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Abstract

This paper studies first-order policy optimization for robust average cost Markov
decision processes (MDPs). Specifically, we focus on ergodic Markov chains. For
robust average cost MDPs, the goal is to optimize the worst-case average cost over
an uncertainty set of transition kernels. We first develop a sub-gradient of the robust
average cost. Based on the sub-gradient, a robust policy mirror descent approach
is further proposed. To characterize its iteration complexity, we develop a lower
bound on the difference of robust average cost between two policies and further
show that the robust average cost satisfies the Polyak-Łojasiewicz (PL)-condition.
We then show that with increasing step size, our robust policy mirror descent
achieves a linear convergence rate in the optimality gap, and with constant step
size, our algorithm converges to an ϵ-optimal policy with an iteration complexity of
O(1/ϵ). The convergence rate of our algorithm matches with the best convergence
rate of policy-based algorithms for robust MDPs. Moreover, our algorithm is the
first algorithm that converges to the global optimum with general uncertainty sets
for robust average cost MDPs. We provide simulation results to demonstrate the
performance of our algorithm.

1 Introduction

Markov decision process (MDPs) [34] has been widely used to model agent-environment interactions
in sequential decision-making problems. An MDP consists of a set of states, a set of actions, a
transition kernel describing the dynamics of the environment, and a cost function of state-action
pairs. The agents aim to minimize the cumulative cost obtained over time under a given transition
kernel. However, real-world environments often exhibit uncertainties and non-stationarity that
challenge the assumptions of traditional RL approaches. When there is a mismatch between the
training environment and the real environment, minimizing the cumulative cost under the training
environment may lead to poor performance under the real environment.

To address the challenges raised by the model mismatch, the robust MDP was proposed [13, 27],
where the transition kernel of the MDP is not fixed but lies in an uncertainty set. The goal of the
robust MDP is to optimize the worst-case performance over the uncertainty set of transition kernels.
The obtained policy under the robust setting is thus robust to the model mismatch.

Existing works on robust MDPs mainly focus on the discounted cost setting, where the goal is to
minimize the worst-case cumulative discounted cost. However, in many real-world applications with
long time horizons, such as inventory management in supply chains and applications in communi-
cation networks [16], the optimal policies obtained from the discounted cost setting may have poor
long-term performance [15].
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To address these challenges, recent research has shifted focus towards robust average cost MDPs,
where the objective is to optimize the worst-case average cost obtained per time step. The average
cost MDPs offer several advantages over discounted cost MDPs, including better stability and
applicability to infinite-horizon tasks. However, achieving robust and efficient learning in average
cost settings remains a significant challenge. Since the cost is discounted exponentially with time in
discounted cost MDPs, establishing a contraction only requires a discount factor strictly less than one.
Compared with discounted cost MDPs, average cost MDPs depend on the long-term performance
of the underlying MDPs as it assigns equal weight to both immediate and future costs. Research
on robust average cost MDPs is relatively scarce in the existing literature, with only a few notable
studies, such as those by [36, 22, 39, 40, 12]. None of the above-mentioned works focuses on the
fundamental characterization of gradient-based algorithms. Therefore, in our paper, we present the
first theoretical analysis of the global convergence of policy optimization algorithms in the context of
robust average cost MDPs with general uncertainty sets.

1.1 Main Contributions

In this paper, for ergodic Markov chains, we propose a policy-based optimization algorithm called
robust policy mirror descent to solve the robust average cost MDPs. We further show that with
increasing step size, our robust policy mirror descent achieves linear convergence in the optimality
gap, and with constant step size, our algorithm converges to an ϵ-optimal policy with iteration
complexity of O(1/ϵ). Our algorithm is the first policy-based algorithm with global convergence and
finite iteration complexity analysis for robust average cost MDPs with general uncertainty sets. In
particular, our main contributions are summarized as follows.

We derive a policy (sub)-gradient for the robust average cost MDPs. In robust average cost
MDPs, the goal is to optimize the worst-case performance, known as the robust average cost, which
considers the worst-case over the uncertainty set of transition kernels. However, the robust average
cost function typically involves a “max” operator over transition kernels, making it non-differentiable
with respect to the policy. Therefore, in this paper, we first develop the Fréchet sub-gradient of the
robust average cost with general uncertainty sets, which serves as a foundation of the policy-based
algorithm. The robust policy gradient under the discounted setting was derived in [42, 21]. The work
[42] considers the specific R-contamination uncertainty set, and the derivative of the robust policy
gradient in [21] relies on the fact that the discount factor is strictly less than 1, which can not be
extended to the average cost setting.

We propose a robust policy mirror descent algorithm. Based on the derivative of the Fréchet
sub-gradient, we propose the robust policy mirror descent algorithm. We apply the dynamically
weighted divergence to the policy mirror descent so that the policy can be updated for each state
separately, which further ensures global convergence.

We show that our algorithm converges to the global optimum, and we further characterize the
iteration complexity. To show the global convergence, we first prove that the robust average cost
satisfies the Polyak-Łojasiewicz (PL) condition [29, 23]. We then prove the global optimality of our
algorithm and characterize its iteration complexity. We show that with increasing step size, our robust
policy mirror descent achieves linear convergence in the optimality gap, and with constant step size,
our algorithm converges to an ϵ-optimal policy with iteration complexity O(1/ϵ). For increasing step
size, the linear convergence of our algorithm matches with the robust discounted cost setting [21]. In
[21], the robust policy mirror descent was shown to converge to the global optimum with iteration
complexity O(1/ϵ) for discounted cost MDPs when the step size is sufficiently large. Conversely, for
non-robust discounted cost MDPs, the policy mirror descent was demonstrated to achieve a O(1/ϵ)
iteration complexity in [45], representing the state-of-the-art convergence rate for policy mirror
descent with a constant step size. Therefore, the convergence rate of our algorithm matches with the
performance of the best non-robust counterpart. The convergence analysis of policy-based algorithms
for non-robust MDPs relies on the fact that the value function is smooth, which is not the case for the
robust average cost function. In this paper, we combine the first-order optimality condition of the
policy update and the PL condition to develop a novel proof for the convergence rate of our algorithm.

1.2 Related Works

In this section, we discuss works on policy-based approaches for non-robust MDPs, robust discounted
cost MDPs and robust average cost MDPs.
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Policy-based approaches for non-robust MDPs. In the non-robust setting, policy-based algorithms
[44, 35, 17, 14, 31, 32] have demonstrated remarkable success across various applications. Recently,
the global convergence of the policy-based algorithms were established [4, 5, 1, 24, 20, 19, 49, 9, 48,
45]. For discounted cost MDPs, it was shown in [1] that the projected gradient descent converges to a
global optimum with iteration complexity O(1/ϵ2). In both [48] and [45], the authors show that the
projected gradient descent converges to a global optimum with a less iteration complexity O(1/ϵ).
For average cost MDPs, [18] presents a sublinear convergence bound for projected gradient descent,
where the bound involves the parameter that characterizes the complexity of the underlying MDP.
In all the above works, the convergence analysis depends on the smoothness of the value function.
However, since the smoothness may not hold for the robust value function, the methodologies applied
in [1, 48, 45, 18] can not be extended to our case. The policy mirror descent with increasing step
size was shown to achieve linear convergence in [45]. The policy mirror descent with constant step
size was also proved to converge with iteration complexity O(1/ϵ) for discounted cost MDPs in [45].
Their proof relies on the performance difference lemma and the fact that the underlying transition
kernel doesn’t change with time. In this paper, we derive the policy sub-gradient for robust average
cost MDPs and design the robust policy mirror descent. We then develop a lower bound on the
difference of robust average cost between two policies and further combine it with the first-order
optimality condition of the policy update to characterize the iteration complexity of our algorithm.

Robust discounted cost MDPs. Robust discounted cost MDPs have been widely studied [13, 27, 41,
3, 11, 47, 21, 46, 28, 33], where the goal is to minimize the worse-case cumulative discounted cost
over the uncertainty set of transition kernels. In this section, we introduce works on policy-based
algorithms, which are closely related to our work. In [42], the robust MDPs are considered under the
R-contamination uncertainty set and the robust policy gradient algorithm is designed. It is shown
in [38] that the robust policy gradient algorithm converges to the global optimum with iteration
complexity O(1/ϵ3). Later in [38], the double-loop robust policy gradient was proposed for general
uncertainty sets and was further proved to converge to the global optimum with iteration complexity
O(1/ϵ4). The robust policy mirror descent was designed for discounted cost MDPs in [21]. With
increasing step size, the robust policy mirror descent converges linearly to the global optimum, while
with constant but sufficiently large step size, the algorithm converges to the global optimum with
iteration complexity O(1/ϵ). In this paper, we study the average cost setting and show that with
increasing step size, the robust policy mirror descent achieves linear convergence, and with constant
step size, our algorithm converges to the global optimum with iteration complexity O(1/ϵ), which
matches with the best achievable iteration complexity of policy-based algorithms for robust MDPs.
For the case with constant step size, our analysis doesn’t require the step size to be sufficiently large.

Robust average cost MDPs. Existing literature that focuses on robust average cost MDPs is relatively
limited. The robust average cost MDPs were initially explored by [36], where a specific finite interval
uncertainty set was considered and the O(1/ϵ) convergence rate was achieved. In [22], the robust
average cost MDPs were studied under the l1 uncertainty set. However, the approaches in [36, 22]
are not applicable for general uncertainty sets. Later in [39, 40, 12], the robust value iteration based
algorithms were proposed and the global convergence was proved. In [12], the connection are built
between the discounted reward MDPs and average reward MDPs and the existence of Blackwell
optimal policies are proved. In [39, 40], the model-based and model-free robust average reward
MDPs are studied and the robust relative value iteration algorithms are proposed. However, finding
a stopping criterion and characterizing the iteration complexity for robust value iteration based
algorithms remain elusive. In this paper, we propose the first policy-based algorithm for robust
average cost MDPs. We show that our algorithm converges to the global optimum and we further
characterize its iteration complexity. Therefore, our algorithm is the first algorithm with finite iteration
complexity analysis for robust average cost MDPs with general uncertainty sets.

Exponential cost robust MDPs. For the robust average cost MDPs, when the uncertainty set is
defined by the KL-divergence metric, the problem admits a dual formulation, which is the exponential
cost robust MDPs. The exponential cost robust MDPs have also been studied in the literature. In
[6], the Q-learning and the actor-critic method are described and the asymptotic performance are
characterized for risk sensitive robust MDPs. In [7], the value iteration and policy iteration algorithms
are also analyzed for risk sensitive MDPs. Recently, in [26], the modified policy iteration is proved
to converge to the global optimum for exponential cost risk sensitive MDPs. The policy gradient
algorithm for the risk sensitive exponential cost MDPs is studied and the asymptotic convergence
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bounds to a stationary point are provided in [25]. In our paper, we study the robust average cost
MDPs with general uncertainty sets and characterize the global convergence of our algorithm.

2 Preliminaries and Problem Formulation

In this section, we introduce some preliminaries on discounted cost MDPs, average cost MDPs and
present our problem formulation.

2.1 Discounted Cost MDPs

A discounted cost MDP is defined by the tuple (S,A,P, r, γ), where S denotes the finite state space,
A denotes the finite action space, P = {Pa

s ∈ ∆(S), s ∈ S, a ∈ A}1 is the transition kernel,
r : S×A → [0, 1] denotes the cost function, and γ ∈ [0, 1) is the discount factor. Denote by S the
number of states and A the number of actions, respectively.

We consider the set of all stationary and randomized policies Π = {π : S → ∆(A)}. For each policy
π, it maps from state s ∈ S to a distribution over action a ∈ A. At each state s, the agent takes action
a with probability π(a|s), and the environment transits from state s to state s′ according to Pa

s . The
discounted value function of a policy π starting from an initial state s is defined as

V π
P,γ(s) ≜ EP

[ ∞∑
t=0

γtr(st, at)|s0 = s, π

]
, (1)

where EP denotes the expectation with respect to the distribution induced by the transition kernel
P. To align with conventions in the optimization literature, in this paper, we adopt a minimization
formulation. For discounted cost MDPs, the goal is to find a policy π that minimizes the discounted
value function V π

P,γ(s) for any initial state s.

2.2 Average Cost MDPs

Average cost is another fundamental criterion for MDPs. For discounted cost MDPs, the agent
penalizes the future cost with discount factor γ to demonstrate the preference for the current cost.
The average cost MDPs focus on the long-term performance of the underlying MDPs under the
steady-state distribution. The average cost MDP can be defined by the tuple (S,A,P, r). For a policy
π, define the average cost under transition kernel P starting from an initial state s as follows

gπP(s) ≜ lim
T→∞

EP

[
1

T

T−1∑
t=0

r(st, at)|s0 = s, π

]
. (2)

We also define the relative value function V π
P and the relative state-action value function Qπ

P for
average cost MDPs as follows

V π
P (s) ≜ EP

[ ∞∑
t=0

(
r(st, at)− gπP

)
|s0 = s, π

]
,

Qπ
P(s, a) ≜ EP

[ ∞∑
t=0

(
r(st, at)− gπP

)
|s0 = s, a0 = a, π

]
. (3)

The relative value function V π
P and the average cost gπP satisfy the following Bellman equation [30]

V π
P (s) =

∑
a∈A

π(a|s)
(
r(s, a)− gπP(s) +

∑
s′∈S

Pa
s,s′V

π
P (s′)

)
, (4)

where Pa
s,s′ denotes the probability of transiting to state s′ when choosing action a at state s. Let

dπP denote the stationary probability induced by the policy π and transition kernel P, and it satisfies
that dπPP = dπP. Similar as [18], we consider the projection of the value function onto the subspace
orthogonal to the 1 vector so that V π

P and Qπ
P are unique. For average cost MDPs, the goal is to find a

policy π that minimizes the average cost gπP(s) for any initial state s.

1∆(S) denotes the probability simplex defined on S.

4
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2.3 Robust Average Cost MDPs

For robust MDPs, the transition kernel P is not fixed but lies in some uncertainty set P. Define
the robust average cost MDP by the tuple (S,A,P, r). In this work, we consider (s, a)-rectangular
uncertainty set:

P =
⊗
s,a

Pa
s , P

a
s = {q ∈ ∆(S) : D(q, (P0)

a
s) ≤ R}, (5)

where P0 is a known nominal transition kernel, D measures the difference between two distributions,
e.g., KL divergence, and R is the pre-specified radius of the uncertainty set.

For robust average cost MDPs, the agent aims to optimize the worst-case performance over the
uncertainty set P. Define the worst-case average cost as follows

gπP(s) ≜ max
P∈P

lim
T→∞

EP

[
1

T

T−1∑
t=0

r(st, at)|s0 = s, π

]
. (6)

Similarly, we denote by V π
P and Qπ

P the robust relative value function and the robust relative state
action value function, respectively. The robust relative value function V π

P and the robust average cost
gπP satisfy the following Bellman equation [39].

V π
P (s) =

∑
a∈A

π(a|s)
(
r(s, a)− gπP(s) + max

P∈P

∑
s′∈S

Pa
s,s′V

π
P (s′)

)
. (7)

For any policy π, denote by dπP the stationary distribution of the state under the worst-case transition
kernel of π. The goal is to find a policy π such that the worst-case average cost gπP is minimized, i.e.,

min
π∈Π

gπP(s), for any s ∈ S. (8)

Denote the optimal policy by π∗ and the robust average cost of π∗ by g∗P. In this paper, we state the
following assumption to guarantee that the average cost is independent of the initial state, which is
widely used in the studies of average cost MDPs [43, 50, 10, 37, 39, 40].
Assumption 2.1. For any π ∈ Π and P ∈ P, the induced Markov chain is ergodic.

3 Robust Policy Mirror Descent

In this section, we first derive the robust average cost policy gradient. We then propose the robust
policy mirror descent algorithm.

3.1 Robust Average Cost Policy Gradient

Since the worst-case average cost gπP takes “max” over all P ∈ P, gπP might not be differentiable. To
address this issue, we introduce the concept of Fréchet sub-gradient. Let ∥ · ∥ denote the L2 norm of
a vector.
Definition 3.1. For any function f : X ⊆ RN → R, the Fréchet sub-gradient u ∈ RN is a vector
that satisfies

lim
δ→0

inf
δ ̸=0

f(x+ δ)− f(x)− ⟨u, δ⟩
∥δ∥

≥ 0. (9)

When f is differentiable at x, the Fréchet sub-gradient u is the gradient of f . In this paper, we
consider the direct policy parameterization. We derive the sub-gradient for the robust average cost gπP
in the following lemma.
Lemma 3.2. Let ∇gπP(s, a) = dπP(s)Q

π
P(s, a). Then ∇gπP is the Fréchet sub-gradient of gπP.

Note that the Fréchet sub-gradient has been derived for robust discounted cost MDPs [21], of which
the (s, a) entry takes the form 1

1−γ d
π
P(s)Q

π
P(s, a). Here, with a little abuse of notation, we use

dπP to denote the visitation distribution of policy π under the worst-case transition kernel and use
Qπ

P to denote the worst-case action value function of policy π. The Fréchet sub-gradient for robust
discounted cost MDPs in [21] can not be extended to the average setting since in [21], the discounted
factor γ is required to be strictly less than 1. In this paper, we derive the Fréchet sub-gradient of
robust average cost MDPs by applying the performance difference lemma for average cost MDPs [8]
and the Lipschitz property of the relative action value function [18].

5
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Algorithm 1 Robust Policy Mirror Descent

Input: step size ηk, initial policy π0

for k = 0, 1, · · · ,K − 1 do
for s ∈ S do

Update policy: πk+1(·|s) = argminp∈∆(A)

{
ηk⟨Qπk

P (s, ·), p⟩+D(p, πk(·|s))
}

.
end for

end for
Output: πK

3.2 Robust Policy Mirror Descent

With Lemma 3.2, we are ready to present our robust policy mirror descent algorithm for average
cost MDPs. We assume that for a given policy π, there exists an oracle that outputs the robust
relative state action value function Qπ

P. We denote by D(π(·|s), π′(·|s)) the Bregman divergence
between two policies π(·|s) and π′(·|s). We further define the weighted Bregman divergence function
Dd(π, π

′) =
∑

s∈S d(s)D(π(·|s), π′(·|s)) for any d ∈ ∆(S). We define the following robust policy
mirror descent with dynamically weighted divergence

πk+1 = argmin
π∈Π

{
ηk⟨∇gπk

P , π⟩+Dd
πk
P
(π, πk)

}
, (10)

where ηk is the step size. Note that gπP might not be differentiable, thus in our algorithm we replace
the gradient of gπP by its Fréchet sub-gradient ∇gπP. By plugging in the sub-gradient formula of gπP in
Lemma 3.2, we have that

πk+1 = argmin
π∈Π

{
ηk

∑
s∈S

dπk

P (s)⟨Qπk

P (s, ·), π(·|s)⟩+Dd
πk
P
(π, πk)

}
= argmin

π∈Π

{∑
s∈S

(
ηk⟨Qπk

P (s, ·), π(·|s)⟩+D
(
π(·|s), πk(·|s)

)}
, (11)

which is equivalent to

πk+1(·|s) = argmin
p∈∆(A)

{
ηk⟨Qπk

P (s, ·), p⟩+D
(
p, πk(·|s)

)}
,∀s ∈ S. (12)

We summarize our algorithm in Algorithm 1.

Note that for the projected policy (sub)-gradient algorithm, the policy is updated as follows

πk+1(·|s) = argmin
p∈∆(A)

{
ηk⟨∇gπk

P (s, ·), p⟩+ ∥p− πk(·|s)∥2
}
,∀s ∈ S. (13)

In our paper, we set the Bregman divergence D(·, ·) to be the squared Euclidean distance. In this
case, the difference between our robust policy mirror descent and the projected policy gradient lies in
that we replace the policy (sub)-gradient ∇gπk

P by Qπk

P .

In the next section, we show that though the robust average cost gπP might not be differentiable, our
robust policy mirror descent achieves linear convergence in the optimality gap with increasing step
size, and converges to an ϵ-optimal policy with iteration complexity O(1/ϵ) with constant step size.

4 Theoretical Results

Before we show the global optimality of the robust policy mirror descent, we first provide some
important properties of the robust average cost MDPs.

We first provide a lower bound on the difference of robust average cost between two policies, which
is a key step to derive the global optimality.

Lemma 4.1. For any two policies π, π′, we have that gπP−gπ
′

P ≥ Es∼dπ′
P

[
⟨Qπ

P(s, ·), π(·|s)−π′(·|s)⟩
]
.

6
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Lemma 4.1 is not a straightforward extension of performance difference lemma [8] to the robust
setting since the worst-case transition kernels are different for different policies. A similar bound was
derived in [21] for robust discounted value function by applying the Bellman equation of robust value
function, which is not applicable in our case as the average cost itself does not satisfy the Bellman
equation. Therefore, we apply the Bellman equation of the robust relative value function V π

P and the
robust average cost gπP in (7) and the observation that gπP is independent of the initial state s to obtain
Lemma 4.1.

We then show that the robust average cost gπP satisfies the PL-condition in the following lemma.
Lemma 4.2. The suboptimality of any π satisfies gπP − g∗P ≤ CPL maxπ̂⟨∇gπP, π − π̂⟩, where

CPL = maxπ,s
dπ∗
P (s)
dπ
P
(s) .

The PL-condition implies that when the subgradient ∇gπP is small, the policy π lies in the small
neighborhood of the global optimum.

Our convergence analysis also leverages the following Lipschitz property of the non-robust relative
value function V π

P [18].

Lemma 4.3. The relative value function V π
P is Lipschitz in π, i.e., there exists a constant Lπ such

that |V π
P − V π′

P | ≤ Lπ∥π − π′∥.

4.1 Increasing Step Size

In this section, we show that our algorithm achieves linear convergence rate with increasing step size.
We first characterize some properties of our robust policy mirror descent algorithm.

Lemma 4.4. For any p ∈ Π and s ∈ S, we have that

ηk⟨Qπk

P (s, ·), πk+1(·|s)− p(·|s)⟩+ ∥πk+1(·|s)− πk(·|s)∥2

≤ ∥p(·|s)− πk(·|s)∥2 − ∥p(·|s)− πk+1(·|s)∥2. (14)

In the following lemma, we establish the convergence property for each iteration of our algorithm.
Lemma 4.5. At each iteration of our algorithm, we have that

g
πk+1

P − g∗P ≤ M − 1

M
(gπk

P − g∗P) +
1

M
Es∼dπ∗

Pπk

[ 1

ηk

∥∥π∗(·|s)− πk(·|s)
∥∥2]

− 1

M
Es∼dπ∗

Pπk

[ 1

ηk

∥∥π∗(·|s)− πk+1(·|s)
∥∥2], (15)

where M = supπ,P∈P

∥∥∥dπ∗
Pπ

dπ
P

∥∥∥
∞

.

We show that with increasing step size, our robust policy mirror descent converges linearly.

Theorem 4.6. Under Assumption 2.1, set the step size ηk ≥ ηk−1

(
1− 1

M

)−1

M . The robust policy
mirror descent satisfies

gπk

P − g∗P ≤
(
1− 1

M

)k

(gπ0

P − g∗P) +
(
1− 1

M

)k−1 1

Mη0
Es∼dπ∗

Pπ0

[
∥π∗(·|s)− π0(·|s)∥2

]
. (16)

Our analysis in this section mainly leverages the performance difference lemma [8] and the Bregman
divergence three-point lemma. The convergence rate for our robust policy mirror descent with
increasing step size matches with the best convergence rate of policy-based algorithm for robust
MDPs [21]. Our algorithm is the first algorithm that converges to the global optimum with finite
iteration complexity for robust average cost MDPs with general uncertainty sets.

4.2 Constant Step Size

We proceed to show that with constant step size, our algorithm achieves the global optimum with
iteration complexity O(1/ϵ).

7
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Theorem 4.7. Under Assumption 2.1, let step size η = 1
Lπ

for all k ≥ 1. We have that the each
iteration of the robust policy mirror descent satisfies

gπk

P − g∗P ≤ max
{4Lπ

ωk
,
(√2

2

)k(
gπ0

P − g∗P
)}

, (17)

where ω = (2
√
2SCPL)

−2.

For Algorithm 1, to find an ϵ-optimal policy, Theorem 4.7 shows that the iteration complexity is
upper bounded by O(1/ϵ). In [21], the robust policy mirror descent was studied for discounted cost
MDPs. The iteration complexity O(1/ϵ) in [21] can only be achieved with a sufficient large step size
ηk = 1/ϵ. For the non-robust discounted cost MDPs, the policy mirror descent was shown to enjoy a
O(1/ϵ) iteration complexity in [45], which is the state-of-the-art convergence rate for policy mirror
descent with constant step size. Our robust policy mirror descent with constant step size converges
to the global optimum with iteration complexity O(1/ϵ), which matches with the best non-robust
counterpart [45].

Define the gradient mapping G 1
η
(πk(·|s)) = 1

η (πk(·|s) − πk+1(·|s)). Note that if πk is updated
exactly by the (sub)-gradient descent, then G 1

η
(πk(·|s)) = ∇gπP(s, ·). The norm ∥G 1

η
(πk(·|s))∥

measures the closeness of the current step to the first-order stationary point. Our proof relies on the
following key ingredient.

gπk

P − g
πk+1

P ≥ E
s∼d

πk+1
P

[
∥G 1

η
(πk(·|s))∥2

]
≥ ωη(g

πk+1

P − g∗P)
2. (18)

In [1, 45], similar steps are adopted to derive the convergence rate of the policy gradient descent
for non-robust discounted cost MDPs. In their analyses, to obtain (18), the smoothness of the value
function is required. However, since the worst-case transition kernel is a function of the policy π, the
robust average cost gπP might not be smooth. Therefore, the approaches applied in [1, 45] can not be
directly extended to robust average cost MDPs. Without the smoothness of the value function, we
still prove that (18) holds by leveraging Lemma 4.1 and the following first-order optimality, which is
from the optimality condition of the robust policy mirror descent update in (12)〈

Qπk

P (s, ·) + 1

ηk
(πk+1(·|s)− πk(·|s)), p− πk+1(·|s)

〉
≥ 0,∀p ∈ ∆(A). (19)

Remark 4.8. Since for robust discounted cost MDPs, Lemma 4.1, Lemma 4.2 and Lemma 4.3 also
hold, the result in Theorem 4.7 also holds for robust discounted cost MDPs. Therefore, our robust
policy mirror descent with constant step size finds an ϵ-optimal policy with iteration complexity
O(1/ϵ) for robust discounted cost MDPs. Compared with [21], our step size doesn’t need to be
sufficiently large.

5 Simulation Results

In this section, we provide some simulation results to demonstrate the performance of our algorithm.
We verify our method on one classical problem: the Garnet problem, and a robotic application
problem: the recycling robot problem.

Garnet environments are synthetic benchmarks designed to be used for studying the performance
of RL algorithms. The Garnet framework provides a way to create randomly generated MDPs with
specified properties, such as the number of states, actions, and transition probabilities. More details
can be found in [2].

In the recycling robot problem, a mobile robot powered by a rechargeable battery is tasked with
collecting empty soda cans. The robot operates with two battery levels: low and high. It has three
possible actions: (1) search for empty cans; (2) remain stationary and wait for someone to bring it
a can; or (3) return to its home base to recharge. When the robot’s battery is low (high), it has a
probability of α (β) of finding an empty can and maintaining its current battery level. If the robot
searches for cans but does not find any, it will deplete its battery completely and must be carried back
by humans. For more details, refer to [34]. In this paper, we set α = 0.9, β = 0.9.

We compare our robust policy mirror descent with the non-robust method [45]. We consider Garnet(3,
2), Garnet(5, 2), Garnet(10, 5) and recycling robot problems. Both methods use a uniform random
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Figure 1: Garnet(3, 2) Figure 2: Garnet(5, 2)

Figure 3: Garnet(10, 5) Figure 4: Recycling Robot

policy as the initialized policy. We conducted 5 trials with different random seeds and reported
mean and standard deviation of the robust average costs over training episodes. Each training
episode contains 2000 training steps. The length of training episodes is respectively 100 and 300
for Garnet and robot problems. We choose the uncertainty set to be the KL divergence uncertainty
set. We consider the constant step size and set the step size η = 0.01, the pre-specified radius of the
uncertainty set R = 0.1. The host machine used in our experiments is a server configured with AMD
Ryzen Threadripper 2990WX 32-core processors and four Quadro RTX 6000 GPUs. All experiments
are performed on Python 3.8.

Figure 1 showcases the mean values of the optimal robust average cost values and standard deviations
for our robust method and the non-robust baseline over the training episode in Garnet(3, 2). Our
robust method converges faster than the non-robust baseline, though these two methods converge to
the same value. We speculate that the reason why the two methods converge to similar numbers is
because this MDP environment has a small size. Therefore, we further compare our robust method
with the non-robust baseline in two larger Garnet problems Garnet(5, 2) and Garnet(10, 5), and the
recycling robot problem. Figure 2, 3, and 4 respectively show the mean optimal robust average
cost and standard deviations in these three problems. From Figure 2, 3 and 4, we find that our
robust method outperforms the non-robust baseline in terms of mean costs in all three problems. The
simulation results demonstrate the robustness of our algorithm.

6 Conclusion

In this paper, we investigated the policy-based algorithm for robust average cost MDPs. We first
introduced the sub-gradient of the robust average cost. Based on the sub-gradient, we proposed
the robust policy mirror descent. Our theoretical analysis demonstrates that the proposed algorithm
with increasing step size achieves linear convergence rate, and with constant step size, the proposed
algorithm finds an ϵ-optimal policy with iteration complexity O(1/ϵ), matching the best convergence
rate observed in policy mirror descent algorithms for robust MDPs. Moreover, our algorithm is the
first algorithm that converges to the global optimum with finite iteration complexity for robust average
cost MDPs with general uncertainty sets. Our paper focuses on the model-based setting. In the future,
it is of interest to design policy-based model-free algorithms for robust average cost MDPs.
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A Proof of Lemma 3.2

In this section, we provide the proof for Lemma 3.2.

Consider polices π, π′ ∈ Π . For the non-robust average cost gπP , we have that

gπ
′

P − gπP
(a)
=

∑
s

dπP(s)⟨Qπ′

P (s, ·), π′(·|s)− π(·|s)⟩

=
∑
s

dπP(s)⟨Qπ′

P (s, ·) +Qπ
P(s, ·)−Qπ

P(s, ·), π′(·|s)− π(·|s)⟩

=
∑
s

dπP(s)⟨Qπ
P(s, ·), π′(·|s)− π(·|s)⟩+

∑
s

dπP(s)⟨Qπ′

P (s, ·)−Qπ
P(s, ·), π′(·|s)− π(·|s)⟩, (20)

where (a) is from the performance difference lemma [8].

Since the relative value function V π
P (s) is Lπ-Lipschitz in π (Lemma 4.3), we have that Qπ

P(s, ·)
is Lπ-Lipschitz in π. Therefore, we have that Qπ′

P (s, ·) − Qπ
P(s, ·) = O(∥π − π′∥), which further

implies that
∑

s d
π
P(s)⟨Qπ′

P (s, ·)−Qπ
P(s, ·), π′(·|s)− π(·|s)⟩ = o(∥π − π′∥).

Let Pπ denote the worst-case transition kernel for policy π. For the robust average cost, we have that

gπ
′

P − gπP = gπ
′

P′
π
− gπPπ

≥ gπ
′

Pπ
− gπPπ

=
∑
s

dπP(s)⟨Qπ
P(s, ·), π′(·|s)− π(·|s)⟩+ o(∥π − π′∥). (21)

We then have that

lim
π′→π

inf
π′ ̸=π

gπ
′

P − gπP −
∑

s d
π
P(s)⟨Qπ

P(s, ·), π′(·|s)− π(·|s)⟩
∥π − π′∥

≥ 0. (22)

Therefore, the Fréchet sub-gradient of gπP is ∇gπP with each (s, a)-entry ∇gπP(s, a) = dπP(s)Q
π
P(s, a).

B Proof of Lemma 4.1

For the robust relative value function V π
P (s), we have that

V π′

P (s)− V π
P (s)

=
∑
a

π′(a|s)Qπ′

P (s, a)−
∑
a

π(a|s)Qπ
P(s, a)

=
∑
a

(
π′(a|s)− π(a|s) + π(a|s)

)
Qπ′

P (s, a)−
∑
a

π(a|s)Qπ
P(s, a)

=
∑
a

(
π′(a|s)− π(a|s)

)
Qπ′

P (s, a)−
∑
a

π(a|s)
(
Qπ′

P (s, a)−Qπ
P(s, a)

)
(a)
=

∑
a

((
π′(a|s)− π(a|s)

)
Qπ′

P (s, a) + π(a|s)
∑
s′

Pπ′(s′|s, a)
(
r(s, a)− gπ

′

P (s′) + V π′

P (s′)
)

− π(a|s)
∑
s′

Pπ(s
′|s, a)

(
r(s, a)− gπP(s

′) + V π
P (s′)

))
=

∑
a

((
π′(a|s)− π(a|s)

)
Qπ′

P (s, a) + π(s|a)
(
gπP(s)− gπ

′

P (s)

+
∑
s′

Pπ′(s′|s, a)V π′

P (s′)−
∑
s′

Pπ(s
′|s, a)V π

P (s′)
))

, (23)

where (a) is from the Bellman equation (4). By re-arranging terms and from the fact that gπP is
independent of s, we have that

gπP(s)− gπ
′

P (s)
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=
∑
a

((
π′(a|s)− π(a|s)

)
Qπ′

P (s, a) + π(s|a)
(∑

s′

Pπ′(s′|s, a)V π′

P (s′)−
∑
s′

Pπ(s
′|s, a)V π

P (s′)
))

− V π′

P (s) + V π
P (s)

(a)

≥
∑
a

(
π′(a|s)− π(a|s)

)
Qπ′

P (s, a)−
∑
a

π(a|s)
(∑

s′

Pπ(s
′|s, a)V π′

P (s′)−
∑
s′

Pπ(s
′|s, a)V π

P (s′)
)

− V π′

P (s) + V π
P (s), (24)

where (a) is due to the fact that Pπ is the worst-case transition kernel for π. Since the LHS of (24) is
independent of s, the RHS of (24) doesn’t depend on s either. We then take the weighted sum of the
RHS with respect to dπPπ

:

gπP(s)− gπ
′

P (s)

≥
∑
s

∑
a

dπPπ
(s)

(
π′(a|s)− π(a|s)

)
Qπ′

P (s, a) +
∑
s

∑
a

dπPπ
(s)π(a|s)

∑
s′

Pπ(s
′|s, a)V π′

P (s′)

−
∑
s

∑
a

dπPπ
(s)π(a|s)

∑
s′

Pπ(s
′|s, a)V π

P (s′)−
∑
s

dπPπ
(s)V π′

P (s) +
∑
s

dπPπ
(s)V π

P (s). (25)

From the definition of the stationary distribution, we have that
∑

s

∑
a d

π
Pπ

(s)π(a|s)Pπ(s
′|s, a) =

dπPπ
(s′). Therefore,

gπP(s)− gπ
′

P (s)

≥ Es∼dπ
Pπ

[
⟨Qπ′

P (s, ·), π′(·|s)− π(·|s)⟩
]
+
∑
s′

dπPπ
(s′)V π′

P (s′)−
∑
s′

dπPπ
(s′)V π

P (s′)

−
∑
s

dπPπ
(s)V π′

P (s) +
∑
s

dπPπ
(s)V π

P (s)

= Es∼dπ
Pπ

[
⟨Qπ′

P (s, ·), π′(·|s)− π(·|s)⟩
]
. (26)

This completes the proof.

C Proof of Lemma 4.2

From the performance difference lemma [8], we have that

gπP − g∗P

= gπPπ
− gπ

∗

Pπ∗

≤ gπPπ
− gπ

∗

Pπ

=
∑
s

dπ
∗

Pπ
(s)⟨Qπ

Pπ
(s, ·), π(·|s)− π∗(·|s)⟩

≤ max
π̂

∑
s

dπ
∗

Pπ
(s)⟨Qπ

Pπ
(s, ·), π(·|s)− π̂(·|s)⟩

=
∑
s

dπ
∗

Pπ
(s)

dπPπ
(s)

dπPπ
(s)max

π̂
⟨Qπ

Pπ
(s, ·), π(·|s)− π̂(·|s)⟩. (27)

Note that dπPπ
(s)maxπ̂⟨Qπ

Pπ
(s, ·), π(·|s)− π̂(·|s)⟩ ≥ 0 since ⟨Qπ

Pπ
(s, ·), π(·|s)− π(·|s)⟩ = 0. We

then have that

gπP − g∗P

≤
∑
s

(
max
π,s

dπ
∗

Pπ
(s)

dπPπ
(s)

)
dπPπ

(s)max
π̂

⟨Qπ
Pπ

, π(·|s)− π̂(·|s)⟩

= CPL max
π̂

∑
s

⟨Qπ
Pπ

, π(·|s)− π̂(·|s)⟩
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= CPL max
π̂

⟨∇gπP, π − π̂⟩, (28)

where CPL = maxπ,s
dπ∗
P (s)
dπ
P
(s) and the last step is from Lemma 3.2.

D Proof of Lemma 4.4

For the update of our algorithm

πk+1(·|s) = argmin
p∈∆(A)

{
ηk⟨Qπk

P (s, ·), p⟩+D(p, πk(·|s))
}
,∀s ∈ S, (29)

the following first-order optimality condition holds for any p ∈ Π and s〈
ηkQ

πk

P (s, ·) +
(
πk+1(·|s)− πk(·|s)

)
, p(·|s)− πk+1(·|s)

〉
≥ 0. (30)

From the three-point Lemma of the Bregman divergence, we have that

⟨πk+1(·|s)− πk(·|s), p(·|s)− πk+1(·|s)⟩
= ∥p(·|s)− πk(·|s)∥2 − ∥πk+1(·|s)− πk(·|s)∥2 − ∥p(·|s)− πk+1(·|s)∥2. (31)

Combining (30) and (31), we have that Lemma 4.4 holds.

E Proof of Lemma 4.5

Plug p = πk in (14), we have that

ηk⟨Qπk

P (s, ·), πk+1(·|s)− πk(·|s)⟩ ≤ −∥πk+1(·|s)− πk(·|s)∥2 − ∥πk(·|s)− πk+1(·|s)∥2. (32)

Moreover, plug p = π∗ in (14), we have that

ηk⟨Qπk

P (s, ·), πk+1(·|s)− πk(·|s)⟩+ ηk⟨Qπk

P (s, ·), πk(·|s)− π∗(·|s)⟩
≤ −∥πk+1(·|s)− πk(·|s)∥2 + ∥π∗(·|s)− πk(·|s)∥2 − ∥π∗(·|s)− πk+1(·|s)∥2. (33)

For the term ⟨Qπk

P (s, ·), πk+1(·|s)− πk(·|s)⟩, we have that

g
πk+1

P − gπk

P

(a)

≤ Es∼d
πk
Pπk+1

[〈
Qπk

P (s, ·), πk+1(·|s)− πk(·|s)
〉]

(b)

≤ 1

M
Es∼dπ∗

Pπk

[〈
Qπk

P (s, ·), πk+1(·|s)− πk(·|s)
〉]

≤ 0, (34)

where (a) is from the performance difference lemma [8] and (b) is from the definition of M and (32).

For the term ⟨Qπk

P (s, ·), πk(·|s)− π∗(·|s)⟩, we have that

0 ≤ gπk

P − g∗P ≤ gπk

Pπk
− g∗Pπk

= Es∼dπ∗
Pπk

[〈
Qπk

P (s, ·), πk(·|s)− π∗(·|s)
〉]
. (35)

Therefore, we have that

M
(
g
πk+1

P − gπk

P

)
+ gπk

P − g∗P

≤ Es∼dπ∗
Pπk

[ 1

ηk

∥∥π∗(·|s)− πk(·|s)
∥∥2]− Es∼dπ∗

Pπk

[ 1

ηk

∥∥π∗(·|s)− πk+1(·|s)
∥∥2]. (36)

By re-arranging the terms in the above equation, we have that

g
πk+1

P − g∗P ≤ M − 1

M
(gπk

P − g∗P) +
1

M
Es∼dπ∗

Pπk

[ 1

ηk

∥∥π∗(·|s)− πk(·|s)
∥∥2]

− 1

M
Es∼dπ∗

Pπk

[ 1

ηk

∥∥π∗(·|s)− πk+1(·|s)
∥∥2]. (37)
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F Proof of Theorem 4.6

By recursively applying Lemma 4.5, we have that

gπk

P − g∗P ≤
(
1− 1

M

)k(
gπ0

P − g∗P
)
+

(
1− 1

M

)k−1

Es∼dπ∗
Pπ0

[ 1

η0

∥∥π∗(·|s)− π0(·|s)
∥∥2]

+
1

M

k−1∑
t=1

((
1− 1

M

)k−t−1

Es∼dπ∗
Pπt

[ 1

ηt

∥∥π∗(·|s)− πt(·|s)
∥∥2]

−
(
1− 1

M

)k−t

Es∼dπ∗
Pπt−1

[ 1

ηt−1

∥∥π∗(·|s)− πt(·|s)
∥∥2]). (38)

Since the step size satisfies ηk ≥ ηk−1

(
1− 1

M

)−1

M , we have that

1

M

k−1∑
t=1

((
1− 1

M

)k−t−1

Es∼dπ∗
Pπt

[ 1

ηt

∥∥π∗(·|s)− πt(·|s)
∥∥2]

−
(
1− 1

M

)k−t

Es∼dπ∗
Pπt−1

[ 1

ηt−1

∥∥π∗(·|s)− πt(·|s)
∥∥2]) ≤ 0. (39)

Therefore, we have that

gπk

P − g∗P ≤
(
1− 1

M

)k

(gπ0

P − g∗P) +
(
1− 1

M

)k−1 1

Mη0
Es∼dπ∗

Pπ0

[
∥π∗(·|s)− π0(·|s)∥2

]
. (40)

G Proof of Theorem 4.7

Set the step size ηk = 1
L and define the gradient mapping GL(πk(·|s)) = L(πk(·|s) − πk+1(·|s)).

Note that if πk is updated exactly by the (sub)-gradient descent, then GL(πk(·|s)) = ∇gπP(s, ·). The
norm ∥GL(πk(·|s))∥ measures the closeness of the current step to the first-order stationary point. To
prove Theorem 4.7, we first show the following lemma.
Lemma G.1. For the robust average cost, setting L = Lπ we have the following inequalities.(

g
πk+1

P − g∗P
CPL2

√
2|S|

)2

≤ L
(
gπk

P − g
πk+1

P

)
(41)

Proof. For the update of our algorithm

πk+1(·|s) = argmin
p∈∆(A)

{
η⟨Qπk

P (s, ·), p⟩+D(p, πk(·|s))
}
,∀s ∈ S, (42)

the following first-order optimality condition holds for any p ∈ Π and s〈
Qπk

P (s, ·) + L
(
πk+1(·|s)− πk(·|s)

)
, p(·|s)− πk+1(·|s)

〉
≥ 0. (43)

By letting p = πk, we have that〈
Qπk

P (s, ·), πk(·|s)− πk+1(·|s)
〉

≥
〈
L
(
πk+1(·|s)− πk(·|s)

)
, πk+1(·|s)− πk(·|s)

〉
= L∥πk+1(·|s)− πk(·|s)∥2

=
1

L
∥GL(πk(·|s))∥2 (44)

From Lemma 4.1, we further have that

gπk

P − g
πk+1

P ≥ E
s∼d

πk+1
Pπk+1

[〈
Qπk

Pπk
(s, ·), πk(·|s)− πk+1(·|s)

〉]
. (45)

Therefore, we have that

gπk

P − g
πk+1

P ≥ E
s∼d

πk+1
Pπk+1

[ 1
L
∥GL(πk(·|s))∥2

]
. (46)
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On the other hand, from Lemma 4.2, we have that

g
πk+1

P − g∗P ≤ CPL max
π̂

E
s∼d

πk+1
Pπk+1

[〈
Q

πk+1

P (s, ·), πk+1(·|s)− π̂(·|s)
〉]
. (47)

For
〈
Q

πk+1

P (s, ·), πk+1(·|s)− π̂(·|s)
〉
, from the first-order optimality condition (43), we have that〈

Q
πk+1

P (s, ·), πk+1(·|s)− π̂(·|s)
〉

≤
〈
Q

πk+1

P (s, ·), πk+1(·|s)− π̂(·|s)
〉
+

〈
Qπk

P (s, ·) + L
(
πk+1(·|s)− πk(·|s)

)
, p(·|s)− πk+1(·|s)

〉
=

〈
Q

πk+1

P (s, ·)−Qπk

P (s, ·), πk+1(·|s)− π̂(·|s)
〉
−

〈
L(πk+1(·|s)− πk(·|s)), πk+1(·|s)− π̂(·|s)

〉
a
≤ (Lπ + L)∥πk+1(·|s)− πk(·|s)∥∥πk+1(·|s)− π̂(·|s)∥
(b)

≤ (Lπ + L)∥πk+1(·|s)− πk(·|s)∥
√
2|S|

≤
(
1 +

Lπ

L

)
∥GL(πk(·|s))∥

√
2|S|, (48)

where (a) is due to the fact that the robust relative action value function Qπ
P is Lπ-Lipschitz (Lemma

4.3) and (b) is due to the fact that ∥πk+1(·|s)− π̂(·|s)∥ ≤
√

2|S|.
Therefore, we have that

g
πk+1

P − g∗P ≤ CPL max
π̂

E
s∼d

πk+1
Pπk+1

[(
1 +

Lπ

L

)
∥GL(πk(·|s))∥

√
2|S|

]
. (49)

By setting L = Lπ , we have that(
g
πk+1

P − g∗P
CPL2

√
2|S|

)2

≤
(
E
s∼d

πk+1
Pπk+1

[
∥GLπ

(πk(·|s))∥
])2

≤ E
s∼d

πk+1
Pπk+1

[
∥GLπ

(πk(·|s))∥2
]
≤ Lπ

(
gπk

P − g
πk+1

P

)
, (50)

where the second inequality is from Jensen’s inequality.

We are now ready to prove Theorem 4.7.

Proof. Let ω = 1

(CPL2
√

2|S|)2
. We have that

0 ≤ ω

Lπ
(g

πk+1

P − g∗P)
2 ≤ gπk

P − g
πk+1

P . (51)

Let δk = gπk

P − g∗P. We then have that
ω

Lπ
δ2k+1 ≤ (gπk

P − g∗P) + (g∗P − g
πk+1

P ) = δk − δk+1. (52)

We then divide both side by δkδk+1 and have that
1

δk+1
− 1

δk
≥ ω

Lπ

δk+1

δk
. (53)

We then take the sum of the above inequality over iterations 0, 1, · · · , k − 1. It then follows that

1

δk
− 1

δ0
≥ ω

Lπ

k−1∑
i=0

δi+1

δi
. (54)

From (46), we have that gπk

P − g
πk+1

P ≥ E
s∼d

πk+1
Pπk+1

[
1
Lπ

∥GLπ
(πk(·|s))∥2

]
≥ 0. Therefore, we have

that gπk

P ≥ g
πk+1

P and thus δi+1 ≤ δi.

For any two constant l,m ∈ (0, 1), let n(k, l) be the number of steps that δi+1

δi
is at least l over the

first k iterations. If n(k, l) ≥ mk, we then have that δi+1

δi
≥ l at least ⌈mk⌉ times. Therefore,

1

δk
− 1

δ0
≥ ω

Lπ
mlk. (55)

18

17365https://doi.org/10.52202/079017-0551



We then have that

δk ≤ Lπ

ωmlk
. (56)

If n(k, l) < mk, we have that δi+1

δi
< l at least ⌈(1−m)k⌉ times. Since δi+1 ≤ δi, we have that

δk ≤ δ0l
(1−m)k = δ0(l

(1−m))k. (57)

Since (56) and (57) hold for any l,m ∈ (0, 1), we have that

δk ≤ min
0<l,m<1

max
{ Lπ

ωmlk
, δ0(l

(1−m))k
}
. (58)

By letting l = m = 1
2 , we have that

gπk

P − g∗P ≤ max
{4Lπ

ωk
,
(√2

2

)k(
gπ0

P − g∗P
)}

. (59)

This completes the proof.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All the claims are directly from the main theorems of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations and future works in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Proofs of all the theoretical results are provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Information that are needed to reproduce the main experimental results of the
paper is disclosed in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: The code will be released if the paper is accepted. The experiments are
straightforward and easy to reproduce.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We clearly specify all the details for the experiments in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We plot the mean and the standard deviation for 10 independence experiments
as the error bar.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: No computing resources are required.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no potential societal impact that needs to be specified.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use any existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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