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Abstract

We study the preference-based pure exploration problem for bandits with vector-
valued rewards. The rewards are ordered using a (given) preference cone C and
our goal is to identify the set of Pareto optimal arms. First, to quantify the impact
of preferences, we derive a novel lower bound on sample complexity for identi-
fying the most preferred policy with a confidence level 1 − δ. Our lower bound
elicits the role played by the geometry of the preference cone and punctuates the
difference in hardness compared to existing best-arm identification variants of the
problem. We further explicate this geometry when the rewards follow Gaussian
distributions. We then provide a convex relaxation of the lower bound and leverage
it to design the Preference-based Track and Stop (PreTS) algorithm that identifies
the most preferred policy. Finally, we show that the sample complexity of PreTS is
asymptotically tight by deriving a new concentration inequality for vector-valued
rewards.

1 Introduction

Following COVID-19, the importance of reliable clinical trials and corresponding data acquisition
to design effective drugs has gained wider recognition. However, conducting large-scale clinical
trials is cost and time intensive as it requires working with large number of patients and following
up their medical conditions over time. In the past two decades, this has led to doubling in the cost
to bring a drug to the market, i.e., to $2.6 billion with a 12-year drug development horizon and
90% failure rate during the clinical trial (Mullard, 2014; Sun et al., 2022). However, due to the
rise of systematic data acquisition about biological systems, pharmaceutical firms are interested
in harvesting the collected data for drug discovery (Gaulton et al., 2012; Reker and Schneider,
2015). Thus, machine learning-based methods are increasingly studied and deployed as a promising
avenue for identifying potentially successful drugs with less patient involvement, increasing the
“hit rate”, and speeding up the development process (Jayatunga et al., 2022; Smer-Barreto et al.,
2023; Sadybekov and Katritch, 2023; Hasselgren and Oprea, 2024). But deciding whether a drug
is successful depends on multiple and often conflicting objectives regarding safety, efficacy, and
pharmacokinetic constraints (Lizotte and Laber, 2016). For example, COV-BOOST (Munro et al.,
2021) demonstrates a phase II vaccine clinical trial conducted on 2883 participants to measure the
immunogenicity indicators (e.g. cellular response, anti-spike IgG and NT50) of different Covid-
19 vaccines as a booster (third dose). Experts decide how different indicators are preferred over
one another, and above different thresholds (Jayatunga et al., 2022). This motivates us to study a
sequential decision-making problem, where we aim to conduct minimum number of experiments to
acquire informative data, and to reliably validate a hypothesis with multiple objectives by imposing
preferences over them.
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Problems of such nature can be modeled as a multi-armed bandit (in brief, bandits), which is an
established framework for sequential decision-making under uncertainty (Lattimore and Szepesvári,
2020). In bandits, a learner has access to an instance of K decisions (or arms). Each arm k ∈
{1, . . . ,K} corresponds to a probability distribution Pk of feedback (rewards) with unknown mean
µk. At each step t ∈ N, the learner interacts with the instance by taking a decision kt (analogously
pulling an arm), and observes a noisy reward Rt from the corresponding distribution of rewards
Pkt

. The goal of the learner is to identify the arm with the highest expected reward over a certain
confidence level through minimum number of interactions with the instance. This is popularly
known as a fixed-confidence Best Arm Identification (BAI) in bandit literature (Jamieson and Nowak,
2014; Garivier and Kaufmann, 2016; Soare et al., 2014), which is a special case of pure exploration
problems (Even-Dar et al., 2006; Bubeck et al., 2009; Auer et al., 2016).

The bandit literature spanning over a century mostly focuses on a scalar reward, i.e., a single objective.
In our problem, each reward Rt is a real-valued vector of L ∈ N objectives, and thus, the unknown
mean vector of each arm Mk ∈ RL. Since the objectives can be often conflicting, there might not
exist a single best arm. Rather, there exists a Pareto Optimal Set of arms (Drugan and Nowe, 2013;
Auer et al., 2016). Given a set of preferences over the objectives, the Pareto Optimal Set consists
of arms whose mean vectors dominate the mean vectors of any other arm outside the set. Keeping
generality, we assume that preferences are defined by a cone of vectors C ⊆ RL. Every C induces
a set of partial or incomplete orders over the L objectives (Jahn et al., 2009; Löhne, 2011). Given
the preference cone C, we aim to exactly identify the complete Pareto Optimal Set with a confidence
level (1− δ) ∈ [0, 1) using as few interactions as possible. We refer to this problem Preference-based
Pure Exploration (PrePEx). Recently, Auer et al. (2016); Kone et al. (2023a,b); crepon et al. (2024)
consider a special case of PrePEx, where the preference is known. To the best of our knowledge,
Ararat and Tekin (2023) and Korkmaz et al. (2023) are the only studies of PrePEx from frequentist
and Bayesian angles, respectively. Here, we consider a frequentist approach as in (Ararat and Tekin,
2023). However, their goal is to identify points that are in the Pareto Optimal Set or very close to it.
In contrast, we focus on exactly identifying the Pareto Optimal Set. Additionally, Ararat and Tekin
(2023) propose a gap-based elimination algorithm to solve the problem that generalises the algorithm
of Even-Dar et al. (2006). But in BAI, there is another paradigm of designing efficient algorithms
that solves and tracks the exact lower bound on the expected time to identify the best arm (1 − δ)
correctly (Garivier and Kaufmann, 2016; Degenne and Koolen, 2019). We explore this paradigm for
PrePEx and ask two questions:

What is the exact lower bound of PrePEx for identifying the Pareto Optimal Set, and how to design a
computationally tractable algorithm matching this bound?

We address them affirmatively in our contributions:
1. Lower Bound for PrePEx. In Theorem 3.1, we study hardness of PrePEx problems by deriving
the novel lower bound on the expected sample complexity of any algorithm to yield the exact Pareto
Optimal Set with confidence (1 − δ). The challenge here is to extend the classical BAI lower
bound (Garivier and Kaufmann, 2016) to a set of confusing instances given C. We observe that unlike
BAI, distinguishability of two arms in PrePEx depends on their projections on the cone polar to C.
We also show that our lower bound generalises the lower bound for pure exploration under known
constraints (Carlsson et al., 2024). Additionally, we provide an exact characterization the lower
bound further for Gaussian reward distributions in Theorem 3.2. It shows that the hardness depends
on the bilinear projection of the mean matrix of arms onto the boundary of a normal cone of policies
and the preferences. This is novel w.r.t. the existing gap-dependent lower bounds that hold either for
a narrow range of µa’s (Ararat and Tekin, 2023), or fixed preference (Kone et al., 2023a).
2. Algorithm Design. First, we observe that the optimisation problem in our lower bound involves
minimisation over a non-convex set. We provide a convex relaxation of the problem based on
ideas from disjunctive programming (Theorem 4.1 and 4.2). We then leverage this lower bound
to propose a novel Track-and-Stop (Garivier and Kaufmann, 2016) style algorithm, called PreTS
(Preference-based Track-and-Stop). In Theorem 4.3, we devise a new stopping rule that can handle
the preference-aligned suboptimality gaps between the arms.
3. Sample Complexity Analysis. Finally, we provide an upper bound on sample complexity of
PreTS. This requires us to define a distance metric between two pareto sets of arms, and proving a
concentration bound with respect to this metric (Theorem 5.1). In Theorem 5.2, we prove that sample
complexity of PreTS matches the convexified lower bound up to constants.

2
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1.1 Related Works

In the past decade, works on multi-armed bandits also focuses on pure-exploration in addition to
regret minimization. Regret minimization and pure-exploration differ in the sense when arms in
pure-exploration are immediately discarded upon being deemed as sub-optimal, whereas, in the
regret minimization setting, sub-optimal arms may still be played since they provide additional
information about other arms. Pure-exploration problems have been considered in two settings:
fixed-budget and fixed-confidence. The fixed-budget setting aims at bounding the probability of
underestimating the best arm given a budget of samples. Audibert and Bubeck (2010) propose the
first algorithm for the fixed budget setting. Here, the budget is divided into K − 1 rounds and at
the end of every round, the arms with the lowest empirical mean are discarded. On the other hand,
best-arm identification is a version of the pure-exploration problem with scalar rewards (Even-Dar
et al., 2006). In this setting, we are given a δ ∈ (0, 1) and the goal is to identify the best-arm with
probability at least 1− δ. Several strategies such as those based on elimination, adaptivity, racing,
upper-confidence bounds have been proposed to minimize the number of expected pulls of an arm in
the fixed confidence setting by (Kalyanakrishnan et al., 2012; Gabillon et al., 2012; Jamieson et al.,
2014; Garivier and Kaufmann, 2016; Jedra and Proutiere, 2020). Arm rewards can be modeled as a
vector with Gaussian Process (Zuluaga et al., 2016), linear rewards (Drugan and Nowe, 2013; Lu
et al., 2019), and non-parametric rewards (Turgay et al., 2018), which can include contextual bandit
formulations (Tekin and Turgay, 2017; Shukla, 2022). In recent past, the pure exploration techniques
have been successfully applied in hyperparameter tuning (Li et al., 2018) and black-box optimization
problems (Contal et al., 2013; Wang et al., 2021, 2022) demonstrating considerable performance
gains.

In a marked deviation, given an instance of the bandit problem, the goal of this paper is to identify the
entire Pareto front. A key observation in this regard is that there might be arms, which are sub-optimal
for almost every objective but still lie on the Pareto front. Further, since sampling an arm returns a
vector of rewards determining an arm-strategy that reduces the uncertainty in the estimate of every
reward function is challenging. An immediate consequence of these differences is the fact that the
complexity of identifying the Pareto front is different from that of best arm identification. Auer
et al. (2016) consider the Pareto front identification problem in the multi-armed bandit model and
establish sample complexity bounds for the problem in terms of relevant problem parameters in
the fixed-confidence setting. The multi-armed bandit problem is further studied under cone-based
preferences by Ararat and Tekin (2023). The main contribution of (Ararat and Tekin, 2023) are
bounds on the sample complexity of the problem in terms of gap-based notions that depend on
the cone. Karagözlü et al. (2024) builds upon this work to introduce adaptive elimination based
algorithms for learning the Pareto front under incomplete preferences. When the reward vectors
are Gaussian processes Korkmaz et al. (2023) propose an elimination based algorithm based for
identifying the Pareto front. The goal in these works is to identify the set of arms that are ϵ close to
the Pareto front as the sample complexity to identify the exact Pareto set can be very large. Kone et al.
(2023a) consider the problem of identifying a relevant subset of the Pareto set using a single sampling
strategy Adaptive Pareto Exploration, along with different stopping rules to consider variations of the
Pareto Set Identification problem. crepon et al. (2024) consider the exact Pareto front identification
problem in the multi-armed bandit setting but with fixed and known preference cone. They propose a
lower bound and a computationally efficient gradient-based algorithm to implement a track-and-stop
based strategy. To the best of our knowledge, ours is the first work to consider the exact Pareto front
identification problem from a pure-exploration perspective. Therefore, our proposed framework can
be used for identifying the Pareto front given a preference cone for several variants of the bandit
problem including the standard multi-armed bandit problem, linear bandits, etc.

2 Preference-based Pure Exploration Problem

In this section, we formalise the fixed-confidence setting of preference-based pure exploration and
introduce the notations.

Notations. For n ∈ N, let [n] denote the set {1, 2, . . . , n}. We use ∥ · ∥1, ∥ · ∥2, ∥ · ∥∞ to denote the
ℓ1-norm, ℓ2-norm and ℓ∞-norm, respectively. For a vector z, z(ℓ) denotes its ℓth component. Let
eℓ denote the vector with 1 in the ℓth position and zero otherwise. ∆K denotes the simplex on [K].
dKL (P,Q) measures the KL-divergence between distributions P and Q. vect(A) is the vectorized
version of matrix A. 1 is the vector of all 1’s. Further details of notations are deferred to Appendix A.

3
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PrePEx: Problem Formulation. In PrePEx, a learner can access a bandit instance withK arms. Each
arm k ∈ [K] corresponds to a reward distribution Pk over RL with unknown mean Mk ∈ RL and
known covariance Σ = Diag(σ2

1 , . . . , σ
2
L). Here, L denotes the number of objectives corresponding

to each arm. Thus, a bandit instance can be specified with the vector of mean rewards {Mk}Kk=1. For
brevity, we represent them with a matrix M ∈ RL×K such that its kth column is Mk. At each time
t ∈ N, the learner pulls an arm kt ∈ [K] and observes the corresponding reward vector Rt sampled
from νkt

. In pure exploration, the learner typically focuses on finding the best arm, i.e. the arm with
highest mean (Garivier and Kaufmann, 2016). In pure exploration, a more general setting of BAI,
the learner aims to find a policy π ∈ ∆K that dictates the arm-proportion to choose to maximize the
expected reward from the instance.

Following the vector optimization literature (Jahn et al., 2009; Ararat and Tekin, 2023), we assume
that the learner has additionally access to an ordering cone C.
Definition 2.1 (Ordering Cone). A set C ⊆ RL is called a cone if v ∈ C implies that αv ∈ C for all
α ≥ 0. A solid cone has a non-empty interior, i.e., int(C) ̸= ∅. A pointed cone contains the origin. A
closed convex, pointed and solid cone is called an ordering cone.

An ordering cone can be both polyhedral and non-polyhedral. Following the literature (Ararat and
Tekin, 2023; Karagözlü et al., 2024), we consider access to a polyhedral ordering cone.

Definition 2.2 (Polyhederal Ordering Cone). An ordering cone C is a polyhedral cone if C ≜ {x ∈
RL | Ax ≥ 0}, where A ∈ RK×L with rows a⊤i . A is called the half-space representation of C.

Each polyhedral ordering cone induces a set of partial order on the reward vectors in RL. To ignore
the redundancies and to focus on the bandit problem, we further assume that A is full row-rank and
∥Ai∥2 = 1 (Ararat and Tekin, 2023). Hereafter, we call them preference cones, and the vectors in the
cone as the preferences. We refer to (Jahn et al., 2009; Löhne, 2011) for further details on cones.
Example 2.1 (Preference cones). The positive orthant RL

+ is a polyhedral ordering cone. This is the
one used in the pareto-set identification literature (Auer et al., 2016; Kone et al., 2023b; crepon et al.,
2024). The cones with all non-negative entries are called solvency cones and used in finance (Kabanov,
2009). Another simple example is Cπ/3 ≜ {(r cos θ, r sin θ) ∈ R2 | r ≥ 0 ∧ θ ∈ [0, π/3]}, i.e.,all
the 2-dimensional vectors that make an angle less than π/3 with the x-axis.
Definition 2.3 (Partial Order). For every µ, µ′ ∈ RL, µ ⪯C µ′ if µ ∈ µ′ + C and µ ≺C µ if
µ ∈ µ′ + int(C). Alternatively, µ ⪯C µ

′ is equivalent to z⊤(µ− µ′) ≤ 0,∀z ∈ C.

Figure 1: Effect of cone selection
on size of Pareto optimal set

The partial order induced by C induces further order over the
set of arms [K].
Definition 2.4 (Order over arms). Consider two arms i, j ∈
[K]. (i) Arm i is weakly dominated by arm j iff Mi ⪯C Mj . (ii)
Arm i dominates arm j iff Mj ≺C\{0} Mi. (iii) Arm i strongly
dominates arm j iff Mj ≺C Mi.
Definition 2.5 (Pareto Optimal Set). An arm i ∈ [K] is Pareto
Optimal if it is not dominated by any other arm w.r.t. the cone
C. The Pareto Optimal Set P∗ is defined as the set of all Pareto
Optimal arms.

Given a preference cone, a learner aims to identify exactly the
Pareto Optimal Set from a finite set of arms [K] whose mean
rewards belong to the Pareto Optimal Set w.r.t. C. Alternatively,
this vector optimization problem can be represented in the
policy space as finding a policy π ∈ ∆K supported on the
Pareto Optimal Set of arms. The following vector optimization problem yields this:

V (M) ≜ max
π∈∆K

Mπ over C. (1)

In this context, we denote the set of Pareto optimal policies as Π∗(M) ≜ argmaxπ∈∆K
Mπ over C.

We assume that Π∗(M) is non-empty.
Example 2.2 (Pareto Optimal Sets for different cones). Figure 1 illustrates the Pareto Optimal Sets
among 2-dimensional mean vectors of 200 randomly selected arms under preference cones Cπ/2

4
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and Cπ/3. We observe that the Pareto Optimal Sets for them (in pink and blue respectively), are
completely different for the same set of arms. Thus, we have to adapt to the available preferences to
solve the aforementioned problem. As noted later, the geometry of this cone plays a crucial role in
determining the Pareto front.
In PrePEx, we consider the problem of Equation (1), when the mean matrix M is unknown a priori
but bounded, i.e., the entries of M, Mij ∈ [Mmin,Mmax]. We denote all such mean matrices by
M. Identifying the policy will lead us to identify the true Pareto front P∗. In the noisy feedback
setting, the reward at time t is Rt =Mkt

+ ηt, where ηt ∈ RL is the noise vector. We assume that
the noise vectors ηt are independent of Mkt

and also across time. Further, they are sub-Gaussian
with parameter σ and adapted to the filtration Ft, which is a standard assumption in the literature. A
policy π ∈ Π ⊂ ∆K is a randomized mapping from the historyHt to the probability simplex over
the set of arms [K]. In Preference-based Pure EXploration (PrePEX) problem, the goal of the learner
is to identify a Pareto optimal policy in Π∗ (Equation (1)) given an instance M and a preference cone
C while observing only noisy rewards from the arms, and also using as few observations as possible.
Definition 2.6 ((1 − δ)-correct PrePEX). An algorithm for Preference-based Pure Exploration
(PrePEx) is said to be (1− δ) correct if with probability 1− δ, it recommends a Pareto optimal policy
π ∈ Π∗.
For example, a pareto optimal policy for Cπ/2 would be a distribution in ∆K with support on the
arms corresponding to the pink reward vectors (Figure 1). For Cπ/3, it would be one with support on
blue points. Finally, we make the standard assumption on the mean rewards.
Assumption 2.1 (Single Parameter Exponential Family). Let X = (X1, , Xd) be a d-dimensional
random vector with a distribution Pθ, θ ∈ Θ. Suppose X1, . . . , Xd are jointly continuous. The family
of distributions {Pθ, θ ∈ Θ} is said to belong to the one parameter Exponential family if the density
of X may be represented in the form f(x|θ) ≜ h(x) exp (η(θ)T (x)− ψ(θ)). We assume that the
mean reward for each vector belongs to a single-parameter exponential family with variance bounded
by 1.

3 Lower Bound on Sample Complexity
We begin by deriving a KL-divergence based lower bound for PrePEx using techniques from (Garivier
and Kaufmann, 2016). Our lower bound is based on establishing a change-of-measure argument in
the spirit of (Graves and Lai, 1997; Kaufmann et al., 2016). The lower bounds are derived first by
defining a set of alternating instances Λ for a given bandit instance and then by trying to compute an
optimal allocation policy w ∈ ∆K that maximises the sum of minimum KL-divergence between any
instance in Λ and the bandit instance under interaction. The key insight of our work is to formulate
the identification of Pareto Set problem in the policy space rather than in the arm space as done in
antecedent literature. This formulation helps us to derive the KL-based lower bound, which is more
general than the existing suboptimality gap-based lower bounds (Auer et al., 2016; Ararat and Tekin,
2023; crepon et al., 2024).

The Alternating Instances with respect to Pareto Fronts. The learner needs to distinguish between
all instance M̃ ∈ M \ {M} for which the Pareto front associated with M̃ is different from the
one associated with M . At first, given an optimal policy of M , say π∗, it would appear that the set
of confusing instances is Λπ∗ (M)

naive ≜
{
M̃ ∈M : M̃π∗ ⪯C maxπ∈Π M̃π

}
. However, this is

fallacious since the instances whose rewards dominate M can also confuse a policy π. Given a π⋆,
the correct alternating set is the set of instances inM whose Pareto optimal set is not dominated by
π⋆ corresponding to M .

Λπ∗ (M) ≜

{
M̃ ∈M \ {M} : max

π∈Π
M̃π ⪯̸C M̃π∗

}
=

{
M̃ ∈M \ {M} : ∃z ∈ C s.t. max

π∈Π
z⊤M̃π > z⊤M̃π∗

}
.

With this new alternate set defined, we now establish lower bounds on the performance of any PrePEX
algorithm.
Theorem 3.1 (Lower Bound). Given a bandit model M ∈M, a preference cone C, and a confidence
level δ ∈ [0, 1), the expected stopping time of any (1− δ)-correct PrePEx algorithm, to identify the

5
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Pareto Optimal Set is

E[τ ] ≥ TM,C log

(
1

2.4δ

)
, (2)

where, the expectation is taken over the stochasticity of both the algorithm and the bandit instance.
Here, TM,C is called the characteristic time of the PrePEx instance (M, C) and is expressed as

(TM,C)
−1 ≜ sup

w∈∆K

inf
π∈Π\{π∗}
π∗∈Π∗(M)

inf
M̃∈∂Λπ∗ (M)

inf
z∈C

K∑
k=1

wkdKL

(
z⊤Mk, z

⊤M̃k

)
, (3)

such that ∂Λπ∗ (M) ≜ ∪Π\{π∗}

{
M̃ ∈M : ∃ z ∈ C, ⟨vect

(
z(π − π∗)⊤

)
, vect

(
M̃
)
⟩ = 0

}
.

Proof Intuition. First, we observe that an instance M̃ is in alternating set if there exists a π ∈ Π\{π∗}
and z ∈ C, such that z⊤M̃(π−π∗) > 0. If π and π∗ were pure strategies, it would have been exactly
infz∈C\{0} z

⊤(M̃a − M̃a∗) > 0. Let us denote the z achieving the inf as zinf , i.e., the preference for
which M̃a and M̃a∗ are least distinguishable. Thus, we observe that z⊤infM̃a exactly functions as the
mean of the arm a in an instance M̃ , whereas z⊤inf(M̃a∗ −Ma) acts as the suboptimality gap. Now,
we extend this idea in the classical lower bound scheme to get a nested optimization problem with
inf over z ∈ C and M̃ in the alternating set, and a sup over allocations w ∈ ∆K . We further show
that the inf for M̃ appears at the boundary of the alternating set defined as ∂Λ(M).

Discussions. (i) Novelty: In the best of our knowledge, this is the first lower bound for PrePEx
with fixed confidence with an explicit KL-based dependence. All the existing lower bounds are gap
dependent, and valid for a narrow range on mean vectors or known preference cone, i.e. the right
orthant. Our proof does not need such assumptions. The gap-dependent bounds are special case of
ours (cf. Theorem 3.2 for the case of Gaussian rewards).

(ii) Geometric Insights. Theorem 3.1 provides multiple geometric insights into the affect of the
ordering cone C on the characteristic time. First, the alternating set Λπ∗ (M) is piece-wise polyhedral
and non-convex. We address consequent issues in Section 4.1. Second, there is an additional
minimization over the vectors lying in the cone C. We interpret the minimization over vectors in the
cone as a instance- and preference-dependent scalarization of the distance between the given instance
M and the corresponding most-confusing instance in Λπ∗ (M) . Third, in the proof, we show that
the reward gap using the best policy π∗ and a given policy π for the most confusing instance belongs
to the polar cone C◦ of the preference cone C. The most confusing lies on the boundary of this polar
cone and its projection the policy gaps (π∗ − π). Further insights can be obtained by imagining the
polar cone to be orthogonal to the cone C. Then, the vector of reward-gaps for the most confusing
instance for every objective is orthogonal to the generating rays of C. These novel geometric insights
are complementary to the existing algebraic and statistical insights available in the lower bound
literature (Kone et al., 2023a; Ararat and Tekin, 2023).

3.1 Characteraization of Lower Bounds for Gaussians
To understand our lower bound better and to compare it with the literature, we present a reduction
for Gaussian bandits. In Gaussian bandits, we assume that the reward vectors of arm a ∈ [K] are
generated from a multivariate Gaussian distribution N (µa,Σ), where the covariance is a diagonal
matrix: Σ ≜ Diag(σ2

1 , . . . , σ
2
L).

Theorem 3.2 (Lower Bound for Gaussian Bandits). 1. Given any π⋆ ∈ Π∗(M) and N(π∗) being
the set of neighbouring policies of π∗, the most confusing instance of M belongs to the set{
M̃ ∈M \ {M} : M̃k,ℓ =Mk,ℓ − β

σ2
ℓ

zℓ
(π∗ − π)k

wk
, ∀π ∈ N(π∗), z ∈ C \ {0}, k ∈ [K], ℓ ∈ [L]

}
,

where β ≜ z⊤M(π∗−π)
Tr(Σ)∥π∗−π∥2

Diag(1/w)

.

2. The inverse of characteristic time, i.e. (T Gauss
M,C )−1, for an instance (M, C) is

inf
π∈N(π∗)
π∗∈Π∗(M)

min
z∈C\{0}

(z⊤M(π∗ − π))2

2Tr(Σ)∥π∗ − π∥22
.

6
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Consequences. First, we observe an interesting phenomenon that a bilinear projection of mean matrix
M on the preferences and policy gaps operates as an extension of suboptimality gap in classical BAI.
This is a reminiscent of the lower bound for pure exploration under known linear constraints as in
Carlsson et al. (2024) who show that the hardness of the problem depends only on the projection of
the mean vector on the policy gap. In addition to similar projection structure, preferences introduce a
novel bilinearity here. Second, we show how the lower bound inflates with the covariance matrix
for each objective. This shows the richness of our KL-divergence based lower bound as opposed to
gap-based bounds which have difficulty accommodating variance related terms directly.

Connection to existing results. Our result generalizes several existing lower bounds for BAI.

1. BAI lower bound. Our lower bound is able to recover that of Kaufmann et al. (2016) for the
standard BAI problem with fixed confidence. In the case of the standard BAI problem, the ordering
cone is given by C ≜ R+ and therefore the minimization over C in (3) becomes redundant. The
definition of the alternating set is then given by the set of instances which have a different optimal
arm than µ which is exactly the set considered in (Kaufmann et al., 2016).

2. Pure exploration under known constraints. Our lower bound is able to recover the lower bound
of Carlsson et al. (2023) for the BAI problem with fixed confidence and linear constraints. This is the
case with L = 1 and the ordering cone being C ≜ R+ making the minimization over z ∈ C in (3)
redundant. Λπ∗ (M) becomes Λπ∗ (M) = {µ̃ : maxπ∈Π µ̃

⊤π ≥ µ⊤π∗} and we retrieve exactly
their Corollary 1.

4 Algorithm Design: PreTS
In this section, we propose an algorithm that tracks the lower bound. However, this is not straightfor-
ward since the alternating set is non-convex. We first propose a convex relaxation for this set and
then, design a Track and Stop style algorithm, called PreTS.

4.1 Convex Relaxation of the Lower Bound
One of the major differences regarding the structure of lower bounds compared to a standard BAI
problem is that Λπ∗ (M) is a piece-wise polyhedron, i.e., a union of hyperplanes. Each hyperplance
corresponds to a policy π ∈ Π \ {π∗}. To make the optimization problem tractable and obtain a
convex program, we relax Λπ∗ (M) using its convex closure, denoted by ch (Λπ∗ (M)). We note
that the construction of such a convex relaxation for track-and-stop (when the lower bound problem
is non-convex) has been done in the MDP setting Al Marjani and Proutiere (2021). We define
ch (Λπ∗ (M)) in Theorem 4.1 by formulating it as a disjunctive program, which we can reformulate
further as a linear program (Balas, 1985).

Theorem 4.1. Let F ≜ ∪Π\π∗

{
M̃ ∈M : ∃ z ∈ C, ⟨vect

(
z⊤(π − π∗)

)
, vect

(
M̃
)
⟩ = 0

}
. Fix

z ∈ C such that z =
∑

i αivi. Then, we have ch (F) = I, where I is defined as

I ≜ {M̃ ∈M : γ⊤vect(M̃) ≥ γ0, γ =
∑

i
uiαivect(v⊤i (π − π∗)), γ0 ≤ ui

∑
i
αiv

⊤
i π

∗}. (4)

Using the convex hull (Eq. (4)), we quantify the optimal value for a given allocation w as

VC(w,M) ≜ min
M̃∈ch(∂Λπ∗ (M))

inf
z∈C

K∑
k=1

wkdKL

(
z⊤M, z⊤M̃

)
.

The corresponding optimal allocation is

w∗(M) = arg max
w∈∆K

inf
π∈Π\π∗

π∗∈Π∗(M)

min
M̃∈ch(∂Λπ∗ (M))

inf
z∈C

K∑
k=1

wkdKL

(
z⊤M, z⊤M̃

)
. (5)

Hereafter, we consider Equation (5) as the optimization problem to be tracked. To compute VC(w,M),
we need access to the true instance M which is not available to us. Our Track-and-Stop strategy is
based on repeatedly sampling an arm to construct an estimate ofM , i.e. Mt, and exploiting continuity
properties of VC(w,M) to show that VC(w,Mt)→ VC(w,M) and the cumulative number of arm
plays Nt,k → wk, wk ∈ w∗(M). These properties ensure that it makes sense to design a Track and
Stop style algorithm for this problem.
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Algorithm 1 Preference-based Track-and-Stop (PreTS)

1: Input: Confidence parameter δ, preference cone C
2: if supπ∗

t
min

M̃∈ch
(
∂Λπ∗

t
(M̂t)

) minz∈C
∑

kNk,tdKL

(
z⊤M̂

(k)
t , z⊤M̃ (k)

)
≥ β(t, δ) then

3: Compute wt ← argmaxw∈∆K VC(w, M̂t)

4: Play kt ← argmink∈[K]

∣∣Nk,t −
∑t

s=1 ws

∣∣
5: Observe reward rt
6: Construct an empirical estimator M̂t

7: end if
8: Construct a Pareto Front P̂τ from empirical means M̂τ

9: Return: P̂τ

Theorem 4.2 (Analytical Properties). For all M ∈ RL×K and all preference cones C, we get 1. The
mapping (w,M) → VC(w,M) is continuous. 2. The characteristic time mapping M → TM,C is
continuous. 3. The set valued function M → w∗(M) is upper-hemicontinuous. 4. The set w∗(M) is
convex.

Discussion: Cost of Convexification. For Gaussian bandits, as we can get the analytical form of the
most confusing instance M̃ (Theorem 3.2), we do not pay any extra cost of convexification. In the
non-Gaussian settings, where we cannot find such analytical forms for the most confusing instances,
the minimum value of the inner minimisation problem under the convex hull (Equation (5)) can go
lower than the minimum value found in the original non-convex set of instances (Equation (3)). Thus,
the characteristic time attained by solving the convex relaxation might be higher than that of the
original lower bound. Hence, an algorithm solving the convex relaxation has a higher stopping time.
However, convexification is essential for the computational feasibility of a lower bound-tracking
algorithm for PrePEx. This computational-statistical trade-off will be interesting to study in the
future.

4.2 Algorithm: Preference-based Track-and-Stop (PreTS)
We now construct a general recipe to design a PrePEx algorithm when we do not have access to the
true instance M . The fundamental element of any such recipe is constructing an estimate of M . For
a given set of observed rewards {Rt}Tt=1, we obtain a column-wise empirical average of the observed
rewards and use it as our estimator of M . Now, we elaborate the three key components of our PrePEx
algorithm Preference-based Track and Stop (PreTS, Algorithm 1).

1. Sampling Rule: For the sampling rule, we consider a Track-and-Stop strategy (Garivier and
Kaufmann, 2016). It tracks the optimal proportion of arm sampling by plugging in the empirical
estimates of means and empirical count Nk,t in the convexified lower bound. This leads to an
allocation policy with improved information acquisition.

2. Stopping Rule: Our ultimate stopping goal is to identify arms that are on the Pareto front. Based
on this, we define the confidence set as:

c(t, δ) ≜

{
M̃ ∈M : min

z∈C

∑
k

Nk,tdKL(z
⊤M̂

(k)
t , z⊤M̃ (k)) ≤ β(t, δ)

}
, (6)

where β(t, δ) ≜
∑

a∈S 3 ln (1 + ln (Nk,t)) +KT
(

ln( 1
δ )

K

)
and T is defined in Equation (17). Our

first claim is to show that the true instance belongs to the confidence ellipsoid with high probability.
Lemma 4.1 (Confidence Ball). For any t ∈ N and c(t, δ) is defined in Equation (6), we have
P (M /∈ c(t, δ)) ≤ δ.

Thus, we can now formalise the corresponding Chernoff-stopping rule as

min
M̃∈ch(∂Λπ∗(M̂t))

min
z∈C

∑
k

Nk,tdKL

(
z⊤M̂

(k)
t , z⊤M̃ (k)

)
≥ β(t, δ) (7)

Given the estimates M̂t, the problem in Equation (7) can be solved efficiently. Next, we show that
upon stopping with Equation (7), PreTS returns the true Pareto Front P∗ with probability 1− δ. Let

8
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P̂t denote the estimated Pareto Front at time t, which is constructed using estimates M̂t. Then at
stopping time τ , we have

P
(
P∗ ̸= P̂t

)
≤ P

∃ t ∈ N :
∑
k,ℓ

Nk,tdKL

(
z⊤M̂

(k)
t , z⊤M (k)

)
≥ β(t, δ)


≤

∞∑
t=1

P

∑
k,ℓ

Nk,tdKL

(
z⊤M̂

(k)
t , z⊤M (k)

)
≥ β(t, δ)

 ≤ δ
where, the last inequality is true due to Theorem 4.3, a concentration result on the KL-divergence
with preference projected mean rewards.

Theorem 4.3. For all ρ ≥ (K + 1), z ∈ C and t ∈ N, we have that:

P

 ∑
k∈[K]

Nk,tdKL

(
z⊤M̂

(k)
t , z⊤M (k)

)
≥ ρ

 ≤ exp (−ρ)
(
⌈ρ log(t)⌉

K

)K

exp (K + 1)

3. Recommendation Rule: At the end of stopping time τ , the algorithm returns an estimate of the
Pareto Front P̂τ .

5 Upper Bound on Sample Complexity
Now, we prove upper bound on the expected sample complexity of PreTS. This requires us to the
Track-an-Stop proof technique. But the challenge is to show concentration of the pareto fronts under
a suitable metric.

Concentrating to the Pareto Front. To show that upon stopping the algorithm returns the true
Pareto Frontier, we need to establish a valid metric to show such convergence. Usually, the dis-
tance between sets is measured using the Hausdorff metric (Costantini and Vitolo, 1995), i.e.
dH(P̂τ ,P) ≜ max

{
supk∈P̂τ

infk′∈P ∥Mk −Mk′∥∞, supk∈P infk′∈P̂τ
∥Mk −Mk′∥∞

}
. But

the Hausdorff distance only defines a pseudo-distance between sets and Z may not be closed under
this metric. To circumvent this issue, we build upon the notion of a gap-based metric considered in
the antecedent literature (Auer et al., 2016) to measure the distance between the mean reward of an
arm and a given Pareto Front. We extend it to a distance metric between elements in the space of
Pareto Fronts Z .

Definition 5.1 (Distance from Pareto Front). The distance of the mean of arm k from the Pareto
Front P∗ is d(k,P∗) ≜ infε≥0 ε, such that Mk + ε1 ⪯̸C Mk′ , k′ ∈ P∗. Equivalently,

d(k,P∗) ≜ inf
k′∈P∗

max

{
0, sup

z∈C∩B(1)
z⊤ (Mk′ −Mk)

}
. (8)

Definition 5.2 (Distance between Pareto Fronts). We define the metric between Pareto Fronts
dP ((, ·) , ·) : Z × Z → R≥0 as dP

(
P̂ ,P∗

)
≜ max

{
supk∈P̂ d(k,P∗), supk∈P∗ d(k, P̂ )

}
.

In the appendix, we establish that (i) d(·, ·) is a valid metric on Z , and (ii) Z is compact and complete
under d(·, ·). Now, we leverage this metric to show that the Pareto Front defined by the arm-wise
constructed estimator M̂t concentrates towards the true Pareto Front.

Theorem 5.1 (Concentration of mean estimates). For any pair (i, j) ∈ [K] × [K] and z ∈ C, we
have ∣∣∣z⊤ (Mi −Mj)− z⊤

(
M̂i,t − M̂j,t

) ∣∣∣ ≤ βij(t) ,
where β2

ij(t) ≜ 4∥z∥21
(
h

(
log(

K1
δ )

2

)
+
∑

a∈{i,j} log (4 + log(Na(t)))

)(∑
a∈{i,j}

1
Na(t)

)
, K1 ≜

K(K−1)
2 , and h(x) ≈ x+ log(x).
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Proof Sketch. This is a consequence of jointly applying a vectorial concentration result for multiple-
objectives of each arm (Kaufmann and Koolen, 2021), and pairwise time-uniform concentration
bounds (Kone et al., 2023a). A key observation here is that the confidence radii depends on the
magnitude of the preference vector z and scales with different objectives accordingly.

Sample Complexity of PreTS. Using this new concentration result for the Pareto Front and the
stopping rule in Equation 7, we derive an upper bound on the expected stopping time of PreTS.

Theorem 5.2 (Upper Bound on Sample Complexity). For any α > 0 and c(t, δ) defined in (7), we
have that the stopping time satisfies

lim
δ→0

E[τ ]
log
(
1
δ

) ≤ TM,C ∀M ∈ RL×K

The basic outline of the proof follows a general strategy to prove Track-and-Stop result. However, the
new arguments lie in establishing that the Pareto fronts converge under a suitable metric sufficiently
fast. Our proof implies that PreTS matches the convex relaxation of the lower bound asymptotically
at the corresponding risk level δ. Strictly, speaking this is not asymptotically optimal since, we do not
track the exact lower-bound.

6 Conclusion and Future Works
We study the fixed-confidence version of preference-based pure exploration problem under linear
stochastic bandit feedback, where each arm corresponds to a reward vector ordered according to a
preference cone. We derive a novel lower bound for this problem. We leverage the lower bound
further to derive a track-and-stop based algorithm for PrePEx problem. As future work, it would be
interesting to verify our results on a real-world datasets.

Additionally, it would be interesting and challenging to study how other asymptotically optimal pure
exploration strategies, e.g. gamified explorers (Degenne and Koolen, 2019), top-two algorithms (Jour-
dan et al., 2022), can be adapted to this setting. In general, improving the computational efficiency
and studying the optimality gap with respect to the non-convex lower-bound problem would be of
fundamental interest.
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A Notations

Notation Description

C,≺C\{0} Given convex cone and induced partial order

K,L number of arms and objectives

P∗, P̂t Ground truth Pareto set and estimated Pareto set

Z Space of all Pareto Frontiers on [0, 1]K

M ∈ RK×L matrix with mean reward of K arms

rkt
,Mkt

, ηt observed reward, mean reward and noise

c(t, δ) Confidence ball at time t with confidence δ

dH(X,Y ) Hausdroff distance between sets X and Y

dP

(
P, P̂

)
Distance metric between Pareto Fronts P and P̂

w Allocation vector

Π Family of policies

M̂ℓ,kt,Mℓk Estimated and true of mean rewards

ch (S) Convex hull of set S

Λπ∗ (M) Set of alternating instances associated with M

Table 1: Table of Notations
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B Proofs of Lower Bounds

B.1 Generic Lower Bound: Proof of Theorem 3.1

Proof. The proof follows the basic structure of constructing a lower bound as in Kaufmann et al.
(2016). Recall that their inverse of characteristic time is given by

T = sup
w∈Π

inf
M̃∈Λπ∗ (M)

∑
k

wkdKL

(
Mk, M̃k

)
(9)

The main challenge for our setting is describing the alternating set Λπ∗ (M) and scalarization of the
given instance M ∈M. Given a matrix of arm-objective mean-rewards M , ordering cone C and a
family of policies Π, the Pareto front is the set of optimal values (ordered wrt C) of

max
π∈Π

Mπ . (10)

• Step 1: Constructing set of alternative instances Let π∗ ∈ argmaxπ∈ΠMπ.

The set of confusing instances given Π and C is the set of all matrices M̃ which have a different
Pareto front than M when using the policy π∗. Therefore, the optimal values of (10) with instance
M are not-dominated by those of instance M̃ . Hence, the set of alternative instances, Λπ∗ (M) is
given by:

Λπ∗ (M) :=

{
M̃ ∈M : max

π∈Π
M̃π ⪯̸C M̃π∗

}
Let π′ ∈ argmaxπ∈Π M̃π over C which implies M̃π′ ⪯̸C M̃π∗ or equivalently:

∃ z ∈ C, π ∈ Π \ {π∗} s.t. z⊤M̃π > z⊤M̃π∗

Therefore, the alternative set can be written as:

Λπ∗ (M) ≜ ∪π∈Π\{π∗}

{
M̃ ∈M : ∃ z ∈ C, z⊤M̃π > z⊤M̃π∗

}
= ∪π∈Π\{π∗}

{
M̃ ∈M : ∃ z ∈ C : z⊤M̃ · (π − π∗) > 0

}
where, · represents a bilinear product and, its complement is given by:

Λπ∗ (M) ≜ ∩π∈Π\{π∗}

{
M̃ ∈M : ∀ z ∈ C : z⊤M̃ · (π − π∗) ≤ 0

}
= ∩π∈Π\{π∗}

{
M̃ ∈M : M̃ · (π − π∗) ∈ C◦

}
where, ri(C◦) denotes the relative interior of the polar cone to C. Since C is a polyhederal cone,
it is closed and convex and therefore, its polar cone is non-empty, closed and convex. Therefore,
Λπ∗ (M) is non-empty.

• Step 2: Hardest instance lies on the boundary We now show that given π∗, and π, the hardest
instances M̃ ∈M are such that:

M̃ · (π − π∗) ∈ bd(C◦).

Fix π′ ∈ Π \ {π∗} and let M ′ ∈
{
M̃ ∈M : M̃ · (π′ − π∗) ∈ ri(C◦)

}
. Then,

by convexity of
{
M̃ ∈M : ∃ z ∈ C : z⊤M̃ · (π − π∗) > 0

}
there exists M ′′ ∈{

M̃ ∈M : M̃ · (π′ − π∗) ∈ bd(C◦)
}

such that
∣∣z⊤Mk − z⊤M ′

k

∣∣ ≥ ∣∣z⊤Mk − z⊤M ′′
k

∣∣,∀ z ∈ C.

Since dKL
(
z⊤M, ·

)
is decreasing, we have: dKL

(
z⊤Mk, z

⊤M ′
k

)
≥ dKL

(
z⊤Mk, z

⊤M ′′
k

)
.

Using the above arguments we see that the minimum argument of
∑

k wkdKL
(
z⊤M ′, z⊤M ′′) is

such that M ′′ ∈
{
M̃ ∈M : M̃ · (π − π∗) ∈ bd(C◦)

}
.
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The optimization problem now becomes:

sup
w∈Π

inf
M̃∈Λπ∗ (M)

inf
z∈C

∑
k

wkdKL

(
z⊤Mk, z

⊤M̃k

)
= sup

w∈∆K

inf
π∈Π\π∗

min
M̃∈∂Λπ∗ (M)

inf
z∈C

K∑
k=1

wkdKL

(
z⊤Mk, z

⊤M̃k

)
,

where

∂Λπ∗ (M) ≜ ∪Π\π∗

{
M̃ ∈M : ∃ z ∈ C, z⊤M̃(π − π∗) = 0

}
= ∪Π\π∗

{
M̃ ∈M : ∃ z ∈ C, ⟨vect

(
z⊤(π − π∗)

)
, vect(M̃)⟩ = 0

}
. (11)

Finally, to accommodate for multiple optimal policies π∗, the inner minimisation problem becomes

sup
w∈∆K

inf
π∈Π\π∗

π∗∈Π∗(M)

min
M̃∈∂Λπ∗ (M)

inf
z∈C

K∑
k=1

wkdKL

(
z⊤Mk, z

⊤M̃k

)
This concludes the proof.

B.2 Lower Bound for Gaussians: Proof of Theorem 3.2

Proof.
Step 1. Simplifying the KL-divergence for a Gaussian bandit instance with identical variance across
all objectives yields

VC(w,M) = min
M̃∈∂Λπ∗ (M)

min
z∈C

K∑
k=1

wk

L∑
ℓ=1

(z(ℓ))2

(
µ
(ℓ)
k − M̃

(ℓ)
k

)2
2σ2

ℓ

. (12)

Recalling that due to the projection lemma, the M̃ achieving the minimum satisfies

z⊤
K∑

k=1

M̃⊤
k (π∗

k − πk) = 0, ∀z ∈ C (13)

Now, we formulate the Lagrangian of (12) with dual variables β for (13) as

L
(
w,M, M̃, γ, β

)
=

K∑
k=1

wk

L∑
ℓ=1

(z(ℓ))2

(
µ
(ℓ)
k − M̃

(ℓ)
k√

2σℓ

)2

+ βz⊤M̃ (π∗ − π)

=

K∑
k=1

wk

L∑
ℓ=1

(z(ℓ))2

(
µ
(ℓ)
k − M̃

(ℓ)
k√

2σℓ

)2

+ βz⊤M̃ (π∗ − π) (14)

Step 2. Taking the derivative w.r.t. M̃ , we have

∂L
∂M̃

(ℓ)
k

= wk

(
z(ℓ)
)2( −2

2σ2
ℓ

)(
µ
(ℓ)
k − M̃

(ℓ)
k

)
+ βz(ℓ) (π∗ − π)k ,

and setting it to zero, we get

wk

(
z(ℓ)
)2( 2

2σ2
ℓ

)(
µ
(ℓ)
k − M̃

(ℓ)
k

)
= βz(ℓ) (π∗ − π)k

=⇒ M̃
(ℓ)
k = µ

(ℓ)
k −

2σ2
ℓβ
(
z(ℓ) (π∗ − π)k

)
2wk

(
z(ℓ)
)2 = µ

(ℓ)
k −

σ2
ℓβ (π

∗ − π)k
wkz(ℓ)

. (15)
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The last equality holds for any z(ℓ) ̸= 0. Therefore, the Lagrangian now becomes

L(w,M, β)

=

K∑
k=1

wk

L∑
ℓ=1

(z(ℓ))2

(
µ
(ℓ)
k − M̃

(ℓ)
k√

2σℓ

)2

+ β

N∑
i=1

λi

L∑
ℓ=1

v
(ℓ)
i

K∑
k=1

M̃
(ℓ)
k (π∗ − π)k

=

K∑
k=1

wk

L∑
ℓ=1

(z(ℓ))2
(π∗ − π)2k
(z(ℓ))2w2

k

β2σ2
ℓ

2
+ β

L∑
ℓ=1

z(ℓ)
K∑

k=1

(π∗ − π)k

(
µ
(ℓ)
k − βσ

2
ℓ

(π∗ − π)k
z(ℓ)wk

)

= −β
2

2

K∑
k=1

L∑
ℓ=1

σ2
ℓ

(π∗ − π)2k
wk

+ β

L∑
ℓ=1

K∑
k=1

z(ℓ) (π∗ − π)k µ
(ℓ)
k

Step 3. By taking the derivative with respect to β, we have

∂L
∂β

= −β
K∑

k=1

L∑
ℓ=1

σ2
ℓ

(π∗ − π)2k
wk

+

L∑
ℓ=1

K∑
k=1

z(ℓ) (π∗ − π)k µ
(ℓ)
k ,

and setting it to zero, leads to:

β =

∑L
ℓ=1

∑K
k=1 z

(ℓ) (π∗ − π)k µ
(ℓ)
k∑K

k=1

∑L
ℓ=1 σ

2
ℓ
(π∗−π)2k

wk

=
z⊤M∆

σ2
o∥∆∥2Diag(1/w)

, (16)

where σ2
o ≜

∑L
ℓ=1 σ

2
ℓ , and ∆ ≜ π∗ − π.

From (15), excluding for the origin lying within the cone, we get:

M̃
(ℓ)
k = µ

(ℓ)
k − βσ

2
ℓ

(π∗ − π)k
zℓwk

= µ
(ℓ)
k −

σ2
ℓ

zℓ
∆k

wk

z⊤M∆

σ2
o∥∆∥2Diag(1/w)

Finally, the Lagrangian from (14) leads to

L(w,M)

= −1

2

(
z⊤M∆

σ2
o∥∆∥2Diag(1/w)

)2

σ2
o∥∆∥2Diag(1/w) +

(z⊤M∆)2

σ2
o∥∆∥2Diag(1/w)

=
(z⊤M∆)2

2σ2
o∥∆∥2Diag(1/w)

.

Thus, the characteristic time inverse is given by,

max
w∈∆K

inf
π∈N(π∗)
π∗∈Π∗(M)

min
z∈C\{0}

(z⊤M∆)2

2σ2
o∥∆∥2Diag(1/w)

= inf
π∈N(π∗)
π∗∈Π∗(M)

min
z∈C\{0}

(z⊤M∆)2

2σ2
o∥∆∥22

.

B.3 Proof of Theorem 4.1

This proof follows directly from Theorem 3.1 in Balas (1985). Recall that the set F is given by:

F ≜ ∪Π\{π∗}

{
M̃ ∈M : ⟨vect(z⊤(π − π∗)), vect(M̃)⟩ = 0

}
Any z ∈ C, we have z =

∑
i αivi. Rewriting, every hyperplane in F as Pπ ={

M̃ ∈M
∣∣⟨vect

(∑
i αiv

⊤
i π
)
, vect(M̃)⟩ =

∑
i αiv

⊤
i π

∗
}

. Then, by Theorem 3.1 in Balas (1985),
C(F) is given by:

C(F) =
{
γ⊤vect(M̃) ≥ γ0, γ =

∑
i uiαivect(v⊤i (π − π∗))

γ0 ≤ ui
∑

i αiv
⊤
i π

∗, M̃ ∈M
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B.4 Proof of Theorem 4.2

Recall that:

V̄C(w,M) ≜ min
M̃∈ch(∂Λπ∗ (M))

inf
z∈C

K∑
k=1

wkdKL

(
z⊤M, z⊤M̃

)
w̄∗(M) ≜ arg max

w∈∆K
inf

π∈Π\π∗

π∗∈Π∗(M)

min
M̃∈ch(∂Λπ∗ (M))

min
z∈C

K∑
k=1

wkdKL

(
z⊤M, z⊤M̃

)

• For (1) and (2) observe that (z,M) → z⊤M and (z,M, M̃) → dKL

(
z⊤M, z⊤M̃

)
are con-

tinuous maps for all (z,M) ∈ C × M and (z,M, M̃) ∈ C × M × ch (∂Λπ∗ (M)). Further,∑
k wkdKL

(
z⊤M, z⊤M̃

)
is continuous in all its elements. Fix a sequence (wt, , zt,Mt) ∈

Π × C ×M such that (wt, zt,Mt) → (w, z,M). For any ϵ, ∃ t′ ≥ 1 such that ∥(wt, zt,Mt) −
(w, z,M)∥ ≤ ϵ ∀ t ≥ t′. Further, ch (Λπ∗ (Mt)) → ch (Λπ∗ (M)). Therefore, for every
ϵ′, ∃ t′′ ≥ 1 such that ∀ t ≥ t′′ we∣∣∣∑

k

wk,tdKL

(
z⊤t Mt, z

⊤
t M̃t

)
−
∑
k

wkdKL

(
z⊤M, z⊤t M̃t

) ∣∣∣ ≤ ϵ′ ∀ M̃t ∈ RK×L

Taking t ≥ max{t′, t′′}, we have:∣∣∣ inf
M̃∈∂Λπ∗ (M)

inf
z∈C

∑
k

wk,tdKL

(
z⊤t Mt, z

⊤
t M̃t

)
− inf

M̃∈∂Λπ∗ (M)
inf
z∈C

∑
k

wkdKL

(
z⊤M, z⊤t M̃t

) ∣∣∣
≤
∣∣∣ inf
M̃∈∂Λπ∗ (M)

inf
z∈C

∑
k

wk,tdKL

(
z⊤t Mt, z

⊤
t M̃t

)
−
∑
k

wkdKL

(
z⊤M, z⊤t M̃t

) ∣∣∣
≤ ϵ′

• For (3), we define f(w,M) = infM̃∈ch(∂Λπ∗ (M)) infz∈C
∑

k wkdKL

(
z⊤M, z⊤M̃

)
and C(w) =

Π. Then, from Berge’s Theorem (Theorem F.1 in Appendix), we get w∗(M) is upper-
hemicontinuous.

• For (4), the convexity of w∗(M) follows since the optimal solution

max
w∈Π

inf
M̃∈ch(∂Λπ∗ (M))

inf
z∈C

∑
k

wkdKL

(
z⊤M, z⊤M̃

)
is concave for any given π and π∗.
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C Proof of the Stopping Time

C.1 Proof of Lemma 4.1

The proof follows by showing that infz∈C
∑

kNk,tdKL

(
z⊤M̂k,t, z

⊤Mk

)
is an appropriate stochastic

process and can be bounded using the mixture of martingales technique of Kaufmann and Koolen
(2021).

To this end, given a z ∈ C, we define the random variable as

Xk(t) ≜
∑
k

max{0, Nk,tdKL

(
z⊤infM̂k,t, z

⊤
infMk

)
− 3 ln(1 + lnNk,t)} ,

where zinf ≜ arg infz∈C
∑

kNk,tdKL

(
z⊤M̂k,t, z

⊤Mk

)
Since we assume Mk,ℓ belongs to exponential family of distributions, for any given zinf ̸= 0, z⊤infMk

being a non-degenerate linear transform also belongs to the exponential family.

Now, plugging in Xk(t) in Theorem 7 of (Kaufmann and Koolen, 2021) yields

P

∃t ∈ N :
∑

k∈[K]

Nk,tdKL

(
z⊤infM̂k,t, z

⊤
infMk

)
≥
∑

k∈[K]

3 ln (1 + ln (Nk,t)) +KT

(
ln
(
1
δ

)
K

)
≤ δ .

Here, T : R+ → R+ is such that

T (x) ≜ 2h̃3/2

(
h−1(1 + x) + ln (2ζ(2))

2

)
(17)

with

∀u ≥ 1, h(u) = u− ln(u) (18)

∀z ∈ [1, e],∀x ≥ 0, h̃z(x) =

{
exp

(
1

h−1(x)

)
h−1(x) if x ≥ h−1

(
1

ln(z)

)
z(x− ln(ln(z))) else

, (19)

and ζ(2) =
∑∞

n=1 n
−2.

C.2 Proof of Theorem 4.3

First, we prove the following lemma required to proceed with Theorem 4.3.
Lemma C.1. For any k = 1, 2, . . . ,K, let 1 ≤ tk ≤ t. Let η > 0 and define the event:

C ≜ ∩k∈[K]Ck ≜ ∩k∈[K]{tk ≤ Nk,t ≤ (1 + η)tk}

and let 1C indicate whether the event holds. For ρ ≥ (1 + η)K, for all z ∈ C we have:

P

1C

∑
k∈[K]

Nk,tdKL

(
z⊤M̂k,t, z

⊤Mk

)
≥ ρ

 ≤ (ρe
K

)K
exp

(
−ρ
1 + η

)
.

Proof. Fix ζ ∈ RK
+ and t ≥ 0. Define mk,t such that:

mk,t =

{
m, if ∃ 0 ≤ m ≤ z⊤Mk, s.t. tdKL

(
m, z⊤Mk

)
= ζk

0, otherwise

By monotonicity of tdKL (, ) , t→ mk,t is increasing. With t = Nk,t, we have that

Nk,tdKL
(
mk,Nk,t

, z⊤Mk

)
= ζk ≤ Nk,tdKL

(
z⊤M̂k,t, z

⊤Mk

)
, =⇒ z⊤M̂k,t

(a)

≤ mk,Nk,t

(b)

≤ mk,(1+η)tk ,
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where (a) follows from monotonicity of dKL (·, ·) and (b) follows from monotonicity of m(ℓ)
k,t.

With tkdKL

(
z⊤M̂k,tk(1+η), z

⊤Mk

)
= ζk

1+η and non-negativity of dKL (·, ·) we have:

P
(
∩k∈[K]

{
1Ck

Nk,tdKL

(
z⊤M̂k,t, z

⊤Mk

)
≥ ζk

})
≤ P

(
∩k∈[K]

{
z⊤M̂k,t ≤ mk,Nk,t

, Ck

})
≤ P

(
∩k∈[K]

{
z⊤M̂k,t ≤ mk,(1+η)tk , Ck

})
≤ P

(
∩k∈[K]

{
z⊤M̂k,t ≤ mk,(1+η)tk , Ck

})
(a)

≤ exp

− ∑
k∈[K]

tkdKL
(
mk,(1+η)tk , z

⊤Mk

)
= exp

− ∑
k∈[K]

ζk
1 + η

 ,

where (a) follows from Lemma F.2.

Using Lemma F.3, with Zk = Nk,tdKL

(
z⊤M̂k,t, z

⊤Mk

)
and a = 1

(1+η) , we have that:

P

1C

∑
k∈[K]

Nk,tdKL

(
z⊤M̂k,t, z

⊤Mk

)
≥ ρ

 ≤ (ρe
K

)K
exp

(
−ρ
1 + η

)
This concludes the proof.

Now, we provide the proof of Theorem 4.3.

Proof. Let us define D = ⌈ log(t)
log(1+η)⌉ and set D = {1, 2, . . . , D}K . Let us define

A =

 ∑
k∈[K]

Nk,tdKL

(
z⊤M̂k,t, z

⊤Mk

)
≥ ρ


Bd = ∩Kk=1

{
(1 + ξ)dk−1 ≤ Nk,t ≤ (1 + ξ)dk

}
We have A = ∪d∈D(A ∩Bd), hence P(A) ≤

∑
d∈D P(A ∩Bd).

For η = 1
ρ−1 and ρ ≥ (1 + η)K, we get ρ ≥ K + 1.

Now, we use Lemma C.1 with η = 1
ρ−1 and t̄k = (1 + η)

dk−1 to obtain for all d ∈ D:

P (A ∩Bd) ≤
(ρe
K

)K
exp

(
−ρ

(1 + η)

)
By a union bound on D, we have:

P (A) ≤
(
Dρe

K

)K

exp

(
−ρ
1 + η

)
Noting that D = ⌈ log(t)

log(1+η)⌉ and η = 1
ρ−1 , we get:

P (A) ≤ exp (−ρ)
(
ρ⌈ρ log(t)⌉

K

)K

eK+1 .
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D Proofs for Sample Complexity Upper Bound

D.1 Pairwise Concentration Bounds

Lemma D.1 (Pairwise concentration (Proof of Theorem 5.1)). Consider the event:

Et ≜ ∩i∈[K] ∩j ̸=i

{
Li,j(t) ≤ z⊤µi − z⊤µj ≤ Ui,j(t)

}
(20)

where Lij(t) = z⊤(µ̂i,t− µ̂j,t)−βij(t) and Uij(t) = z⊤(µ̂i,t− µ̂j,t)+βij(t), and βij(t) is defined
as

β2
ij(t) ≜ 4∥z∥21

h( log(K1

δ )

2

)
+

∑
a∈{i,j}

log (4 + log(Na(t)))

 ∑
a∈{i,j}

1

Na(t)

 .

Here, K1 ≜ K(K−1)
2 , h(·) ≈ x+ log(1 + x). Then, we get

P (∩∞t=1Et) ≥ 1− δ .

Proof. We have the following:

Et = ∩(i,j)
{
Li,j ≤ z⊤µi − z⊤µj ≤ Ui,j

}
= ∩(i,j)

{∣∣z⊤ (µ̂i,t − µ̂j,t)− z⊤ (µi − µj)
∣∣ ≤ βij(t)}

where, (i, j) ∈ [K]× [K] is the set of arm pairs. By a union bound, we have the following:

P
(
Et
)

= P
(
∃ t ≥ 1 : Et holds

)
= P

(
∃ t ≥ 1 :

∣∣z⊤ (µ̂i,t − µ̂j,t)− z⊤ (µi − µj)
∣∣ ≥ βij(t))

≤ P
(
∃ t ≥ 1 : |z⊤(µ̂i,t − µi)− z⊤(µ̂j,t − µj)| ≥ βij(t)

)
(a)

≤
∑
(i,j)

δ

K(K − 1)

= δ

(a) follows from

1. z⊤(µ̂i,t − µi) is a ∥z∥1 sub-Gaussian as µ̂i,t − µi is 1-sub-Gaussian, and

2. Lemma 7 of (Kone et al., 2023a) that states that for two 1-sub-Gaussian and centred random
variables X and Y , the following holds true with probability 1− δ.∣∣∣∣∣1p∑

i

Xi −
1

q

∑
i

Yi

∣∣∣∣∣ ≤ 2

√(
h

(
log( 1δ )

2

)
+ log log(e4p) + log log(e4q)

)(
1

p
+

1

q

)
,

given h(x) ≈ x+ lnx.

We now show that the Pareto fronts under the metric dp.
Lemma D.2. (Z, dp) is a complete metric space.

Proof. From Definition 5.2, for two Pareto fronts P1,P2 ∈ Z , we have that:

dp(P1,P2) ≜ max

{
sup
k∈P1

d(k,P1), sup
k∈P2

d(k,P1)

}
where,

d(k,P) = inf
k′∈P

max

{
0, sup

z∈C∩B(1)
z⊤ (µk′ − µk)

}

22

17334https://doi.org/10.52202/079017-0550



1. We first show that dp(P1,P2) is a metric. Let P1,P2 ∈ Z . To show that dp is a metric, we show
that:

(a) Symmetry: dp(P1,P2) is symmetric by definition
(b) Triangle Inequality: We show that dp(P1,P3) ≤ dp(P1,P2) + dp(P2,P3).

dp (P1,P3) = max

{
max
k∈P1

min
k′∈P3

µk′(X3)− µk(X1),max
k∈P3

min
k′∈P1

µk′(X1)− µk(X3)

}
We have that:

max
k∈P1

min
k′∈P3

µk′(X3)− µk(X1)

≤ max
k∈P1

min
k′∈P3

µk′(X3) + min
k′′∈P2

µk′′(X2)− max
k′′∈P2

µk′′(X2)− µk(X1)

≤ max
k′′∈P(X2)

min
k′∈P3

µk′(X3)− µk′′(X2) + max
k∈P1

min
k′′∈P(X2)

µk′′(X2)− µk(X1)

Using a similar argument:
max
k∈P3

min
k′∈P1

µk′(X1)− µk(X2) ≤ max
k′′∈P(X2)

min
k′∈P1

µk′(X1)− µk′′(X2) + max
k∈P3

min
k′′∈P(X2)

µk′′(X2)− µk(X3)

Noting that for any positive numbers a, b, c, d, max{a+ b, c+ d} = max{a+ c, b+ d}, we
have:

dp(P1,P3) ≤ max
{

max
k′′∈P(X2)

min
k′∈P3

µk′(X3)− µk′′(X2) + max
k∈P1

min
k′′∈P(X2)

µk′′(X2)− µk(X1),

max
k′′∈P(X2)

min
k′∈P1

µk′(X1)− µk′′(X2) + max
k∈P3

min
k′′∈P(X2)

µk′′(X2)− µk(X3)
}

= max
{

max
k′′∈P(X2)

min
k′∈P1

µk′(X1)− µk′′(X2) + max
k′∈P1

min
k′′∈P(X2)

µk′′(X2)− µk′(X1),

max
k′′∈P(X2)

min
k′∈P3

µk′(X3)− µk′′(X2) + max
k∈P3

min
k′′∈P(X2)

µk′′(X2)− µk(X3)
}

= dp(P1,P2) + dp(P2,P3)

(c) We now show that dp(P1,P2) = 0 ⇐⇒ P1 = P2. The implication P1 = P2 =⇒
dp(P1,P2) = 0 is immediate. For the other side, note that by Definition 5.2, we have:

dp (P1,P2) = 0

=⇒ sup
k∈P1

∆(k,P2) = 0 and sup
k∈P2

∆(k,P1) = 0

Further, supk∈P1
∆(k,P2) = 0 implies:

∀ k ∈ P1, k ̸⪯C k
′, k′ ∈ P2 ⇐⇒ ∀ k ∈ P1, k ∈ P2

A similar agrument using supk∈P1
∆(k,P1) = 0 implies that ∀ k ∈ P2, k ̸⪯C k

′, k′ ∈ P1.

2. We now show that Z is compact under the metric dp. Consider a sequence of Pareto fronts
P1,P2, . . . ,Pn ∈ Z and P be the candidate for limiting Pareto front.

• Boundedness of P is immediate.
• Pn → P, therefore, ∀ ϵ > 0,∃ N(ϵ) s.t. ∀ n > N(ϵ) and dp(Pn, P ) < ϵ. Let µk be a

limit point of P , i.e., ∃ a sequence µk,n ∈ P such that µk,n → µk. Since dp (Pn,P) → 0
for each µk,n ∈ P there exists µk,n,m ∈ Pn s.t. µk,n,m → µk,n. Using a diagonalization
argument, we can obtain a subsequence µk,n,m → µk.

• Since Pn is compact, µk must lie in P and therefore, P is closed.

D.2 Concentration to the Pareto Front

Lemma D.3. There exists constants C > 0 such that:

P
(
ḠT
)
≤ 2K2 1

1− exp(−C)
T exp

(
−CT 1/8

)
,

where GT = ∩Tt=h(T )

{
dP

(
P̂t,P∗

)
≤ ϵ
}

.
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Proof. We then have that:

P
(
dP

(
P̂t,P∗

)
≥ ϵ
)

= P
(
max

{
dP

(
P̂t,P∗

)
, dP

(
P∗, P̂t

)}
≥ ϵ
)

≤ P
(
dP

(
P̂t,P∗

)
≥ ϵ
)
+ P

(
dP

(
P∗, P̂t

)
≥ ϵ
)

Focusing on the first term we have:

dP

(
P̂t,P∗

)
= inf

k∈P̂t

sup
k′∈P∗

max

{
0, max

z∈C∩B(1)
z⊤
(
Mk′ − M̂k,t

)}
(a)
= min

k∈P̂t

max
k′∈P∗

max

{
0, max

z∈C∩B(1)
z⊤
(
Mk′ − M̂k′,t + M̂k′,t − M̂k,t

)}
(b)

≤ max
k′∈P∗

max

{
0, max

z∈C∩B(1)
z⊤
(
Mk′ − M̂k′,t

)}
+ max

k′∈P∗
max

{
0, max

z∈C∩B(1)
z⊤
(
M̂k′,t − M̂k,t

)}
Recall that ḠT = ∪Tt=h(T )

{
dP

(
P̂t,P∗

)
≥ ϵ
}

, then using a union bound, we have:

P
(
ḠT
)

≤
T∑

t=h(T )

P
(
dP

(
P̂t,P∗

)
≥ ϵ
)

≤
T∑

t=h(T )

[ ∑
(k,k′)

P
(
z⊤
(
M̂k,t − M̂k′,t

)
≤ z⊤ (Mk −Mk′)− ξ

)

+P
(
z⊤
(
M̂k,t − M̂k′,t

)
≥ z⊤ (Mk −Mk′) + ξ

)]
.

Let T be such that h(T ) ≥ K2. Since t ≥ h(T ), one has that Nk,t ≥
√
t−K.

Then using a union bound on each pair and number of arms, as well as a Chernoff bound, we have
that each of the terms in the above inequality are bounded as

P
(
z⊤
(
M̂k,t − M̂k′,t

)
≤ z⊤ (Mk −Mk′)− ξ

)
= P

(
z⊤
(
M̂k,t − M̂k′,t

)
≤ z⊤ (Mk −Mk′)− ξ,Nk,t ≥

√
t
)

≤
t∑

s=
√
t−K

P
(
z⊤
(
M̂k,s − M̂k′,s

)
≤ z⊤ (Mk −Mk′)− ξ

)

≤
t∑

s=
√
t−K

P
(
z⊤
(
M̂k,s −Mk

)
− z⊤

(
M̂k′,s −Mk′

)
≤ −ξ/2− ξ/2

)

≤
t∑

s=
√
t−K

(
P
(
z⊤
(
M̂k,s −Mk

)
≤ −ξ/2

)
+ P

(
z⊤
(
M̂k′,s −Mk′

)
≥ ξ/2

))

≤
t∑

s=
√
t−K

(
exp

(
−sdKL

(
z⊤Mk − ξ/2, z⊤Mk

))
+ exp

(
−sdKL

(
z⊤Mk′ + ξ/2, z⊤Mk′

)))
≤

exp
(
−(
√
t−K)dKL

(
z⊤Mk − ξ/2, z⊤Mk

))
1− exp (−dKL (z⊤Mk − ξ/2, z⊤Mk))

+
exp

(
−(
√
t−K)dKL

(
z⊤Mk′ + ξ/2, z⊤Mk′

))
1− exp (−dKL (z⊤Mk′ + ξ/2, z⊤Mk′))

≤
(

1

1− exp (−dKL (z⊤Mk − ξ/2, z⊤Mk))
+

1

1− exp (−dKL (z⊤Mk′ + ξ/2, z⊤Mk′))

)
× exp

(
−(
√
t−K)min

k,k′
{dKL

(
z⊤Mk − ξ/2, z⊤Mk

)
, dKL

(
z⊤Mk′ + ξ/2, z⊤Mk′

)
}
)
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Similarly, we have:

P
(
z⊤
(
M̂k,t − M̂k′,t

)
≥ z⊤ (Mk −Mk′) + ξ

)
≤

(
1

1− exp (−dKL (z⊤Mk + ξ/2, z⊤Mk))
+

1

1− exp (−dKL (z⊤Mk′ − ξ/2, z⊤Mk′))

)
× exp

(
−(
√
t−K)min

k,k′
{dKL

(
z⊤Mk + ξ/2, z⊤Mk

)
, dKL

(
z⊤Mk′ − ξ/2, z⊤Mk′

)
}
)

Now, we set

C ≜ min
k

{
dKL

(
z⊤Mk + ξ/2, z⊤Mk

)
, dKL

(
z⊤Mk − ξ/2, z⊤Mk

)}
and

B ≜
∑
(k,k′)

( 1

1− exp (−dKL (z⊤Mk − ξ/2, z⊤Mk))
+

1

1− exp (−dKL (z⊤Mk′ + ξ/2, z⊤Mk′))

+
1

1− exp (−dKL (z⊤Mk + ξ/2, z⊤Mk))
+

1

1− exp (−dKL (z⊤Mk′ − ξ/2, z⊤Mk′))

)
.

We observe that B ≤ 2K2 1
1−exp(−C) . Now, we get that

P
(
ḠT
)
≤

T∑
t=h(T )

B exp−C
√
t ≤ 2K2 1

1− exp(−C)
T exp

(
−CT 1/8

)
.

D.3 Proof of Theorem 5.2

Theorem D.1 (Restating Theorem 5.2). For any α > 0 and c(t, δ) defined in (7), we have that the
stopping time satisfies :

lim
δ→0

E[τ ]
log
(
1
δ

) ≤ αT̄F (M) ∀M ∈ RK×L

Proof. Step 1: Good Event Let T ∈ N, and h(T ) =
√
T , define the good event:

GT = ∩Tt=h(T )

{
dp(P̂t,P∗) ≤ f(ϵ)

}
(21)

where, f(ϵ) is such that:

dp(P̂t,P∗) ≤ f(ϵ) =⇒ sup
w′∈w∗(P̂τ )

sup
w∈w∗(P∗)

∥w′ − w∥ ≤ ϵ

Step 2: Concentration of Good Event In Lemma D.3, we show that:

P
(
ḠT
)
≤ 2K2 1

1− exp(−C)
T exp

(
−CT 1

8

)
Step 3: Tracking Lemma We have:∣∣∣Nk,t − w∗

k(M)
∣∣∣ ≤ ∣∣∣Nk,t

t
− 1

t

t−1∑
s=1

w∗
k(M̂s)

∣∣∣+ ∣∣∣1
t

t−1∑
s=1

w∗
k(M̂s)− w∗

k(M)
∣∣∣

≤ Nk,t

t
+
h(T )

t
+
∣∣∣1
t

t−1∑
s=1

w∗
k(M̂s)− w∗

k(M)
∣∣∣

≤ K(
√
t+ 1)

t
+
h(T )

t
+
∣∣∣1
t

t∑
s=1

w∗
k(M̂s)− w∗

k(M)
∣∣∣
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From (Garivier and Kaufmann, 2016), we have that:

max
k

∣∣∣Nk,t −
∑
t

wk,t

∣∣∣ ≤ K (1 +√t)
Step 4: Complexity of the good event

Assume t ≥ Tϵ, and let:

Cϵ (M) ≜ inf
w′,M ′

VC (w,M) , ∀(w,M) s.t. ∥w′ − w∥ ≤ 3ϵ, dP

(
P̂t,P∗

)
≤ f(ϵ)

Then, we have that:
VC

(
Nt, M̂t

)
≥ tCϵ(M)

Step 5: Bounding the stopping time for good and bad events

Let τδ be the stopping time, then:

min{τδ, T} ≤
√
T +

T∑
t=Tϵ

1τδ≥t

From the stopping rule (Equation (7)), we get that:

Tϵ +

T∑
t=Tϵ

1VC(Nt,M̂t)≤β(t,δ) ≤
√
T +

T∑
t=Tϵ

1tCϵ(M)≤β(t,δ)

≤
√
T +

β(t, δ)

Cϵ(M)

where, β(t, δ) is defined in Equation (6).

Define Tδ = inf
{
T ∈ N :

√
T + c(t,δ)

Cϵ(M) ≤ T
}

. Hence, we have:

E [τδ] ≤ Tϵ + Tδ +

∞∑
T=1

2K2 1

1− exp(−C)
T exp

(
−CT−1/8

)
≤ Tϵ + Tδ + T ′

Let C(η) = inf{T : T −
√
T ≥ T

(1+η)}. Then:

Tδ ≤ C(η) + inf

{
T ∈ N :

TCϵ(M)

(1 + η)
≥ β(t, δ)

}

Step 6: Obtaining the asymptotic bounds Taking limits:

lim
δ→0

inf
E [τδ]

log
(
1
δ

) ≤ αT (M) ∀ α ≥ 1
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E Reduction to Best-arm Identification

We briefly discuss how the metric dP (·, ·) extends existing notions of gap in best-arm and Pareto-front
identification literature. Specifically, we proceed with the three following observations.

1. Observe that dP (P∗,P∗) = 0.
2. Further, iff C represents the component-wise ordering as in Pareto-front identification (Auer et al.,

2016; Kone et al., 2023a), then z(ℓ) = 1, ∀ ℓ ∈ [L].

dP ([K] \ P∗,P∗))

= max

{
sup

k∈[K]\P∗
d (k,P∗) , sup

k∈P∗
d ([K] \ P∗, k)

}

= max

{
sup

k∈[K]\P∗
inf

k′∈P∗
max

{
0, min

ℓ∈[L]
(Mℓk −Mℓk

′)

}
,

sup
k∈P∗

inf
k′∈[K]\P∗

max

{
0, min

ℓ∈[L]
(Mℓk −Mℓk

′)

}}

= max

{
sup

k∈[K]\P∗
inf

k′∈P∗
max {0,m(k′, k)} ,

sup
k∈P∗

inf
k′∈[K]\P∗

max {0,M(k, k′)}

}
= sup

k∈P∗
inf

k′∈[K]\P∗
max {0,M(k, k′)} .

3. Finally, when there is only a single objective, i.e., |L| = 1 and assuming an unique optimal arm
(fairly common assumption in BAI literature), we have:

dP ([K] \ P∗,P∗)) = max

{
sup

k∈[K]\P∗
d (k,P∗) , sup

k∈P∗
d ([K] \ P∗, k)

}

= max

{
sup

k∈[K]\k∗
max {0, (µk − µk∗)} ,

sup
k′∈[K]\k∗

max {0, (µk∗ − µk′)}

}
= min

k′ ̸=k∗
∆k′ ,

which is exactly the gap for one-dimensional bandit.
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F Useful Existing Results

Theorem F.1 (Berge’s Maximum Theorem (Berge, 1877)). Let U and V be topological spaces,
f : U × V → R and C : U → V be non-empty compact set for all u ∈ U . Then, if C is continuous
at u, f∗(u) = maxv∈C(u) f(u, v) is continuous and C∗(u) = {v ∈ C(u) : f∗(u) = f(u, v)} is
upper-hemicontinuous.

Theorem F.2 (Donsker-Vardhan Variational Formula (Donsker and Varadhan, 1975)). For mutual
information dKL (P,Q), we have that:

dKL (P,Q) = sup
f

EP [f ]− lnEQ [exp(f)]

Lemma F.1 (Peskun Ordering (Peskun, 1973)). For any two random variables X,Y on RK the
following are equivalent:

1. X ≤s Y

2. For all x ∈ RK , P [X ≥ x] ≤ P [Y ≥ x]

3. For all non-negative functions f1, f2, . . . , fK , we have that: E[ΠK
i=1fi] ≤ E[ΠK

i=1fi]

Lemma F.2 (Magureanu et al. (2014)). For any k = 1, 2, . . . ,K, let us define 1 ≤ tk ≤ t. Then for
all 0 ≤ Ck ≤Mk, we have

P
(
∩k∈[K]

{
M̂k,t ≤ Ck, tk ≤ Nk,t

})
≤ exp

− ∑
k∈[K]

tkdKL (Ck,Mk)

 .

Lemma F.3 (Magureanu et al. (2014)). Let a > 0 and K ≥ 2 and Z ∈ RK such that for all ξ ∈ RK
+

we have:

P (Z ≥ ζ) ≤ exp

−a ∑
k∈[K]

ζk

 .

Then, for all ρ ≥ K
a ∈ R+, we have

P

 ∑
k∈[K]

Zk ≥ ρ

 ≤ (aeρ
K

)K
exp(−aρ) .

Lemma F.4 (Single-arm concentration Kaufmann and Koolen (2021)). The following is a δ uniformly
valid confidence interval on z⊤µ:

z⊤µ ∈

z⊤µ̂+

√√√√2

(
LCg

(
ln( 1δ )

L

))
+
∑

k∈[K]

c ln (d+ ln ln(Nk,t))

∑
ℓ∈L(z

ℓ)2

Nk,t


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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ”
provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist”,
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification:
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

humansubjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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