paper, we use [m] to denote set {1, · · · ,m} for given positive integer m, 1d denotes
d-dimensional vector that all elements are one and Id denotes d-dimensional identity matrix. For
ground truth parameter w⋆, the relevant notations are support set S := {j|w⋆

j ̸= 0}, positive
support set S+ := {j|w⋆

j > 0}, negative support set S− := {j|w⋆
j < 0} and non-support set

Sc := {j|w⋆
j = 0}, w⋆

max := maxj∈S |w⋆
j | and w⋆

min := minj∈S |w⋆
j |. ∀x ∈ Rd,xS := 1S ⊙ x

where 1S denotes a vector equal to one for all coordinates j ∈ S and equal to zero everywhere else.
Symbol “⊙” denotes Hadamard product that (a⊙ b)j = ajbj ,∀a, b ∈ Rd. The averaged signal is
defined as wt := 1

m

∑m
i=1 w

t,i and similar notations can be extended to ut,vt.

X := [X1; · · · ;Xm] denotes the concatenated sample matrix, where each row of Xi represents one
feature vector in agent i. ∥·∥ denotes the Frobenius norm for vector and the spectral norm (maximum
singular value) for matrix. ∥A∥∞ := maxi,j |Aij | denotes infinity norm. We use a = O(b) to denote
that inequality a ≤ Cb holds with some absolute constants C that do not depend on any parameters
of the problem. The notation a ≲ b shares the same meaning as a = O(b). Finally, we use a ≳ b if
there exists a universal constant c such that a ≥ cb.

3.2 Method and Assumptions

We focus on DGD solving problem (2) over mesh network, modeled as an undirected graph G =
{V, E} where nodes V = {1, · · · ,m} represent the set of agents and edges E ⊂ V × V represent the
communication links. An unordered pair {i, j} is included in E if and only if there is a bidirectional
communication link between agent i and j. The set of one-hop neighbors for agent i is denoted by
Ni := {j ∈ V|(i, j) ∈ E}

⋃
{i}.

DGD allows each agent to independently update its parameters based on local gradient descent
and then synchronize with neighboring agents by weighted averaging these updates. The recursive
iteration of DGD for each agent is described as follows.

ut+1,i =

m∑
j=1

Wij

(
ut,j − η

4

n
ut,j ⊙

(
XT

j

(
Xj

(
ut,j ⊙ ut,j − vt,j ⊙ vt,j

)
− yj

)))
, ∀i ∈ [m];

(3)

vt+1,i =

m∑
j=1

Wij

(
vt,j + η

4

n
vt,j ⊙

(
XT

j

(
Xj

(
ut,j ⊙ ut,j − vt,j ⊙ vt,j

)
− yj

)))
, ∀i ∈ [m],

(4)

where the wt,i := ut,i ⊙ ut,i − vt,i ⊙ vt,i denotes the local estimator in agent i at tth iteration,
the initialization is u0,i = v0,i = α1d,∀i ∈ [m] and η is constant step size. W is the nonnegative
weight mixing matrix for the undirected mesh network, where Wij > 0 if there is a link between
agents i and j, and Wij = 0 otherwise. The mixing matrix W related to the undirected graph satisfies
the following assumption.
Assumption 1. The communication network G is connected. The weight matrix W = [wij ]

m
i,j=1 for

this graph has the following properties: (i) wij = 0 for all pairs (i, j) that are not in E; (ii) it is double
stochastic that 1T

mW = 1T
m and W1m = 1m; (iii) the spectral gap ρ :=

∥∥W − 1
m1m1T

m

∥∥ ≤ 1.

This assumption is common in decentralized optimization literature [17, 22]. We need the following
RIP condition which is a key condition to obtain the optimal estimator for sparse regression.

Definition 1. The global design matrix X/
√
N ∈ RN×d satisfies the (δ, s)-Restricted Isometry

Property (RIP) if for any s-sparse vector w ∈ Rd, there is (1 − δ) ∥w∥2 ≤
∥∥∥Xw/

√
N
∥∥∥2 ≤

(1 + δ) ∥w∥2.

The RIP condition was first introduced in the compressed sensing literature in [8] which is a little
more restrictive condition to achieve optimal statistical rate than the restricted eigenvalue condition in
[1]. We inherit this assumption in the centralized setting [36, 42] to achieve optimal estimator error
under the condition that parameter δ is upper bounded. Besides the global RIP condition, we have the
following local RIP condition for local design matrices {Xi}mi=1.
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Definition 2. The local design matrices X1/
√
n, · · · ,Xm/

√
n ∈ Rn×d satisfy the local (δmax, s)-

(RIP) condition, if for any s-sparse vector w ∈ Rd and any local design matrix Xi/
√
n, there is

(1− δmax) ∥w∥2 ≤ ∥Xiw/
√
n∥2 ≤ (1 + δmax) ∥w∥2.

The definition of the local RIP condition is just for ease of proof presentation, as we do not necessitate
any upper bound on the local RIP parameter δmax.

4 Main Result

Based on the above method and assumptions, we now give theoretical guarantees of DGD in solving
problem (2) for sparse regression problem (1) as follows.

Theorem 1. Considering the sequence generated by (3) and (4) based on DGD for solving
problem (2) and ∀ϵ > 0, if the global design matrix X/

√
N satisfies (δ, s + 1)-RIP condi-

tion with bounded RIP parameter δ ≲ 1√
s
, the local design matrices {Xi/

√
n}mi=1 satisfy local

(δmax, s+ 1)-RIP condition, and the mesh network satisfies assumption 1, the initialization satisfies

α ≲ min
{
1, ϵ2

(12d+1)2 ,
ϵ

w⋆
max

, ζ
6(w⋆

max)
2 ,

w⋆
min

4

}
, the constant stepsize η satisfies

η ≲ min


1−√

ρ

64
√
ρw⋆

max

,

log 1
α4

(
1−

√
1+

√
ρ

2

)
4w⋆

max

,
1−

(
1+

√
ρ

2

) 1
4

w⋆
max

 , (5)

and the spectral gap ρ satisfies

ρ
1
4 ≲ min

 1√
sδmax + 1

,
δ

8δmax
,

∥∥∥XT ξ
N

∥∥∥
∞

8maxi

∥∥∥XT
i ξi

n

∥∥∥
∞

 , (6)

then after running t = O
(

1
ηζ log

1
α

)
iterations. There would be

∣∣wt
j − w⋆

j

∣∣ ≤

O (ς) if j ∈ S and w⋆

min ≤ O (ς)

O
(
max

{∣∣∣∣(XT ξ
N

)
j

∣∣∣∣ , δ√s
∥∥∥XT ξ

N ⊙ 1S

∥∥∥
∞

, ϵ

})
if j ∈ S and w⋆

min ≥ O (ς)

O (
√
α) if j /∈ S,

(7)

where ς := max
{∥∥∥XT ξ

N

∥∥∥
∞

, ϵ
}
, ζ := max

{
w⋆

min

5 , 960ς
}

.

• Mechanism to promote sparsity. The consensus errors induced from decentralized network com-
plicate the multiplicative updates, which becomes inexact multiplicative updates as ut+1 =

ut ⊙
(
1− 4η

(
ut ⊙ ut −w⋆ + p̂t + b̂

t
))

+ et. Compared with the exact multiplicative updates

of GD in [36], the challenge is that the extra error term et outside of the multiplication prevents
applying the centralized analysis trivially. In addition, the perturbation error terms p̂t, b̂

t
within

the multiplication are much more complicated than that of the centralized setting due to additional
multiple consensus errors. This requires bounding the consensus error terms carefully, which
should control the complicated perturbation errors p̂t, b̂

t
, et not to be large. Thus, we can use

network connectivity to control the consensus errors to bound these three perturbation errors small
enough to make the distance between two trajectories obtained by inexact and exact multiplicative
updates within statistical accuracy, which can promote sparsity in the decentralized setting. The
detailed theoretical mechanism of promoting sparsity has been demystified in Proposition 3.

• Statistical Guarantee. Based on the result in (7) and conditions in (5) and (6), we can observe that
if the initialization α is small enough and network connectivity is sufficiently well, the DGD with
early stopping can obtain the desired estimator for sparse ground truth parameter w⋆ that achieves
the same order of statistical error as the centralized setting in [36]. The formula in (7) not only

5

16649 https://doi.org/10.52202/079017-0531



illustrates that we establish the network-independent estimator error bound but also inherits the
benefit of implicit regularization, which indicates that if the signal-to-noise is high enough, the
statistical error is independent of ambient dimension d. In contrast, existing results in decentralized
LASSO methods [17, 18, 21, 31], have consistent dependence on d in any case.

• Computational Complexity. The iteration complexity of early stopping is network-dependent that is
because the t = O

(
1
ηζ log

1
α

)
has the dependence on stepsize, which should satisfy the condition

in (5). This suggests that poorer network connectivity leads to higher computational complexity.
Although the initialization has no dependence on network connectivity, 1

α has polynomial depen-
dence on d, and the dependence of complexity on d is just logarithmic, which is similar to DGD in
solving LASSO in [17, 21] and improves the polynomial dependence on d in [18].

• Dependence on network connectivity. For accurate estimation, it is essential that the network should
be well-connected, as specified in condition (6). When this condition is not satisfied, we can run
multiple rounds of communication per iteration. It is observable that the smaller ratio between
the global RIP parameter δ and the local RIP parameter δmax, and smaller ratio between the local
noise and the global noise magnitude, necessitate a higher degree of network connectivity. This
can be understood from the perspective of heterogeneity, where smaller ratios indicate a significant
disparity between local and global design matrices. Consequently, condition (6) is reasonable
as it suggests that higher levels of heterogeneity necessitate improved network connectivity. In
numerical experiments, we can observe that if ρ does not satisfy the condition as (6), obtaining
optimal statistical error is not achievable, which indicates the optimal statistical error undergoes a
phase transition with the network connectivity.

Our results demonstrate the benefit of overparameterization for DGD. Theorem 1 shows that standard
DGD is sufficient to provide a satisfied statistical estimator with efficient computation without gradient
correction techniques. This finding challenges the widely held belief in decentralized optimization
literature that extra techniques like gradient tracking and other gradient-correction-based methods are
necessary for heterogeneous scenarios [39, 32]. The following corollary considers the well-known
instance where the design matrix and noise are generated from sub-Gaussian distribution, which
indicates that DGD with early stopping can achieve the minimax optimal statistical rate under the ℓ2
metric.
Corollary 1. Suppose that entries of global design matrix X generated from i.i.d 1-sub-Gaussian
distribution, and the total sample size satisfies N ≳ s

(
s log ed

s + log dN
m

)
. The noise vector ξ is

generated from independent σ2-sub-Gaussian entries, and the initialization is set as Theorem 1 with

ϵ = O
(
σ
√

log d
N

)
. If the spectral gap satisfies ρ ≲ 1

m4 and stepsize is set as η = O

(
1−

(
1+

√
ρ

2

) 1
4

w⋆
max

)
,

then after running t = O

 w⋆
max

√
N

σ
√
log d

(
1−

(
1+

√
ρ

2

) 1
4

) log 1
α

 iterations, the sequence generated by (3)

and (4) based on DGD for solving problem (2) would obtain estimator that
∥∥wt −w⋆

∥∥ ≲ σ
√

s log d
N

with probability at least 1− 3
8d3 .

Corollary 1 indicates that in the sub-Gaussian setting, network-independent statistical error obtained

by DGD matches optimal rate O
(
σ
√

s log d
N

)
under ℓ2 metric in the centralized setting [28]. In this

context, the condition for network connectivity implies that the smaller ρ is required as the number of
agents m increases. This is reasonable because when the total sample size N is fixed, an increase in
the number of agents results in fewer samples assigned to each agent. Consequently, better network
connectivity is necessary to achieve optimal estimation.

5 Communication Efficient DGD via Truncation

It is apparent that iterations in (3) and (4) of DGD, each agent has to transmit two d-dimensional
vectors ut,i and vt,i to its neighboring agents per iteration. Because we are considering the high-
dimensional regime where the feature has ultra-high dimension, which leads to the O

(
d · 1

ηζ log
1
α

)
high communication complexity (in terms of the bits transmitted) for DGD. The primary idea is

6
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whether it is possible to transmit fewer partial elements instead of the entire d-dimensional vectors
for ut,i,vt,i in all rounds of communication. Since all elements of ut,i and vt,i equal to α at
initialization, we can utilize the one step of local gradient descent step in each agent to distinguish
the support set and non-support based on changes of magnitudes for each element. The intuition is
that the elements on the support would grow more rapidly than those on the non-support. Thus, we
propose the Truncated Decentralized Gradient Descent (T-DGD) as

ut+1,i =

m∑
j=1

Wij · Truns

((
ut,j − η

4

n
ut,j ⊙

(
XT

j

(
Xj

(
ut,j ⊙ ut,j − vt,j ⊙ vt,j

)
− yj

))))
;

vt+1,i =

m∑
j=1

Wij · Truns

((
vt,j + η

4

n
vt,j ⊙

(
XT

j

(
Xj

(
ut,j ⊙ ut,j − vt,j ⊙ vt,j

)
− yj

))))
,

(8)

for ∀i ∈ [m], where Truns(x) is the operator that preserves only the s largest magnitude elements of
the vector x while setting all other elements to zero. The following proposition shows the benefit of
T-DGD in sparse regression under proper conditions.

Proposition 1. With the same setup in Corollary 1, if the ground truth w⋆ satisfies w⋆
min

2 ≳
√
sδmaxw

⋆
max + σ

√
log d
n , then the sequence generated by T-DGD as (8) for solving prob-

lem (2) would obtain estimator that
∥∥wt −w⋆

∥∥ ≲ σ
√

s log d
N with probability at least 1 −

3
8d3 . However, the communication complexity in terms of transmitted bits would be at most

O
(
s ·
(
w⋆

max

√
N
)/(

σ
√
log d

(
1−

(
1+

√
ρ

2

) 1
4

))
log 1

α

)
.

To ensure condition w⋆
min

2 ≳
√
sδmaxw

⋆
max + σ

√
log d
n satisfied, it is necessary to require that each

agent has sufficient samples and SNR is high enough such that δmax ≲ w⋆
min√

sw⋆
max

and σ
√

log d
n ≲

w⋆
min. This proposition enables each agent to transmit only s elements of d-dimensional vector per

communication round, which can achieve optimal statistical rate and eliminate the d-linear increasing
communication complexity. The result in Proposition 1 validates the usefulness of the Hadamard
product over-parameterization in decentralized gradient-based optimization.

6 Numerical Results

This section conducts the experimental studies to evaluate the theoretical findings of DGD and
T-DGD for solving problem (2) in Subsection 6.1, Subsection 6.2, respectively. In Subsection 6.3,
we compare the effectiveness of implicit regularization of DGD with explicit regularization based
decentralized methods. The communication networks G are generated from Erdős Rényi (ER) graphs
with link activation under given probabilities. By default, unless stated otherwise, all the design
matrices X have i.i.d. standard Gaussian elements, noise ξ follows i.i.d. N (0, 0.52) distribution, and
the magnitudes of elements on support S are 1. All experiments are conducted on 12th Gen Intel(R)
Core(TM) i7-12700@2.10GHz processor and 16.0GB RAM under Windows 11 system.

6.1 Simulations on DGD

We organize the experiments as follows: 1) We visualize the dynamics of averaged variables and
consensus errors that allow us to evaluate the implicit regularization of DGD and the soundness of
our technical analysis. 2) We check whether DGD can achieve optimal statistical error, the impacts
of ambient dimension d and initialization scale α on statistical and computational properties. 3) We
evaluate the condition of (6) that reveals the relationship between network connectivity and network
scale for achieving the statistical accuracy of centralized setting.

• Dynamics of wt,ut,vt and ut,i − ut, vt,i − vt. In this case, we set d = 2000, s = 10,m =
10, N = 400, ρ = 0.1778, α = 10−6. Fig. 1(a) demonstrates the convergence of averaged wt

in DGD, showing successful convergence of elements on support S and maintenance of small

7

16651 https://doi.org/10.52202/079017-0531



magnitudes for elements on non-support Sc. Fig. 1(b) and Fig. 1(c) further illustrate how DGD
utilizes ut and vt to fit parameters on positive and negative support, respectively. Additionally,
the magnitudes of ut and vt on non-positive and non-negative support remain small enough as the
initialization. Consensus errors ut,i − ut and vt,i − vt are depicted in Fig. 1(d) and Fig. 1(e),
respectively. The trends in these curves correspond to the magnitudes of the model parameter,
affirming the validity of our analysis.
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Figure 1: Dynamics of avergaed variables and consensus errors.

• Impact of d and α on optimal estimation. We vary the dimension of d (4×102, 4×103, 4×104)
to access effect of d on both statistical and computational properties. With s = ⌈log d⌉ and N
chosen to satisfy s log d/N ≈ 0.25, we aim to maintain the same order optimal statistical error

O
(
σ
√

s log d
N

)
. Testing is conducted on two networks with m = 20 but different ρ. For each d,

we select the maximum initialization α that achieves optimal statistical error, resulting in α = 10−8

for d = 4 × 102, α = 10−8.5 for d = 4 × 103 and α = 10−9 for d = 4 × 104. The results for
ρ = 0.1778 and ρ = 0.7519 are displayed in Fig. 2(a) and Fig. 2(b), respectively. It is observable
that DGD obtains estimators with statistical error matching that of the centralized setting, with
computational complexity remaining largely unaffected by ambient dimension d across different
network conditions. To assess the influence of α, we set d = 2000, s = 10,m = 20, N = 400,
and different values for α on network with m = 20, ρ = 0.1778. The results in Fig. 2(c) illustrate
that it is necessary to use small enough initialization to obtain optimal estimator.
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Figure 2: Impact of ambient dimension d and initialization α.

• Dependence on ρ and m. We set d = 2000, s = 10, N = 200, α = 10−6 and test on networks
with different numbers of agents. The results are shown in Fig. 3 where Fig. 3(a) and Fig.
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Figure 3: (a) ρ = 0.9400; (b) ρ = 0.1778; (c) m = 10.

3(b) display the performance with varied numbers of agents under fixed ρ = 0.9400 and fixed
ρ = 0.1778, respectively. Fig. 3(a) indicates that DGD would not obtain the optimal estimator as
the centralized setting when the number of agents is large which violates the condition in (6). When
network connectivity is sufficiently connected as ρ = 0.1778, Fig. 3(b) conveys that this can allow
a larger scale of agents to attain optimal statistical error. In Fig. 3(c), we fix m = 10 and observe
the phenomenon under varied ρ by choosing proper stepsizes to achieve the best statistical error.
Fig. 3(c) illustrates that ρ would influence the stopping time when DGD can obtain the optimal
estimator. The worse the network, the more iterations it takes to find the optimal estimator.

6.2 Simulations on T-DGD

In this section, we evaluate the effectiveness of T-DGD. Initially, we vary the values of N , keeping
the other parameters consistent with the simulations in Fig. 1. Fig. 4(a) illustrates that when each
agent has inadequate samples (N = 100, n = 10), T-DGD would fail in achieving optimal estimation.
However, with increasing local samples (N = 400, n = 10), T-DGD matches DGD in both statistical
accuracy and convergence performance. Subsequently, we set the magnitudes of the ground truth on
support as 100 and N = 300. The performance is depicted as dashed lines in Fig. 4(c), indicating
failure of T-DGD under higher noise level (σ = 0.5). We further reduce the noise magnitude to
σ = 0.1, and solid lines in Fig. 4(c) demonstrate the usefulness of T-DGD in sparse regression. These
observations validate the statement in Proposition 1.
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Figure 4: (a) N = 100; (b) N = 400; (c) Different noise intensities.

6.3 Comparison with explicit regularization

We have compared our proposed method with three existing decentralized methods, namely: CTA-
DGD (LASSO) [18], ATC-DGD (LASSO) [17], and DGT (NetLASSO) [31]. These methods are
all derived based on the LASSO formulation with explicit regularization. The numerical results
presented in Fig. 5 compare all four methods under three different network connectivity settings.
For each method, we tuned the step size to achieve the best performance. Our proposed method
demonstrated the best recovery performance in all network settings with minimal iterations.
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Figure 5: Comparison with decentralized sparse solvers under varying communication network. The
setting is d = 1000, k = 5,m = 50, N = 280, σ = 0.5 and magnitude of sparse signal is 10.

We further compared T-DGD with existing methods with truncated versions of existing methods:
Trun-CTA-DGD (LASSO), Trun-ATC-DGD (LASSO), and Trun-DGT (NetLASSO) which use the
same Top-s truncation operator. As shown in Fig. 6, our proposed method is the only one to achieve
successful recovery, while all other truncated decentralized methods failed. The numerical evidence
demonstrates that naively combining sparsification with decentralized algorithms is not granted to
converge. This is precisely one of the motivations of this work: to provide communication-efficient
algorithms with both provably statistical and computational guarantees. This result also demonstrates
the unique benefit of overparameterization and implicit regularization for decentralized learning
setting, which has not been explored in the literature of learning theory.
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Figure 6: Truncated version: comparison with truncated decentralized sparse solvers. The setting is
d = 1000, s = 5,m = 50, N = 550, σ = 0.1, ρ = 0.2458 and magnitude of sparse signal is 10.

7 Conclusion

In this paper, we study the implicit regularization of decentralized gradient descent for decentralized
sparse regression in the unpenalized and overparameterized regimes. We establish both statistical
and computational guarantees for the decentralized estimator under mild conditions of network
connectivity, underscoring the utility of DGD in addressing overparameterized models. Furthermore,
the proposed truncated DGD (T-DGD) offers a promising idea to reduce communication complexity
while maintaining performance. In future work, exploring the possibility of relaxing the RIP condition
in our assumption and leveraging the restricted eigenvalue condition to achieve optimal estimator in
the decentralized setting is an interesting topic. Additionally, investigating alternative forms of implicit
regularizations in decentralized optimization algorithms for more complicated overparameterized
models is another intriguing direction.
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A Appendix.A

Section A.1, A.2 give the additional notations and useful basic lemmas, respectively. Section A.3
provides the properties for the simplified setting where all the elements of ground truth parameter w⋆

are non-negative. Section A.4 gives the key proposition for the general case where w⋆ contains both
positive and negative elements on support S . Final Section A.5 concludes the proofs for the Theorem
1, Corollary 1, and Proposition 1 in the main paper based on Proposition 3 in Section A.4.

A.1 Full Notations

In addition to introduced notations from Section 3.1 in the main paper, we need additional notations
to present the proof. The consensus error is denoted as ∆t,i

u := ut,i − ut. ∆t,i
u,S+ = ∆t,i

u ⊙ 1S+

and notations ∆t,i
u,S− ,∆

t,i
u,Sc can be defined similarly. The additional notations are defined as

U t :=
[
ut,i, · · · ,ut,m

]
, ∆t

u :=
[
∆t,1

u , · · · ,∆t,m
u

]
, U

t
:= ut1T

m;

∇uf
(
U

t
,V

t
)
:=
[
∇uf1(u

t,vt), · · · ,∇ufm(ut,vt)
]
, ∇uF (U

t
,V

t
) := ∇uF (ut,vt)1m;

∇uf
(
U t,V t

)
:=
[
∇uf1(u

t,1,vt,1), · · · ,∇ufm(ut,m,vt,m)
]
;

∇uf
(
U

t
,V t

)
:=
[
∇uf1(u

t,vt,1), · · · ,∇ufm(ut,vt,m)
]
.

(9)

Above definitions can be also extended to variable v similarly.

A.2 Premilary Lemmas

Lemma 1. (Theorem 6.5 in [37]) Consider the random feature vector x ∈ Rd that all entries obey
i.i.d. 1-sub-Gaussian distribution, if the sample size satisfies n ≳ δ−2

(
s log ed

s + log 2
ϵ

)
, then the

sample covariance matrix X̂ = 1
n

∑n
i=1 xix

T
i satisfies (δ, s)-RIP condition with probability 1− ϵ.

Lemma 2. (Lemma A.3 in [36]) Suppose that X√
n
∈ Rn×d satisfies the (δ, s+ 1)-RIP, if w ∈ Rd is

a s-sparse vector, then
∥∥∥(XTX

n − I
)
w
∥∥∥
∞

≤
√
sδ∥w∥∞.

Lemma 3. (Lemma A.4 in [36]) Suppose that 1√
n
X ∈ Rn×d that satisfies (δ, 1)-RIP with 0 ≤ δ ≤ 1,

then we have
∥∥∥XTX

n w
∥∥∥
∞

≤ 2d∥w∥∞,∀w ∈ Rd.

Lemma 4. (Lemma B.5 in [42]) Let ξ ∈ Rn is a vector of independent σ-sub-Gaussian random
variables and all ℓ2 norm of column vectors of X ∈ Rn×d are bounded, then with high probability

1− 1
8d3 such that

∥∥∥XT ξ
n

∥∥∥
∞

≲ σ
√

log d
n .

A.3 Non-negative Case

We consider the simplified setting where all the elements on support are positive for ground truth w⋆.
The following lemma shows the recursion of average variable ut on support S and non-support Sc.
Lemma 5. Consider the sequence {ut,i} generated according to (3) and (4) by DGD for solving
loss function in (2), the average signal ut on support S and non-support Sc are updated according
to the following formulas

ut+1
S = ut

S ⊙

(
1d − 4η

(
ut
S ⊙ ut

S −w⋆
)
− 4η

XTX

N

(
ut
Sc ⊙ ut

Sc

)
+ 4η

XT ξ

N

− 4η

(
XXT

N
− I

)(
ut
S ⊙ ut

S −w⋆
)
− 4ηpt

)
− 4ηqt; (10)

ut+1
Sc = ut

Sc ⊙

(
1d − 4η

(
XTX

N

(
ut
Sc ⊙ ut

Sc

)
− XT ξ

N
+

(
XXT

N
− I

)(
ut
S ⊙ ut

S −w⋆
))
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−4ηgt
)
− 4ηf t, (11)

where the perturbed error terms pt, qt, gt,f t induced from decentralized network are defined as

pt =
1

m

m∑
i=1

(
XT

i Xi

n
− I

)(
2ut

S ⊙∆t,i
S +∆t,i

S ⊙∆t,i
S

)
+ 3∆t,i

S ⊙∆t,i
S

+
XT

i Xi

n

(
2ut

Sc ⊙∆t,i
Sc +∆t,i

Sc ⊙∆t,i
Sc

)
; (12)

qt =
1

m

m∑
i=1

∆t,i
S ⊙

((
XT

i Xi

n
− I

)(
ut
S ⊙ ut

S −w⋆ + 2ut
S ⊙∆t,i

S +∆t,i
S ⊙∆t,i

S

)
+∆t,i

S ⊙∆t,i
S − XT

i ξi
n

+
XT

i Xi

n

(
ut
Sc +∆t,i

Sc

)2)
; (13)

gt =
1

m

m∑
i=1

(
XT

i Xi

n
− I

)(
2ut

S ⊙∆t,i
S +∆t,i

S ⊙∆t,i
S

)
+

XT
i Xi

n

(
2ut

Sc ⊙∆t,i
Sc +∆t,i

Sc ⊙∆t,i
Sc

)
;

(14)

f t =
1

m

m∑
i=1

∆t,i
Sc ⊙

((
XT

i Xi

n
− I

)(
ut
S ⊙ ut

S −w⋆ + 2ut
S ⊙∆t,i

S +∆t,i
S ⊙∆t,i

S

)
+
XT

i Xi

n

(
ut
Sc +∆t,i

Sc

)2
− XT

i ξi
n

)
. (15)

Proof. Based on the updating of DGD, one-step iteration of the averaged parameter is

ut+1 = ut − η∇F (ut) +
η

m

m∑
i=1

(
∇fi(u

t)−∇fi(u
t,i)
)
. (16)

The gradient difference has the formula as

∇fi(u
t)−∇fi(u

t,i) = ut ⊙
(
4

n
XT

i Xi

(
ut ⊙ ut −w⋆

)
− 4

n
XT

i ξi

)
− ut,i ⊙

(
4

n
XT

i Xi

(
ut,i ⊙ ut,i −w⋆

)
− 4

n
XT

i ξi

)
=
(
ut − ut,i

)
⊙
(
4

n
XT

i Xi

(
ut,i ⊙ ut,i −w⋆

)
− 4

n
XT

i ξi

)
+ ut ⊙

(
4

n
XT

i Xi

(
ut ⊙ ut − ut,i ⊙ ut,i

))
= −∆t,i ⊙

(
4

n
XT

i Xi

(
ut ⊙ ut −w⋆ + 2ut ⊙∆t,i +∆t,i ⊙∆t,i

)
− 4

n
XT

i ξi

)
− ut ⊙

(
4

n
XT

i Xi

(
2ut ⊙∆t,i +∆t,i ⊙∆t,i

))
, (17)

where the last inequality is due to the definition of ∆t,i. Substituting the above equality into (16)
would have

ut+1 = ut − 4ηut ⊙

(
ut
S ⊙ ut

S −w⋆ +
XTX

N

(
ut
Sc ⊙ ut

Sc

)
− XT ξ

N

+

(
XXT

N
− I

)(
ut
S ⊙ ut

S −w⋆
))

− 4ηut ⊙ 1

m

m∑
i=1

(
2

(
XT

i Xi

n
− I

)(
ut
S ⊙∆t,i

S

)
+ 2ut

S ⊙∆t,i
S
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+2
XT

i Xi

n

(
ut
Sc ⊙∆t,i

Sc

)
+

(
XT

i Xi

n
− I

)(
∆t,i

S ⊙∆t,i
S

)
+∆t,i

S ⊙∆t,i
S

+
XT

i Xi

n

(
∆t,i

Sc ⊙∆t,i
Sc

))

− 4η
1

m

m∑
i=1

∆t,i ⊙

(
ut
S ⊙ ut

S −w⋆ +

(
XT

i Xi

n
− I

)(
ut
S ⊙ ut

S −w⋆
)

+
XT

i Xi

n

(
ut
Sc ⊙ ut

Sc

)
− XT

i ξi
n

)

− 4η
1

m

m∑
i=1

∆t,i ⊙

(
2

(
XT

i Xi

n
− I

)(
ut
S ⊙∆t,i

S

)
+ 2ut

S ⊙∆t,i
S

+2
XT

i Xi

n

(
ut
Sc ⊙∆t,i

Sc

)
+

(
XT

i Xi

n
− I

)(
∆t,i

S ⊙∆t,i
S

)
+∆t,i

S ⊙∆t,i
S

+
XT

i Xi

n

(
∆t,i

Sc ⊙∆t,i
Sc

))
(18)

Because there are 1
m

∑m
i=1 u

t
S ⊙∆t,i

S = 0 and 1
m

∑m
i=1 ∆

t,i
S ⊙

(
ut
S ⊙ ut

S −w⋆
)
= 0, the above

formula can be simplified as

ut+1 = ut − 4ηut ⊙

(
ut
S ⊙ ut

S −w⋆ +
XTX

N

(
ut
Sc ⊙ ut

Sc

)
− XT ξ

N

+

(
XXT

N
− I

)(
ut
S ⊙ ut

S −w⋆
))

− 4ηut ⊙ 1

m

m∑
i=1

(
2

(
XT

i Xi

n
− I

)(
ut
S ⊙∆t,i

S

)
+2

XT
i Xi

n

(
ut
Sc ⊙∆t,i

Sc

)
+

(
XT

i Xi

n
− I

)(
∆t,i

S ⊙∆t,i
S

)
+∆t,i

S ⊙∆t,i
S

+
XT

i Xi

n

(
∆t,i

Sc ⊙∆t,i
Sc

))

− 4η
1

m

m∑
i=1

∆t,i ⊙

((
XT

i Xi

n
− I

)(
ut
S ⊙ ut

S −w⋆
)

+
XT

i Xi

n

(
ut
Sc ⊙ ut

Sc

)
− XT

i ξi
n

)

− 4η
1

m

m∑
i=1

∆t,i ⊙

(
2

(
XT

i Xi

n
− I

)(
ut
S ⊙∆t,i

S

)
+ 2ut

S ⊙∆t,i
S

+2
XT

i Xi

n

(
ut
Sc ⊙∆t,i

Sc

)
+

(
XT

i Xi

n
− I

)(
∆t,i

S ⊙∆t,i
S

)
+∆t,i

S ⊙∆t,i
S

+
XT

i Xi

n

(
∆t,i

Sc ⊙∆t,i
Sc

))
.

(19)

Thus, this would obtain the recursion (10) for support averaged signal.
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The recursion of optimization error on non-support Sc becomes

ut+1
Sc = ut

Sc − 4ηut
Sc ⊙

(
XTX

N

(
ut
Sc ⊙ ut

Sc

)
− XT ξ

N
+

(
XXT

N
− I

)(
ut
S ⊙ ut

S −w⋆
))

− 4ηut
Sc ⊙

1

m

m∑
i=1

(
2

(
XT

i Xi

n
− I

)(
ut
S ⊙∆t,i

S

)
+2

XT
i Xi

n

(
ut
Sc ⊙∆t,i

Sc

)
+

(
XT

i Xi

n
− I

)(
∆t,i

S ⊙∆t,i
S

)
+
XT

i Xi

n

(
∆t,i

Sc ⊙∆t,i
Sc

))

− 4η
1

m

m∑
i=1

∆t,i
Sc ⊙

((
XT

i Xi

n
− I

)(
ut
S ⊙ ut

S −w⋆
)

+
XT

i Xi

n

(
ut
Sc ⊙ ut

Sc

)
− XT

i ξi
n

)

− 4η
1

m

m∑
i=1

∆t,i
Sc ⊙

(
2

(
XT

i Xi

n
− I

)(
ut
S ⊙∆t,i

S

)
+2

XT
i Xi

n

(
ut
Sc ⊙∆t,i

Sc

)
+

(
XT

i Xi

n
− I

)(
∆t,i

S ⊙∆t,i
S

)
+
XT

i Xi

n

(
∆t,i

Sc ⊙∆t,i
Sc

))
. (20)

Rearranging the above equality would obtain the (11).

The following lemma shows the recursion of consensus error on support S and non-support Sc.
Lemma 6. Consider the sequence {ut,i} generated according to (3) and (4) by DGD for solving loss
function in (2), the consensus error ∆t on support S and non-support Sc have following recursion∥∥∆t+1

S
∥∥
∞ ≤ ρ

∥∥∆t
S
∥∥
∞

(
1 + 4η

((√
sδmax + 1

) ∥∥ut
S ⊙ ut

S −w⋆
∥∥
∞ + 2d

(
ut
Sc +∆t

Sc

)2
+ 2

(√
sδmax + 1

) (∥∥ut
S
∥∥
∞ +

∥∥∆t
S
∥∥
∞

)2
+max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

))

+ 4ρη
∥∥ut

S
∥∥
∞ ·

(
√
s (δmax + δ)

∥∥ut
S ⊙ ut

S −w⋆
∥∥
∞ +max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

+

∥∥∥∥∥XT ξ

N

∥∥∥∥∥
∞

+ 2d
(
ut
Sc +∆t

Sc

)2)
; (21)

∥∥∆t+1
Sc

∥∥
∞ ≤ ρ

∥∥∆t
Sc

∥∥
∞

(
1 + 4η

(
√
sδmax

∥∥ut
S ⊙ ut

S −w⋆
∥∥
∞ +

√
sδmax

(∥∥ut
S
∥∥
∞ +

∥∥∆t
S
∥∥
∞

)2
+ 6d

(∥∥ut
Sc

∥∥
∞ +

∥∥∆t
Sc

∥∥
∞

)2
+max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

))
+ 4ρη

∥∥ut
Sc

∥∥
∞ ·
(√

s (δmax + δ)
∥∥ut

S ⊙ ut
S −w⋆

∥∥
∞ +

√
sδmax

∥∥∆t
S
∥∥
∞

·
(∥∥ut

S
∥∥
∞ +

∥∥∆t
S
∥∥
∞

)
+ 4d

∥∥ut
Sc

∥∥2
∞ +max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

+

∥∥∥∥∥XT ξ

N

∥∥∥∥∥
∞

)
. (22)
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Proof. Based on the iteration of DGD, there is

U t+1

(
Im − 1

m
1m1T

m

)
=
(
U t − η∇f(U t)

)
W

(
Im − 1

m
1m1T

m

)
=
(
U t − η∇f(U t)

)(
W − 1

m
1m1T

m

)
=
(
U t −U

t − η∇f(U t) + η∇F (U
t
)
)(

W − 1

m
1m1T

m

)
. (23)

Thus, the consensus error on support S has recursion as follows∥∥∆t+1
S
∥∥
∞

(i)

≤ ρ
∥∥∆t

S
∥∥
∞ + ρηmax

i

∥∥1S ⊙
(
∇fi(u

t,i)−∇F (ut)
)∥∥

∞

≤ ρ
∥∥∆t

S
∥∥
∞ + ρηmax

i

∥∥1S ⊙
(
∇fi(u

t,i)−∇fi(u
t)
)∥∥

∞

+ ρηmax
i

∥∥1S ⊙
(
∇fi(u

t)−∇F (ut)
)∥∥

∞

(ii)

≤ ρ
∥∥∆t

S
∥∥
∞ + 4ρη

∥∥∆t
S
∥∥
∞ ·
((√

sδmax + 1
) ∥∥ut

S ⊙ ut
S −w⋆

∥∥
∞ +

+2d
∥∥ut

Sc

∥∥2
∞ +max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

+ 2
(√

sδmax + 1
) ∥∥ut

S
∥∥
∞

∥∥∆t
S
∥∥
∞

+4d
∥∥ut

Sc

∥∥
∞

∥∥∆t
Sc

∥∥
∞ +

(√
sδmax + 1

) ∥∥∆t
S
∥∥2
∞ + 2d

∥∥∆t
Sc

∥∥2
∞

)
+ 4ρη

∥∥ut
S
∥∥
∞ ·

(
2
(√

sδmax + 1
) ∥∥ut

S
∥∥
∞

∥∥∆t
S
∥∥
∞ + 4d

∥∥ut
Sc

∥∥
∞

∥∥∆t
Sc

∥∥
∞

+
(√

sδmax + 1
) ∥∥∆t

S
∥∥2
∞ + 2d

∥∥∆t
S
∥∥2
∞ +

(√
s (δmax + δ) + 2

) ∥∥ut
S ⊙ ut

S −w⋆
∥∥
∞

+ 2d
∥∥ut

Sc

∥∥2
∞ +max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

+

∥∥∥∥∥XT ξ

N

∥∥∥∥∥
∞

)
(iii)

≤ ρ
∥∥∆t

S
∥∥
∞

(
1 + 4η

((√
sδmax + 1

) ∥∥ut
S ⊙ ut

S −w⋆
∥∥
∞ + 2d

(
ut
Sc +∆t

Sc

)2
+ 2

(√
sδmax + 1

) (∥∥ut
S
∥∥
∞ +

∥∥∆t
S
∥∥
∞

)2
+max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

))

+ 4ρη
∥∥ut

S
∥∥
∞ ·

(
√
s (δmax + δ)

∥∥ut
S ⊙ ut

S −w⋆
∥∥
∞ +max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

+

∥∥∥∥∥XT ξ

N

∥∥∥∥∥
∞

+ 2d
(
ut
Sc +∆t

Sc

)2)
, (24)

where (i) is due to the defined spectral gap of network in Assumption 1 and (ii) uses the gradient
difference formula in (17) and

∇fi(u
t)−∇F (ut) = ut ⊙

(
4XT

i Xi

n

(
ut ⊙ ut −w⋆

)
− 4XT

i ξi
n

)

− ut ⊙

(
4XTX

N

(
ut ⊙ ut −w⋆

)
− 4XT ξ

N

)
(25)

= ut ⊙

(
4

((
XT

i Xi

n
− I

)
−

(
XTX

N
− I

))(
ut ⊙ ut −w⋆

)
+

(
4XT ξ

N
− 4XT

i ξi
n

))
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(26)

and local and global RIP conditions. The (iii) is summing up terms involved
∥∥∆t+1

S
∥∥
∞ and

∥∥ut
S
∥∥
∞

separately.

The recursion of consensus error on non-support Sc part is as follows∥∥∆t+1
Sc

∥∥
∞ ≤ ρ

∥∥∆t
Sc

∥∥
∞ + ρηmax

i

∥∥1Sc ⊙
(
∇fi(u

t
i)−∇F (ut)

)∥∥
∞

≤ ρ
∥∥∆t

Sc

∥∥
∞ + ρηmax

i

∥∥1Sc ⊙
(
∇fi(u

t
i)−∇fi(u

t)
)∥∥

∞

+ ρηmax
i

∥∥1Sc ⊙
(
∇fi(u

t)−∇F (ut)
)∥∥

∞

≤ ρ
∥∥∆t

Sc

∥∥
∞ + 4ρη

∥∥∆t
Sc

∥∥
∞ ·
(√

sδmax

∥∥ut
S ⊙ ut

S −w⋆
∥∥
∞ +

+2d
∥∥ut

Sc

∥∥2
∞ +max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

+ 2
√
sδmax

∥∥ut
S
∥∥
∞

∥∥∆t
S
∥∥
∞

+4d
∥∥ut

Sc

∥∥
∞

∥∥∆t
Sc

∥∥
∞ +

√
sδmax

∥∥∆t
S
∥∥2
∞ + 2d

∥∥∆t
Sc

∥∥2
∞

)
+ 4ρη

∥∥ut
Sc

∥∥
∞ ·

(
2
√
sδmax

∥∥ut
S
∥∥
∞

∥∥∆t
S
∥∥
∞ + 4d

∥∥ut
Sc

∥∥
∞

∥∥∆t
Sc

∥∥
∞

+
√
sδmax

∥∥∆t
S
∥∥2
∞ + 2d

∥∥∆t
Sc

∥∥2
∞ +

√
s (δmax + δ)

∥∥ut
S ⊙ ut

S −w⋆
∥∥
∞

+ 4d
∥∥ut

Sc

∥∥2
∞ +max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

+

∥∥∥∥∥XT ξ

N

∥∥∥∥∥
∞

)

≤ ρ
∥∥∆t

Sc

∥∥
∞

(
1 + 4η

(
√
sδmax

∥∥ut
S ⊙ ut

S −w⋆
∥∥
∞ +

√
sδmax

(∥∥ut
S
∥∥
∞ +

∥∥∆t
S
∥∥
∞

)2
+ 6d

(∥∥ut
Sc

∥∥
∞ +

∥∥∆t
Sc

∥∥
∞

)2
+max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

))

+ 4ρη
∥∥ut

Sc

∥∥
∞ ·

(
√
s (δmax + δ)

∥∥ut
S ⊙ ut

S −w⋆
∥∥
∞ +

√
sδmax

∥∥∆t
S
∥∥
∞

·
(∥∥ut

S
∥∥
∞ +

∥∥∆t
S
∥∥
∞

)
+ 4d

∥∥ut
Sc

∥∥2
∞ +max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

+

∥∥∥∥∥XT ξ

N

∥∥∥∥∥
∞

)
. (27)

The following proposition shows the dynamics of average variable ut and consensus error ∆t,i in the
form of an inductive hypothesis. Before showing the proposition, we define the following quantities.
We define T := 1

ηw⋆
max

log 1
α4 and for any integer k ≥ −1, Tk := 2kT and T k :=

∑k
i=0 Ti with

T−1 = 0 where Tk denotes the number of iterations between (k − 1)-th and k-th induction step.
Defining K :=

⌈
log2

w⋆
max

ζ

⌉
as the number of induction steps, Bk :=

w⋆
max

40×2k
denotes the upper bound

of perturbed error in (k − 1)-th induction step and constant scale parameter β := 32
1−√

ρ .

Proposition 2. With the same setting as Theorem 1, the following claims hold k = 0, 1, · · · ,K − 1
steps.

• (a) For T k−1 ≤ t < T k that ∀k ∈ [K], there is
∥∥ut

S ⊙ ut
S −w⋆

∥∥
∞ ≤ w⋆

max

2k
.

• (b) For ∀k ∈ [K], there is
∥∥∥uTk−1

S ⊙ u
Tk−1

S −w⋆
∥∥∥
∞

≤ w⋆
max

2k
.

• (c) For T k−1 ≤ t < T k that ∀k ∈ [K], it has
∥∥∆t

S
∥∥
∞ ≤ 4βρ

3
4 η
∥∥ut

S
∥∥
∞ Bk. In addition, the

refined element-wise bound is |∆t
j | ≤ 4βρ

3
4 η|ut

j |Bk,∀j ∈ S.
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• (d) For T k−1 ≤ t < T k that ∀k ∈ [K], it has
∥∥∆t

Sc

∥∥
∞ ≤ 4βρ

3
4 η
∥∥ut

Sc

∥∥
∞ Bk. In addition, the

refined element-wise bound is |∆t
j | ≤ 4βρ

3
4 η|ut

j |Bk,∀j ∈ Sc.

• (e) For ∀k ∈ [K] and ∀j ∈ S, α3 ≤ u
Tk−1

j ≤ w⋆
j + 4Bk.

Proof. Proof idea: Inductions (a), (b), (e) indicate that if the connectivity of the network is
sufficiently well (ρ is small enough), the trajectory of the averaged signal ut would mimic that
of the centralized case [36]. Different from the centralized setting, these three claims are based
on inductions (c) and (d), which guarantee that the consensus error along both support S and
non-support Sc can be controlled based on the magnitude of the respective signals. We utilize this
property to reparameterize consensus error by Hadamard product based on the averaged signal. Thus,
the perturbed error terms induced by the decentralized network in the recursion of the averaged signal
can be quantitatively through the reparameterized consensus error. Then conditions on network
connectivity ρ and step size η can guarantee that the averaged signal in decentralized would have
properties in inductions (a), (b), (e) based on inductions (c), (d).

Base case: As the initialization u0,i = α1d,∀i ∈ [m]. Due to the condition on α, the base
case is true.

Induction Step: If the above (a)-(e) induction hypotheses hold all until some 0 ≤ k ≤ K − 1, we
should prove they still hold at k + 1-th induction step.

(a) The magnitude of pt in (12) under this induction step can be bounded based on induc-
tions (c), (d). ∀ T k−1 ≤ t < t+ 1 < T k, if

∥∥ut
Sc

∥∥
∞ keep same order as initialization, then there

is ∥∥pt
S
∥∥
∞ ≤ 8

√
sδmaxβρ

3
4 ηBk

∥∥ut
S
∥∥2
∞ +

(√
sδmax + 3

) (
4βρ

3
4 ηBk

∥∥ut
S
∥∥
∞

)2
+ 2d

(
8βρ

3
4 η
∥∥ut

Sc

∥∥2
∞ Bk +

(
4βρ

3
4 η
∥∥ut

Sc

∥∥
∞ Bk

)2)
≤

3
√
ρBk

16
, (28)

where the first inequality is based on Lemma 2 and Lemma 3, the last inequality is due to step
size, value of β,

∥∥ut
S
∥∥2
∞ ≤ 2w⋆

max, network connectivity condition and global RIP condition that
ρ

1
4
√
sδmax ≤

√
sδ ≤ 1.

For the perturbation qt in (13), which is an error term outside the multiplicative updates in (10),
based on induction (a), fine-grained upper in (c), there is ∀j ∈ S

|qtj | ≤ 4βρ
3
4 ηBk|uj |

(
√
sδmax

∥∥ut
S ⊙ ut

S −w⋆
∥∥
∞ +

3
√
ρBk

16
+ max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

)

≤
√
ρBk|uj |
32

, (29)

where the first inequality is due to (28) by comparing formula of qt with pt and last inequality is
due to step size condition and such that ρ

1
4 maxi

∥∥∥XT
i ξi

n

∥∥∥
∞

≤
∥∥∥XT ξ

N

∥∥∥
∞

< w⋆
max. Then qt could be

reparameterized as qt = rtq ⊙ ut
S where

∥∥rtq∥∥∞ ≤
√
ρBk

16 for ∀t that T k−1 ≤ t < T k, the perturbed
optimization recursion on support over decentralized network in (10) becomes(

ut+1
S
)2

=
(
ut
S
)2 ⊙ (1d − 4η

(
ut
S ⊙ ut

S −w⋆ +Et
2 +Et

3 + pt + rtq
))2

. (30)

where the perturbation errors Et
2 and Et

3 are defined as

Et
2 =

(
XTX

N
− I

)(
ut
S ⊙ ut

S −w⋆
)
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Et
3 =

XTX

N
(ut

Sc ⊙ ut
Sc)−

XT ξ

N
. (31)

Because there is
∥∥Et

2

∥∥
∞ +

∥∥Et
3

∥∥
∞ + ∥pt∥∞ +

∥∥rtq∥∥∞ ≤ Bk, which is based on the upper bound
in (70). Then the proof is divided into the following two cases based on the magnitude of the element
in w⋆

S+ .

(1) ∀j that w⋆
j ≥ 20Bk, based on induction hypothesis (e) that

(
u
Tk−1

j

)2
≤ w⋆

j + 4Bk ,

there is
(
u
Tk−1

j

)2
≤ 6

5w
⋆
j , which illustrates that it satisfies the conditions in Lemma B.10

in [36]. Then because induction hypothesis (a) and (b) are true until t-th iteration, then if
Bk <

∥∥∥(ut
j

)2 − w⋆
j

∥∥∥
∞

≤ w⋆
max

2k
, then

∥∥∥(ut+1
j

)2 − w⋆
j

∥∥∥
∞

≤
∥∥∥(ut

j

)2 − w⋆
j

∥∥∥
∞

≤ w⋆
max

2k
, else if∥∥∥(ut

j

)2 − w⋆
j

∥∥∥
∞

≤ Bk, then
∥∥∥(ut+1

j

)2 − w⋆
j

∥∥∥
∞

≤ Bk. Combined with two cases, we can conclude

that (a) also holds for (t+ 1)-th iteration for j that w⋆
j ≥ 20Bk.

(2) For arbitrary j-th elements whose magnitude is not sufficiently larger than the perturbation that
w⋆

j ≤ 20Bk, based on the upper bound in induction (e), perturbation bound and monotonic property in

Lemma B.6 in [36], we can guarantee that
(
ut
j

)2
would keep staying in (0, w⋆

j +4Bk]. With condition

w⋆
j ≤ 20Bk, we can conclude that

∥∥∥(ut+1
j

)2 − w⋆
j

∥∥∥
∞

≤ max{w⋆
j , 4Bk} ≤ 20Bk ≤ w⋆

max

2k
.

Combined these two cases would finish proof of (a).

(b) To prove this statement, we should guarantee that there are sufficient iterative steps in the (k−1)-th

induction that can make
∥∥∥∥(uTk−1

S

)2
−w⋆

∥∥∥∥
∞

decrease at least by half from the beginning iteration

of current induction stage to that of next induction stage. The proof is also divided into two cases.

(1) The one case is that ∀j that it already has
∣∣∣ (uTk−1

j

)2
− w⋆

j

∣∣∣ < w⋆
max

2k+1 , then with similar proof in

(a), we can guarantee that ∀t ≥ T k−1,
∣∣∣ (ut

j

)2 −w⋆
j

∣∣∣ < w⋆
max

2k+1 . Thus, for these supports, we prove the
(k + 1)-th induction also holds.

(2) The second case is ∀j that there is
∣∣∣ (uTk−1

j

)2
− w⋆

j

∣∣∣ ≥ w⋆
max

2k+1 = 20Bk. Based on the upper

bound in induction (e) that
(
u
Tk−1

j

)2
≤ w⋆

j + 4Bk, then u
Tk−1

j , w⋆
j must satisfy 0 ≤

(
u
Tk−1

j

)2
≤

w⋆
j − 20Bk, w

⋆
j ≥ 20Bk, respectively. This means uTk−1

j is far away from w⋆
j at least 20Bk distance.

According to Lemma B.12 in [36], to achieve
∣∣∣ (uTk−1

j

)2
− w⋆

j

∣∣∣ ≤ 20Bk, the sufficient condition

for the number of iterations t in current induction stage is t ≥ 15
32ηw⋆

j
log

(w⋆
j )

2

19

(
u
Tk−1
j

)2

Bk

. Now we

verify the setting of Tk as follows

Tk =
2k

ηw⋆
max

log
1

α4

≥ 1

40ηBk
log

(
3 (w⋆

max)
2

ζ
· 1

α3

)

≥ 1

2ηw⋆
j

log

3
(
w⋆

j

)2
ζ

· 1(
u
Tk−1

j

)2

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≥ 1

2ηw⋆
j

log
(w⋆

j )
2

16
(
u
Tk−1

j

)2
Bk

, (32)

where the first inequality is due to the definition of Bk and small initialization condition that
α ≤ ζ

3(w⋆
max)

2 and the second inequality is due to w⋆
j ≥ 20Bk and lower bound in induction

(e) that
(
u
Tk−1

j

)2
≥ α3. The last inequality is because ζ

3 ≤ 16
40

w⋆
max

2K−1 ≤ 16
40

w⋆
max

2k
= 16Bk.

Thus, combining the above two cases and similar proof, we can conclude that ∀t ≥ T k, there is∥∥∥(ut
S
)2 −w⋆

∥∥∥
∞

≤ w⋆
max

2k+1 . This completes the proof of induction (b).

(c) To make the consensus error satisfy the above induction, ∀t that T k−1 ≤ t < t+ 1 < T k, based
on one step iteration in (24) of Lemma 6, induction (a), (c) and step size condition η ≤ 1−√

ρ

64ρ
1
2 w⋆

max

, it

has

√
ρ

(
1 + 4η

((√
sδmax + 1

) ∥∥ut
S ⊙ ut

S −w⋆
∥∥
∞ + 2d

(
ut
Sc +∆t

Sc

)2
+ 2

(√
sδmax + 1

)
·
(∥∥ut

S
∥∥
∞ +

∥∥∆t
S
∥∥
∞

)2
+max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

))
≤ 1 +

1−√
ρ

2
. (33)

Then the recursion (24) in Lemma 6 becomes∥∥∆t+1
S
∥∥
∞ ≤ 4

(
1 +

√
ρ

2

)
βρ

3
4 η
∥∥ut

S
∥∥
∞ Bk + 4ρ

3
4 η
∥∥ut

S
∥∥
∞ Bk

≤ 4(
1− c10

(
1−√

ρ
))2 ((1 +

√
ρ

2

)
β + 1

)
ρ

3
4 η
∥∥ut+1

S
∥∥
∞ Bk, (34)

where the last inequality is based on induction such as if
∥∥∆t

S
∥∥
∞ ≤ 4βρ

3
4 η
∥∥ut

S
∥∥
∞ Bk, then based

(30) and step size condition η ≤ c10(1−
√
ρ)

w⋆
max

, there is∥∥ut+1
S
∥∥
∞ ≥

∥∥ut
S
∥∥
∞ (1− c10 (1−

√
ρ))

2
. (35)

To guarantee that (34) holds induction (c), the sufficient condition is(
1+

√
ρ

2

)
β + 1(

1− c10
(
1−√

ρ
))2 ≤ β. (36)

The c10 should be chosen that 1+
√
ρ

2(1−c10(1−
√
ρ))

2 < 1, which means that c10 should satisfy c10 ≤

1−
√

1+
√

ρ

2

1−√
ρ . Then we can set c10 =

1−
(

1+
√

ρ

2

) 1
4

1−√
ρ , which results in 1

(1−c10(1−
√
ρ))

2 =
√

2
1+

√
ρ . Based

on (36), the lower bound for β is β ≥
2

(√
2(1+

√
ρ)+1+

√
ρ

)
1−ρ .

Unfolding the recursion in (24) from the beginning of (k − 1)-th induction to the beginning of k-th
induction based on (34) and combining induction (a) would have∥∥∥∆Tk

S

∥∥∥
∞

≤
(
1 +

√
ρ

2

)2kT ∥∥∥∆Tk−1

S

∥∥∥
∞

+ 4ρ
3
4 ηBk

2kT−1∑
i=0

(
1 +

√
ρ

2

)2kT−1−i ∥∥∥uTk−1+i
S

∥∥∥
∞

≤ 4
√
2ρ

3
4 ηBk√

1 +
√
ρ

2kT−1∑
i=0

(
1 +

√
ρ

2
·
√

2

1 +
√
ρ

)2kT−1−i ∥∥∥uTk

S

∥∥∥
∞

+ 4βρ
3
4 η

(
1 +

√
ρ

2

)2kT ∥∥∥uTk−1

S

∥∥∥
∞

Bk
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≤ 4
√
2ρ

3
4 ηBk√

1 +
√
ρ

2kT−1∑
i=0

(√
1 +

√
ρ

2

)2kT−1−i ∥∥∥uTk

S

∥∥∥
∞

+ 4βρ
3
4 η

(
1 +

√
ρ

2
·
√

2

1 +
√
ρ

)2kT ∥∥∥uTk

S

∥∥∥
∞

Bk

≤ 4βρ
3
4 η

(√
1 +

√
ρ

2

)2kT ∥∥∥uTk

S

∥∥∥
∞

Bk +

2
√
2

(
1 +

√
1+

√
ρ

2

)
(
1−√

ρ
)√

1 +
√
ρ

· 4ρ 3
4 η
∥∥∥uTk

S

∥∥∥
∞

Bk

≤ 4ρ
3
4 η
∥∥∥uTk

S

∥∥∥
∞

β

(√
1 +

√
ρ

2

)2kT

+
8

1−√
ρ

Bk, (37)

where both the second and third inequalities use lower bound in (35). To guarantee that the last
inequality satisfies the induction (c), the β and ρ should satisfy the following condition

Bk

β

(√
1 +

√
ρ

2

)2kT

+
8

1−√
ρ

 ≤ Bk+1β. (38)

One sufficient condition for achieving above inequality is 8
1−√

ρ ≤ β
4 . Combine above lower bound

of β, we can verify that β = 32
1−√

ρ satisfies this condition and following inequality is attained(√
1 +

√
ρ

2

) 1
ηw⋆

max
log 1

α4

≤ 1

4
, (39)

which implies that the step size η should satisfy

η ≤
log 1

α4 ln

(
1 +

√
1+

√
ρ

2 − 1

)
−2 ln 2w⋆

max

. (40)

One sufficient condition for achieving inequality is η ≤
log 1

α4

(
1−

√
1+

√
ρ

2

)
4w⋆

max
based on inequality that

ln

(
1 +

√
1+

√
ρ

2 − 1

)
≤
√

1+
√
ρ

2 − 1. Combining all the above conditions on η, we obtain the

upper bound as shown in condition (5).

(d) ∀t that T k−1 ≤ t < t+ 1 < T k, based on one step iteration in (27) of Lemma 6 and inductions
(a), (c), there is∥∥∆t+1

Sc

∥∥
∞ ≤ 4

(
1 +

√
ρ

2

)
γρ

3
4 η
∥∥ut

Sc

∥∥
∞ Bk + 4ρ

3
4 η
∥∥ut

Sc

∥∥
∞

·
(
Bk + 4

√
sδβρ

3
4 η
∥∥ut

S
∥∥
∞ Bk

(
4βρ

3
4 η
∥∥ut

S
∥∥
∞ Bk +

∥∥ut
S
∥∥
∞

))
≤ 4

(
1 +

√
ρ

2

)
γρ

3
4 η
∥∥ut

Sc

∥∥
∞ Bk + 4ρ

3
4 η
∥∥ut

Sc

∥∥
∞

(
Bk + 4

√
sδβρ

3
4 ηBk

∥∥ut
S
∥∥2
∞

)
≤ 4

(
1 +

√
ρ

2

)
γρ

3
4 η
∥∥ut

Sc

∥∥
∞ Bj + 4ρ

3
4 η
∥∥ut

Sc

∥∥
∞ Bk

≤ 4(
1− c10

(
1−√

ρ
))2 ((1 +

√
ρ

2

)
γ + 1

)
ρ

3
4 η
∥∥ut+1

Sc

∥∥
∞ Bk, (41)

where the second inequality is due to 4βρ
3
4 ηBj ≤ 4× 32

1−√
ρ × 1−√

ρ

256w⋆
max

Bj ≤ 1 and third inequality

is due to global RIP condition on δ that is order of 1√
s

and βη
∥∥ut

S
∥∥2
∞ ≤ 1, the last inequality is
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based on induction such that if
∥∥∆t

Sc

∥∥
∞ ≤ 4γρ

3
4 η
∥∥ut

Sc

∥∥
∞ Bk, then based (45), if η ≤ c10(1−

√
ρ)

w⋆
max

,
we have ∥∥ut+1

Sc

∥∥
∞ ≥

∥∥ut
Sc

∥∥
∞ (1− c10 (1−

√
ρ))

2
. (42)

With the same derivation in proving induction (c), the lower bound for γ is the same as that of β.

Then also unrolling the recursion in (27) from beginning of (k − 1)-th induction to beginning of k-th
induction and combining induction (a) would have

∥∥∥∆Tk

Sc

∥∥∥
∞

≤
(
1 +

√
ρ

2

)2kT ∥∥∥∆Tk−1

Sc

∥∥∥
∞

+ 4ρ
3
4 ηBk

2kT−1∑
i=0

(
1 +

√
ρ

2

)2kT−1−i ∥∥∥uTk−1+i
Sc

∥∥∥
∞

≤ 4ρ
3
4 η
∥∥∥uTk

Sc

∥∥∥
∞

Bk

γ

(√
1 +

√
ρ

2

)2kT

+
8

1−√
ρ

 . (43)

The derivation of above inequality is similar with (37). To guarantee the above two inequality satisfy
induction (d), the γ and ρ can have the same value as in (38) that γ = β = 32

1−√
ρ .

(e) For the upper bound, the proof is divided into three cases.

(1) One of case is
(
u
Tk−1

j

)2
≤ w⋆

j + Bk, based on the Lemma B.6 in [36], we can conclude that

∀t ≥ T k−1,
(
ut
j

)2
would keep below w⋆

j +Bk.

(2) Another case is w⋆
j + Bk ≤

(
u
Tk−1

j

)2
≤ w⋆

j + 2Bk, in this case ∀t ≥ T k−1, Either 0 ≤(
ut
j

)2 ≤ w⋆
j + Bk, which can use result in case (1) that ∀t′ ≥ t, 0 ≤

(
ut′

j

)2
≤ w⋆

j + Bk or that

w⋆
j +Bk ≤

(
ut
j

)2 ≤ w⋆
j + 2Bk, which would guarantee that

(
ut+1
j

)2 ≤
(
ut
j

)2
.

(3) The last case is w⋆
j + 2Bk <

(
ut
j

)2 ≤ w⋆
j + 4Bk, then based on Lemma B.14 [36], after the

sufficient number of iterations that ∀t ≥ 1
10ηBk

= 4×2k

ηw⋆
max

and we can check that Tk is large enough

that satisfies this condition, it can keep that
(
u
Tk−1+t
j

)2
≤ w⋆

j + 2Bk.

Following the above three cases, we can guarantee that there exists
(
uTk
j

)2
≤ w⋆

j + 1
2 × 4Bk =

w⋆
j + 4Bk+1.

For the lower bound, we can also have bound ∥gt∥∞ ≤ 3
√
ρBk

8 by comparing formulas between pt

and gt, ∀t that T k−1 ≤ t < T k. For perturbation f t, based on induction (a), fine-grained bound in
(d), ∀j ∈ Sc it has

|f t
j | ≤ 4βρ

3
4 η|ut

j |Bk

(
√
sδmax

∥∥ut
S ⊙ ut

S −w⋆
∥∥
∞ +

3
√
ρBk

16
+ max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

)

≤
√
ρBk|ut

j |
16

, (44)

where the first inequality is due to bound for ∥gt∥∞ and the last inequality is the same reason as (29).

f t can also be reparameterized as f t = rtf⊙ut
Sc where

∥∥∥rtf∥∥∥∞ ≤
√
ρBk

16 for ∀t that T k−1 ≤ t < T k,
the perturbed optimization recursion on non-support Sc over decentralized network in (11) becomes(

ut+1
Sc

)2
=
(
ut
Sc

)2 ⊙ (1d − 4η
(
Et

2 +Et
3 + gt + rtf

))2
. (45)
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Based on the similar lower bound (79) and upper bound in (80), we can conclude that ∀t ≤
O
(

1
ηζ log

1
α4

)
, there is

t∏
i=0

(
1 + 8η

∥∥Et
2

∥∥
∞ +

∥∥Et
3

∥∥
∞ +

∥∥gt
∥∥
∞ +

∥∥rtf∥∥∞)2 ≤ 1

α
, (46)

where this inequality guarantees that the averaged signal on non-support remains
∥∥ut

Sc

∥∥
∞ ≤

√
α

until early stopping. ∀j ∈ S, we use jk to denote the largest index that w⋆
j ≤ Bjk + α3. As

B0 = w⋆
max, the existence of jk is guaranteed. Then for t = 0, · · · , T jk − 1 and based on (30), the(

ut
j

)2
would shrinkage from initialization α2, to obtain the lower bound, we should consider the

maximum shrinkage as follows(
u
T jk
j

)2

≥ α2

T jk
−1∏

i=0

(
1− 4η

((
ui
j

)2
+
∥∥Ei

2

∥∥
∞ +

∥∥Ei
3

∥∥
∞ +

∥∥gi
∥∥
∞ +

∥∥rif∥∥∞))2
≥ α3, (47)

where the last inequality is due to (46),
(
ui
j

)2 ≤ α2,∀ i = 1, · · · , T jk −1 and step size condition that

η
((

ui
j

)2
+
∥∥Ei

2

∥∥
∞ +

∥∥Ei
3

∥∥
∞ +

∥∥gi
∥∥
∞ +

∥∥∥rif∥∥∥∞) ≤ 3
40 and (1−5x)(1+8x) ≥ 1,∀x ∈ [0, 3

40 ].

Thus, we have
(
ut
j

)2 ≥ α3 for ∀ t = 0, · · · , T jk .

For t = T jk + 1, · · · , T jk+1 − 1 and ∀ j ∈ S, let consider the auxiliary iterations that(
ût
j

)2
=

(
ût−1
j

)2 ⊙
(
1− 4η

((
ût−1
j

)2 − (w⋆
j −Bjk+1

)))2
where û

T jk
j = u

T jk
j ≥ α3

as above proved. Based on definition of jk, there is w⋆
j − Bjk+1 ≥ α3. Accord-

ing to monotonic property in Lemma B.6 in [36], we can guarantee that
(
û
T jk+1

j

)2

∈[
min

{
û
T jk
j , w⋆

j −Bjk+1

}
,max

{
û
T jk
j , w⋆

j −Bjk+1

}]
that ensures that

(
u
T jk+1

j

)2

≥(
û
T jk+1

j

)2

≥ α3 where the first inequality is due to the squeezing property in Lemma B.9 in [36].

Then we can follow the same analysis to prove that left i-th induction step that i = jk +2, · · · ,m− 1
based on the monotonic property of Bk.

A.4 General Case

This section considers the general setting where the ground truth w⋆ includes both positive and
negative elements in its support. The analysis here is more complex than in the previous section
due to the presence of vt,i and its consensus error terms. The following formulates the recursion of
perturbed average variable ut and similar derivation could be applied to vt.
Lemma 7. Consider the sequence {ut

i,v
t
i}, i ∈ [m] generated according to (3) and (4) by DGD

for solving problem (2), the average signal {ut} on positive support S+, negative support S− and
non-support Sc are updated according to the following formulas

ut+1
S+ = ut

S+ ⊙

(
1d − 4η

((
ut
S+

)2 −w⋆
S+

)
− 4η

XTX

N

((
ut
Sc

)2 − (vt
Sc

)2
+
(
ut
S−

)2 − (vt
S+

)2)
+4η

XT ξ

N
− 4η

(
XTX

N
− I

)((
ut
S+

)2 −w⋆
S+ −

(
vt
S−

)2 −w⋆
S−

)
− 4ηpt

u

)
− 4ηqt

u;

(48)

ut+1
S− = ut

S− ⊙

(
1d − 4η

(
−
(
vt
S−

)2 −w⋆
S− +

XTX

N

((
ut
Sc

)2 − (vt
Sc

)2
+
(
ut
S−

)2 − (vt
S+

)2)
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−XT ξ

N
+

(
XTX

N
− I

)((
ut
S+

)2 −w⋆
S+ −

(
vt
S−

)2 −w⋆
S−

))
− 4ηyt

u

)
− 4ηzt

u;

(49)

ut+1
Sc = ut

Sc ⊙

(
1d − 4η

(
XTX

N

((
ut
Sc

)2 − (vt
Sc

)2
+
(
ut
S−

)2 − (vt
S+

)2)− XT ξ

N

+

(
XTX

N
− I

)((
ut
S+

)2 −w⋆
S+ −

(
vt
S−

)2 −w⋆
S−

))
− 4ηgt

u

)
− 4ηf t

u, (50)

where the perturbed error terms pt
u, q

t
u,y

t
u, z

t
u, g

t
u,f

t
u induced from decentralized network are

defined as

pt
u :=

1

m

m∑
i=1

(
XT

i Xi

n
− I

)(
2ut

S+ ⊙∆t,i
u,S+ +

(
∆t,i

u,S+

)2
− 2vt

S− ⊙∆t,i
v,S− −

(
∆t,i

v,S−

)2)

+ 3
(
∆t,i

u,S+

)2
+

XT
i Xi

n

(
2ut

Sc ⊙∆t,i
u,Sc +

(
∆t,i

Sc

)2
+ 2ut

S− ⊙∆t,i
u,S− +

(
∆t,i

u,S−

)2
−2vt

Sc ⊙∆t,i
v,Sc −

(
∆t,i

v,Sc

)2
− 2vt

S+ ⊙∆t,i
v,S+ −

(
∆t,i

v,S+

)2)
; (51)

qt
u :=

1

m

m∑
i=1

∆t,i
u,S+ ⊙

((
XT

i Xi

n
− I

)((
ut
S+

)2 −w⋆
S+ −

(
vt
S−

)2 −w⋆
S−

+ 2ut
S+ ⊙∆t,i

u,S+ +
(
∆t,i

u,S+

)2
− 2vt

S− ⊙∆t,i
v,S− −

(
∆t,i

v,S−

)2)
+
XT

i Xi

n

((
ut
Sc +∆t,i

u,Sc

)2
−
(
vt
Sc +∆t,i

v,Sc

)2
+
(
ut
S− +∆t,i

u,S−

)2
−
(
vt
S+ +∆t,i

v,S+

)2)
+
(
∆t,i

u,S+

)2
− XT

i ξi
n

)
; (52)

gt
u := pt

u − 3

m

m∑
i=1

(
XT

i Xi

n
− I

)(
∆t,i

u,S+

)2
; (53)

f t
u :=

1

m

m∑
i=1

∆t,i
u,Sc ⊙

((
XT

i Xi

n
− I

)((
ut
S+

)2 −w⋆
S+ −

(
vt
S−

)2 −w⋆
S−

+ 2ut
S+ ⊙∆t,i

u,S+ +
(
∆t,i

u,S+

)2
− 2vt

S− ⊙∆t,i
v,S− −

(
∆t,i

v,S−

)2)
− XT

i ξi
n

+
XT

i Xi

n

((
ut
Sc +∆t,i

u,Sc

)2
−
(
vt
Sc +∆t,i

v,Sc

)2
+
(
ut
S− +∆t,i

u,S−

)2
−
(
vt
S+ +∆t,i

v,S+

)2))
;

(54)

yt
u := gt

u − 1

m

m∑
i=1

(
∆t,i

v,S−

)2
; (55)

zt
u :=

1

m

m∑
i=1

∆t,i
u,S− ⊙

(
−2vt

S− ⊙∆t,i
v,S− −

(
∆t,i

v,S−

)2
+

(
XT

i Xi

n
− I

)((
ut
S+

)2 −w⋆
S+ −

(
vt
S−

)2
−w⋆

S− + 2ut
S+ ⊙∆t,i

u,S+ +
(
∆t,i

u,S+

)2
− 2vt

S− ⊙∆t,i
v,S− −

(
∆t,i

v,S−

)2)
+
XT

i Xi

n

((
ut
Sc +∆t,i

u,Sc

)2
−
(
vt
Sc +∆t,i

v,Sc

)2
+
(
ut
S− +∆t,i

u,S−

)2
−
(
vt
S+ +∆t,i

v,S+

)2)
+
(
∆t,i

u,S+

)2
− XT

i ξi
n

)
; (56)
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Proof. The average of optimization for ut,i, i ∈ [m] under DGD are as follows

ut+1 = ut − η

m

m∑
i=1

∇ufi
(
ut,i,vt,i

)

= ut − η

m

m∑
i=1

∇ufi
(
ut,vt

)
+

η

m

m∑
i=1

∇ufi
(
ut,vt

)
−∇ufi

(
ut,vt,i

)︸ ︷︷ ︸
Π1,i



+
η

m

m∑
i=1

∇ufi
(
ut,vt,i

)
−∇ufi

(
ut,i,vt,i

)︸ ︷︷ ︸
Π2,i

 . (57)

Based on error decomposition on positive support S+, negative support S− and non-support Sc,
there has

∇uF
(
ut,vt

)
= 4ut ⊙

((
ut
S+

)2 − (vt
S−

)2 −w⋆ +

(
XTX

N
− I

)((
ut
S+

)2 − (vt
S−

)2 −w⋆
)

+
XTX

N

((
ut
Sc

)2 − (vt
Sc

)2
+
(
ut
S−

)2 − (vt
S+

)2)− XT ξ

N

)
. (58)

With same decomposition on S+,S−,Sc for Π1,i and Π2,i, there are

Π1,i = 4ut ⊙

(
2vt

S− ⊙∆t,i
v,S− +

(
∆t,i

v,S−

)2
+

(
XT

i Xi

n
− I

)(
2vt

S− ⊙∆t,i
v,S− +

(
∆t,i

v,S−

)2)
XT

i Xi

n

(
2vt

Sc ⊙∆t,i
v,Sc +

(
∆t,i

v,Sc

)2
+ 2vt

S+ ⊙∆t,i
v,S+ +

(
∆t,i

v,S+

)2))
;

Π2,i = 4ut ⊙

(
−2ut

S+ ⊙∆t,i
u,S+ −

(
∆t,i

u,S+

)2
+

(
XT

i Xi

n
− I

)(
−2ut

S+ ⊙∆t,i
u,S+ −

(
∆t,i

u,S+

)2)

+
XT

i Xi

n

(
−2ut

Sc ⊙∆t,i
u,Sc −

(
∆t,i

u,Sc

)2
− 2ut

S− ⊙∆t,i
u,S− −

(
∆t,i

u,S−

)2))

− 4∆t,i
u ⊙

((
ut
S+

)2 − (vt
S−

)2 −w⋆ + 2ut
S+ ⊙∆t,i

u,S+ +
(
∆t,i

u,S+

)2
−∆t,i

v,S−

(
2vt

S− +∆t,i
v,S−

)
+

(
XT

i Xi

n
− I

)((
ut
S+

)2 − (vt
S−

)2 −w⋆ + 2ut
S+ ⊙∆t,i

u,S+ +
(
∆t,i

u,S+

)2
− 2vt

S− ⊙∆t,i
v,S−

−
(
∆t,i

v,S−

)2)
+

XT
i Xi

n

((
ut
Sc

)2 − (vt
Sc

)2
+ 2ut

Sc ⊙∆t,i
u,Sc +

(
∆t,i

u,Sc

)2
− 2vt

Sc ⊙∆t,i
v,Sc

−
(
∆t,i

v,Sc

)2
+
(
ut
S−

)2 − (vt
S+

)2
+ 2ut

S− ⊙∆t,i
u,S− +

(
∆t,i

u,S−

)2
− 2vt

S+ ⊙∆t,i
v,S+

−
(
∆t,i

v,S+

)2
− XT

i ξi
n

))
. (59)

Substituting (59) into (57) would obtain the perturbed recursion of averaged ut
S+ ,ut

S− ,ut
Sc in

Lemma 7.

The following lemma separately bounds the consensus errors on S+, S−, and Sc by the corre-
sponding magnitudes of parameters, which is different from the current analysis in the decentralized
optimization literature.
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Lemma 8. Consider the sequence {ut,i,vt,i}, i ∈ [m] generated according to (3) and (4) by
DGD for solving (2), the consensus error of ∆t

u on positive support S+, negative support S− and
non-support Sc have the following recursions

∥∥∥∆t+1
u,S+

∥∥∥
∞

≤ ρ
∥∥∆t

u,S+

∥∥
∞ ·
(
1 + 4η

((√
sδmax + 1

) (∥∥∥(ut
S+

)2 −w⋆
S+

∥∥∥
∞

+
∥∥∥(vt

S−

)2 −w⋆
S−

∥∥∥
∞

)
+ 2d

((∥∥ut
Sc

∥∥
∞ +

∥∥∆t
u,Sc

∥∥
∞

)2
+
(∥∥vt

Sc

∥∥
∞ +

∥∥∆t
v,Sc

∥∥
∞

)2
+
(∥∥ut

S−

∥∥
∞ +

∥∥∆t
u,S−

∥∥
∞

)2
+
(∥∥vt

S+

∥∥
∞ +

∥∥∆t
v,S+

∥∥
∞

)2)
+2
(√

sδmax + 1
) (∥∥ut

S+

∥∥
∞ +

∥∥∆t
u,S+

∥∥)2 +max
i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

))
+ 4ρη

∥∥ut
S+

∥∥
∞ ·
(√

sδmax

(
2
∥∥vt

S−

∥∥
∞

∥∥∆t
v,S−

∥∥
∞ +

∥∥∆t
v,S−

∥∥2
∞

)
+ Ct

err

)
;

(60)∥∥∥∆t+1
u,S−

∥∥∥
∞

≤ ρ
∥∥∆t

u,S−

∥∥
∞ ·
(
1 + 4ρη

((√
sδmax + 1

) (∥∥∥(ut
S+

)2 −w⋆
S+

∥∥∥
∞

+
∥∥∥(vt

S−

)2 −w⋆
S−

∥∥∥
∞

+2
∥∥ut

S+

∥∥
∞

∥∥∆t
u,S+

∥∥
∞ +

∥∥∆t
u,S+

∥∥2
∞ + 2

∥∥vt
S−

∥∥
∞

∥∥∆t
v,S−

∥∥
∞ +

∥∥∆t
v,S−

∥∥2
∞

)
+ 4d

((∥∥ut
Sc

∥∥
∞ +

∥∥∆t
u,Sc

∥∥
∞

)2
+
(∥∥vt

Sc

∥∥
∞ +

∥∥∆t
v,Sc

∥∥
∞

)2
+
(∥∥ut

S−

∥∥
∞ +

∥∥∆t
u,S−

∥∥
∞

)2
+
(∥∥vt

S+

∥∥
∞ +

∥∥∆t
v,S+

∥∥
∞

)2)
+max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

))
+ 4ρη

∥∥ut
S−

∥∥
∞ ·
((√

sδmax + 1
)
·
(
2
∥∥ut

S+

∥∥
∞

∥∥∆t
u,S+

∥∥
∞ +

∥∥∆t
u,S+

∥∥2
∞

+2
∥∥vt

S−

∥∥
∞

∥∥∆t
v,S−

∥∥
∞ +

∥∥∆t
v,S−

∥∥2
∞

)
+ Cerr

)
;

(61)∥∥∥∆t+1
u,Sc

∥∥∥
∞

≤ ρ
∥∥∆t

u,Sc

∥∥
∞ ·
(
1 + 4η

(√
sδmax

(∥∥∥(ut
S+

)2 −w⋆
S+

∥∥∥
∞

+
∥∥∥(vt

S−

)2 −w⋆
S−

∥∥∥
∞

+2
∥∥ut

S+

∥∥
∞

∥∥∆t
u,S+

∥∥
∞ +

∥∥∆t
u,S+

∥∥2
∞ + 2

∥∥vt
S−

∥∥
∞

∥∥∆t
v,S−

∥∥
∞ +

∥∥∆t
v,S−

∥∥2
∞

)
+ 4d

((∥∥ut
Sc

∥∥
∞ +

∥∥∆t
u,Sc

∥∥
∞

)2
+
(∥∥vt

Sc

∥∥
∞ +

∥∥∆t
v,Sc

∥∥
∞

)2
+
(∥∥ut

S−

∥∥
∞ +

∥∥∆t
u,S−

∥∥
∞

)2
+
(∥∥vt

S+

∥∥
∞ +

∥∥∆t
v,S+

∥∥
∞

)2)
+max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

))
+ 4ρη

∥∥ut
Sc

∥∥
∞ ·
(√

sδmax ·
(
2
∥∥ut

S+

∥∥
∞

∥∥∆t
u,S+

∥∥
∞ +

∥∥∆t
u,S+

∥∥2
∞

+2
∥∥vt

S−

∥∥
∞

∥∥∆t
v,S−

∥∥
∞ +

∥∥∆t
v,S−

∥∥2
∞

)
+ Ct

err

)
, (62)

where the Ct
err is defined as

Ct
err :=

√
s(δmax + δ) ·

(∥∥∥(ut
S+

)2 − w⋆
S+

∥∥∥
∞

+
∥∥∥(vt

S−

)2 −w⋆
S−

∥∥∥
∞

)
+ 2d

((∥∥ut
Sc

∥∥
∞ +

∥∥∆t
u,Sc

∥∥
∞

)2
+
(∥∥vt

Sc

∥∥
∞ +

∥∥∆t
v,Sc

∥∥
∞

)2
+
(∥∥ut

S−

∥∥
∞ +

∥∥∆t
u,S−

∥∥
∞

)2
+
(∥∥vt

S+

∥∥
∞ +

∥∥∆t
v,S+

∥∥
∞

)2)
+max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

+

∥∥∥∥∥XT ξ

N

∥∥∥∥∥
∞

. (63)
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Proof. Based on the updating of DGD, there is

U t+1

(
Im − 1

m
1m1T

m

)
=
(
U t − η∇uf(U

t,V t)
)
W

(
Im − 1

m
1m1T

m

)
=
(
U t −∇uf

(
U t,V t

)
+∇uF

(
U

t
,V

t
))(

W − 1

m
1m1T

m

)
=
(
U t −∇uf

(
U t,V t

)
+∇uf

(
U

t
,V t

)
+ ∇uf

(
U

t
,V

t
)
−∇uf

(
U

t
,V t

)
+ ∇uF

(
U

t
,V

t
)
−∇uf

(
U

t
,V

t
))(

W − 1

m
1m1T

m

)
. (64)

Thus, there is∥∥∥∆t+1
u,S+

∥∥∥
∞

≤ ρ
∥∥∆t

u,S+

∥∥
∞ + ρηmax

i

∥∥1S+ ⊙
(
∇ufi

(
ut
i,v

t
i

)
−∇uF

(
ut,vt

))∥∥
∞

≤ ρ
∥∥∆t

u,S+

∥∥
∞ + ρηmax

i
∥1S+ ⊙Π1,i∥∞ + ρηmax

i
∥1S+ ⊙Π2,i∥∞

+ ρηmax
i

∥∥1S+ ⊙
(
∇ufi

(
ut,vt

)
−∇uF

(
ut,vt

))∥∥
∞

≤ ρ
∥∥∆t

u,S+

∥∥
∞ + 4ρη

∥∥ut
S+

∥∥
∞

(√
sδmax

(
2
∥∥vt

S−

∥∥
∞

∥∥∆t
v,S−

∥∥
∞ +

∥∥∆t
v,S−

∥∥2
∞

)
+2d

(
2
∥∥vt

Sc

∥∥
∞

∥∥∆t
v,Sc

∥∥
∞ +

∥∥∆t
v,Sc

∥∥2
∞ + 2

∥∥vt
S+

∥∥
∞

∥∥∆t
v,S+

∥∥
∞ +

∥∥∆t
v,S+

∥∥2
∞

)
+
∥∥∆t

u,S+

∥∥
∞ (
∥∥∆t

u,S+

∥∥
∞ + 2

∥∥ut
S+

∥∥
∞) +

√
sδmax

∥∥∆t
u,S+

∥∥
∞

(
2
∥∥ut

S+

∥∥
∞ +

∥∥∆t
u,S+

∥∥
∞

)
+ 2d

(
2
∥∥ut

Sc

∥∥
∞

∥∥∆t
u,Sc

∥∥
∞ +

∥∥∆t
u,Sc

∥∥2
∞ + 2

∥∥ut
S−

∥∥
∞

∥∥∆t
u,S−

∥∥
∞ +

∥∥∆t
u,S−

∥∥2
∞

))
+ 4ρη

∥∥∆t
u,S+

∥∥
∞ ·
(∥∥∥(ut

S+

)2 −w⋆
S+

∥∥∥
∞

+ 2
∥∥ut

S+

∥∥
∞

∥∥∆t
u,S+

∥∥
∞ +

∥∥∆t
u,S+

∥∥2
∞

+
√
sδmax

(∥∥∥(ut
S+

)2 −w⋆
S+

∥∥∥
∞

+
∥∥∥(vt

S−

)2 −w⋆
S−

∥∥∥
∞

+ 2
∥∥ut

S+

∥∥
∞

∥∥∆t
u,S+

∥∥
∞

+
∥∥∆t

u,S+

∥∥2
∞

)
+ 2d

((∥∥ut
Sc

∥∥
∞ +

∥∥∆t
u,Sc

∥∥
∞

)2
+
(∥∥vt

Sc

∥∥
∞ +

∥∥∆t
v,Sc

∥∥
∞

)2
+
(∥∥ut

S−

∥∥
∞ +

∥∥∆t
u,S−

∥∥
∞

)2
+
(∥∥vt

S+

∥∥
∞ +

∥∥∆t
v,S+

∥∥
∞

)2)
+max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

)
+ 4ρη

∥∥ut
S+

∥∥
∞ ·
(√

sδmax

(∥∥∥(ut
S+

)2 −w⋆
S+

∥∥∥
∞

+
∥∥∥(vt

S−

)2 −w⋆
S−

∥∥∥
∞

)
+max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

+

∥∥∥∥∥XT ξ

N

∥∥∥∥∥
∞

)
, (65)

where the second inequality is due to (64) and the last inequality is substituting into the formula
Π1,i,Π2,i in (59) and gradient difference at averaged pair. Merging terms involved

∥∥ut
S+

∥∥
∞ and∥∥∆t

u,S+

∥∥
∞ separately would obtain the result in (60). Performing analogous proof would yield

results on negative support S− in (49) and non-support Sc in (50).

The following proposition describes the dynamics of ut,i,vt,i by conducting inductive hypothesis
for both ut,i and vt,i, which is different with centralized setting [36]. Because the complicated
consensus errors prevent transferring the proof of non-negative case to general case trivially.
Proposition 3. This proposition inherits Proposition 2 for the general case with considering dy-
namic of vt

i for learning negative part signal w⋆
S− . Recall the definitions of T, Tk, T k, Bk,K, β in

Proposition 2, the following statements hold in each induction step.

• (a)∀t that T k−1 ≤ t < T k with ∀k ∈ [K], there is

max
{∥∥∥(ut

S+

)2 −w⋆
S+

∥∥∥
∞

,
∥∥∥(vt

S−

)2 −w⋆
S−

∥∥∥
∞

}
≤ w⋆

max

2k
.
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• (b) For ∀k ∈ [K], there is max

{∥∥∥∥(uTk−1

S+

)2
−w⋆

S+

∥∥∥∥
∞

,

∥∥∥∥(vTk−1

S−

)2
−w⋆

S−

∥∥∥∥
∞

}
≤ w⋆

max

2k
.

• (c) ∀t that T k−1 ≤ t < T k with ∀k ∈ [K], there are maxi

∥∥∥∆t,i
u,S+

∥∥∥
∞

≤ 4βρ
3
4 η
∥∥ut

S+

∥∥
∞ Bk

and maxi

∥∥∥∆t,i
v,S−

∥∥∥
∞

≤ 4βρ
3
4 η
∥∥vt

S−

∥∥
∞ Bk.

• (d) For any T k−1 ≤ t < T k that ∀k ∈ [K], there are maxi

∥∥∥∆t,i
u,Sc

∥∥∥
∞

≤ 4βρ
3
4 η
∥∥ut

Sc

∥∥
∞ Bk

and maxi

∥∥∥∆t,i
v,Sc

∥∥∥
∞

≤ 4βρ
3
4 η
∥∥vt

Sc

∥∥
∞ Bk.

• (e) For any T k−1 ≤ t < T k that ∀k ∈ [K], there are maxi

∥∥∥∆t,i
u,S−

∥∥∥
∞

≤ 4βρ
3
4 η
∥∥ut

S−

∥∥
∞ Bk

and maxi

∥∥∥∆t,i
v,S+

∥∥∥
∞

≤ 4βρ
3
4 η
∥∥vt

S+

∥∥
∞ Bk.

• (f) ∀t that T k−1 ≤ t < T k with k ∈ [K], there are refined element-wise bounds for consensus
errors as |∆t

u,j | ≤ 4βρ
3
4 η|uj |Bk and |∆t

v,j | ≤ 4βρ
3
4 η|vj |Bk,∀j ∈ S.

• (g) For ∀j ∈ S+ and k ∈ [K], there is α3 ≤
(
u
Tk−1

j

)2
≤ w⋆

j + 4Bk. For ∀j ∈ S− and k ∈ [K],

there is α3 ≤
(
v
Tk−1

j

)2
≤ w⋆

j + 4Bk.

• (h) ∀t ≤ O
(

1
ηζ log

1
α

)
, max

{∥∥ut
Sc

∥∥
∞ ,
∥∥vt

Sc

∥∥
∞

}
≤

√
α.

• (i) ∀t ≤ O
(

1
ηζ log

1
α

)
and ∀j ∈ S, there is ut

jv
t
j ≤ α

3
2 .

• (j) ∀t ≤ O
(

1
ηζ log

1
α

)
, it has max

{∥∥ut
S−

∥∥
∞ ,
∥∥vt

S+

∥∥
∞

}
≤

√
α.

Proof. Proof idea: The key difference in the proof between centralized and decentralized settings
lies in the fact that we cannot directly transfer the proof from the simpler non-negative w⋆ to the
general w⋆. This is because the error terms induced in (48), (49),(50) by the decentralized network
in Lemma 7 prevent obtaining the results in inductions (i), (j) without induction steps as Lemma
B.16 in [36], which allows to apply proof of non-negative case to the general case directly in the
centralized case. Therefore, we have to conduct the comprehensive induction process for the general
w⋆, which can ensure that the magnitudes of ut on the negative support S− and vt on the positive
support S+ remain small up to the early stopping iteration steps. The inductions (a)-(h) show that the
averaged signal ut on the positive support S+ and the averaged signal vt on the negative support
exhibit dynamics similar to those in non-negative case, as outlined in Proposition 2.

Base case: As the initialization u0,i = v0,i = α1d,∀i ∈ [m]. Due to the condition on α, the base
case is true.

Induction Step: Under the assumption that all above induction hypotheses hold until some
0 ≤ k ≤ K − 1, we should prove they still should hold at k + 1-th induction.

(a) We should prove that ∀t ∈ {T k−1, · · · , T k − 1}, the condition
∥∥∥(ut

S+

)2 −w⋆
S+

∥∥∥
∞

≤ w⋆
max

2k

and
∥∥∥(vt

S−

)2 −w⋆
S−

∥∥∥
∞

≤ w⋆
max

2k
still holds. If the condition is true for t-th iteration, then based on

claims (c),(d), (e), (h) and (j) the ∥pt
u∥∞ in (51) under current induction step could be bounded as∥∥pt

u

∥∥
∞ ≤ 8

√
sδmaxβρ

3
4Bkη

(∥∥ut
S+

∥∥2
∞ +

∥∥vt
S−

∥∥2
∞

)
+

√
sδmax

(
4βρ

3
4Bkη

∥∥vt
S−

∥∥
∞

)2
+
(√

sδmax + 3
) (

4βρ
3
4 η
∥∥ut

S+

∥∥
∞ Bk

)2
+ 2d

(
8βρ

3
4 ηBk +

(
4βρ

3
4 ηBk

)2)
·
(∥∥ut

Sc

∥∥2
∞ +

∥∥vt
Sc

∥∥2
∞ +

∥∥ut
S−

∥∥2
∞ +

∥∥vt
S+

∥∥2
∞

)
≤ 32

√
sδmaxβρ

3
4Bkηw

⋆
max + 32

√
sδmaxβ

2ρ
3
2B2

kη
2w⋆

max + 32
(√

sδmax + 3
)
β2ρ

3
2 η2B2

kw
⋆
max
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+ 2d
(
8βρ

3
4 ηBk + 16β2ρ

3
2 η2B2

k

)(∥∥ut
Sc

∥∥2
∞ +

∥∥vt
Sc

∥∥2
∞ +

∥∥ut
S−

∥∥2
∞ +

∥∥vt
S+

∥∥2
∞

)
≤ 3 (

√
sδmax + 3) ρ

3
4Bk

16
+

dαρ
3
4

32
, (66)

where the first inequality is due to definition of local RIP condition and Lemma 2 and Lemma 3,
second inequality is due to hypothesis (a) holds at t-th iteration that

∥∥ut
S+

∥∥2
∞ ≤ 2w⋆

max,
∥∥vt

S−

∥∥2
∞ ≤

2w⋆
max, the last inequality is due to definitions of β,Bk, step size condition and hypothesis that∥∥ut
Sc

∥∥
∞ ,
∥∥vt

Sc

∥∥
∞ ,
∥∥ut

S−

∥∥
∞ ,
∥∥vt

S+

∥∥
∞ would keep below

√
α up to early stopping under hypothe-

sis (h) and (j).

The element-wise bound for qt
u in (52) under current induction step can be bounded as follows that

∀j ∈ S+, there is

|qtu,j | ≤ 4βρ
3
4 η|ut

j |Bk

(√
sδmax

(∥∥∥(ut
S+

)2 −w⋆
S+

∥∥∥
∞

+
∥∥∥(vt

S−

)2 −w⋆
S−

∥∥∥
∞

)
+
3 (

√
sδmax + 3) ρ

3
4Bk

16
+ 8d

(∥∥ut
Sc

∥∥2
∞ +

∥∥vt
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∥∥2
∞ +

∥∥ut
S−

∥∥2
∞ +
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∥∥2
∞

)
+max

i

∥∥∥∥∥XT
i ξi
n
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∞

)
≤ 4βρ

1
2 η|ut

j |Bk

(
ρ

1
4
√
sδmax

(∥∥∥(ut
S+

)2 −w⋆
S+

∥∥∥
∞

+
∥∥∥(vt

S−

)2 −w⋆
S−

∥∥∥
∞

)
+
3 (

√
sδmax + 3) ρBk

16
+ 32dρ

1
4α+ ρ

1
4 max

i

∥∥∥∥∥XT
i ξi
n
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∞

)

≤
ρ

1
2Bk|ut

j |
32

, (67)

where the first inequality is based on refined bound in hypothesis (c), result in (66) and inequality
∥x+ y∥2∞ ≤ 2 ∥x∥2∞ + 2 ∥y∥2∞ and step size condition that 4βρ

3
4 ηBk < 1. The second inequality

uses hypothesis (h) and (j). The last inequality is because of hypothesis (a), the step size condition,
network connectivity condition, small initialization α and definition of Bk.

Then qt
u could be reparameterized as qt

u = rtqu ⊙ut
S+ where

∥∥rtqu∥∥∞ ≤
√
ρBk

32 ,∀t, T k−1 ≤ t < T k.
Then the perturbed recursion for ut on positive support S+ over decentralized network in (48)
becomes(

ut+1
S+

)2
=
(
ut
S+

)2 ⊙ (1d − 4η
((

ut
S+

)2 −w⋆
S+ +Et

2s +Et
3s + pt

u + rtqu

))2
, (68)

where the new perturbed error terms Et
2s,E

t
2s are defined as

Et
2s :=

(
XTX

N
− I

)((
ut
S+

)2 −w⋆
S+ −

(
vt
S−

)2 −w⋆
S−

)
Et

3s :=
XTX

N

((
ut
Sc

)2 − (vS+)
2
+
(
ut
S−

)2 − (vt
Sc

)2)− XT ξ

N
. (69)

Then the total error terms in (68) can be bounded as follows∥∥Et
2s

∥∥
∞ +

∥∥Et
3s

∥∥
∞ +

∥∥pt
u

∥∥
∞ +

∥∥rtqu∥∥∞ (i)

≤ 2
√
sδ

w⋆
max

2k
+ 8dα+

∥∥∥∥∥XT ξ

N

∥∥∥∥∥
∞

+
3 (

√
sδmax + 3) ρ

3
4Bk

16
+

dαρ
3
4

32
+

ρ
1
2Bk

32
(ii)

≤ Cγ
w⋆

max

2k
+ Cb ·

2

Cb
max

{∥∥∥∥∥XT ξ

N

∥∥∥∥∥
∞

, ϵ

}
+

Bk

2

(iii)

≤ Cγ
w⋆

max

2k
+ Cbζ +

Bk

2
(iv)

≤ (Cγ + 2Cb)
w⋆

max

2k
+

Bk

2
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(v)

≤ 1

2
· 1

40

w⋆
max

2k
+

Bk

2
(vi)

≤ Bk, (70)
where (i) is because of Lemma 2 and Lemma 3 under the global RIP condition and induction
hypothesis (a) and substituting the results in (66) and (67). (ii) is due to condition on global RIP
parameter that δ ≤ Cγ

2
√
s
(
log⌈w⋆

max
ζ ⌉+1

) , condition α ≤ ζ
(3d+1)2 and network connectivity condition

ρ ≤ 1

36(
√
sδmax+3)

4
3

. (iii) is due to definition of ζ and (iv) is based on definition of K that

ζ ≤ w⋆
max

2K−1 ≤ w⋆
max

2k−1 . (v) is because definition of Bk and Cγ , Cb are determined later that are small
enough that Cγ + 2Cb ≤ 1

80 .

Based on iteration (68) and perturbation bound in (70), we would prove the
∥∥∥(ut+1

S+

)2 −w⋆
S+

∥∥∥
∞

≤
w⋆

max

2k
should be also true based on the proof of hypothesis (a) in Proposition 2 by replacing S with S+.

We can obtain similar results for vt
S− . Combined two cases and induction on t, we have conclusion

that ∀t ≥ T k−1, there is

max
{∥∥∥(ut

S+

)2 −w⋆
S+

∥∥∥
∞

,
∥∥∥(vt

S−

)2 −w⋆
S−

∥∥∥
∞

}
≤ w⋆

max

2k
. (71)

Thus, we finish the proof of induction (a).

(b) Comparing the (68), (70) with (30), the proof of this hypothesis can follow the proof of hypothesis
(b) in Proposition 2.

(c) ∀t that T k−1 ≤ t < t+ 1 < T k, based on one step iteration in (60) and induction (a), there is∥∥∥∆t+1
u,S+

∥∥∥
∞

(i)

≤ ρ
∥∥∆t
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∥∥
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where (i) is due to the claim (a) and step size condition that 4βρ
3
4 ηBk ≤ 1 and δ ≤ δmax.

(ii) is due to 4βρ
3
4 ηBk ≤ 1, condition that all

∥∥ut
Sc

∥∥
∞ ,
∥∥vt

Sc

∥∥
∞ ,
∥∥ut

S−

∥∥
∞ ,
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∞ are not

larger than
√
α before early stopping in hypothesis (h), (j) and

∥∥∥XT ξ
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.

The (iii) is because ρ
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max. The (iv) is because in the current induction step hypothesis

(c) holds in t-th iteration and step size condition that satisfies η ≤ 1−√
ρ

160ρ
1
4 w⋆
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such that

ρ
1
2

(
ρ

1
4 + 80ρ

1
4 ηw⋆
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4
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max is according to claim (a). The last inequality (v) is based on the (68)

and step size condition η ≤ c10(1−
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such that 4η
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)2 −w⋆
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∥∥∥
∞

+Bk

)
≤ 1 based on

hypothesis (a). Comparing the formula of (72) with (34), we can follow the poof of hypothesis (c) in
Proposition 2 to finish the proof.

(d) The proof is similar to that of hypothesis (c). ∀t that T k−1 ≤ t < t+ 1 ≤ T k, according to one
step iteration in (49) and hypothesis (a), we have∥∥∥∆t+1
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where the first two inequalities have the same reasons in (72). The third inequality is due to
16βρ

3
4Bk
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√
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8 ≤ 1

640 due to upper bound of

global RIP condition in Proposition 1 with Cγ ≤ 1
80 . The last inequality is due to (79). Then we can

use analogized proof for hypothesis (c) to finish the proof.
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(e) The proof is similar to hypothesis (d). ∀t that T k−1 ≤ t < t+1 ≤ T k, based on one step iteration
in (50) and hypothesis (a), there is∥∥∥∆t+1
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where the last inequality and the left proof have analogized derivations in proof of hypothesis (d).

(f) To absorb the perturbed error qt
u in (48), we need to prove the fine-grained bound for consensus

error in hypotheses (c), (d), (d). The idea is that we focus on the ∀j ∈ S+, then the upper bound on
the consensus error on j-th entry is
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(∥∥∥(ut
S+

)2 −w⋆
S+

∥∥∥
∞

+
∥∥∥− (vt

S−

)2 −w⋆
S−

∥∥∥
∞

)
+40dα+max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

+

∥∥∥∥∥XT ξ

N

∥∥∥∥∥
∞

)

≤ 4(
1− c10

(
1−√

ρ
))2 ((1 +

√
ρ

2

)
β + 1

)
ρ

3
4 ηBk|ut+1

j |, (75)

where the last inequality is due to substituting the crude bound and analogous derivation in (72).
Following the proof of crude bound would finish the proof. The proof for ∀j ∈ S− and ∀j ∈ Sc can
combine this proof with proofs of hypotheses (e) and (d), respectively. The fine-grained bound for vt
can be proved by using analogous proofs for ut.

(g) The proof can follow the proof of hypothesis (e) in Proposition 2 by replacing the S with S+.
The proof of vt

S− is analogous to ut
S+ .

(h) ∀t that T k−1 ≤ t < t+ 1 < T k. First, we bound the perturbation error ∥gt
u∥∞ ,

∥∥f t
u

∥∥
∞ in (50)

induced from decentralized network∥∥gt
u

∥∥
∞ ≤

∥∥pt
u

∥∥
∞ + 3

√
sδmax

(
4βρ

3
4 η
∥∥ut

S+

∥∥
∞ Bk

)2
≤ 3 (

√
sδmax + 3) ρ

3
4Bk

16
+

dαρ
3
4

32
+ 96

√
sδmaxρ

3
2 β2η2w⋆

maxB
2
k
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≤
ρ

3
4Bk

(
150 (

√
sδmax + 3) + 3

√
ρ
)

800
+

dαρ
3
4

32
, (76)

where the second inequality is substituting the upper bound in (66) and
∥∥ut

S+

∥∥
∞ ≤ 2w⋆

max due to
hypothesis (a). ∀j ∈ Sc, there is

|f t
j | ≤ 4βρ

3
4 η|ut

j |Bk ·
(√

sδmax ·
(
80Bk + 16βρ

3
4 ηBk

(∥∥ut
S+

∥∥2
∞ +

∥∥vt
S−

∥∥2
∞

))
+ 32dα+max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

)

≤
√
ρBk|ut

j |
32

, (77)

where the first inequality is due to hypotheses (a), (c)-(f), (h), (g) and step size condition. The second
inequality is due to the definition of Bk, the condition on ρ, and small initialization for α.

Then f t
u could be reparameterized as f t

u = rtfu ⊙ ut
Sc , where

∥∥∥rtfu∥∥∥∞ ≤
√
ρBk

32 ,∀t that T k−1 ≤
t < T k. Then the perturbed recursion for ut on non-support Sc over decentralized network in (50)
becomes (

ut+1
Sc

)2
=
(
ut
Sc

)2 ⊙ (1d − 4η
(
Et

2s +Et
3s + gt

u + rtfu
))2

. (78)

Thus, we can conduct similar calculation in (70) and obtain the upper bound
∥∥Et

2s

∥∥
∞ +

∥∥Et
3s

∥∥
∞ +

∥gt
u∥∞ +

∥∥∥rtfu∥∥∥∞ ≤ Bk. Based on the step size condition that η ≤ c10(1−
√
ρ)

w⋆
max

, therefore there is a
similar result in (35) as ∥∥ut+1

Sc

∥∥
∞ ≥

∥∥ut
Sc

∥∥
∞ (1− c10 (1−

√
ρ))

2
. (79)

Based on the recursion in (78), ∀k-th induction stage, we have the following upper bound

Tk−1∏
t=0

(
1 + 8η

(∥∥Et
2s

∥∥
∞ +

∥∥Et
3s

∥∥
∞ +

∥∥gt
u

∥∥
∞ +

∥∥rtfu∥∥∞))2
(i)

≤
Tk−1∏
t=0

(1 + 8η · 4Cbζ)
2

(
1 + 8η · Cγ

K

(∥∥∥(ut
S+

)2 −w⋆
S+

∥∥∥
∞

+
∥∥∥(vt

S−

)2 −w⋆
S−

∥∥∥
∞

))2

·

(
1 + 8η

(
ρ

3
4Bk

(
150 (

√
sδmax + 3) + 3

√
ρ
)

800
+

dαρ
3
4

32

))2

+
(
1 + 8η

∥∥rtfu∥∥∞)2
(ii)

≤ (1 + 32ηCbζ)
4Tk

(
1 + 4η · 2Cγw

⋆
max

K × 2k

)4(k+1)Tk

·
Tk−1∏
t=0

(
1 + 8η · ρ

3
4 (

√
sδmax + 4)

200
· w

⋆
max

2k

)2

·
(
1 + 8ηρ

3
4
√
sδmaxBk

)2(
1 + 8η · ρ 3

4

(
32dα+max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

))2

(iii)

≤ (1 + 32ηCbζ)
8Tk

(
1 + 4η · 2Cγw

⋆
max

K × 2k

)12(k+1)Tk

(iv)

≤ (1 + 32ηCbζ)
8TK−1

(
1 + 4η · 2Cγw

⋆
max

K × 2K−1

)12KTK−1

(v)

≤
(
1 + 4η · 8Cbζ

K

)8KTK−1
(
1 + 4η · 2Cγw

⋆
max

K × 2K−1

)12KTK−1

(vi)

≤
(
1 + 4η · 2Cγw

⋆
max

K × 2K−1

)20KTK−1

≤ 1

α
(80)
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where (i) is due to ∀x1, x2, · · · , xn ≥ 0, there is 1 +
∑n

i=1 xi ≤
∏n

i=1 (1 + xi), substituting
the upper bound in (76) and definition of global RIP parameter. For (ii), we use T k ≤ 2Tk

based on definition of T k, Tk, induction (a) with Lemma B.13 in [36], step size condition,
small initialization for α, definition of Bk and refined upper bound for

∥∥∥rtfu∥∥∥∞ as
∥∥f t

u

∥∥
∞ ≤

ρ
3
4

(√
sδmaxBk + 32dα+maxi

∥∥∥XT
i ξi

n

∥∥∥
∞

)∥∥ut
Sc

∥∥
∞. (iii) is because network connectivity con-

dition that ρ ≤ min

{( √
sδ√

sδmax+4

) 4
3

,
∥XT ξ∥∞

8mmaxi∥XT
i ξi∥∞

}
. (iv), (v) are due to condition i ≤ K − 1

and inequality 1 +
∑K

i=1 xi ≤
∏K

i=1 (1 + xi) that x1 =, · · · , xK = 32ηCbζ
K . (vi) is based on the

definition of K that ζ ≤ w⋆
max

2K−1 and condition that 4Cb ≤ Cγ . The last inequality results from the
Lemma A.2 in [36] with upper bound is set as B =

2Cγw
⋆
max

K×2K−1 and initialization x0 = α2, then for

t ≤ K×2K−1

64ηCγw⋆
max

log 1
α4 , there is (

1 + 4η · 2Cγw
⋆
max

K × 2K−1

)t

≤ 1

α
(81)

Thus, we select universal constant Cγ ≤ 1
1280 such that K×2K−1

64ηCγw⋆
max

log 1
α4 ≥ 20K × TK−1, which

would lead to the last inequality.

(i) Concentrate on the iteration by DGD algorithm on support S , based on (57), we have the recursive
formula as

ut+1
S = ut

S ⊙
(
1d − 4η

(((
ut
S
)2 − (vt

S
)2 −w⋆

)
+Et

d1 +Et
d2 +Et

d3

))
− 4η

m

m∑
i=1

∆t,i
u,S ⊙Et,i

d4, (82)

where the Et
d1,E

t
d2,E

t
d3 and Et,i

d4 are defined as

Et
d1 :=

(
XTX

N
− I

)((
ut
S
)2 − (vt

S
)2 −w⋆

)
;

Et
d2 :=

XTX

N

((
ut
Sc

)2 − (vt
Sc

)2)− XT ξ

N
;

Et
d3 := −

m∑
i=1

XT
i Xi

n

(((
ut
S
)2 − (ut,i

S

)2
+
(
vt,i
S

)2
−
(
vt
S
)2)

+

((
ut
Sc

)2 − (ut,i
Sc

)2
+
(
vt,i
Sc

)2
−
(
vt
Sc

)2))
;

Et,i
d4 :=

(
ut,i
S

)2
−
(
vt,i
S

)2
+

(
XT

i Xi

n
− I

)((
ut,i
S

)2
−
(
vt,i
S

)2
−w⋆

)
+

XT
i Xi

n

((
ut,i
Sc

)2
−
(
vt,i
Sc

)2)
− XT

i ξi
n

. (83)

For the negative part vt, with similar decomposition in (57), there is

vt+1 = vt − η

m

m∑
i=1

∇vfi
(
ut,vt

)
+

η

m

m∑
i=1

(
∇vfi

(
ut,vt

)
−∇vfi

(
ut,i,vt

))
+

η

m

m∑
i=1

(
∇vfi

(
ut,i,vt

)
−∇vfi

(
ut,i,vt,i

))
. (84)

After tedious calculation, its formula is as follows

vt+1
S = vt

S ⊙
(
1d + 4η

(((
ut
S
)2 − (vt

S
)2 −w⋆

)
+Et

d1 +Et
d2 +Et

d3

))
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+
4η

m

m∑
i=1

∆t,i
v,S ⊙Et,i

d4. (85)

Based on induction (c) and (d), we can reparameterize ∆t,i
u,S and ∆t,i

v,S as ∆t,i
u,S = rt,iu,S ⊙ ut

S and

∆t,i
v,S = rt,iv,S ⊙ vt

S , where max
{∥∥∥rt,iu,S

∥∥∥
∞

,
∥∥∥rt,iv,S

∥∥∥
∞

}
≤ 4βρ

3
4 ηBk for T k−1 ≤ t < T k, Thus,

the (82) and (85) can be reformulated as

(
ut+1
S
)2

=
(
ut
S
)2 ⊙(1d − 4η

(((
ut
S
)2 − (vt

S
)2 −w⋆

)
+Et

d1 +Et
d2 +Et

d3

)
− 4η

∑m
i=1 r

t,i
u,S ⊙Et,i

d4

m

)2

(86)

(
vt+1
S
)2

=
(
vt
S
)2 ⊙(1d + 4η

(((
ut
S
)2 − (vt

S
)2 −w⋆

)
+Et

d1 +Et
d2 +Et

d3

)
+ 4η

∑m
i=1 r

t,i
v,S ⊙Et,i

d4

m

)2

.

(87)

Based on hypotheses (a), (c)-(f), (j) and step size condition, we have the following bound for additional
perturbed error terms

max
{∥∥∥rt,iu,S ⊙Et,i

d4

∥∥∥
∞

,
∥∥∥rt,iv,S ⊙Et,i

d4

∥∥∥
∞

}
≤ 4βρ

3
4 ηBk

(
4
(∥∥ut

S
∥∥2
∞ +

∥∥vt
S
∥∥2
∞

)
+2

√
sδmax

(
w⋆

max +
∥∥ut

S
∥∥2
∞ +

∥∥vt
S
∥∥2
∞

)
+ 16dα+max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

)

≤ 4β
√
ρηBk

(
ρ

1
4

(
16 + 10

√
sδmax

)
w⋆

max + 16dα+ ρ
1
4 max

i

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

)

≤ 40β
√
ρη · w⋆

max

40× 2k
· ρ 1

4 (2 +
√
sδmax)w

⋆
max

≤ Cγw
⋆
max

K × 2k
, (88)

where the last inequality is due to network connectivity condition that ρ ≤

min

{( √
sδ√

sδmax+4

) 4
3

,
∥XT ξ∥∞

8mmaxi∥XT
i ξi∥∞

}
.

Then multiplying (86) and (87), we can obtain that(
ut+1
S ⊙ vt+1

S
)2 ≤

(
ut
S ⊙ vt

S
)2 ⊙ (1− (4η ((ut

S
)2 − (vt

S
)2 −w⋆ +Et

d1 +Et
d2 +Et

d3

))2
+8ηmax

{∥∥∥rt,iu,S ⊙Et,i
d4

∥∥∥
∞

,
∥∥∥rt,iv,S ⊙Et,i

d4

∥∥∥
∞

}
+
(
4ηmax

{∥∥∥rt,iu,S ⊙Et,i
d4

∥∥∥
∞

,
∥∥∥rt,iv,S ⊙Et,i

d4

∥∥∥
∞

})2)2

(i)

≤
(
ut
S ⊙ vt

S
)2 ⊙ (1 + 4η · Cγw

⋆
max

K × 2k

)4

(ii)

≤ α4 ⊙
(
1 + 4η · Cγ

K
2−K+1w⋆

max

)8KTK−1

(iii)

≤ α3, (89)

where the (i) is due to (88) and 4η
∥∥∥(ut

S
)2 − (vt

S
)2 −w⋆ +Et

d1 +Et
d2 +Et

d3

∥∥∥
∞

≤ 1. The (ii)

is due to induction (a) and Lemma B.13 in [36]. The reason for (iii) is the same as the that of last
inequality in (80) because of the setting of step size.
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(j) Recall the recursive formula of ut
S− in (49) and compare the definition of the perturbation yt

u

with perturbations pt
u, g

t
u, we can obtain ∥yt

u∥∞ ≤ 150ρ
3
4 Bk(

√
sδmax+4)

600 + ρ
3
4 dα
32 . Compare the outer

perturbation zt
u with outer perturbations f t

u, q
t
u, we can obtain ∥zt

u∥∞ ≤
√
ρBk∥ut

S−∥∞
16 . With

similar reparameterization as zt
u = rtzu ⊙ ut

S− , the (49) would become(
ut+1
S−

)2
=
(
ut
S−

)2 ⊙ (1d − 4η
(
−w⋆

S− −
(
vt
S−

)2
+Et

2s +Et
3s + yt

u + rtzu

))2
(90)

∀j ∈ S− and ∀t ≤ O
(

1
ηζ log

1
α

)
. Let 0 ≤ τ ≤ t be the largest τ such that

(
vτj
)2

> −w⋆
j . If there

is no such τ exists or τ = t, then(
ut
j

)2 ≤
(
ut−1
j

)2 (
1 + 4η

(∥∥Et−1
2s

∥∥
∞ +

∥∥Et−1
3s

∥∥+ ∥∥yt−1
s

∥∥
∞ +

∥∥rt−1
zs

∥∥
∞

))2
≤ α, (91)

where the last inequality is due to the similar bound in (80).

If τ < t, then unrolling (90) to τ -th iteration would have

(
ut
j

)2
=
(
uτ
j

)2 t−1∏
i=τ

(
1− 4η

(
−w⋆

j −
(
vij
)2

+ Ei
2s,j + Ei

3s,j + yts,j + rizs,j

))2
(i)

≤ α2

4

(
1− 4η

(
−w⋆

j −
(
vτj
)2

+ Eτ
2s,j + Eτ

3s,j + yτs,j + rτzs,j

))2
·

t−1∏
i=τ+1

(
1− 4η

(
−w⋆

j −
(
vij
)2

+ Ei
2s,j + Ei

3s,j + yts,j + rizs,j

))2
(ii)

≤ α2
t−1∏

i=τ+1

(
1 + 4η

(∥∥Ei
2s

∥∥
∞ +

∥∥Ei
3s

∥∥+ ∥∥yi
s

∥∥
∞ +

∥∥rizs∥∥∞))2
(iii)

≤ α, (92)

where (i) is based on condition for initialization that α ≤ w⋆
min

4 and induction (h) that

uτ
j ≤ α

3
2

vτ
j

≤ α
3
2√

−w⋆
j

≤ α
2 . (ii) is based on the induction (a), step size condition that(

1− 4η
(
−w⋆

j −
(
vτj
)2

+ Eτ
2s,j + Eτ

3s,j + yτs,j + rτzs,j

))2
≤ 4 and ∀i > τ that

(
vij
)2

< −w⋆
j

which is based on definition of τ . The last inequality has the same reason as (91).

A.5 Proof of Main Results

A.5.1 Proof of Theorem 1

Based on the proof of hypothesis (a) in Proposition 3, we can conclude that ∀t ≥ TK , there

would be max

{∥∥∥∥(uTk−1

S+

)2
−w⋆

S+

∥∥∥∥
∞

,

∥∥∥∥(vTk−1

S−

)2
−w⋆

S−

∥∥∥∥
∞

}
≤ w⋆

max

2K
≤ ζ, where the last

inequality is due to the definition of K. The total computational complexity is the value of TK−1 =
2K−1
ηw⋆

max
log 1

α4 = O
(

1
ηζ log

1
α

)
.

Due to the definition of ζ in the Theorem 1, if ζ ≥ w⋆
max, then our result holds at t = 0 based on the

small initialization condition. When ζ ≤ w⋆
max, we consider the two cases where the first case is the

magnitudes of parameters is strong enough that ζ = 1
5w

⋆
min ≥ 960ς , where the value 960 is due to un-

der the condition 2Cb+Cγ ≤ 1
80 , 4Cb ≤ Cγ , we set Cb =

1
480 , Cγ = 1

120 , we can use run DGD T ′
1 it-

erations to obtain the estimator max

{∥∥∥∥(uTk−1

S+

)2
−w⋆

S+

∥∥∥∥
∞

,

∥∥∥∥(vTk−1

S−

)2
−w⋆

S−

∥∥∥∥
∞

}
≤ w⋆

max

2K
≤

1
5w

⋆
min, then based on Proposition 2 in [36], we can also run DGD with another 45

32ηw⋆
min

log
w⋆

min

ϵ iter-
ations to obtain the dimension-independent bound |wt

j −w⋆
j | ≤ max {

√
sδmaxi∈S Bi, Bj , ϵ} ,∀j ∈
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S where the Bj :=
∥∥∥XT ξ

N ⊙ 1j

∥∥∥
∞

. The total iterations are TK−1 + 45
32ηw⋆

min
log

w⋆
min

ϵ ≤

O
(

1
ηw⋆

min
log 1

α

)
= O

(
1
ηζ log

1
α

)
where the first inequality is due to the condition of α.

The second case is ζ = 960ς ≥ 1
5w

⋆
min, then running of DGD with O

(
1
ηζ

)
iterations would obtain

the result in Theorem 1.

A.5.2 Proof of Corollary 1

Because the entries of global design matrix generated from i.i.d. 1-Sub-Gaussian distribution, we
have the upper bound of global RIP parameter as δ ≲ 1√

s
probability at least 1 − 1

8d3 , which is
based on the Lemma 1 and sample size lower bound in Corollary 1 matches the condition of sample
complexity in Lemma 1. For the local design matrix {Xi/

√
n}mi=1, local sample size satisfies

n = N
m ≳

(√
m
δ

)−2 (
s ln ed

s + ln(dn)
)
, we can bound the local RIP parameter as δmax ≤

√
m
δ with

probability as least 1− 1
8d3 based on the union bound and Lemma 1. Based on condition in (6), the

ρ ≲ 1
m4 holds with probability at least 1− 1

4d3 . Based on the Lemma 4, we have the upper bound

for the noise level as
∥∥∥XT ξ

N

∥∥∥
∞

≲ σ
√

log d
N with probability at least 1− 1

8d3 . Thus, with probability

at least 1− 3
8d3 , we have

∥∥wt −w⋆
∥∥2
2
≲ sϵ2 + dϵ2

(2d+1)2 ≲ sσ2 log d
N where in the last inequality we

select ϵ = 4σ
√

2 log(2d)
N in Theorem 1.

A.5.3 Proof of Proposition 1

Because each agent has same initialization u0,i = v0,i = α1d,∀i ∈ [m], after one step of local
gradient descent from (3) and (4), there are

u1,i = α⊙

(
1 + 4η

(
w⋆ +

(
XT

i Xi

n
− I

)
w⋆ +

XT
i ξi
n

))

v1,i = α⊙

(
1− 4η

(
w⋆ +

(
XT

i Xi

n
− I

)
w⋆ +

XT
i ξi
n

))
. (93)

Because the perturbed error bound∥∥∥∥∥
(
XT

i Xi

n
− I

)
w⋆

∥∥∥∥∥
∞

+

∥∥∥∥∥XT
i ξi
n

∥∥∥∥∥
∞

≲ ϕ :=
√
sδmaxwmax + σ

√
log d

n
(94)

holds with probability at least 1 − 3
8d3 based on Lemma 2 and Lemma 4, we denote νi =(

XT
i Xi

n − I
)
w⋆ +

XT
i ξi

n .

Consider u1,i, for ∀p ∈ S+,∀q ∈ Sc, there is w⋆
p − |νip| > ϕ > |νiq| > 0 based on the condition

in Proposition 1. In addition, ∀j ∈ S−, there is −|w⋆
j | + |νj | < 0 based on the the condition on

Proposition 1. Thus, the growth of elements on positive support S+ would be larger than these of
S−,Sc, and the Trunk operator would identify the S+. The analogous analysis could also applied to
v1,i that the Trunk operator would identify the S−. Because each agent can identify the S+ and S−

and based on results in Proposition 3, the Trunk would also obtain the optimal statistical error with
probability at least 1− 3

8d3 .

B Appendix.B

B.1 Kernel to rich regime transition

Previous works show a transition from the kernel regime to the rich regime by varying the initialization
scale in the gradient descent method [38]. Experimental results in Fig. 7 show that the transition
phenomenon also appears in DGD. We can observe that when we increase the initialization scale α
gradually, DGD would converge to the minimal ℓ2 norm solution w⋆

ℓ2
. On the contrary, when we
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decrease the α, the DGD would converge to the minimal ℓ1 norm solution (sparse solution) w⋆
ℓ1

.
Thus, Fig. 7 demonstrates the existence of phase transition from kernel to rich regime for DGD when
decreasing initialization α. Since we focus on sparse recovery, the small initialization would achieve
this aim with better generalization performance.
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Figure 7: We plot
∑m

i=1∥ŵi
α∥1

−∥w⋆
ℓ1
∥

1

m in the blue and
∑m

i=1∥ŵi
α∥2

−∥w⋆
ℓ1
∥
2

m in red vs.α, where ŵi
α

denote the convergent solution by DGD in i-th agent. The setting is d = 2000, k = 2, N = 20,m =
20, ρ = 0.2135 and magnitude of sparse signal is 10.

B.2 More implicit regularizations of DSGD

To verify the widespread existence of implicit regularization in decentralized optimization, we add
two extra experiments on general overparameterized neural network architecture trained by DSGD,
which are motivated from [38].

(1) The first one is that we use vanilla decentralized SGD(DSGD) to train a depth-2, 5000 hidden
ReLU network with the cross-entropy loss on the MNIST dataset until each agent model reaches
almost 100% training accuracy. The number of agents is 10 and network connectivity is ρ = 0.178.
60000 total training samples and 10000 test samples are uniformly allocated to agents. To evaluate the
implicit regularization of SGD under varying initialization scales, the network weights are initialized
as αw0,w0 ∼ N (0,

√
2
nin

), which is suggested by [14] and nin denotes the number of units in the
last year. Each agent uses the same batch size 256 to train in DSGD. The step sizes were optimally
tuned for each α individually to achieve the best validation error. We plot the average test error (which
is defined as the summation of the test error of each agent’s model, then divided by the number of
agents) vs. α in Fig. 8(a). The figure shows a visible phase transition for generalization (≈ 98% for
α ≤ 6, and ≈ 96.6% error for α ≥ 100). Fig. 8(a) shows that the transition from the kernel regime
to the rich regime by varying the initialization scale may also exist in complex fully connected neural
networks.

(2) The second one is that we use vanilla DSGD with batch size 128 to train the VGG11-like deep
convectional neural network on CIFAR10 with small step size 10−4 for 2000 epochs such that
each local model achieves almost 100% training accuracy. The network setting is the same as the
first experiment. The VGG11-like architecture is the same as [38]. Weights were initialized using
Uniform He initialization multiplied by α. The Fig. 8(b) plots the average test accuracy vs. α.
In addition, we adopt the sparse feature learning measure [4] to monitor the sparsity of learned
features in all agents along the epoch in Fig. 8(c). From Fig. 8(c) and Fig. 8(d), we can observe
that the implicit regularization of DGD under small initialization may promote neural networks to
learn sparse features that can have better generalization performance, which can be regarded as the
complementary observation in [4] under decentralized learning setting. How to prove this kind of
implicit regularization of DSGD theoretically will be an interesting future work.
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(a) MNIST test accuracy vs α (b) CIFAR10 test accuracy vs α

(c) Feature sparsity vs α (d) Training curves for CIFAR10

Figure 8: (a) DSGD trained ReLU network on MNIST. (b), (c), (d) DSGD trained VGG11-like
network on CIFAR10.

41

16685 https://doi.org/10.52202/079017-0531



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification:

Guidelines:
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification:
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification:
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification:
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:[NA]
Justification:
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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