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Abstract

Long-horizon manipulation tasks with general instructions often implicitly encap-
sulate multiple sub-tasks, posing significant challenges in instruction following.
While language planning is a common approach to decompose general instructions
into stepwise sub-instructions, text-only guidance may lack expressiveness and
lead to potential ambiguity. Considering that humans often imagine and visualize
sub-instructions reasoning out before acting, the imagined subgoal images can pro-
vide more intuitive guidance and enhance the reliability of decomposition. Inspired
by this, we propose PERIA(PErceive, Reason, Imagine, Act), a novel framework
that integrates holistic language planning and vision planning for long-horizon
manipulation tasks with complex instructions, leveraging both logical and intuitive
aspects of task decomposition. Specifically, we first perform a lightweight multi-
modal alignment on the encoding side to empower the MLLM to perceive visual
details and language instructions. The MLLM is then jointly instruction-tuned with
a pretrained image-editing model to unlock capabilities of simultaneous reasoning
of language instructions and generation of imagined subgoals. Furthermore, we
introduce a consistency alignment loss to encourage coherent subgoal images and
align with their corresponding instructions, mitigating potential hallucinations and
semantic conflicts between the two planning manners. Comprehensive evalua-
tions across three task domains demonstrate that PERIA, benefiting from holistic
language and vision planning, significantly outperforms competitive baselines in
both instruction following accuracy and task success rate on complex manipulation
tasks. The details and visualizations are available at the homepage.

1 Introduction

Recent advances in vision-language models (VLMs), such as BLIP [1] and LIV [2], enable open-
vocabulary visual recognition and multi-modal alignment, showing promise in robotic manipulation
tasks specified human-provided language instructions [3, 4, 5, 6]. For semantically clear and concise
instructions, such as "pick the red block on the green one", robotic agents can easily understand
and complete the task in a single step using action primitives. However, when instructions become
more general and complex, such as "stack the blocks as a pyramid and each layer in one color", the
manipulation task can span long horizons and implicitly encapsulate multiple sub-tasks separated by
action primitives, posing a major obstacle in instruction following. Current approaches often resort to
decomposing complex instructions into manageable subtasks, either through language planning or
vision planning based on the decomposed modality. Language planning, the more common approach,
decomposes into progressive stepwise sub-instructions, which can be either predefined skill libraries
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Perceive Reason Imagine Act

Figure 1: Overview of PERIA (Perceive, Reason, Imagine, Act), inspired by the human cognitive
process of following complex instructions, which involves perceiving environment and tasks, reason-
ing the required language plans, and imagining the intermediate subgoal images before acting.

in natural language [3, 7] or latent codebooks [8]. On the other hand, vision planning, a more recent
development, decomposes complex instructions into coherent subgoal images as keyframes [9, 10],
serving as visual milestones to provide more intuitive and expressive guidance for action execution.

Language planning focuses on "how to act" and the sub-instructions outline the necessary procedural
action process of the task completion, emphasizing the temporal dependencies and causal relationships
between decomposed stepwise sub-instructions. On the other hand, vision planning concentrates on
"what to act towards" and intuitive and grounded subgoal images with rich spatial and contextual
information can enable robot agents to more easily understand what intermediate landmarks and
visual anchors should achieve towards task completion. From a cognitive perspective, humans rely on
a symbiotic operation of the brain’s hemispheres [11], with the left primarily associated with logical
language-based reasoning, and the right is linked to intuitive visual-based imagining. For humans,
language planning and vision planning are often intertwined and performed simultaneously, involving
either imagining the desired intermediate goals and then reasoning about the required plans to achieve
them, or first reasoning out necessary stepwise plans and then imagining corresponding resulting
images. Inspired by this, a natural question arises: Can we develop a framework that emulates this
cognitive synergy by simultaneously performing language planning and vision planning for robotic
manipulation tasks involving complex instructions just like humans?

For this, we propose PERIA(PErceive, Reason, Imagine, Act), a novel framework that integrates
multi-modal large language model (MLLM) and diffusion model to enable language-based reasoning
and visual-based imagining respectively, leveraging holistic language planning and vision planning
for long-horizon manipulation tasks with general complex instructions. Specifically, we first train the
MLLM’s perception ability by fine-tuning the encoder side’s projection layer to align the text and
vision modalities in the LLM’s hidden layers in a lightweight manner, avoid the potential hallucina-
tions and enhance the grounding ability. Next, we perform instruction tuning to simultaneously equip
PERIA reasoning and imagination capabilities by explicitly adding additional image tokens after the
reasoning phase and extracting rich latent image representations from MLLM to guide the generation
of corresponding subgoal images. Moreover, We also introduce an alignment loss between reasoned
sub-instructions and imagined subgoal images to enhance the consistency and accuracy of vision
and language planning, jointly updated with generation and reasoning losses. In this way, vision
planning provides a visualization of language planning, offering more intuitive guidance to avoid
potential confusion. Language planning, in turn, provides reliable logical guidance at the semantic
level for vision planning, preventing semantic conflicts in the generation of coherent image chains.
The comprehensive evaluation across three typical long-horizon manipulation tasks demonstrates
that PERIA enjoy the accuracy of instruction following and synergistic combination significantly
improves decomposition accuracy and task success rate compared to existing methods that rely solely
on either language or vision planning alone. The contributions of this work are as follows:

• We propose PERIA, a novel framework that integrates holistic language planning and vision
planning, leveraging the logical and intuitive decomposition of general complex instructions.

• We encourage MLLM to output rich latent visual tokens to guide the diffusion model to generate im-
ages and further explicitly align between language instructions and visual subgoals, simultaneously
developing the MLLM’s reasoning and the diffusion model’s imagination capabilities.
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• PERIA demonstrates significant improvements in instruction following and task success rate on
complex manipulation tasks compared to existing methods that rely on either language or vision
planning alone, establishing a promising and inspiring paradigm for long-horizon manipulation.

2 Related Work

2.1 Hierarchical Planning for Long-horizon Manipulation

Embodied manipulation tasks with general instructions often span multiple subtasks and long hori-
zons, making direct end-to-end action prediction challenging due to compounding errors without
intermediate guidance [12, 13, 14, 15]. Recent works adopt hierarchical planning, decomposing
complex instructions into sequential sub-tasks to execute. Language planning like LISA [8] and
Xskill [16] decompose the general instruction based on the latent skill codebook discovered during
training. SayCan [3] and EmbodiedGPT [7] both leverage LLM to enable reasoning into sequen-
tial interpretable instructions in natural languages. Vision planning, a more recent development,
decomposes complex instructions into sequential subgoal images. CoTDiffusion [10] utilizes diffu-
sion models to translate multi-modal prompts into coherent subgoal images in a chain-of-thought
manner, serving as visual milestones that are challenging to describe using language alone. While
existing works rely solely on either language or vision planning, our PERIA framework enables
simultaneous language and vision planning, harnessing the strengths of both approaches to provide
a comprehensive, multi-modal guide that enhances the accuracy of instruction decomposition and
following.

2.2 LLM for Robotics Manipulation

With the tremendous success of LLMs, there has been a surge in research exploring their capabilities
for robotics manipulation, such as SayCan [3], Inner Monologue [17]. PAR [18] leverages a vision
language model(VLM) as a captioner for visual observations and the generated captions are fed into
LLM for language planning. ViLA [19] and CoPA [20] follow a similar pipeline but replace LLM and
VLM with more advanced GPT4V [21] with stronger visual reasoning capabilities. EmbodiedGPT [7]
employs a pre-trained open-sourced LLaMA model [22] as the language model for instruction tuning
on collected robotics data, enhancing reasoning and planning capability specifically for embodied
scenarios. PERIA introduces image generation as an additional supervision signal to encourage the
MLLM to perceive more detailed visual details, reducing hallucinations and errors in reasoning. The
generated images in vision planning also provide a more intuitive guide that further enhances the
accuracy of instruction decomposition and improves instruction following performance.

2.3 Image Generation for Robotics Manipulation

Inspired by recent development of recent text-to-image models [23, 24, 25], many works have
begun to explore the visualization of manipulation tasks to guide robot action execution. LfVoid
[26] enables the editing of original observations to obtain goal images based on natural language
instructions to provide reward signals. SuSIE [9] similarly leverages an image-editing diffusion
model to act as a high-level planner by proposing intermediate subgoals that a low-level controller
can accomplish. LfVoid and SuSIE are limited to single-step sub-instructions, while CoTDiffusion
[10] supports various instruction modalities and generates coherent subgoal image chains using a
semantic alignment module. These works demonstrate that subgoal images can provide more detailed
and intuitive guidance than language-only instructions. However, they do not incorporate LLMs
for reasoning and are prone to failure and semantic conflicts without logical guidance. Our PERIA
framework leverages the prior knowledge in MLLMs to assist in generating promising sequential
images, enhancing consistency with complex task instructions and improving instruction following.

3 Method

By leveraging MLLM and diffusion-based image editing models, PERIA enables holistic language
planning and vision planning for stepwise language instructions and visual subgoal images, serving
as language milestones and visual anchors to guide action execution in long-horizon tasks. We
first introduce the lightweight alignment of language and vision modalities on the encoding side of
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Figure 2: Overview of PERIA. PERIA first learns to align the vision and language on encoding side
of MLLM for perceiving. Then PERIA performs instruction tuning to MLLM jointly with diffusion
model in an end-to-end manner to unlock the reasoning and generation ability for holistic language
planning and vision planning. and show the module is trainable and frozen, respectively.

the MLLM to achieve precise Perceive ability in Section 3.1. We then illustrate how to perform
instruction tuning on the MLLM to enable Reason for language planning in Section 3.2 and how to
jointly train with a diffusion model to Imagine coherent subgoal images aligned with corresponding
instructions in Section 3.3. Moreover, we leverage an explicit alignment between instructions and
images to achieve a synergistic effect between language and vision in Section 3.4. Since our focus is
not on the low-level policy, please refer to Appendix E for the implementation details of Act.

3.1 Perceive: Encoding-side LLM-centric Multimodal Alignment

To enable embodied robot agents to effectively perceive and comprehend visual scenes, a straight-
forward approach is to use an off-the-shelf Vision-Language Model (VLM) as an image captioner.
However, the information bottleneck between the LLM and VLM limited by language modality,
results in missing visual details, which is particular problematic in robotics manipulation tasks that
require precise visual understanding. To address this limitation, we leverage image captioning as a
training task for LLM-centric multimodal alignment to encourage visual representations compatible
with the text feature space within the LLM, extending it to a MLLM to allow for a more precise and
detailed comprehension of visual scenes. Specifically, we utilize the privileged information available
in simulation environments to create a large-scale dataset of pairwise ground-truth data through three
types of captioning tasks. First, the single-frame scene description scenario focuses on understanding
a single observation frame, where the MLLM is tasked with providing a brief description covering
aspects such as object recognition, size identification, number counting, color understanding, and
spatial relationships. Second, action recognition between consecutive keyframes scenario presents
the MLLM with two consecutive keyframes, requiring it to understand the visual difference between
them and recognize the executed action, enhancing the perception of spatial relationships and action
dynamics at the instruction level. Moreover, short demonstration understanding scenario involves
processing a given short demonstration of frame sequences, strengthening the MLLM’s temporal
relationship understanding and grounding ability. These carefully designed captioning tasks with the
high-quality training data, enable the MLLM to develop a strong foundation in visual perception and
understanding for embodied manipulation tasks.

Specifically, initialized from a pre-trained LLM, the MLLM contains a visual encoder V(e.g., CLIP-
L [27]) to extract the visual features f , and an projection layer W to project f into the language
modality. We follow the training of LLaVA [28] with cross-entropy loss (CELoss) as:

C = {x1, x2, ..., xl}, I = {v1, v2, ..., vn},
x̂t = MLLM({x1, ...xt−1}|[prompt , W(f = {V(vi)}ni=1)]),

LPerceive =
∑l

t=1
CELoss(x̂t, xt)

(1)
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where C can be the image caption for features alignment and l is number of word tokens. n is the
numbers of the images I fed in MLLM, which can be differ in different captioning tasks. To perform
the lightweight alignment, we freeze the weights of both the vision encoder V and LLM, and only
update the parameters of W that encourage to map the image features into a shared latent space
that is compatible with the MLLM’s hidden representations. The alignment of visual and language
modalities on the encoding side can effectively alleviates hallucinations and lays the foundational
perception abilities for generating more grounded language and vision planning. For more detailed
categorical analysis of improvement benefiting from captioning task, please refer to Appendix F.1.

3.2 Reason: Instruction Tuning for Language Planning

With the initial coarse alignment of visual and language on the encoding side, we proceed to
instruction tuning to encourage the MLLM to learn how to decompose complex instructions for
language planning. These general task instructions T can be categorized into two types based on
the modalities involved: 1) text-only instructions, such as "sort blocks into bowls according to the
matching colors" which can be directly processed by the language encoder; and 2) multi-modal
instructions that consist of interleaved language and images of a single object or whole observation,
as suggested by VIMA-BENCH [13], which are more expressive and challenging to understand. For
instance, consider an interleaved multi-modal prompt such as "Stack objects <img> in this order
<img> <img>", where <img> serves as a placeholder for the corresponding images, which can be
images of blocks or other objects in the observation. With the benefit of encoding-side alignment via
several captioning scenarios across frames and videos, MLLM equipped with the input projection
layer can handle multi-modal instructions including interleaved text, images, and even video frames.

Then we design an instruction prompt P template such as: "Given the current observation <img>
and the general task instruction [T ], can you provide a brief and concise sub-instruction about how
to act next?". We collect the stepwise language instructions E as the groundtruth response for the
language planning task specified with the observation o, the prompt P and the general instruction T .
The instruction tuning loss for language planning is defined as follows:

E = {e1, e2, ..., el}, I = {o, v1, v2, ..., vn},
e′t = MLLM({e1, ..., et−1} | [P, T ,W(f = V(I))]),

LReason =
∑l

t=1
CELoss(e′t, et)

(2)

where e are the word token of stepwise instruction, and v are the possible n images from multi-modal
instruction. The text instruction with the <img> token and the corresponding image are processed by
the aligned language encoder and image encoder respectively and then are unified fed into LLM for
reasoning. The MLLM follows the standard auto-regressive training for the next token prediction
and then can be regarded as a visual assistant for various tasks such as visual question answering. To
perform instruction tuning, we fine-tune the MLLM using the LoRA technique [29] while keeping
the encoding side frozen, including the visual encoder and its projection layer. Additionally, we
employ two kinds of prompts to require MLLM to generate the next sub-instruction for the single step
or all the stepwise instructions in order respectively. Two modes can be randomly switched during
the instruction tuning and can effectively encourage MLLM to perform single-step and multi-step
sequential language planning for closed-looped and open-looped control respectively.

3.3 Imagine: Decoding-side Synergistic Training for Vision Planning

Considering the phrase a picture is worth a thousand words, subgoal images could provide higher
expressive capabilities for conveying subtasks compared to sub-instructions with complex language
only. Inspired by this, we integrated pre-trained conditional diffusion models to convert decomposed
sub-instructions into coherent visual subgoal plans. While a natural approach would be to directly
use the text instructions or captions as prompts for the image editing model, shown in Figure 3,
relying solely on decoded text instructions as conditions may lead to an information bottleneck. The
expressiveness of the instructions can be limited, and information loss may occur, as it is confined
to the language modality. Inspired by [30, 31], to bridge the gap between the language and vision
modalities, we introduce N special [IMG] tokens in the vocabulary codebook of the MLLM. These
special tokens have trainable word embeddings and should be predicted after the generated language
instructions jointly during the reasoning phase, shown in Figure 2. These appended visual tokens
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Figure 3: Three pipelines of MLLM for generation images. PERIA ( ) leverage visual tokens
extracted from the MLLM during language planning serve as more expressive guidance for subgoal
imagination compared to captions ( ) or decomposed instructions ( ) in language only.

[IMG] are treated as latent imagination of subgoal image from the MLLM and we employ an output
image projection module R to transform them into actual visual guidance U for diffusion model:

U = R({wlang + h[IMG]}, q) (3)

where w is the word embedding of language instructions and h is the hidden state from the last layer
of MLLM before image projection layer of [IMG], conditioned on learnable query embeddings
q = {q1, ..., qL}, where L is the token numbers setting from the pre-trained diffusion model. The
transformation over w can be seen as a general representation from language modality, while h
represents a more grounded visual imagination that aligns with the language planning within the
MLLM’s reasoning. To simultaneously fine-tune the diffusion model and the MLLM, we employ the
generation loss between the generated image and the groundtruth image. Our image editing model is
based on latent diffusion, which learns the noise latent zt at the denoising timestamp t to reconstruct
the groundtruth goal image. The generation loss is to learn the UNet ϵθ that predicts the added noise
based on the input image v and the visual imagination guidance U from the MLLM, formulated as:

LImagine = Eo,v,U,ϵ∼N (0,1),t

[
||ϵ− ϵθ(zt, t, v,U)||22

]
(4)

3.4 Enhancing Consistency between Vision and Language Planning

To further enhance the consistency between vision and language planning, we introduce an additional
alignment objective between generated language instructions and visual images, as illustrated in Fig-
ure 2. Specifically, we feed both the generated image vt+1 and the current observation ot at planning
step t into the MLLM and prompt it with understanding the differences between the two frames,
which is exactly the action recognition captioning task in the perceive phase of PERIA Section 3.1.
The response output Ẽt generated by the MLLM is compared with the groundtruth stepwise language
instruction Et for consistency, and can be formulated as the alignment consistency loss:

C = {Et}Tt=0, I = {(ot, vt+1)}Tt=0,

Ẽt = MLLM(prompt,W(f = {V(ot),V(vt+1})),

LConsistency =
∑T

t=0
CELoss(Ẽt, Et)

(5)

The additional alignment task reinforces the synergy between vision and language planning, ensuring
that generated subgoal images and text instructions are consistent and mutually informative, alleviating
the compounding errors that may arise in long-horizon tasks due to inconsistencies. Vision planning
provides a visualization of language planning, offering more intuitive guidance and reducing potential
confusion or ambiguity. Conversely, language planning provides logical guidance at the semantic
level for vision planning, preventing semantic conflicts during the generation of coherent image
chains. This synergistic approach leverages the complementary strengths of vision and language,
enabling PERIA to produce plans that are both visually grounded and semantically meaningful.
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Figure 4: The illustrating examples of holistic language and vision planning for general instructions,
with stepwise sub-instructions and coherent subgoal images enhancing the instruction following.

4 Experiments

4.1 Experiment Setup

Benchmark & Tasks To provide comprehensive evaluations, we conduct experiments across three
typical long-horizon manipulation environments. More benchmark and task details are in Appendix A.

• LoHoRavens [18]: is a Ravens-based benchmark consisting of 11 long-horizon language-
conditioned tasks categorized into Stacks, Sort, and Matching. Original tasks all involve ma-
nipulating Bowls&Blocks and we additionally develop a more complex Letters scenario including
9 tasks of Shape, Orders, and Spell to further diversify the instruction and increase task difficulties.

• VIMA-BENCH [13], a benchmark for long-horizon manipulation, contains diverse tasks guided
by multi-modal prompts. We choose 8 tasks from three representative categories - Rearrange,
Constraints, and Follows, specified by interleaved language and images of object or ultimate goal.

Baselines To more clearly and comprehensively evaluate the effectiveness of different approaches,
we categorize the baselines into three types based on their specific planning methods as follows:

• End-to-end: We choose CLIPort [12], one of the most widely used end-to-end language-
conditioned imitation learning framework in Ravens-like manipulation benchmarks. CLIPort
directly take the high-level language instructions as input to predict the action without a planner.

• Language Planning: We select several representative language planning methods that decompose
general high-level instructions into stepwise instructions. LISA [8] trains a skill predictor to
combine the discovered implicit skill codebooks for complex instructions. PAR [18] (Planner-
Actor-Reporter) replaces the latent skill planner with an LLM, using the VLM as a reporter for
visual observations. The instruction and the generated captions are then fed into the LLM for
language planning. EmbodiedGPT [7] follows a similar pipeline but replaces LLM and VLM with
more advanced MLLM with stronger visual reasoning capabilities after instrution tuning.

• Vision Planning: SuSIE [9] incorporating a pretrained image-editing models to generate goal
images for action prediction but only support simple single-step instructions. CoTDiffuison [10]
leverage a semantic alignment module within the diffusion model to enable the sequential subgoal
image generation for complex general instructions. For more details, please refer to Appendix C.

4.2 Main Quantitative Results of Success Rate
We begin by comparing the performance of PERIA and baselines in solving long-horizon tasks
across three typical task domains. The baselines can be categorized into three types of planners:
e2e planner, language planner, and visual planner. As shown in Table 1, PERIA significantly
outperforms other baselines in terms of success rate. As expected, the end-to-end learning method
performs the worst due to the lack of intermediate guidance, making it difficult for the policy to follow
general instructions for long-horizon tasks. In contrast, the visual planner paradigm, which explicitly
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Table 1: The evaluation of success rate between baselines and we report the mean and variance across 5 seeds.

Blocks&Bowls Letters VIMA-BENCH

Model Stacking Sort Matching Shape Orders Spell Rearrange Follow Constraint
CLIPort 18.4±3.2 19.2±4.6 17.8±2.9 9.8±1.4 8.1±2.7 2.3±0.8 5.8±1.9 2.4±0.6 8.3±2.1

LISA 26.6±4.8 22.1±3.5 23.0±5.1 18.4±2.6 16.1±3.9 10.2±1.7 8.9±2.3 6.3±1.5 11.9±4.2

PAR 34.7±5.5 32.8±6.3 31.1±4.4 31.5±5.8 30.7±4.9 27.3±7.2 24.4±6.1 16.1±3.7 26.5±4.6

EmbodiedGPT 48.6±6.7 49.1±5.9 43.4±7.8 40.9±6.4 48.2±7.5 52.7±6.2 38.3±5.3 37.2±4.7 43.5±6.9

SuSIE 34.1±3.8 32.6±4.1 33.2±5.7 37.8±6.6 35.2±4.3 34.1±7.4 37.9±6.8 40.2±5.4 51.2±7.1

CoTDiffusion 47.9±6.0 44.3±7.6 56.6±5.2 46.1±6.5 53.9±4.8 44.8±7.9 51.2±6.3 54.5±7.3 76.1±5.6

PERIA (ours) 63.9±5.8 65.0±6.4 72.3±7.1 60.6±5.2 65.2±6.7 71.1±7.5 74.8±6.0 67.2±7.8 89.3±4.9

decomposes tasks into stepwise instructions and employs a hierarchical framework consisting of a
language planner and a language-conditioned policy, shows more promise and demonstrates a clear
advantage over the end-to-end approach. Within the visual planner category, PAR and EmbodiedGPT
both leverage the common sense knowledge from LLM and significantly outperform LISA, which
uses a skill predictor for latent skill codebook rather than LLM. Furthermore, although both PAR and
EmbodiedGPT are based on LLaMA, EmbodiedGPT employs a visual projector to expand the LLM
to an MLLM for more precise perception and reasoning capabilities, while PAR applies a captioner
to convert visual images into the language modality for reasoning, which may impact the accuracy
of reasoning and task success rate to some extent. The visual planner paradigm, which generates
intermediate keyframes, offers more intuitive guidance compared to language planning, and its
advantage is more evident in VIMA-BENCH, where sub-tasks are challenging to describe sufficiently
using language-only instructions. CoTDiffusion supports generating coherent subgoal images for
complex instructions, resulting in performance gains compared to SuSIE. But CoTDiffusion does not
explicitly reason about the instructions, which can lead to semantic inconsistencies in the generated
subgoal images, causing it to still underperform compared to our algorithm. In contrast, our PERIA
algorithm introduces an MLLM for explicit reasoning and generation, providing more sufficient and
reliable intermediate guidance for instruction following in long-horizon tasks.

4.3 Further Analysis

Table 2: Evaluation of reasoning accuracy
between methods on two metrics.

Method Token ↑ Semantic ↑
PAR 58.2 0.63
EmbodiedGPT 65.9 0.68
PERIA (ours) 97.6 0.98
- w/o perceive pretrain 80.2 0.83
- w/o vision planning 83.7 0.79

Accuracy of Language Planning We compare the
accuracy of language planning with two evaluation met-
rics: the token accuracy which directly calculates the
token-level matching rate between decomposed stepwise
instructions and the groundtruth instructions, and the se-
mantic similarity by calculating the embeddings distance
of two instructions from pre-trained text encoder like
CLIP. Our focus here is on generative language planning
using LLMs and exclude LISA from this comparison.
As illustrated in Table 2, PERIA demonstrates the highest accuracy in both token-level and semantic-
level comparisons. Although PAR introduces LLMs for language planning, it relies on an isolated,
out-of-the-shell VLM as a captioner to convert visual observations into language descriptions, which
may cause details missing during hard captioning. EmbodiedGPT further introduces a projection
layer to bridge the gap between vision and language in the latent space, gaining more advantages in
perception which is critical in language planning. Compared to EmbodiedGPT, PERIA’s superior
performance can be attributed to the explicit incorporation of vision planning. By jointly fine-tuning
MLLM using the additional image generation loss, the supervision from visual aspects encourages
promoting attention to visual details and spatial information for more grounded reasoning. When we
remove the joint training of vision planning, we observe the more frequent hallucinations and errors
in language planning, such as generating unseen objects with wrong colors, sizes, or locations, which
significantly decreases the accuracy of language planning. Moreover, we also ablate the encoding-side
multimodal alignment and the degradation in accuracy highlights the importance of enhancing the
foundational perception capabilities through our carefully designed dataset, which includes various
perception-related data such as spatial relationships, temporal relationships, size recognition, and
color identification. To further investigate the improvement in foundational perception abilities, we
conduct a detailed categorical analysis, which can be found in Appendix F.1.
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Figure 5: More detailed quantitative analysis. (a) The ablation studies on consistency loss and [IMG]
token numbers. (b) The comparisons of three planning paradigms in tasks with various horizon
lengths. (c) The evaluation of generalization ability of three levels. See text for further discussion.

Table 3: Comparisons of FID (↓) between
methods on three task domains.

Methodology Blocks Letters VIMA
SuSIE (+oracle) 18.9 18.1 19.4
CoTDiffusion 13.1 15.8 17.6
PERIA (ours) 10.2 13.5 11.4
- w/o alignment 12.3 14.2 15.9

Fidelity of Vision Planning We further compare the
fidelity of generated goal images against groundtruth
keyframes using the Fréchet Inception Distance
(FID) [32] as the evaluation metric. Although SuSIE
is not a strict vision planning method for long-horizon
manipulation due to its limitation to simple single-step
instructions, we grant it a relaxed privilege by provid-
ing oracle stepwise instructions to enable a comparison.
However, as shown in Table 3, PERIA still demonstrates superiority, primarily due to the implicit gen-
eration of latent image tokens during language planning. The extracted image latent embeddings from
MLLM retain more details and provide more sufficient guidance beyond language for subgoal image
generation. CoTDiffusion supports general instruction inputs and can sequentially generate multiple
images. However, the absence of explicit language planning in CoTDiffusion makes it challenging
to ensure the semantic coherence of the generated images, potentially leading to dilemmas such as
semantic repetition, jumping, or regression within the generated image sequences. In contrast, PERIA
incorporates MLLM for reliable instruction decomposition and leverages the extracted image latent
embeddings to achieve superior fidelity in vision planning compared to existing methods. Moreover,
the performance drop in the ablation study without consistency loss highlights the importance of
alignment between reasoned stepwise instructions and generated subgoal images, attributed to the
synergistic combination of language planning and vision planning in our framework.

Consistency between Reasoning and Imagining We leverage CLIP [27] to measure the image-
language similarity between generated instructions and images, with results presented in Figure 5a.
The additional consistency alignment loss explicitly constraints and encourages semantic alignment
between the imagined images from vision planning and the reasoned stepwise instructions from
language planning, significantly enhancing the collaboration and consistency between the two
modalities. Furthermore, increasing the number of [IMG] tokens provides more expressive and
sufficient guidance, facilitating the MLLM in producing semantically coherent language and image
tokens. However, the benefit of adding more tokens becomes marginal beyond a certain threshold.

Effectiveness of Holistic Planning We modify the low-level policy model into several variants,
including ones that simultaneously utilize stepwise instructions and subgoal images, as well as those
that rely on each modality individually. As shown in Figure 5b, the holistic planning approach
achieves the highest success rate than single planning, with the benefit of the increased amount
of information available and rich multi-modal guidance for decision-making, which reduces the
training difficulty of low-level policy and enhance the accuracy of action prediction. Moreover, the
advantage of holistic planning becomes more evident as the horizon length increases, demonstrating
its scalability and effectiveness in handling complex, long-horizon manipulation tasks.

Generalization across Tasks We evaluate the generalization ability in three levels with increasing
difficulty: placement generalization with novel placement of objects (L1), object generalization with
novel objects (L2), and combinatorial generalization with extra novel instructions (L3). The results
in Figure 5c demonstrate that PERIA enjoys a substantial advantage over other baselines, highlighting
the importance of the common knowledge prior within the MLLM and diffusion model and holistic
planning, which enhance the generalization and robustness for unseen challenging tasks.
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5 Conclusion
We propose PERIA (SEe, Reason, Imagine, Act), a novel framework that integrates MLLM and
diffusion-based image editing models to enable holistic language and vision planning for long-horizon
manipulation tasks with complex instructions. We first perform a lightweight multi-modal alignment
to enhance the MLLM’s fundamental perception capabilities of visual details for manipulation,
alleviating potential hallucinations. Then, we encourage MLLM to output rich latent visual tokens to
guide diffusion model in generating images and explicitly align language instructions with visual
subgoals to simultaneously unlock MLLM’s reasoning and diffusion model’s imagination capabilities.
Extensive evaluations across three challenging benchmarks demonstrate that PERIA significantly
outperforms competitive baselines in both instruction following accuracy and task success rate, while
also enjoying better generalization ability across tasks. We believe PERIA highlights the potential of
holistic language and vision planning and we hope this novel paradigm can provide some insights to
robotics manipulation research of long-horizon tasks with complex instructions in free-form, towards
more open embodied scenarios. One current bottleneck is the relatively high time cost of training and
inference. Improving the joint training efficiency of MLLMs and diffusion models in a lightweight
manner and accelerating image generation sampling are interesting directions for future work.
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A Details of Benchmarks and Tasks

To provide comprehensive evaluations, we conduct experiments across three typical long-horizon
manipulation environments covering diverse instruction types and task types.

A.1 Bowls&Blocks

LoHoRavens [18] is a benchmark dataset built upon the Ravens robot simulator, comprising ten
long-horizon, language-conditioned tasks. The tasks are categorized into three types: Stacks, Sort,
and Matching. In Stacks tasks, the objective is to place blocks in absolute or relative areas. Sort
tasks require sorting blocks or bowls with similar specified attributes together. Matching tasks
involve placing corresponding blocks into matching bowls. These tasks encompass various aspects
of long-horizon reasoning, including color, size, space, arithmetic, and reference. To successfully
complete each task, the robot must effectively combine multiple reasoning capabilities and develop
an appropriate long-horizon plan.

Move Move the blocks with some specified attributes like colors, sizes or locations to the specified
area. We design 4 tasks as follows:

• MoveBlocktoArea: Move all the blocks to the {abs_area}.
• MoveColorBlocktoArea: Move all the {color} blocks to the {abs_area}.
• MoveBlockinAreatoArea: Move all blocks in {abs_area} to {abs_area}.
• MoveSizeBlocktoCorner: Move all {size} blocks to {position} corner.

Move all blocks in right bottom area to the left top area.

Figure 6: The example in MoveBlockinAreatoArea in Blocks&Bowls Move.

Stack Stack blocks or bowls with specified attributes and put to some area together. We design
4 tasks as follows:

• StackAllBlocks: Stack all the blocks together.
• StackBlocksOfSameSize: Stack all the blocks of the same size.
• StackBlocksOfSameColor: Stack all the blocks of the same color.
• StackColorBlockstoArea: Stack all blocks of primary color on left
side.

Stack ALL Blocks of the same color together.

Figure 7: The example in StackBlocksOfSameColor in Blocks&Bowls Stack.

Matching Placing corresponding blocks into matching bowls or zones. We design 3 tasks as
follows:

• PutBlockInMatchingBowl: Stack all the blocks together.
• PutBlockInMismatchingBowl: Stack all the blocks of the same size.
• PutBlockinZonewithMatchingColor: Put blocks of the same color in the
zone with matching color.
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Put the blocks in the bowls with matched colors

Figure 8: The example in PutBlockInMatchingBowl in Blocks&Bowls Matching.

A.2 Letters

In addition to the original LoHoRavens simulator, which consists of long-horizon tasks involving
only Bowls&Blocks, we have developed a novel Letter scenario to further diversify the range of
long-horizon reasoning tasks. This scenario randomly generates various letters with different colors
and cases. We have designed three new task types: Shapes, which select the letters with specified
shapes and arrange it it together; Orders, which involves arranging letters in a specific order to test
the robot’s understanding of sequence and position; and Spell, which assesses the robot’s capacity
for letter combination and word spelling by requiring the robot to spell words that meet specific
requirements.

Shape Move the blocks with some specified attributes like colors, sizes or locations to the specified
area. We design 3 tasks as follows:

• SortVerticalSymmBlockstoArea: Sort the vertically symmetrical letters
to the bottom side.

• SortHorizontalSymmBlockstoArea: Sort the horizontal symmetrical letters
to the blank space .

• SortCentralSymmBlockstoArea: Sort the central symmetrical letters to
the corner.

Sort the vertically symmetrical letters to the bottom side.

Figure 9: The example in SortVerticalSymmBlockstoArea in Letters Shape.

Orders Stack blocks or bowls with specified attributes and put to some area together. We design
3 tasks as follows:

• PutLettersAlphabeticalOrder: Put the letters on the tables in
alphabetical order.

• PutLettersRevAlphabeticalOrder: Put the letters on the tables in reverse
alphabetical order.

• SortConsLettersOrder: Sort the consonants from all letters in orders.

Sort all letters in alphabetical order.

Figure 10: The example in PutLettersAlphabeticalOrder in Letters Orders.
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Spell Placing corresponding blocks into matching bowls or zones. We design 3 tasks as follows:

• SpellLongWords: Spell words that are as long as possible.
• SpellCSConfName: Spell out the name of a top CS conference.
• SpellTransName: Spell out the name of a common transportation.

Spell a word about the transportation.

Figure 11: The example in SpellTransName in Letters Spell.

A.3 VIMA-BENCH

VIMA-BENCH [13]: a benchmark for long-horizon manipulation with general instruction specified
by multi-modal prompts, containing various tasks ranging from simple object manipulation to multi-
object manipulation. We select three kinds of representative long-horizon manipulation tasks -
Rearrange, Constraints, and Follows, in which general instructions are specified by interleaved
language and images of object or ultimate goal.

Rearrange Move the blocks with some specified attributes like colors, sizes or locations to the
specified area. We design 2 tasks as follows:

• RearrangeObjtoGoal: Rearrange objects to this setup <img>.
• RearrangeObjtoGoalthenRestore: Rearrange objects to this setup <img>
then restore.

Rearrange objects to this setup and then restore.

Figure 12: The example in RearrangeObjtoGoalthenRestore in VIMA-BENCH Rearrange.

Constraints Stack blocks or bowls with specified attributes and put to some area together. We
design 4 tasks as follows:

• SweepNoExceedCons: Sweep all <obj> into <container> without
exceeding <constraint>.

• SweepNoTouchCons: Sweep all <obj> into <container> without touching
<constraint>.

• PutSameTextfromGoal: Put all objects with same texture as <IMG> into
it .

• PutSameShapefromGoal: Put all objects with same shape as <IMG> into
it.
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Sweep all into without touching

Figure 13: The example in SweepNoTouchCons in VIMA-BENCH Constraints.

Follow Placing corresponding objects following orders specified by several relevant images. We
design 2 tasks as follows:

• FollowMotionObj: Follow this motion for <obj>: <img 1> ... <img
N>.

• StackObjFollow: Stack objects in this order: <img 1> ... <img N>.

Stack objects in this order

Figure 14: The example in StackObjFollow in VIMA-BENCH Follow.

B Details of Datasets

B.1 The Collection of Expert Demonstrations

For the LoHoRavens and VIMA-Bench datasets, we utilize the provided oracle engines to collect
expert demonstrations. It is worth noting that if there are multiple correct answers or multiple orders
to complete the task, we only focus on whether the instruction-specified complex task is completed
in the end and include all correct demonstrations as training data. Across all designed 28 tasks, we
collect 2k demonstrations per task, gathering a total of 56k long-horizon demonstrations with horizons
ranging from 2 to 10+ sub-tasks. For all the collected data, we divide it into an 80% proportion for
the training dataset Dtrain and 20% for the testing dataset. Among all the tasks, the Spell task in the
Letters dataset requires additional explanation. Unlike other tasks where the instructions are relatively
fixed, the Spell task’s instructions are more flexible and diverse. For example, if the instruction asks
to spell the name of a top computer science conference, we can solve this by maintaining a list of all
top CS conferences in advance and checking all possible permutations of the given letters to find the
answer, which is then executed by the oracle engine to render the expert data. However, for more
diverse instructions, such as spelling the name of a food or city, the list may be extremely large,
requiring the introduction of LLMs like GPT to assist in finding the answer for the oracle engine,
which is a good direction to expand the Letters domain and enrich the task types, as future work.

B.2 The Privileged Information Annotation of Datasets

During the initialization process, we maintain a record of the assets used and annotate their corre-
sponding attributes, enabling accurate identification of the color, size, and spatial relationships of the
manipulated objects during each subtask’s pick-and-place operation without the need for additional
manual annotations or reliance on VLMs for captioning, which often have low accuracy without
fine-tuning, even for models like GPT-4V. This privileged information from the simulator’s underly-
ing data allows us to construct a series of captioning tasks that help improve PERIA’s foundational
capabilities in visual perception and reasoning. During testing, access to the underlying environment
information, such as the exact number of ground truth blocks or letters and their various attributes, is
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not possible. The model must directly perceive and ground these crucial visual details from the visual
observations and perform subsequent reasoning, significantly increasing the task’s difficulty.

Table 4: Overview of three main task types, including Block&Bowls, Letters and VIMA-BENCH.

Task Type Description Horizon Color Size Spatial Instruction

Blocks & Bowls

Move

Move all the blocks to the [ABS POS] area 4∼15 Text-only
Move all blocks of a color to the red zone 2∼15 Text-only
Move all the blocks in the [ABS POS] area to the [ABS POS] area 2∼15 Text-only
Move all the blocks on the corner/side 4∼15 Text-only

Stack

Stack all the blocks 4∼15 Text-only
Stack blocks of the same size. 4∼15 Text-only
Stack blocks in alternate colors. 2∼15 Text-only
Stack only the primary color blocks on the left side. 2∼12 Text-only

Matching
Put the blocks in the bowls with matching colors 2∼12 Text-only
Put the blocks in the bowls with mismatching colors 2∼12 Text-only
Put blocks of the same color in the zone with matching color 2∼12 Text-only

Letters

Shape
Sort the vertically symmetrical letters to the bottom side 2∼15 Text-only
Sort the horizontal symmetrical letters to the blank space 2∼15 Text-only
Sort the central symmetrical letters to the corner 2∼15 Text-only

Orders
Put the letters on the tables in alphabetical order 2∼15 Text-only
Put the letters on the tables in reverse alphabetical order 2∼15 Text-only
Sort the consonants from all letters in orders 2∼15 Text-only

Spell
Spell words that are as long as possible 4∼15 Text-only
Spell out the name of a top CS conference 4∼10 Text-only
Spell out the name of a common transportation 4∼15 Text-only

VIMA-BENCH

Rearrange Rearrange the objects to this <IMG> 2∼5 Multi-modal
Rearrange the objects to this <IMG> then restore 3∼10 Multi-modal

Constraints

Sweep all <obj> into <container> without exceeding <constraint> 2∼6 Multi-modal
Sweep two <obj> into <container> without touching <constraint> 2∼9 Multi-modal
Put all objects with same texture as <IMG> into it 2∼8 Multi-modal
Put all objects with same shape as <IMG> into it 2∼8 Multi-modal

Follow Follow this motion for <obj>: <IMG 1>...<IMG N> 2∼8 Multi-modal
Stack objects in this order: <IMG 1>...<IMG N> 2∼8 Multi-modal

B.3 The Wordcloud of Language Instructions

To visually summarize and showcase the frequency of all instructions, including object nouns, colors,
sizes, and verbs, we create a word cloud visualization in Figure 15. We tokenize each instruction and
record all the tokens from the language instruction for each skill code used in the trajectory. Once we
have this mapping from skills to tokens, we can generate heat maps and word clouds. These word
distributions effectively visualize the scope of the benchmarks, which focus on manipulating objects
in human spaces by following general complex instructions in unpredictable scenarios.

(a) Block&Bowls (b) Letters (c) VIMA-BENCH

(d) All Three Task Types

Figure 15: World Cloud: We created the word cloud to visually summarize the key aspects covered by the
diverse manipulation instructions across three tasks types .
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C Details of Baselines

CLIPort CLIPort [12] is a popular end-to-end algorithm functioning as a language-conditioned
imitation learning agent that directly takes in high-level language instructions without a planner. It
combines the broad semantic understanding of CLIP [33] with the spatial precision of Transporter
[34]. As an end-to-end baseline, we make no modifications to CLIPort, as its native SE(2) action
space is well-suited for benchmarks like Ravens, which is one of the key factors contributing to the
high data efficiency of Transporter and CLIPort. We train CLIPort by matching general instructions
with pairwise actions for Block&Bowls and Letters. To accommodate the multi-modal instructions
in VIMA-BENCH, we make additional adaptations by directly borrowing the prompt tokenization
mechanism from VIMA without further modification, the same with other baselines. Specifically,
instead of operating on raw RGB images, VIMA adopts an object-centric representation by cropping
objects from both prompt and observation images as object tokens sequences with pixel coordinate
information.

LISA We also compare with LISA [8], a hierarchical imitation learning framework that discovers
implicit skills and learns to combine them for complex tasks. LISA learns diverse, interpretable
primitive behaviors or skills from language-conditioned demonstrations to better generalize to unseen
instructions. It employs vector quantization to learn discrete skill codes that are highly correlated
with language instructions and the behavior of the learned policy. LISA can be considered a form
of language planning, where the predicted instructions are in the form of skill codes. The low-level
foundation model in LISA uses a decision transformer as its backbone and we retain the original
implementation without any additional modifications.

PAR PAR [18] (Planner-Actor-Reporter) is a paradigm that replaces the skill predictor with an LLM,
using a VLM as a reporter for visual observations. The instruction and the generated captions are then
fed into the LLM for language planning. In PAR, Llama 2 13B [22] and VLM OpenFlamingo [35]
with few-shot prompting are employed as the Planner and Reporter, respectively. It is important to
note that the Actor, or the low-level foundation model, is precisely the language-conditioned CLIPort
trained by stepwise sub-instructions, as mentioned earlier. To ensure fair comparisons, we make no
modifications and keep the low-level foundation model consistent across all other baselines with
CLIPort as backbones, the same with PAR.

EmbodiedGPT EmbodiedGPT [7] is a standard paradigm that incorporates an MLLM for language
planning. The main difference between EmbodiedGPT and PAR lies in the replacement of the
LLM+VLM combination with a more advanced MLLM, which possesses stronger visual reasoning
capabilities. EmbodiedGPT trains the MLLM with the constructed embodied chain-of-thought
dataset to enable the MLLM to perceive visual details in its hidden layers, similar to LLaVA [28]. To
ensure fair comparisons, we make no modifications to the planning module and keep the low-level
foundation model consistent across all other baselines, using CLIPort as the backbone, identical to
the approach in PAR.

SuSIE SuSIE [9] proposes a hierarchical framework that leverages an image-editing diffusion
model to act as a high-level planner by proposing intermediate subgoals that a low-level controller
can accomplish. It is worth noting that SuSIE is not a strict vision planning method for long-horizon
manipulation, as it can only support relatively simple single-step instructions and falls short when it
comes to complex general instructions. To enable a comparison, we grant SuSIE a relaxed privilege by
providing oracle stepwise instructions, as it is limited to handling sub-instructions of a single step and
cannot generate image chains for complex general instructions. SuSIE chooses InstructPix2Pix [36] as
the pre-trained image-editing model and fine-tunes it with a dataset of language-labeled video clips and
robot trajectories from CALVIN [37]. Since the image editing model is sensitive to training data, we
find that its generation performance on the Ravens domain is limited. To address this, we perform addi-
tional fine-tuning, keeping the number of training iterations and dataset exactly the same with PERIA.

CoTDiffusion CoTDiffusion [10] is a standard vision planning paradigm that supports translating
general complex instructions, including text-only or multi-modal prompts, into visual subgoal
images in a chain-of-thought manner. Compared to SuSIE, the most significant difference lies
in CoTDiffusion’s explicit design of a semantic alignment module within the diffusion model to
capture the correspondence and semantic completion between the generated images and the general
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instruction, enabling chain-of-thought generation. Similar to SuSIE, we fine-tune CoTDiffusion on
our collected dataset and employ the same low-level image-conditioned policy as SuSIE, which is the
image-conditioned variant of CLIPort. However, since CoTDiffusion does not explicitly introduce an
LLM for planning, it may still encounter semantic conflicts during the vision planning process, such
as repetition, backtracking, or skipping steps.

D Details of High-level Planner Learning

D.1 Pretraining of Perceiving Stage

In the initial pretraining stage, PERIA aims to acquire vision-language knowledge and alignment
between vision and LLM from a large collection of aligned image-text pairs. The designed captioning
task for alignment of visual and language modalities in the encoding side is crucial for effective
understanding and reasoning about visual scenes, bridging the gap between perception and reasoning
in manipulation tasks and laying the foundation for the subsequent development of reasoning and
imagination abilities in PERIA. We choose ViT-B-32 2 as the visual encoder and Vicuna-7B 3 as our
LLM backbone. For the input visual projection, we opt for a simple linear projection module, as we
found that more complex architectures like Q-former from BLIP2 [1] yield similar performance. The
linear projection consists of three layers with a hidden size of 4096.

We regard the output from the injected projection layer as a soft prompt for the LLM, prompting it
to generate the corresponding ground-truth texts. Throughout the entire pretraining process, both
the pre-trained vision encoder and the LLM remain frozen, with only the linear projection layer
being fine-tuned. To perform the lightweight alignment, we freeze the weights of both the vision
encoder and LLM, and only update the parameters of the projection module to encourage mapping the
image features into a shared latent space that is compatible with the MLLM’s hidden representations.
Specifically, we train with a batch size of 64, using 8 V100 Nvidia GPUs for parallel training in 8
hours. We employ the AdamW optimizer [38] with a learning rate of 2e-4, a linear warmup of 1k
steps, and a weight decay of 0.01.

D.2 Joint Training of Reasoning and Imagining

The output projection layer adopts a transformer-based architecture characterized by a hidden size of
512, 4 attention heads, 4 encoder layers, and 4 decoder layers. The latent image token embeddings and
the word embedding are fed into the output projection layer and map the latent image representation
into the latent space of the diffusion model. We train the MLLM and diffusion model jointly using
instruction-following datasets and incorporate LoRA [29] to fine-tune the weights of the LLM to
achieve lightweight supervised fine-tuning. For the diffusion-based image editing model, we choose
the finetuning pipeline borrowed from Instruct-Pix2Pix [36], the most widely used pipeline for
conditional image editing tasks. We train for 50k steps with a batch size of 16, using 8 V100 Nvidia
GPUs for parallel training over 42 hours. We employ the AdamW optimizer [38] with a learning rate
of 1e-4, a linear warmup of 1k steps, and a weight decay of 0.01. We track an exponential moving
average (EMA) of the model parameters with a decay rate of 0.999 and use the EMA parameters at
test time. The strength of classifier-free guidance ω is set to 2.0, and we use the DDIM sampler [39]
with 50 sampling steps.

Empirically, we find that the pretraining stage of perception is crucial. Without the encoding
pretraining in the perception stage, the convergence time of the subsequent decoding side significantly
increases, and the performance deteriorates. During the joint training of MLLM and the diffusion
model, we observe that the loss convergence of the reasoning stage is often faster than that of the
generation stage. One major reason could be that image editing is more challenging, requiring more
details compared to language planning. We did not extensively tune the ratios between the image loss,
generation loss, and consistency loss. Instead, we simply added them together considering the similar
scaling ranges among them. Investigating the optimal weighting of these loss components could
potentially further improve the synergy between language and vision planning, but we leave this
exploration for future work. Furthermore, we notice that when the image loss of the diffusion model
approaches convergence, continued training, although not resulting in a significant decrease in loss,

2
https://huggingface.co/sentence-transformers/clip-ViT-B-32

3
https://huggingface.co/lmsys/vicuna-7b-v1.5, 7B, version 1.5
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notably improves the fidelity of the generated images during evaluation. Therefore, after reaching a
certain level, we turn off the gradients of the LLM and keep only the gradients of the diffusion model
enabled, which can further accelerate the convergence speed of the generation loss without affecting
the overall reasoning quality. However, we have not further investigated the specific relationship, as it
is not our main focus, but it presents an interesting research direction that we will explore in future
work. The summary of architecture and the parameters are listed in Table 5 as follows:

Table 5: The overall configuration and training pipeline of two training phases for MLLM and
diffusion model.

Training Stage
Vision Encoder Input Projection LLM Output Projection Diffusion

Name Param Name Param Name Param Name Param Name Param

Perceiving ViT-B-32 87M Linear 18M Vicuna [40] 7B - - - -

Reason& Imagine ViT-B-32 87M Linear 18M Vicuna [40] 7B Transformer 31M SD [41] 1.3B

E Details of Low-level Policy Learning

In the final phase of the PERIA framework, we focus on training the low-level policy model to
develop its capability to act, enabling the effective execution of the generated language and vision
plans from the previous phases. We adopt CLIPort, a widely used end-to-end learning algorithm for
Ravens, as its native SE(2) action space is well-suited for benchmarks like Ravens, which is one of
the key factors contributing to the high data efficiency of Transporter and CLIPort. CLIPort has two
variants: a language-conditioned policy and an image goal-conditioned policy. We train these variants
with stepwise language sub-instructions and coherent keyframes as inputs, respectively, allowing
them to serve as the low-level foundation policy models for language planning and vision planning.
For a fair comparison, our planning-based methods, whether language planning or vision planning,
use CLIPort as the backbone for the low-level foundation model.

To accommodate the simultaneous presence of stepwise language sub-instructions and coherent
keyframes from vision planning and language planning, we design a variant that is conditioned
on both image and sub-instruction simultaneously. We combine the two representations through
a cross-attention block with a 4-layer lightweight attention layer, 4 cross-attention heads, and an
embedding dimension of 768 as the fusion layer. We sample the oracle action trajectories a, current
observation o, stepwise instruction e, and pair-wise subgoal images v from the Dtrain as mini-batch
B. The action â is predicted with the instruction e and corresponding v simultaneously. The low-level
policy ψ is updated on mini-batch B according to the following loss:

LAct =
T∑
t=1

||ât − pψ(at|ot, et, xt)|| (6)

We use the AdamW optimizer [38] with a learning rate of 1e-4, a linear warmup of 500 steps, and a
weight decay of 0.01. We train with a batch size of 64 for 10k steps on a single V100 Nvidia GPU,
which takes 12 hours. The policy model is conditioned on both the generated subgoal images and
the reasoned language instructions, reducing the training difficulty from two perspectives: first, by
providing more decision-making information, and second, by shortening the prediction horizon for
action sequences. Thanks to the explicit subgoal generation from the high-level visual planner, the
low-level policy model is not required to master complex multi-step manipulation skills over long
horizons. Furthermore, the stepwise instructions from language planning and the subgoal image
chains from vision planning enable the policy model to be trained without directly conditioning the
general instruction to predict the entire long-horizon action sequence. Instead, the policy model can
predict action sequences in segments, effectively reducing the complexity of the policy learning task
by leveraging the structured guidance provided by the language and vision planning components.
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F More Results and Analysis of Additional Experiments

F.1 The Effect of Encoding-side Alignment

To effectively improve the perceiving capabilities of the MLLM and lay a solid foundation for
grounded reasoning and imagination, we introduce encoding-side alignment. We design a series of
visual question answering (VQA) tasks to categorize the perception capabilities into five fundamental
sub-skills: object recognition, color recognition, size identification, number counting, and spatial
relationship understanding. For each fundamental perception capability, we design several targeted
questions. The question templates are detailed in Table 6, and can be divided into two types based
on the answer format: Yes/No questions and open-ended questions. We feed the questions and
corresponding visual images into the MLLM for evaluation, prompting the MLLM to generate
language-only answers. In this study, we use GPT-4 and compare its generated responses with the
ground-truth answers and give a evaluation of the semantic similarity and correctness ranging from
1-5, with 1 being the lowest score, indicating an incorrect answer, and 5 representing the highest
similarity, indicating the most accurate and contextually appropriate answer. Notably, we find that
GPT-4’s similarity assessments are highly accurate and closely match expert human evaluations,
allowing us to directly employ it as a scoring mechanism. This approach enables automated large-scale
evaluation without the need for extensive crowdsourced annotation resources, making the assessment
process more efficient and cost-effective. We attempted to use GPT-4 for more fine-grained scoring
(for example, scoring from 0-100), but found that the consistency with human evaluations was not
as good as the 1-5 scale. For each term of fundamental perception capability, we randomly select
100 cases from the 28 tasks dataset used in the paper for evaluation. We calculate the total score and
normalize it by the maximum possible score (28 task * 100 cases * 5 score) to obtain a percentage
score, which is presented in Figure 16.

Table 6: Overview of five types of fundamental perception capabilities. The question templates are
illustrated and can be categorized into two types: open-ended and Yes/No questions.

Foundation Capability Questions Answer Type

Object Recognition

Can you identify all the objects on the table? Open-ended
Are there any objects that are movable on the table? Yes/No
How many different types of objects are on the table? Open-ended
Does the letter appear on the table? Yes/No

Color Recognition

What are the colors of the blocks? Open-ended
Is the robot manipulating any of the red blocks? Yes/No
How many colors are there in blocks on the table? Open-ended
Are the colors of the blocks on the desktop duplicated? Yes/No

Size Identification

Can you tell the size of all the blocks on the table? Open-ended
Are the blocks the same size? Yes/No
How many different-sized blocks? Open-ended
Are the blocks relocated by the robot identical in size? Yes/No

Number Counting

How many blocks are on the table? Open-ended
Which item has the highest number of different objects? Open-ended
Can you identify the number of blocks in bowls? Open-ended
How many objects were moved in total in a demonstration? Open-ended

Spatial Relationship

Which corners of the table have no objects? Open-ended
Are there objects stacked on top of each other? Yes/No
Which area of the table has the most objects? Open-ended
How many layers is the highest stack of objects? Open-ended

Our results in Figure 16 demonstrate that carefully designed captioning tasks can significantly enhance
the MLLM’s performance across various foundational perceiving capabilities. When we remove the
perception pretraining with encoding-side alignment, we observe more frequent hallucinations and
errors in the designed VQA evaluations. It is worth noting that even the ablated version of perception
pretraining still shows some advantage over EmbodiedGPT, which can be attributed to the additional
image generation loss. The supervision from visual aspects encourages attention to visual details and
spatial information for more grounded reasoning.
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Figure 16: The evaluation of fundamental perception capabilities between language planning methods
with MLLMs.

F.2 The Effect of Joint Training

To verify the effectiveness of language planning and vision planning, we conduct an ablation study
by decoupling the training of reasoning and imaging. First, we train the MLLM solely for reasoning,
generating text tokens to predict stepwise instructions. Subsequently, we use only the text tokens from
the stepwise instructions as conditional information to train the image editing model. It is important
to note that this differs from the visual fidelity experiment mentioned in the main text, as the <IMG>
tokens are entirely set to zero, and the absence of joint training eliminates the consistency loss. We
introduce a semantic similarity metric to evaluate instruction following accuracy. Specifically, we
calculate the CLIP similarity between generated subgoal images and general prompts, normalized by
the CLIP score between the ground truth ultimate goal image and prompts. This metric reflects the
progress of generated subgoal images throughout the entire chain, tracking the instruction following
and gradual advancement towards ultimate goals specified by complex instructions.
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Figure 17: The evaluation of the normalized CLIP scores between instructions and generated subgoal
images for each generation step, reflecting the stepwise accuracy of instruction following and the
incremental progress towards ultimate goals specified by complex instructions.
To ensure a consistent comparison, we select tasks with a horizon length of 4 across all task types.
The results in Figure 17 show that CoTDiffusion has the worst semantic alignment due to the lack of
explicit incorporation of LLMs for logically reliable reasoning. The results reveal that the generated
images from the decoupled training version exhibit relatively poor instruction following compared to
the jointly trained version. We attribute this to two main reasons. First, using only text instructions as
conditioned information fails to provide sufficient guidance, which can be considered as a version
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with 0 <IMG> tokens. Second, the absence of a consistency loss constrains and encourages semantic
alignment between the generated subgoal images and instructions. In summary, the performance drop
caused by decoupled training highlights the benefits of joint training, which enables a synergistic
effect, more fine-grained and consistent image generation, and instruction reasoning. It is worth
noting that the performance drop caused by decoupled training is more significant on the VIMA-
BENCH, highlighting the importance of latent image token embeddings in providing guidance beyond
language, especially in task environments where text-only instructions are challenging to describe
sufficiently and completely.

F.3 The Flexibility of LLM Backbones

To comprehensively compare the impact of different LLMs as backbones on the capabilities of the
PERIA framework, we experiment with various LLMs backbones for fine-tuning, including Vicuna-
7B 4, Vicuna-13B 5, LLaMA-2-7B 6, and LLaMA-3-8B 7. The evaluation results for each model are
presented in Figure 18. The results show that Vicuna-13B outperforms Vicuna-7B, indicating that
larger model sizes can bring performance gains. However, the more recent and powerful LLaMA-
3-8B surpasses both Vicuna models, demonstrating that our framework can achieve substantial
improvements and enhancements by leveraging stronger LLM backbones.
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Figure 18: The evaluation of PERIA with different LLM backbones across three task types.

G Quick Guideline of Usage

from PERIA import load_peria
llm_backbone = [’Vicuna-7B’, ’LLaMA2-7B’, ’Vicuna-13B’, ’LLaMA3-8B’]
peria = load_peria(llm_backbone)
low_level_fdm = load_fdm(’fdm_path’)
observation = load_obs(’obs_path’)
task_instruction = load_ins(’ins_path’)
prompt = load_prompt(’prompt_path’)
while not done:

stepwise_instruction = peria.language_planning(observation,
task_instruction, prompt)
subgoal_image = peria.vision_planning(observation, task_instruction,
prompt)
action = low_level_fdm(observation, stepwise_instruction,
subgoal_image)
observation, done = env.step(action)

4
https://huggingface.co/lmsys/vicuna-7b-v1.5, 7B, version 1.5

5
https://huggingface.co/lmsys/vicuna-13b-v1.5, 13B, version 1.5

6
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf, 7B

7
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct, 8B
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H Pesudocodes of Framework
Algorithm 1 The training of PERIA for robotics manipulation.

Input: Training dataset with pair-wised keyframesstepwise sub-instructions and action trajectories,
MLLM, conditional diffusion model and low-level foundation model for action planning.

Perceive: Encoding-side Alignment between Vision and Language
for each iteration do

Sample images I = {v1, v2, ..., vn}} and pairwised caption C = {x1, x2, ..., xl} from the
Dtrain as mini-batch B

Calculate the projected visual tokens W(f = V(I))) by projection layer W after the visual
encoder V the encoding side.

Fed the text token from prompt and the projected visual tokens into LLM jointly and infer
caption x̂t in an autoregressive way:

x̂t = MLLM({x1, ...xt−1},prompt | W(f = {V(vi)}ni=1))
Update parameters of W on mini-batch B according the following loss:
LPerceive =

∑l
t=1 CELoss(x̂t, xt)

end for

Reasoning and Imagine: Decoding-side Joint training for MLLM and Diffusion Model
for each iteration do

Sample general task instructions T , initial observation image o, prompt P , pairwised
sub-instructions E = {e1, e2, ..., el} and groundtruth subgoal images I = {v1, v2, ..., vn}}
from the Dtrain as mini-batch B

Fed the text token from general task instructions T and prompt P and the projected
visual tokens from o into LLM jointly and reason the stepwise sub-instruction e′t: e′t =
MLLM({e1, ..., et−1} | [P, T ,W(f = V(o)))], calculate the reasoning loss as follows:

LReason =
∑l
t=1 CELoss(e′t, et)

Extract the word embedding w[IMG] from append [IMG] token after the reasoning
phase, and extract the hidden state h[IMG] from the last layer within MLLM .

Transform w[IMG] and h[IMG] into actual visual guidance U via image projector R
Generate imagined subgoal images v via image editing diffusion model with conditional

guidance U , and calculate the imagine loss as follows:
LImagine = Eo,v,U,ϵ∼N (0,1),t

[
||ϵ− ϵθ(zt, t, v,U)||22

]
.

Fed the generated image v and the original visual observation o back to MLLM and
perform the same captioning task like Perceive Stage

Infer the caption Ẽ of action recognition of consequent images between v and o
Calculate the consistency between inferred instruction Ẽ and groundtruth instruction E :
LConsistency =

∑l
t=1 CELoss(Ẽ , E)

Update MLLM, diffusion model ϵ and corresponding projector R on the decoding side:
LTotal = LReason + LImagine + LConsistency

end for

Act: Training of Goal-conditioned Low-level Policy
for each iteration do

Sample the oracle action trajectories a, current observation o, stepwise instruction e and
pair-wised subgoal images v from the Dtrain as mini-batch B

Predict the action â with the instruction e and corresponding v simultaneously
Update low-level policy ψ on mini-batch B according the following loss:
LAct =

∑T
t=1 ||ât − pψ(at|ot, et, xt)||

end for
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I Limitation & Future Work

While PERIA demonstrates significant improvements in long-horizon manipulation tasks with com-
plex instructions, there are still some limitations that need to be addressed in future work.

• The current implementation of PERIA relies on a pre-collected dataset for training the MLLM
and diffusion model. Although this allows for effective learning of perception, reasoning, and
imagination capabilities, it may limit the framework’s adaptability to novel environments or tasks
that deviate significantly from the training data. Future work could explore methods for online
learning or adaptation to enable PERIA to generalize to new situations more effectively.

• The joint training of the MLLM and diffusion model can be computationally intensive and time-
consuming, particularly when generating high-quality images. While we have demonstrated the
effectiveness of this approach, further research is needed to optimize the training process and
improve its efficiency. This could involve the development of more lightweight architectures,
advanced training techniques, or parallelization strategies.

• While PERIA has shown promising results in simulated environments, its performance in real-
world scenarios remains to be explored. Real-world manipulation tasks may introduce additional
challenges, such as noisy sensory inputs, dynamic environments, and physical constraints, which
could affect the framework’s performance. Future work should investigate the deployment of
PERIA on physical robotic systems and assess its robustness and effectiveness in real-world
settings.

Despite these limitations, PERIA introduces a novel and promising paradigm towards enabling robots
to perform complex manipulation tasks with general instructions. By addressing these challenges and
continuing to refine the framework, we hope that PERIA can provide some insights to the robotics
manipulation research towards long-horizon tasks with more complex instructions in free-form,
paving the way for more intelligent and versatile robotic systems that can effectively operate in a
wide range of environments and applications.

J Social Impact

By enabling robots to understand and follow more natural and diverse human instructions, PERIA
can facilitate seamless human-robot collaboration in industries such as manufacturing, healthcare,
and household assistance. This could lead to increased productivity, improved quality of life, and
the creation of new job opportunities. For instance, an educational robot equipped with the PERIA
framework could help children engage in constructive play activities, such as building block games or
puzzles. The robot could provide step-by-step guidance and demonstrations, adapting to the child’s
skill level and learning pace. This interactive and personalized approach to learning could enhance
children’s cognitive development, problem-solving skills, and creativity.

In conclusion, the advancements in long-horizon manipulation tasks presented in this work have
the potential to advance the progress in the field of intelligent embodied robots, but responsible
development and deployment practices must be adopted to ensure the safe, ethical, and beneficial
integration of robots in educational or industrial settings.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Please see the abstract’s last four sentences and the introduction’s last paragraph
in Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the conclusion section in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have the code and model checkpoints ready for release. Besides, we provide
sufficient implementation details for researchers to reproduce the results in Appendix D and
Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code and model checkpoints is ready and will be released after the
conference decision is made.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide full details of benchmarks in Appendix A, baselines in Appendix C,
implementation details in Appendix D and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provided the mean and standard error over several random seeds in the
experimental results to demonstrate statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: We detailed the compute resources used for the experiments in Appendix D
and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Authors conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See the conclusion in Section 5 and the social impact in Appendix J.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: For all the datasets and algorithm baselines used in the paper, we have cited
the original papers and provided the license, copyright information, and terms of use in the
package in our code repository.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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