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Abstract

The diffusion model performs remarkable in generating high-dimensional content
but is computationally intensive, especially during training. We propose Progressive
Growing of Diffusion Autoencoder (PaGoDA), a novel pipeline that reduces the
training costs through three stages: training diffusion on downsampled data, distill-
ing the pretrained diffusion, and progressive super-resolution. With the proposed
pipeline, PaGoDA achieves a 64× reduced cost in training its diffusion model on
8× downsampled data; while at the inference, with the single-step, it performs
state-of-the-art on ImageNet across all resolutions from 64× 64 to 512× 512, and
text-to-image. PaGoDA’s pipeline can be applied directly in the latent space, adding
compression alongside the pre-trained autoencoder in Latent Diffusion Models (e.g.,
Stable Diffusion). The code is available at https://github.com/sony/pagoda.

1 Introduction

Diffusion Models (DM) [1, 2], which generate content through gradual denoising, have recently
achieved high fidelity in high-dimensional generation [3, 4]. While slow sampling has been improved
by distilling trained DMs into single-step generators [5–7], DMs remain computationally intensive,
especially at high resolutions, requiring substantial data and GPU resources, thereby limiting large-
scale training to a few organizations [8, 9]. This highlights the need for a more efficient pipeline to
reduce both training and inference costs while maintaining the quality.

To address these challenges, we present Progressive Growing of Diffusion Autoencoder (PaGoDA),
a novel pipeline that significantly reduces costs while achieving competitive quality with one-step
sampling. PaGoDA is built on a simple yet effective idea: while diffusion distillation [6] is typically
treated as a final stage of the whole pipeline, we explore to have one more stage for the super-
resolution after diffusion distillation. This approach led us to design PaGoDA with three distinct
stages as below.
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Stage 1.
Diffusion Pretraining

Stage 2.
Diffusion Distillation (ℒrec + ℒadv)

Stage 3.
Super-Resolution

(ℒrec + ℒadv)

DDIM Inversion with Pretrained DM

Downsample Single-Step 

Figure 1: Pipeline overview. PaGoDA deterministically encodes with downsampling followed by
DDIM inversion, and constructs its decoder in a progressively growing manner.

PaGoDA’s Proposed Training Pipeline
Stage 1. (Pretraining) Train a DM on downsampled data.
Stage 2. (Distillation) Distill the trained DM with DDIM inversion to a one-step generator.
Stage 3. (Super-Resolution) Progressively expand the generator for resolution upsampling.

By adding Stage 3 for the super-resolution after the distillation phase, our approach gains a key
advantage: training DM on a low-dimensional, downsampled space rather than directly in the desired
high-dimensional space. This dimensional reduction substantially lowers the computational demands
of diffusion pretraining by orders of magnitude. For example, an 8×8 downsampling rate reduces the
training computation by a factor of 64×. Moreover, the computational costs for the distillation and
super-resolution stages are relatively minimal compared to the initial diffusion pretraining, making
our pipeline highly efficient in terms of overall computation.

Figure 1 provides an overview of our pipeline. We begin with DM trained at base resolution, and
generate a dataset of base-resolution data-latent pairs (x, z), where x is real data and z is the latent
representation of x, obtained by DDIM inversion [10]. In Stage 2, we train a decoder to map z back
to x, completing the diffusion distillation [6]. In Stage 3, we add ResNet blocks [11] to enhance
sample resolution and progressively train these newly added upscaling networks, as visualized in
Figure 2. The novel use of DDIM inversion in the distillation process, first introduced in PaGoDA,
enables the decoder to be trained with the high-frequency signal from the real data at Stage 3. This
integration of DDIM inversion establishes strong connections across stages, creating a cohesive and
unified framework.
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Figure 2: (Top) At Stage 2, PaGoDA learns the one-step generator at a base resolution. (Down) At
Stage 3, PaGoDA progressively learns for super-resolution by adding additional network blocks.

In our experiments, we employed the progressively growing generator to upsample from the pre-
trained diffusion model’s 64× 64 resolution to generate samples at 512× 512 resolution. Notably,
PaGoDA achieved state-of-the-art (SOTA) Fréchet Inception Distances (FID) [12] on ImageNet across
all resolutions from 64× 64 to 512× 512. Additionally, we demonstrated PaGoDA’s effectiveness in
addressing inverse problems and facilitating controllable generation. However, PaGoDA’s potential
extends beyond its current application. As PaGoDA being a dimensional reduction technique that
operates independently of Latent Diffusion Models (LDM) [3], PaGoDA could be directly applied
into the latent space as-is, offering the possibility of further gain on training computes. We leave this
exploration as a promising avenue for future research.

2
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2 Preliminary

DM [1] samples from the data distribution pdata through an iterative denoising process, beginning from
a Gaussian prior distribution pprior. This denoising process attempts to reverse [2] a forward diffusion
process. If the forward process is defined by dxt =

√
2tdwt [13], the deterministic counterpart

of the denoising (generation) process, known as the probability flow ordinary differential equation
(PF-ODE) [2], or DDIM [10], is expressed as

dxt

dt
= −t∇ log pt(xt) ≈ −tsϕ0(xt, t),

where sϕ0(xt, t) is a neural approximation of ∇ log pt(xt). Consequently, (deterministic) sample
generation from DM is equivalent to solving the PF-ODE (or DDIM) along the trajectory, formally,

xDDIM
0 (xT ) = xT −

∫ 0

T

tsϕ0
(xt, t) dt, xT ∼ pprior.

Modern solvers of the PF-ODE [10, 14] have significantly accelerated sampling speed, reducing the
required network evaluations from hundreds to tens. To further speed up sampling, DMs are distilled
with a student model [6] Gθ : Rd → Rd to map from xT to xDDIM

0 (xT ) by minimizing

Ldstl(Gθ) = Epprior(xT )

[∥∥xDDIM
0 (xT )−Gθ(xT )

∥∥2
2

]
. (1)

We call this DDIM-based approach as the noise-to-data distillation.

3 Progressive Growing of Diffusion Autoencoder

3.1 Stage 1: Diffusion Models Trained on Downsampled Data

Training DMs for high-dimensional data generation is primarily feasible for a limited number of
well-resourced organizations, largely due to two factors: access to large-scale datasets and substantial
computational resources. This centralization of model development underscores the urgent need
to democratize access by significantly reducing resource demands during diffusion training. While
several strategies [15, 3] have been proposed, our approach, PaGoDA, introduces a paradigm shift by
training the DM at a downsampled resolution in Stage 1, rather than at the original full resolution.
For instance, training on a d-dimensional downsampled resolution requires approximately 4n times
less computational budget compared to training in the full 4nd-dimensional space. In practical terms,
when n = 3, this translates to training in an 8×8 downsampled space, effectively reducing training
costs by a factor of 64×, thus making large-scale diffusion training more accessible to a broader
range of researchers.

Although this paper does not extend PaGoDA’s application to the LDM such as SD, training on
a (say) 4×4 downsampled latent space could theoretically reduce the computational cost by 16×
compared to full-resolution latent training, further emphasizing PaGoDA’s potential for widespread
adoption. In the case of generating 1024×1024 images, PaGoDA requires training the diffusion model
at only 32×32 resolution, with Stage 3 subsequently upscaling it to the full 128×128 latent space
of conventional approaches [8, 9]. This progressive approach illustrates PaGoDA’s effectiveness in
maintaining model quality while lowering the barriers to high-resolution diffusion training.

3.2 Stage 2: Diffusion Distillation on Downsampled Data with DDIM Inversion

After pretraining DM on the downsampled space, PaGoDA distills DM to a one-step generator. For
distillation, PaGoDA introduces a new loss specifically designed for later usage in super-resolution at
Stage 3. In particular, we propose the reconstruction loss (compare it with Ldstl in Eq. 1 of Section 2)

Lrec(Gθ) := Epdata(x0)

[∥∥x0 −Gθ
(
xDDIM−1

T (x0)
)∥∥2

2

]
, (2)

where xDDIM−1

T (x0) is now the latent representation of x0, obtained from DDIM inversion, not from
DDIM, i.e., the solution at time T of the PF-ODE starting from x0 in time forward, defined by

xDDIM−1

T (x0) := x0 −
∫ T

0

tsϕ0
(xt, t) dt.

3
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64 × 64 128 × 128 256 × 256 512 × 512

(a) Resolution Jump w/ Recon Loss
64 × 64 128 × 128 256 × 256 512 × 512

(b) Resolution Jump w/o Recon Loss

Figure 3: Effect of the reconstruction loss in Stage 3. Without the reconstruction loss, the object
moves at each resolution jump.

Distillation using Lrec maps latent representations to real data, following a data-to-noise distillation
approach. While this method has the potential to improve real data alignment compared to the
traditional noise-to-data approach in Eq. 1, we observe a decline in generation quality over iterations.
This decline stems from the prior hole problem [16], where the generator’s input, xDDIM−1

T , derived
from limited real data, fails to cover the entire prior manifold, leaving certain regions unexplored.

A straightforward strategy like early stopping could alleviate this issue, but it restricts the use of
Exponential Moving Average (EMA) in Stage 2. To fundamentally resolve this problem, we propose
a solution that maintains generation quality even during prolonged training. In Section 3.4, we
provide optimal and stability analysis of Stage 2, guaranteeing that our proposal is stable across
training iterations. The key challenge is effectively covering the prior manifold, which we address by
introducing an auxiliary adversarial loss, as defined below:

Ladv(Gθ, Dψ) := Epdata(x)

[
logDψ(x)

]
+ Epprior(z)

[
log

(
1−Dψ

(
Gθ(z)

))]
, (3)

Here, Dψ is a discriminator that classifies the real and fake samples by maximizing the adversarial
loss, and pprior(z) is the prior distribution.

The second term in Ladv, which involves Gθ(z) with z sampled from the prior, ensures that the
decoder is exposed to the entire support of the prior distribution during training. Overall, we train
PaGoDA with the mini-max optimization of the following combined objective:

min
Gθ

max
Dψ

LPaGoDA(Gθ, Dψ) := min
Gθ

[
Lrec(Gθ) + λmax

Dψ
Ladv(Gθ, Dψ)

]
. (4)

While PaGoDA incorporates the adversarial loss, the reconstruction loss simultaneously guides the
decoder to accurately reconstruct the entire training data. This combination allows the adversarial
loss to address underrepresented regions in the prior distribution effectively without compromising
sample diversity. In our ImageNet experiments, we found that updating the reconstruction loss with
as little as 1% of the data-latent pairs did not affect sample quality and diversity. Exploring the impact
of varying the number of data-latent pairs is left as a future work.

3.3 Stage 3: Progressively Growing Decoder for Super-Resolution

Stage 3 trains the super-resolution to generate higher-dimensional data from the downsampled
resolution learned in the previous stages. As illustrated in Figure 2, the resolution jump from Rd to
R4nd is achieved by freezing most parameters of the distilled model from Stage 2 and training only the
final layers, which is augmented with an additional upscaler network (of ResNet blocks [17]). In other
words, within the base-resolution U-Net [18], we freeze its input, middle, and output blocks except
for the last few layers (previously highest resolution block) during Stage 3 training. Consequently,
the unfrozen latter part of the network is trained for super-resolution. We suggest to progressively
increasing the resolution by a factor of 2×, though larger jumps by factors of 4× or 8× yield
comparable performance.

Additionally, the last layer typically converts multi-channel (usually 128 or 256 channels) features to
3-channel RGB output. However, to minimize information loss, we retain these features and pass
them directly to the next output block without converting them to 3 channels. This architectural
choice, along with progressive training, is heavily inspired by Progressive Growing GAN [19].

In Stage 3, the reconstruction loss from Stage 2 is adapted as

Epdata(xhigh)

[∥∥xhigh −Gθ(x
DDIM−1

T (x0))
∥∥2
2

]
,

4
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where x0 ∈ Rd is the downsampled counterpart of xhigh ∈ R4nd. The adversarial loss in this stage is

Epdata(xhigh)

[
logDψ(xhigh)

]
+ Epprior(z)

[
log

(
1−Dψ

(
Gθ(z)

))]
.

Overall, both the reconstruction and adversarial losses are combined to guide training.

64 128 256 512
Resolution

1.4

1.6

1.8

2.0

2.2

2.4
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D

StyleGAN-XL
PaGoDA

Figure 4: The adversarial loss
makes PaGoDA competitive with
GAN-based super-resolution mod-
els in Stage 3.

Stage 3 employs two key mechanisms to effectively cap-
ture high-frequency details while maintaining training stabil-
ity. First, the reconstruction loss is applied directly to high-
dimensional real data, which was not feasible with earlier noise-
to-data distillation methods with Eq. 1. As illustrated in Fig-
ure 3, Lrec stabilizes the upscaling process by preventing objects
from shifting across resolutions, allowing the added neural net-
work to focus solely on upsampling. Second, the adversarial
loss operates directly in high-dimensional space, enabled by the
one-step generator trained in Stage 2. This generator is critical;
without it, adversarial training in Stage 3 would be infeasible.
As shown in Figure 4 tested on ImageNet, the adversarial loss
is pivotal for achieving effective upscaling performance.

3.4 Optimality Guarantee and Training Stability of PaGoDA Pipeline

Teacher FID 2.44 Teacher FID 6.16
0.0

0.5

1.0

1.5

2.0

2.5

3.0

FI
D

dstl + adv

rec + adv

Figure 5: Comparison of Ldstl and
Lrec, both combined with Ladv, us-
ing identical hyperparameters. Lrec
shows the robust performance, also
supported by Theorem 3.1.

When using the conventional Ldstl for distillation, the optimal
student becomes Gθ∗(xT ) = xDDIM

0 (xT ), meaning that the
student’s samples replicate those of DDIM. As a result, the
student’s performance is heavily dependent on the teacher’s
performance. Consequently, the student’s generative distribu-
tion may diverge from the real data distribution, even when
Ldstl is combined with adversarial loss. In contrast, by using the
DDIM inversion-based reconstruction loss proposed in Stage
2, we mathematically prove in Theorem 3.1 that the optimal
student’s generative distribution aligns with the real data dis-
tribution. As visualized in Figure 5, our PaGoDA Stage 2 (red)
achieves robust performance even with a weaker teacher, unlike
traditional noise-to-data distillation loss Ldst of Eq. 1, which
struggles despite the use of adversarial loss.

Theorem 3.1. Let λ > 0. Suppose D∗(G) ∈ argmaxD Ladv(G,D). If both PaGoDA’s reconstruc-
tion loss and adversarial loss share a common minimizer G∗, then pG∗(x) = pdata(x). Here, pG∗ is
the generative distribution learned by optimizing Eq. (4).

Additionally, Theorem 3.2 shows that PaGoDA’s training is stable with the help of reconstruction
loss, even with adversarial training. We empirically observe that PaGoDA can be trained effectively
without many of the techniques typically used to stabilize GANs [20, 21].

Theorem 3.2. [Informal] Let E be a fixed deterministic encoder. Suppose that at the generator’s
equilibria G∗ of Eq. (4), pG∗(x) = pdata(x), and x = G∗(E(x)). Then, under conditions similar
to those found in the stability literature for improving GAN [22, 21], training with Eq. (4) is stable
(gradient descent locally converges to its equilibria).

We refer to Theorems B.4 and B.9 for rigorous and extended versions of Theorems 3.1 and 3.2,
respectively. All proofs can be found in Appendix B.

4 PaGoDA with Classifier-Free Guidance

In this section, we integrate Classifier-Free Guidance (CFG) [23, 4] into PaGoDA for Text-to-
Any generation, with a focus on Text-2-Image. Incorporating CFG alters the sample distribution,
necessitating adjustments to the loss functions for Stages 2 and 3. Since previous GAN literature [24–
27] has not addressed CFG integration, we introduce the classifier-free guided adversarial loss to
accommodate this adaptation.

5
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CFG guides the denoising process by adjusting the conditional score gradient ∇ log pt(xt|c) into a
guided score ∇ log pt(xt|c) + (ω − 1)∇ log p(c|xt). This adjustment leads our distillation learning
target from pdata(x|c) to pdata(x|c, ω), defined by

pdata(x|c, ω) ∝ pdata(x|c)ωpdata(x)
1−ω,

reflecting the influence of guidance strength ω.

4.1 Classifier-Free Guided Adversarial Loss

To describe the classifier-free adversarial loss, we first consider the loss:

Lc,ω
adv (Gθ, Dψ) := Epdata(x|c,ω)

[
logDψ(x, c, ω)

]
+ EpGθ

(x|c,ω)

[
log

(
1−Dψ(x, c, ω)

)]
,

where now both generator and discriminator incorporates ω as an additional condition [28], see
Eq. (3) for the comparison. From the standard GAN argument [29], this GAN loss guarantees the
optimal generator to match to the data distribution, i.e., pG∗(x|c, ω) = pdata(x|c, ω). Hence, the
classifier-free adversarial loss could be defined by

LCFG
adv (Gθ, Dψ) := Epdata(c)π(ω)

[
Lc,ω

adv (Gθ, Dψ)
]

= Epdata(c)π(ω)pdata(x|c,ω)

[
logDψ

(
x, c, ω

)]
+ Epdata(c)π(ω)pGθ

(x|c,ω)

[
log

(
1−Dψ

(
x, c, ω

))]
.

A key challenge with Lc,ω
adv is that sampling from pdata(x|c, ω) is generally infeasible, making it

difficult to compute the first term of LCFG
adv . To address this issue, we leverage the Bayes formula

pdata(c)π(ω)pdata(x|c, ω) = pdata(x, c)p(ω|x, c),

where both representations are two different ways to decompose the joint distribution over (x, c, ω),
with π(ω) being the prior distribution of the CFG scale ω. From this formula, if we could predict the
guidance weight ω by observing x and c, i.e., if we know p(ω|x, c), then sampling (x, c, ω) from
pdata(c)π(ω)pdata(x|c, ω) can be alternatively achieved by: 1) sampling (x, c) from pdata(x, c), and
2) predicting most likely ω using p(ω|x, c).
We approximate p(ω|x, c) with a U-Net encoder network with 1-dimensional output, called CFG
weight estimator ωϕ. The input of ωϕ network is a single-channel matrix with (i, j)-th value as
the multiplication of the i/j-th values of x/c CLIP embeddings, respectively. As this matrix is
high-dimensional, we input the downsampled 64 × 64 × 1 matrix to the U-Net encoder. These
CLIP embeddings are also used to condition the network. With DM pretrained at Stage 1, which
is supposed to be sufficiently close to the data distribution, we train the CFG weight estimator by
minimizing Epprior(z)pdata(c)π(ω)[∥ω−ωϕ(x̂(z, c, ω), c)∥22], where x̂(z, c, ω) is a clean base-resolution
sample drawn the teacher diffusion. Then, ωϕ(x, c)-value becomes the point estimation of p(ω|x, c).

4.2 PaGoDA Pipeline with Classifier-Free Guidance

We replace the adversarial loss in Stages 2 and 3 with the proposed classifier-free guided adversarial
loss. In Stage 3, we shift the focus from x ∈ Rd to xhigh ∈ R4nd to effectively capture high-frequency
details. Additionally, in both Stages 2 and 3, we replace the input of the generator in the reconstruction
loss to be classifier-free guided DDIM inversion noise. To enhance text-sample alignment, we further
regularize training with CLIP [30] similarity. For training, we use the ViT-L/14 [31] CLIP model
pretrained on YFCC100M [32], while for evaluation, we use the ViT-g/14 CLIP model pretrained on
LAION-2B [33], minimizing the risk of overfitting.

5 Experiments

5.1 PaGoDA Tested on ImageNet without CFG

We conduct experiments on ImageNet using PaGoDA without CFG to validate the core pipeline
described in Section 3, utilizing the discrete time diffusion scheduling proposed by EDM [13]. Before
training, we collect DDIM inversion latent representations for all ImageNet data using the Heun
method [13] with 40 timesteps (79 NFE). Throughout the experiments, we maintain the batch size

6
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Figure 6: Uncurated samples generated by PaGoDA at resolution 512× 512 without CFG. Left: class
31 (tree frog); Right: class 33 (loggerhead turtle).

to be 256 for both Lrec and Ladv in Stages 2 and 3. We initialize our base resolution generator with
the pre-trained diffusion U-Net. Following CTM [7], we implement adaptive weighting [34] with
λ = 0.2

∥∇
θl

Lrec∥2
2

∥∇
θl

Ladv∥2
2

, where θl represents the last layer of the generator.

For higher resolution generation, we double the previous resolution by adding two auxiliary ResNet
blocks followed by one upsampler ResNet block. The previously trained generator remains frozen,
except for the highest-resolution blocks, which are unfrozen. We then train these newly added blocks
along with the unfrozen parts, using a fixed GAN weight of λ = 1.0. Appendix A.1 provides
additional details. By freezing part of the trained generator, we achieve greater stability in super-
resolution training without adaptive weighting. See Figure 6 for uncurated 512×512 random samples
of ImageNet without CFG.

5.1.1 Quantitative Results

Table 1 presents the performance of PaGoDA. Our model consistently outperforms all existing models
across all resolutions, achieving SOTA FIDs without the need of CFG and any other stabilization
tricks for GAN. Remarkably, PaGoDA’s Inception Score (IS) [35] is on par with other diffusion and
GAN models that employed CFG, which implies that PaGoDA samples are as distinctive as CFG
samples. Also, PaGoDA generates samples as diverse as the real data distribution, evidenced by
diversity recall metric [36], where the PaGoDA reports 0.63 for 64× 64 resolution (data’s recall is
0.67). In contrast, StyleGAN-XL is far behind of PaGoDA in terms of the diversity metric, reporting
0.52 for 64× 64 resolution. Note that we used StyleGAN-XL’s discriminator in PaGoDA training,
implying that the reconstruction loss significantly improves the sample diversity.

5.1.2 Discussion on Base Resolution

When applying PaGoDA pipeline, the choice of downsampled base resolution in Stage 1 will be
primarily determined by available computational resources. Thus, we investigate the impact of the
base resolution at this section. To understand the impact, we conducted experiments at 32 × 32
and 64× 64 resolutions, as summarized in Table 2. Starting at resolutions below 32× 32 imposes
excessive complicacy on the upscaling network, while higher resolutions significantly increase the
computational costs at the Stage 1. Therefore, our analysis focuses on these two resolutions, balancing
between computational efficiency and upscaling feasibility.

We utilized only 1 H100 node with 8 GPUs for diffusion training on 32× 32 with 4096 batch size.
Also, for 64× 64 diffusion, we borrow a pretrained checkpoint [5], which used ≥ 323 A100 GPUs to
train with 4096 batch size. Results in Table 2 demonstrate that the diffusion model trained in Stage 1
maintains robust performance across both resolutions. Interestingly, the one-step generator distilled

3This is an estimate.

7
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Table 1: Experimental results of PaGoDA on ImageNet.

Model
Sampling

NFE
Without CFG With CFG Without CFG With CFG

FID ↓ IS ↑ Recall ↑ FID IS Recall FID IS Recall FID IS Recall

64 × 64 resolution 128 × 128 resolution

RIN [37] 250 1.23 66.5 - - - - 2.75 144.1 - - - -
simple Diffusion [38] 250 - - - - - - 1.91 171.9 - 2.05 189.9 -
VDM++ [39] 79 1.43 63.7 - - - - 1.75 171.1 - 1.78 190.5 -
StyleGAN-XL [40] 1 - - - 1.51 82.35 0.52 - - - 1.81 200.55 0.55
CTM [7] 1 1.92 70.38 0.57 - - - - - - - - -
PaGoDA (ours) 1 1.21 76.47 0.63 - - - 1.48 174.36 0.61 - - -

256 × 256 resolution 512 × 512 resolution

DiT-XL [41] 250 9.62 121.5 - 2.27 278.2 - 12.03 105.3 - 3.04 240.8 -
simple Diffusion [38] 250 2.77 211.8 - 2.44 256.3 - 3.54 205.3 - 3.02 248.7 -
VDM++ [39] 250 2.40 225.3 - 2.12 267.7 - 2.99 232.2 - 2.65 278.1 -
EDM2-XXL [42] 63 - - - - - - 1.91 - - 1.81 - -
StyleGAN-XL [40] 1 - - - 2.30 265.12 0.53 - - - 2.41 267.75 0.52
PaGoDA (ours) 1 1.56 259.61 0.59 - - - 1.80 251.31 0.58 - - -

Table 2: Ablation of base resolution.
Model Base Res Upscaled Res NFE FID Base Res Upscaled Res NFE FID Speed [s] Params

Teacher Diffusion 32 × 32 32 × 32 79 1.75 64 × 64 64 × 64 79 2.44 3.16s 296M

PaGoDA

32 × 32 32 × 32 1 0.79
32 × 32 64 × 64 1 1.34 64 × 64 64 × 64 1 1.21 0.040s 296M
32 × 32 128 × 128 1 1.61 64 × 64 128 × 128 1 1.48 0.041s 299M
32 × 32 256 × 256 1 1.83 64 × 64 256 × 256 1 1.56 0.044s 301M

64 × 64 512 × 512 1 1.80 0.046s 302M

in Stage 2 consistently outperforms the teacher model, likely benefiting from the effectiveness of
StyleGAN-XL [40], combined with the reconstrcution loss. In Stage 3, the degree of upscaling from
the base resolution emerges as the most influential factor for the quality, with upscaling up to 8x
showing minimal performance degradation across both tested resolutions.

The upscaler in PaGoDA refines coarse samples generated at lower resolutions, making the pipeline
inherently aligned with the scaling laws of smaller resolutions. This design is advantageous, as scaling
laws typically worsen with increasing resolution [43], while PaGoDA leverages the more favorable
scaling dynamics at lower resolutions to maintain efficiency. Furthermore, the lightweight upscaling
module introduces minimal additional latency, keeping inference times nearly identical to those at the
base resolution. This practical efficiency makes PaGoDA a promising solution for scalable diffusion
model training across various computational settings.

5.1.3 Discussion on Upscaling Capability

In Stage 3, we train the super-resolution module using a combination of reconstruction and adversarial
losses. As shown in Figures 3 and 4, we compare PaGoDA’s performance to that of StyleGAN-XL.
The comparison reveals key insights: 1) PaGoDA maintains consistent object alignment across
resolution jumps, largely due to the reconstruction loss, and 2) its performance is strongly influenced
by the GAN component, which plays a crucial role in capturing high-frequency details.

Table 3: Comparison on upsampling.

Model Resolution Params NFE FID

EDM2 642 DM 1.1B 63 1.33
5122 LDM 1.1B 63+1 1.96

PaGoDA

642 DM (teacher) 0.3B 79 2.44

642 → 642 0.3B 1 1.21
642 → 5122 0.3B 1 1.80

Other upsampling methods, such as SD and Cascaded
Diffusion Models (CDM) [44] also target high-quality up-
scaling. While PaGoDA, CDM, and SD share the same
goal, they adopt different approaches, making them com-
plementary rather than competing solutions. In fact, their
strengths can be combined to enhance overall compres-
sion and upscaling performance. For instance, CDM or
PaGoDA can be applied to the latent space of SD, inte-
grating their techniques for better results. Despite their
compatibility, it is still essential to assess how these meth-
ods compare in terms of their upscaling effectiveness. In the following analysis, we break down
the upscaling capabilities of PaGoDA, CDM, and SD to understand their respective strengths and
potential limitations.

8
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(a) Inpainting (b) Super-resolution (c) Class transfer

(d) Latent interpolation

Figure 8: Controllable generation of PaGoDA with various tasks.

Since PaGoDA is experimented based on EDM [13], we adapted the experimental results from
EDM2 [42] to facilitate a direct comparison with PaGoDA in the upscaling performance. EDM2
presents results for both pixel DM and latent DM. In latent diffusion, a 512 × 512 × 3 image is
compressed into a 64× 64× 4 latent space for training DM, while pixel diffusion operates directly
on 64× 64× 3 images, sharing the identical network architecture used in its latent DM. As reported
in Table 3, EDM2 shows a minor performance decline from 1.33 to 1.96.
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Figure 7: Comparison between
PaGoDA and CDM.

Similarly, PaGoDA exhibits a comparable performance drop
from 1.21 to 1.80 when upscaling from 64 × 64 to 512 ×
512. This similarity suggests that PaGoDA’s upscaling capacity
aligns closely with that of the LDM framework, indicating
minimal performance differences even when handling high-
resolution data.

Lastly, when comparing PaGoDA to CDM, we observe in
Figure 7 that CDM encounters significant performance drops
beyond certain dimensional thresholds (128 × 128), while
PaGoDA maintains consistent performance across varying res-
olutions. This robustness makes PaGoDA a reliable option for
high-resolution generation, with its performance remaining steady even as resolution increases.

5.2 Discussion on Controllability

Once we have a trained PaGoDA generator Gθ0 , we can utilize it for solving inverse problems [45]
and for controllable generation [46] in a training-free manner [47].

Latent Optimization We consider the inverse problem: y = A(x) + η, where y represents the
observation, and A : Rd → Rm with d ≥ m is a known operator. The restored data x can be
reconstructed by optimizing the latent. Specifically, if z∗ ∈ argminz ∥y − A(Gθ0(z, c))∥22, then
Gθ0(z

∗, c) is the best possible estimate of the solution for the inverse problem. Figure 8-(a) displays
the outcomes of an inpainting task where latent optimization is employed with Adam optimizer [48].

DDIM Inversion Specific tasks, such as super-resolution illustrated in Figure 8-(b) and class transfer
depicted in Figure 8-(c), can be effectively addressed without relying on latent optimization. For
these tasks, we apply DDIM inversion to the downsampled observations, then map the DDIM latent
back to RGB pixel by feeding the latent into the decoder. Generally, using DDIM inversion yields
superior outcomes compared to latent optimization for these types of tasks.

Latent Interpolation Building on techniques from GAN research, we also explored latent in-
terpolation for style mixing. Despite our model’s latent dimension being larger than the typical
512-dimensional style vector used in GAN, our observations indicate that latent mixing by slerp
operation [49, 20] achieves effective results, as demonstrated in Figure 8-(d).
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Table 4: Experimental results on T2I. FID-5K is mea-
sured on MSCOCO-2017 [54] validation data. CLIP
score is measured by the ViT-g/14 backbone. Our
model uses DeepFloy-IF as the pre-trained diffusion.

Model Params NFE Speed [s] FID ↓ CLIP ↑

SD1.5 [3] 0.9B 50+1 2.59s 19.1 31.3
DeepFloyd-IF [53] 0.9B 27 2.95s 22.3 28.1

Latent Distillation Models based on SD1.5 [3]
CAD [28] 0.9B 8+1 0.34s 24.2 30.0
PD [55] 0.9B 4+1 0.21s 26.4 30.0
LCM [56] 0.9B 2+1 0.13s 30.4 29.3
InstaFlow [57] 0.9B 1+1 0.09s 23.4 30.4
UFOGen [58] 0.9B 1+1 0.09s 22.5 31.1
Scott [59] 0.9B 1+1 0.09s 21.9 31.2
ADD [26] 0.9B 1+1 0.09s 19.7 32.6

Pixel Distillation Model based on DeepFloyd-IF [53]
PaGoDA (ours) 0.9B 1 0.05s 20.4 31.2

Table 5: Experimental results on T2I. FID-
30K is based on MSCOCO-2014 [54] vali-
dation data. Speed is measured on A100.

Model Params Speed [s] FID ↓

eDiff-I [60] 9.1B 32.0s 6.95
LDM [3] 1.5B 9.4s 12.63
Imagen [61] 3.0B 9.1s 7.27
SD1.5 [3] 0.9B 2.9s 9.62
PixArt-α [62] 0.6B - 10.65
Scott [59] 0.9B 0.13s 12.22
GigaGAN [24] 1.0B 0.13s 9.09
StyleGAN-T [25] 1.0B 0.10s 13.90
InstaFlow [57] 0.9B 0.09s 13.10
UFOGen [58] 0.9B 0.09s 12.78
DMD [63] 0.9B 0.09s 11.49
LAFITE [64] 75M 0.02s 26.94
PaGoDA (ours) 0.9B 0.05s 10.23

5.3 Text-to-Image Generation

We collect the data-latent pairs on the CC12M dataset [50] through DDIM inversion and utilize the
filtered COYO-700M [51] dataset for adversarial training. The filtering criteria include only data with
CLIP score (measured by ViT-B/32 [52]) higher than 32, and aesthetic score-v2 [33] higher than 5.0.
Due to concerns regarding sensitive content in the open-sourced LAION dataset [33], we were unable
to conduct large-scale diffusion training for Stage 1. This constraint led us to focus primarily on
stages 2 and 3, leveraging pretrained open-source checkpoints. For the pretrained teacher diffusion,
we used the DeepFloyd-IF model [53], trained on 64 × 64 pixel space. For further experimental
details, see Appendix A.2.
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Figure 9: PaGoDA offers faster in-
ference than the one-step LCM.

Table 4 compares our PaGoDA mainly with the distilled models
from SD v1.5 on 512× 512. One notable observation from the
table is that, even though the latent distilled model generates the
latent representation in a single step, additional time is required
for decoding this latent into image. In contrast, PaGoDA (on
pixel teacher) eliminates such decoding step, thereby overcom-
ing the time constraints associated with distilling SD models.
For a more detailed breakdown of the time taken by each com-
ponent, see Figure 9.

Returning to the performance results in the table, PaGoDA
achieves performance comparable to that of the teacher model.
This superior performance is also observed on a different test set as shown in Table 5, further
demonstrating PaGoDA’s scalability on text-to-image tasks.

6 Conclusion

PaGoDA introduces a training pipeline that can democratize the diffusion training by cutting training
budget with orders of magnitudes. The pipeline is consisted of three stages: 1) we pretrain the diffusion
models on the downsampled data, 2) we distill the teacher diffusion into a one-step generator on the
downsampled data, and 3) we train an upsampler module until we reach to the desired resolution.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have made our abstract and introduction to accurately reflect the core
contribution of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have created a separate “Limitations and Broader Impacts” section in the
appendix to enumerate potential limitations of our methodology, including the algorithmic,
theoretical, and experimental limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Although we omit some of assumptions in the main paper mainly due to page
limit, we provide full details of assumptions and complete proof in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all experimental details in the main paper and the appendix, in-
cluding the hyperaparameters used and the datasets used with their filetering methodologies.
For further reproducibility, we plan to release our code upon acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: In the reviewing process, we release our code to the reviewers to regenerate
our experimental results. After the acceptance, we plan to release the code to the public.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We faithfully release our hyperparameters and experimental details in the
appendix and the main paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We have not reported error bars mainly due to the lack of computational
resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We explain how much compute resources we used for experiments in the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We faithfully follow the code of ethics, suggested by the link above.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impacts as a separate section in the “Limitations and
Broader Impacts” of the Appendix C.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: For the T2I checkpoint release, we plan to use HuggingFace to enroll every
users to the system so to control the downloaded user list. Additionally, we prohibited using
the LAION dataset [33], which includes NSFW contents. Instead, we used the COYO-
700M [51] dataset, a large-scale text-to-image dataset that removes NSFW images by NSFW
image detectors [65, 66] and texts that contain NSFW words [67–69].
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have properly credited the original owners of assets by citing them. In the
code release, we comply the license and terms of the assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: In the supplementary, we include the the details of the dataset/code/model via
structured templates.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Figure 10: Text-to-image samples from PaGoDA.

A Experimental Details

A.1 Conditional Generation with ImageNet

Throughout the experiments, we omit the class condition c otherwise mentioned for notational
simplicity.

Dataset Construction. We loaded ImageNet20144 dataset using center cropping and downsampling
using the bicubic algorithm from the PIL python package. To augment the data, we applied a
horizontal random flip, and obtained each of latent representations by solving the EDM’s 2nd-order
ODE sampler (Heun’s method) [13] with their suggested diffusion time scheduling and timestep
selection. Consequently, in total, we processed approximately 2.5 million data instances forward in
time using the PF-ODE to prepare for training. This computational cost of constructing the training
dataset is comparable to sampling an equivalent volume of sample from a pre-trained diffusion model.

GAN Details. We adopted the discriminator architecture from StyleGAN-XL. Initially, We loaded
DeiT-base [70] and EfficientNet-lite [71] as feature extractors, in line with StyleGAN-XL’s setup.
When processing real or fake data through the discriminator, we first applied differentiable aug-
mentation (DiffAugment) [72], incorporating three transformations: Translation, Cutout, and Color.
Interestingly, we observed no performance differences between the unconditional and conditional
discriminators. We hypothesize that this lack of disparity arises because the discriminator primarily
updates the generator to refine high-frequency details, while preserving the low-frequency global
semantics due to the reconstruction power. Additionally, we opted not to use additional techniques
to tame the GAN training, such as R1 regularization [21] or path length regularization [20] in our
GAN training. PaGoDA’s training generally remains stable due to its reconstruction loss, which is
consistent with our theoretical expectation (Theorem B.9).

We conducted tests on GANs under two distinct scenarios. Initially, following the approach used in
Stable Diffusion’s VAE training, we introduced both the real data x and the reconstructed sample
x̃ = Gθ(E(x)) to the discriminator, training it to differentiate between the two while updating
the generator to maximize logDψ(x̃). In this setup, as the reconstruction only utilizes the latent
representation E(x), the generation quality is not improved.

In the second scenario, adhering to the traditional GAN framework, we trained the discriminator using
randomly sampled real data alongside randomly generated fake data x̃ = Gθ(z) from z ∼ pprior(z).
Then, the endeavor of maximizing logDψ(x̃) now significantly improves the generation quality.
Overall, we observed no performance degradation when both types of GAN training were applied to

4https://www.image-net.org/index.php
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Table 6: Comparison on ImageNet 64 × 64. We evaluate scores, including Fréchet distance on
DINOv2 features [74], based on the statistics released by EDM2. The validation scores are measured
by comparing 50k samples and 50k ImageNet validation data.

64 × 64 Architecture NFE FIDInceptionV3 FDDINOv2
vs. Train vs. Val vs. Train vs. Val

Val Data 1.05 - 13.86 -

StyleGAN-XL GAN 1 2.64 3.52 214.59 220.47
CTM ADM 1 1.69 2.88 159.67 165.96
EDM ADM 79 2.51 2.93 112.17 120.58
EDM2-XL EDM2 63 1.38 2.29 70.31 80.53
PaGoDA ADM 1 1.01 2.10 70.04 78.44

Table 7: Comparison on ImageNet 512× 512. From this result, it would be interesting to experiment
PaGoDA on EDM2 architecture for better performance. * the results of ImageNet 256× 256.

512 × 512 Arch DM #Params NFE FIDInceptionV3 FDDINOv2

Val Data 1.58 14.13

StyleGAN-XL GAN - 0.2B 1 2.41 214.88*
EDM w/o CFG (teacher) ADM Latent 0.3B 63 7.24 204.10
EDM2-S w/o CFG EDM2 Latent 0.3B 63 2.56 68.64
EDM2-S w/ CFG EDM2 Latent 0.3B 63 2.23 55.23
EDM2-XXL w/ CFG EDM2 Latent 1.1B 63 1.81 33.09
PaGoDA w/o CFG ADM Pixel 0.3B 1 1.80 96.77

- You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab.    

- You are able to understand the visual content that the user provides, and assist the user with a

variety of tasks using natural language.

- You should follow the instructions carefully and explain your answers in detail.

- Given the caption of this image "{text prompt}", describe this image in a very detailed manner

Figure 11: Input prompt of LLaVA to recaption the text-image paired data.

the generator. However, given our limited budget and the goal to develop a generative model rather
than a compression model, we opted to proceed solely with the second type of GAN setup.

Reconstruction Details. For the reconstruction loss, we train the generator Gθ by comparing the
original data x ∼ pdata(x) and its reconstructed counterpart Gθ(E(x, c), c) at the data’s resolution,
where E(x, c) is the solution of the DDIM inversion. Since our training occurs in pixel space, we
conduct this comparison in the feature space using the Learned Perceptual Image Patch Similarity
(LPIPS) metric, and there is no need to develop a new feature extractor in latent space. We experi-
mented with features extracted from DeiT-base [70] and EfficientNet-lite [71]; however, we observed
no notable improvement from using LPIPS.

For the training, we use the RAdam [73] with learning rate of 8e-6 for the decoder and 2e-3 for the
discriminator, and without weight decay. We use the EMA of 0.999, and all reported FIDs are based
on the EMA checkpoint. Until 2562 resolution, we use only 1 H100 node (with 80Gb memory) to
train, and we use 8 A100 nodes (with 40Gb memory, in total 8 × 8 = 64 GPUs) to train the 5122

model. Throughout the experiments, we use the batch size of 256.

For the concerns on the overfitting, we provide additional results in Tables 6 and 7.

A.2 Text-to-Image Generation

Dataset Construction. Due to the presence of inappropriate contents (CSAM) in the LAION
dataset [33], we have decided to discontinue its use. Instead, we are now training our model using
the CC12M [50] and a filtered version of COYO-700M [51] datasets. For COYO-700M, we apply
filters to select only those text-image pairs that meet specific criteria: a CLIP score (measured by ViT-
B/32 [52]) above 32.0 and an aesthetic score-v2 [33] higher than 5.0. Additionally, we are enhancing
the dataset quality by recaptioning the original text prompts from CC12M, adopting practices similar
to those used in DallE-3 [75] and PixArt-α [62]. Specifically, we employ LLaVA-7B [76], a language
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LLaVA

Watch your head as you enter the <PERSON> house

The image shows a couple walking through a field with a 
small stone building, which appears to be a small house 
or a hut. The man and woman are walking towards the 
house, and they are both wearing coats, suggesting that 
the weather is cold or chilly. The house is made of stone, 
which adds to its rustic charm and suggests that it might 
be an old or traditional dwelling. The presence of a field 
and the couple walking towards the house create a 
peaceful and serene atmosphere, making it an 
interesting and visually appealing scene.

Figure 12: Example of recaptioned image-text pair.

(a) DeepFloyd-IF Caption Generation (b) PaGoDA Caption Generation

(c) DeepFloyd-IF Recaption Generation (d) PaGoDA Recaption Generation

Figure 13: Caption vs. Recaption. From left to right, CFG scale increases. The caption and its
corresponding recaption are given by the exemplary case in Figure 12.

model with vision assistance, to generate descriptions of the images based on the text prompts,
thereby ensuring more relevant and accurate text-image pairings.

The input prompt of LLaVA is depicted in Figure 11, where we put text prompt to {text prompt}.
The output from this recaptioning process adheres to a consistent format, typically beginning
with phrases like “This image features ...” or “This image shows ...”. To provide clear
demonstration, Figure 13 displays several examples of original captions alongside their recaptioned
counterparts.
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Figure 14: Effect of recaptioning.

Interestingly, the recaptioned samples generally outper-
form the original caption samples. Notably, the recap-
tioned samples exhibit sufficient quality, particularly when
the CFG scale is small, as shown in Figure 14. Therefore,
to ensure balanced generation performance across vary-
ing CFG scales, we generate samples from the original
captions with the CFG scale uniformly sampled from the
range [2, 10]. For the recaptioned text, we use a CFG scale
that follows a truncated Gaussian distribution on the range
[1, 10], centered at 2 with a scale of 3. Overall, incorpo-
rating these recaptioned texts into the PaGoDA training
results in only a marginal improvement in performance
metrics such as FID and CLIP. However, it significantly
enhances the actual quality of generation, particularly at smaller CFG scales, because the recaptioning
provides better-aligned training data.

Using LLaVA, we recaption c̃(x, c) and obtain the DDIM latent representation, E(x, c̃(x, c)), on
the entire CC12M dataset. Then, for the original text c, we have a triplet of (image, text, latent)
of (x, c, E(x, c)) for one set, and another triplet (x, c̃(x, c), E(x, c̃(x, c)) for recaptioned dataset.
When computing Lrec, we mix these triplets and randomly sample from this mixed dataset.

GAN Details. Similar to the ImageNet case, we have adopted the discriminator architecture from
StyleGAN-T. In line with StyleGAN-T, we utilize the DINO ViT-S/16 [77] as the feature extractor
and apply DiffAugment [72], incorporating Translation, Cutout, and Color transformations. Building
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Figure 15: Discriminator architecture.

upon this architecture, we integrate a ω condition into each discriminator head, as illustrated in
Figure 15. The inputs for each discriminator head include the DINO feature, text CLIP embedding,
and the CFG scale ω, which is scaled by a factor of 100. We handle the CFG scale similarly to the
time variable in traditional diffusion U-Net models, incorporating the output CFG embedding into
the existing components of the StyleGAN-T discriminator head. We assume both image x and text c
are related with the CFG scale, thus we designed the discriminator to incorporate ω information into
both modules, enhancing the relevance and contextuality of the discrimination process.

Reconstruction Details. In our text-to-image training, we largely adhere to the protocols established
for ImageNet training. However, a notable modification involves the decoder network, which now
incorporates a ω condition as an auxiliary input. Crucially, this ω condition is processed in decoder in
the same way as the time condition in diffusion models. We achieve this by scaling ω by a factor of
100, thus aligning it with the existing time ranges. This method ensures a consistent treatment of the
ω parameter, integrating it smoothly into the established model architecture.

CLIP Details. Neither the reconstruction loss nor the GAN loss directly models or maximizes the
text-image correlation. To address this, we introduce an additional text-image alignment metric to
train our model. Specifically, we employ ViT-L/14 [52] to assess the CLIP value. This regularization
significantly enhances PaGoDA’s performance, as evidenced in Figure 16 by improving both FID and
CLIP scores. These enhancements suggest that not only is the sample quality improving, but also the
alignment between text and images is becoming more accurate.
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Figure 16: Effect of CLIP regularization.

For the training, we use the AdamW8bit optimizer [78]
to minimize the required memory with learning rate of
1e-5 for both decoder and discriminator. Similar to the
ImageNet experiment, we do not apply the weight decay.
In this text-to-image experiment, we do not use EMA,
following previous works [61]. In the base resolution, we
use the adaptive weighting with λ = 4

∥∇
θl

Lrec∥2
2

∥∇
θl

Ladv∥2
2

. Overall,
we use the DeepFloyd-IF-I model with 0.9B number of
parameters.

Figure 17 compares PaGoDA with the existing baselines.
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Figure 17: Human evaluation result on T2I with CFG set to be 7 across models.

B Theoretical Analysis

In this section, we present rigorous statements and proofs of all theorems. The theorems are shown
for the unconditional generation case (i.e., without the condition c), but the analysis can be extended
to the conditional scenario.

B.1 Convergence with PaGoDA’s Reconstruction Loss

In Section B.1.1, we introduce the necessary notations and preliminaries. In Sections B.1.2 and B.1.3,
we demonstrate that the Wasserstein-1 and Wasserstein-2 discrepancies of the learned density (with
PaGoDA’s reconstruction loss) from pdata are upper bounded by PaGoDA’s reconstruction loss and
the pre-trained DM’s training error. All results are proved for unconditional generation (i.e., without
c as an input), but they can be easily generalized to the conditional case.

B.1.1 Preliminaries of Convergence Analysis

Consider OU process for t ∈ [0, T ], where T > 0:

dxt = −f(t)xt dt+ g(t) dwt

Its associated PF-ODE is

dxt =
[
− f(t)xt −

1

2
g2(t)∇ log pt(xt)

]
dt.

We consider f(t) ≡ 1 and g(t) ≡
√
2 for simplicity. That is,

dxt = −xt dt+
√
2 dwt. (5)

We recall that PaGoDA’s reconstruction loss (unconditional case) is defined as:

Lrec(θ;ϕ0) := Epdata(x)pϕ0
(z|x)

[∥∥x−GT→0
θ (z)

∥∥2
2

]
,

Here, we use pϕ0(z|x) to denote the density obtained by solving the pre-trained teacher DM’s
empirical PF-ODE forward in time from t = 0 to t = T :

dxt =
[
− f(t)xt −

1

2
g2(t)sϕ0

(xt, t)
]
dt,

where sϕ(xt, t) indicates the pre-trained DM. We remark that pϕ0(z|x) defines a deterministic
process.

We take pprior := N
(
0, (1−e−2T )I

)
as the prior distribution, and define pT,ϕ0

:= G0→T
ϕ0

♯pdata as the
distribution obtained by solving the teacher-determined empirical PF-ODE forward in time. Let us
consider the density obtained by sampling from PaGoDA (trained without GAN) p0,θ := GT→0

θ ♯pprior.
We also let GT→0 denote the ground truth transition map from T to 0, defined by the PF-ODE.

Conceptually, Theorems B.1 and B.3 demonstrate that

Wp(p0,θ, pdata) ≲ Lrec(θ;ϕ0) + ϵDM, p = 1, 2.
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This implies that training with PaGoDA’s reconstruction loss ensures the learned density p0,θ =
GT→0
θ ♯pprior is close to pdata in Wasserstein distance sense. Moreover, improving the teacher DM to

reduce the error ϵDM is a way to further decrease the discrepancy between p0,θ and pdata.

We remark that the differences between the two theorems primarily lie in the distinct smoothness
assumptions on pdata.

B.1.2 W2 Bound with PaGoDA’s Reconstruction Loss

Assumption I-1. (i) m2 := Epdata(x) ∥x∥
2
2 < ∞;

(ii) There is a ϵDSM > 0 so that supx,t ∥sϕ0(x, t)−∇ log pt(x)∥22 ≤ ϵ2DM;

(iii) GT→0
θ is Lipschitz in x:

Λ := sup
x̸=y

∥∥GT→0
θ (x)−GT→0

θ (y)
∥∥
2

∥x− y∥2
< ∞,

for all θ and T .

(iv) log pdata is γ-strongly concave with γ > 3/2:

⟨x− y,∇ log pdata(x)−∇ log pdata(y)⟩ ≤ −γ ∥x− y∥22 ,

for all x and y.
Theorem B.1. Given that Assumption I-1 holds, suppose δ is a positive constant such that δ <
e−2T

3−e−2T , and let h(γ, T ) := γ
e−2T+γ(1−e−2T )

− (1+ δ), where it is noted that h(γ, T ) is also positive.
Then

W2(p0,θ, pdata) ≤ Lrec(θ;ϕ0) +
[
Epdata(x)pϕ0

(z|x)
∥∥x−GT→0(z)

∥∥2
2

] 1
2

+
(
Λ + e−

1
2h(γ,T )T

)
W2

(
pT , pT,ϕ0

)
+

ϵDM√
2δh(γ, T )

(
1− e−h(γ,T )T

) 1
2 + e−

T
2 mΛ.

In particular, if we assume Assumption I-1 (iii) holds also for GT→0,

W2(p0,θ, pdata) ≲ Lrec(θ;ϕ0) + ϵDM + e−
T
2 mΛ.

Here, we use ≲ to absorb the dependence on the constants T and γ into the inequality.

We present an inequality which is essential for the proof of Theorem B.1.
Lemma B.2 (Proposition 3.5. in [79]). Let P and Q be two distributions on RD. Suppose that logP
is γP -concave and logQ is γQ-concave. Then the convolution of logP ∗Q is a (1/γP + 1/γQ)

−1-
concave distribution.

Proof of Theorem B.1. The proof of the theorem is inspired by [80, 81]. Define pT,ϕ0
:=

G0→T
ϕ0

♯pdata, and p0,ϕ0 := GT→0♯pT,ϕ0 . From the triangle inequality, we have

W2(p0,θ, pdata) ≤ W2(p0,θ, p0,ϕ0)︸ ︷︷ ︸
(A)

+W2(p0,ϕ0 , pdata)︸ ︷︷ ︸
(B)

.

For (A), let π(y, z) ∈ Π
(
pprior, pT,ϕ0

)
be a coupling of pprior and pT,ϕ0

. Then

(A) = W2

(
GT→0
θ ♯pprior, G

T→0♯pT,ϕ0

)
≤

(
E(y,z)∼π

∥∥GT→0
θ (y)−GT→0(z)

∥∥2
2

) 1
2

≤
(
E(y,z)∼π

∥∥GT→0
θ (y)−GT→0

θ (z)
∥∥2
2

) 1
2︸ ︷︷ ︸

(A.1)

+
(
E(y,z)∼π

∥∥GT→0
θ (z)−GT→0(z)

∥∥2
2

) 1
2︸ ︷︷ ︸

(A.2)

.
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For (A.1), we can yield

(A.1) ≤ Λ min
π∈Π

(
pprior,pT,ϕ0

) (E(y,z)∼π ∥y − z∥22
) 1

2

= ΛW2

(
pprior, pT,ϕ0

)
≤ ΛW2

(
pprior, pT

)
+ ΛW2

(
pT , pT,ϕ0

)
≤ e−

T
2

(
Epdata(x0) ∥x0∥22

) 1
2Λ + ΛW2

(
pT , pT,ϕ0

)
. (6)

Here, the last inequality is a consequence of the following bound

W2(pprior, pT ) ≤ e−
T
2

(
Epdata(x0) ∥x0∥22

) 1
2 ,

which holds because pprior is taken as N
(
0, (1− e−2T )I

)
, and xT ∼ pT governed by Eq. (5) admits

the expression

xT = e−Tx0 +

∫ T

0

e−(T−s)
√
2 dws = e−Tx0 + z, z ∼ N

(
0, (1− e−2T )I

)
.

For (A.2), since pT,ϕ0
(z) =

∫
pϕ0

(z|x)pdata(x) dx, by applying Minkowski inequality we have

(A.2) =
(
E(y,z)∼π

∥∥GT→0
θ (z)−GT→0(z)

∥∥2
2

) 1
2

=
(
Ez∼pT,ϕ0

(z)

∥∥GT→0
θ (z)−GT→0(z)

∥∥2
2

) 1
2

≤
(
Epdata(x)pϕ0

(z|x)
∥∥GT→0

θ (z)− x
∥∥2
2

) 1
2

+
(
Epdata(x)pϕ0

(z|x)
∥∥x−GT→0(z)

∥∥2
2

) 1
2

= Lrec(θ;ϕ0) +
[
Epdata(x)pϕ0

(z|x)
∥∥x−GT→0(z)

∥∥2
2

] 1
2

. (7)

The proof for (B) is motivated by [80]. Consider the following two reverse time PF-ODEs on the
interval [0, T ]

dẑt,ϕ0

dt
= ẑt,ϕ0

+ sϕ0
(ẑt,ϕ0

, T − t), ẑ0,ϕ0
∼ pT,ϕ0

and
dẑt
dt

= ẑt +∇ log pT−t(ẑt), ẑ0 ∼ pT ,

with a coupling of ẑ0,ϕ0 ∼ pT,ϕ0 and ẑ0 ∼ pT so that W 2
2 (pT,ϕ0 , pT ) = E ∥ẑ0,ϕ0 − ẑ0∥22.

We notice that W 2
2 (p0,ϕ0 , pdata) ≤ E ∥ẑT,ϕ0 − ẑT ∥22. Thus, we need to obtain a upper bound of

E ∥ẑT,ϕ0 − ẑT ∥22. Let u(t) := E ∥ẑt,ϕ0 − ẑt∥22. Then

d

dt
u(t) = 2E⟨ẑt,ϕ0

− ẑt,
d

dt

(
ẑt,ϕ0

− ẑt
)
⟩

= 2u(t) + 2E
[
⟨ẑt,ϕ0

− ẑt, sϕ0
(ẑt,ϕ0

, T − t)−∇ log pT−t(ẑt)⟩
]

= 2u(t) + 2E
[
⟨ẑt,ϕ0

− ẑt, sϕ0
(ẑt,ϕ0

, T − t)−∇ log pT−t(ẑt,ϕ0
)⟩
]

︸ ︷︷ ︸
(B.1)

+ 2E
[
⟨ẑt,ϕ0

− ẑt,∇ log pT−t(ẑt,ϕ0
)−∇ log pT−t(ẑt)⟩

]
︸ ︷︷ ︸

(B.2)

. (8)

Let δ > 0, by applying Yang’s inequality ab =
(√

2δa
)(

b√
2δ

)
≤ δa2 + b2

4δ to (B.1) for nonnegative
a and b, and the Assumption I-1, it becomes

(B.1) ≤ δu(t) +
ϵ2DM

4δ
. (9)
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We turn our attention to (B.2). Naively, (B.2) may be naively bounded above by Lip
(
∇ log pt(·)

)
u(t),

where Lip
(
∇ log pt(·)

)
is the Lipschitz constant of ∇ log pt(·) in x. However, we will now derive a

sharper bound by incorporating assumptions on the data distribution.

We notice that pt(xt) =
∫
pt|0(xt|x0)pdata(x0) dx0, where pt|0(xt|x0) = N

(
xt; e

−tx0, (1 −
e−2t)I

)
is a transition kernel from 0 to t determined by the forward SDE. Therefore, express-

ing pt in convolution form, under Assumption I-1, and leveraging Lemma B.2, we deduce that
log pT−t is a γ/

(
e−2(T−t) + γ(1− e−2(T−t))

)
-strongly concave distribution (see [82]). Hence,

(B.2) ≤ − γ

e−2(T−t) + γ(1− e−2(T−t))
u(t). (10)

With the inequalities (9) and (10), we deduce from Eq. (8) that

u′(t) ≤ a(t)u(t) +
ϵ2DM

2δ
, where a(t) :=

(
2 + 2δ − 2γ

e−2(T−t) + γ(1− e−2(T−t))

)
.

By applying Grönwall’s inequality, we obtain

E ∥ẑT,ϕ0
− ẑT ∥22 ≤ eA(T )E ∥ẑ0,ϕ0

− ẑ0∥22 +
ϵ2DM

2δ

∫ T

0

eA(T )−A(t) dt,

= eA(T )W 2
2 (pT,ϕ0

, pT ) +
ϵ2DM

2δ

∫ T

0

eA(T )−A(t) dt. (11)

where A(t) :=
∫ t

0
a(s) ds.

We aim to find an upper bound for inequality (11) that decays exponentially with respect to T . In a(t),

b(t) := γ
e−2(T−t)+γ(1−e−2(T−t))

as a function of t has the derivative as 2γ(γ−1)e−2(T−t)(
e−2(T−t)+γ(1−e−2(T−t))

)2 .

This implies when γ ≥ 1, b’s minimum occurs at b(0) = γ
γ+e−2T (1−γ)

, which implies a(t) ≤
2
(
1 + δ − b(0)

)
for all t ∈ [0, T ]. Setting δ < e−2T

3−e−2T , which implies 1
2 > δ

(1+δ)e−2T−δ
, then

γ > 3
2 = 1 + 1

2 > 1 + δ
(1+δ)e−2T−δ

(notice that (1 + δ)e−2T − δ > 2δ), we can deduce that

a(t) ≤ 1 + δ − γ

e−2T + γ(1− e−2T )
< 0.

Let h(γ, T ) := γ
e−2T+γ(1−e−2T )

− (1 + δ) > 0. Then we establish that a(t) ≤ −h(γ, T ), A(T ) ≤
−h(γ, T )T , and A(T )−A(t) ≤ −h(γ, T )t which implies

∫ T

0
eA(T )−A(t) dt ≤ 1− e−h(γ,T )T . By

applying the above bounds and inequality (11), (B) becomes

(B) ≤
(
E ∥ẑT,ϕ0 − ẑT ∥22

) 1
2

≤
(
e−h(γ,T )TW 2

2 (pT,ϕ0
, pT ) +

ϵ2DM

2δh(γ, T )

(
1− e−h(γ,T )T

)) 1
2

≤ e−
1
2h(γ,T )TW2(pT,ϕ0 , pT ) +

ϵDM√
2δh(γ, T )

(
1− e−h(γ,T )T

) 1
2 . (12)

Here, the last inequality is from a simple inequality
√
a+ b ≤

√
a+

√
b for nonnegative a and b.

By combining inequalities (6), (7), and (12), we obtain

W2(p0,θ, pdata) ≤ e−
T
2

(
Epdata(x0) ∥x0∥22

) 1
2Λ + ΛW2

(
pT , pT,ϕ0

)
+ LPaGoDA(θ;ϕ0) +

[
Epdata(x)pϕ0

(z|x)
∥∥x−GT→0(z)

∥∥2
2

] 1
2

+ e−
1
2h(γ,T )TW2(pT,ϕ0

, pT ) +
ϵDM√

2δh(γ, T )

(
1− e−h(γ,T )T

) 1
2

= Lrec(θ;ϕ0) +
[
Epdata(x)pϕ0

(z|x)
∥∥x−GT→0(z)

∥∥2
2

] 1
2
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+
(
Λ + e−

1
2h(γ,T )T

)
W2

(
pT , pT,ϕ0

)
+

ϵDM√
2δh(γ, T )

(
1− e−h(γ,T )T

) 1
2 + e−

T
2 mΛ.

This shows the first inequality in Theorem B.1.

Now, we show the second inequality in the statement of Theorem B.1. First, we establish an upper

bound for
[
Epdata(x)pϕ0

(z|x)
∥∥x − GT→0(z)

∥∥2
2

] 1
2

in terms of ϵDM. Let G0→T
ϕ0

denote the transition

map defined by the empirical PF-ODE defined by the teacher pϕ0(x|z), and G0→T denote the ground
truth transition map defined by the PF-ODE from 0 to T . Then we have x = GT→0(G0→T (x)) for
all x ∈ supp(pdata), and[
Epdata(x)pϕ0

(z|x)
∥∥x−GT→0(z)

∥∥2
2

]1/2
=

[
Epdata(x)

∥∥GT→0(G0→T (x))−GT→0(G0→T
ϕ0

(x))
∥∥2
2

]1/2
≤ Λ

[
Epdata(x)

∥∥G0→T (x)−G0→T
ϕ0

(x)
∥∥2
2

]1/2
. (13)

Here, we utilize the assumption that Assumption I-1 (iii) also holds for GT→0.

Consider the following two forward-time PF-ODEs on the interval [0, T ], both starting from x0 ∼
pdata:

dxt

dt
= −xt −∇ log pt(xt),

dxt,ϕ0

dt
= −xt,ϕ0

− sϕ0
(xt,ϕ0

, t).

By subtracting them and integrating from 0 to t, we obtain

∥xt − xt,ϕ0
∥2 ≤ x0 − x0,ϕ0︸ ︷︷ ︸

0

+

∫ t

0

∥∥(xτ − xτ,ϕ0

)
+

(
∇ log pτ (xτ )− sϕ0

(xτ,ϕ0
, τ)

)∥∥
2
dt

≤
∫ t

0

∥xτ − xτ,ϕ0
∥2 dτ + ϵDMT.

By applying Grönwall’s inequality,

∥xt − xt,ϕ0
∥2 ≤ TeT ϵDM. (14)

Combining the above inequality with inequality (13), it implies[
Epdata(x)pϕ0

(z|x)
∥∥x−GT→0(z)

∥∥2
2

]1/2
≤ ΛTeT ϵDM. (15)

Next, we derive an upper bound for W2(pT,ϕ0
, pT ) related to ϵDM. Let π(ẑ, z) be a coupling between

ẑ ∼ pT,ϕ0 = G0→T
ϕ0

♯pdata and z ∼ pT = G0→T ♯pdata.

W 2
2 (pT,ϕ0

, pT ) = W 2
2 (G

0→T
ϕ0

♯pdata, G
0→T ♯pdata) ≤ Eπ(ẑ,z) ∥ẑ− z∥22 ≤

(
TeT ϵDM

)2
, (16)

where the last inequality is derived from the inequality (14).

Therefore, with the first conclusion of Theorem B.1 and inequalities (15) and (16), we derive

W2(p0,θ, pdata) ≲ Lrec(θ;ϕ0) + ϵDM + e−
T
2 mΛ.

■

The proof can be easily extended in two directions: (1) a more general (VP)-SDE:

dxt = −f(t)xt dt+ g(t) dwt

with ∥f∥L∞(t;[0,T ]), ∥g∥L∞(t;[0,T ]) < ∞, and (2) truncation at the least time t = δ (instead of t = 0),
with an additional argument based on [81]

W2(pδ, pdata) ≤
(
Epdata(x0)Epprior(ξ)

∥∥∥(1− e−δ)x0 +
√
1− e−2δξ

∥∥∥2
2

) 1
2

≤
(
(1− e−δ)2m2 + (1− e−2δ)D

) 1
2

≲ (
√
D ∨m)

√
δ,

where pδ = GT→δ♯pprior.
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B.1.3 W1 Bound with PaGoDA’s Reconstruction Loss

Assumption II-1. (i) m := Epdata(x) ∥x∥2 < ∞;

(ii) There is a ϵDSM > 0 so that supx,t ∥sϕ(x, t)−∇ log pt(x)∥22 ≤ ϵ2DM;

(iii) GT→0
θ is Lipschitz in x:

Λ := sup
x̸=y

∥∥GT→0
θ (x)−GT→0

θ (y)
∥∥
2

∥x− y∥2
< ∞,

for all θ and T .

(iv) ∇ log pt(·) is Lipschitz in x with integrable Lipschitz constant:

Λs(t) := sup
x ̸=y

∥∇ log pt(x)−∇ log pt(y)∥2
∥x− y∥2

< ∞,

and Λs is an L1-integrable function on (0,∞).

In the following proposition, we prove a variant of Theorem B.1 which does not assume log-concavity
of the data density (i.e., Assumption I-1 (iv)).
Theorem B.3 (Variant of Theorem B.1). Assume that Assumption II-1 holds. Let ν be either the
oracle data distribution pdata or an empirical distribution p̂data,N := 1

N

∑N
i=1 δxi , where xi ∼ pdata

for i = 1, · · · , N . Let the PaGoDA’s reconstruction loss starting from ν be defined as

Lrec(θν ;ϕ0) := Eν(x)pϕ(z|x)
[ ∥∥x−GT→0

θν (z)
∥∥
2

]
.

Then we have

W1(p0,θ, ν) ≤ Lrec(θν ;ϕ0) + Eν(x)pϕ0
(z|x)

[∥∥x−GT→0(z)
∥∥
2

]
+ CTTϵDM

+
(
CT + Λ)W1(pT,ϕ0

, pT ) + e−T
(
Epdata(x0) ∥x0∥2

)
Λ

In particular, if we assume Assumption I-1 (iii) holds also for GT→0, then for T = O
(
log

(
mΛ
ϵDM

)2)
is sufficiently large, we have

W1(p0,θ, pdata) ≲ Lrec(θ;ϕ0) + ϵDM.

Here, we use ≲ to absorb the dependence on the constants T and γ into the inequality.

Proof of Theorem B.3. Define pT,ϕ0 := G0→T
ϕ0

♯ν, and p0,ϕ0 := GT→0♯pT,ϕ0 . From the triangle
inequality, we have

W1(p0,θ, ν) ≤ W1(p0,θ, p0,ϕ0)︸ ︷︷ ︸
(A)

+W1(p0,ϕ0 , ν)︸ ︷︷ ︸
(B)

.

For (A), by following the similar argument as in Theorem B.1, we can obtain

(A) ≤ e−T
(
Epdata(x0) ∥x0∥2

)
Λ + ΛW1

(
pT , pT,ϕ0

)
+ LPaGoDA(θν ;ϕ0) + Eν(x)pϕ0

(z|x)

[∥∥x−GT→0(z)
∥∥
2

]
(17)

For (B), by subtracting the following equations and integrating over t from 0 to T ,{
dẑt,ϕ0

dt = ẑt,ϕ0
+ sϕ0

(ẑt,ϕ0
, T − t), ẑ0,ϕ0

∼ pT,ϕ0

dẑt

dt = ẑt +∇ log pT−t(ẑt), ẑ0 ∼ pT ,

we will obtain

ẑT,ϕ0 − ẑT =
(
ẑ0,ϕ0 − ẑ0

)
+

∫ T

0

(
sϕ0(ẑt,ϕ0 , T − t)−∇ log pT−t(ẑt)

)
du.
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Now let u(t) := E ∥ẑt,ϕ0 − ẑt∥2. Then

u(t) ≤ u(0) + E
∫ t

0

∥sϕ0(ẑτ,ϕ0 , T − τ)−∇ log pT−τ (ẑτ )∥2 dτ

≤ u(0) +

∫ T

0

E ∥sϕ0(ẑτ,ϕ0 , T − τ)−∇ log pT−τ (ẑτ,ϕ0)∥2 dτ

+

∫ t

0

E ∥∇ log pT−τ (ẑτ,ϕ0
)−∇ log pT−τ (ẑτ )∥2 dτ

≤ u(0) + TϵDM +

∫ t

0

Λs(τ)u(τ) dτ,

where Λs(t) is the Lipschitz constant of ∇ log pt(·) in x. By applying integral form of Grönwall’s
inequality, we get

(B) ≤ E ∥ẑT,ϕ0
− ẑT ∥2 ≤ CTE ∥ẑ0,ϕ0

− ẑ0∥2 + CTTϵDM = CTW1(pT,ϕ0
, pT ) + CTTϵDM.

(18)

where CT := exp
( ∫ T

0
Λs(t) dt

)
and the last equality follows from choosing a coupling of ẑ0,ϕ0

∼
pT,ϕ0

and ẑ0 ∼ pT so that W1(pT,ϕ0
, pT ) = E ∥ẑ0,ϕ0

− ẑ0∥2.

By combining inequalities (17) and (18), we obtain

W1(p0,θ, ν) ≤ Lrec(θν ;ϕ0) + Eν(x)pϕ0
(z|x)

[∥∥x−GT→0(z)
∥∥
2

]
+ CTTϵDM

+
(
CT + Λ)W1(pT,ϕ0

, pT ) + e−T
(
Epdata(x0) ∥x0∥2

)
Λ.

A similar argument to Theorem B.1 can be applied to obtain the second inequality in the statement of
Theorem B.3. ■

B.2 Optimality analysis

In this section, we compare the optimality of the learned distributions resulting from PaGoDA’s
training and distillation-based training loss, incorporating GAN [7, 6].

PaGoDA’s Loss We recall PaGoDA’s training objective LPaGoDA

LPaGoDA(Gθ, Dψ) = Lrec(Gθ) + λLadv(Gθ, Dψ)

leverages the reconstruction loss

Lrec(Gθ) = Epdata(x)

[∥∥x−Gθ
(
E(x)

)∥∥2
2

]
,

and adversarial loss

Ladv(Gθ, Dψ) = Epdata(x)

[
logDψ(x)

]
+ Epprior(z)

[
log

(
1−Dψ

(
Gθ(z)

))]
.

Knowledge Distillation Loss In the realm of knowledge distillation (KD) methods for DMs,
approaches like local consistency [5], global consistency [6], or soft consistency [7] are utilized to
learn the noise-to-data trajectory of the teacher DM. Let us consider the global consistency loss as a
case study (similar arguments can apply to other distillation objectives), where the teacher’s trajectory
is obtained by solving its empirical PF-ODE from T to 0. The long jump along the trajectory is
represented as GT→0

teacher(z), where z denotes the initial point (noise), T signifies the initial time, and
0 denotes the final time. The output of GT→0

teacher corresponds to the estimation of clean data, starting
from z.

LKD(Gθ) := Epprior(z)

[∥∥GT→0
teacher(z)−Gθ

(
z
)∥∥2

2

]
.

In this context, we abuse the notation Gθ(z) to denote the generator for KD.

The training of KD can also incorporate adversarial loss for enhanced performance [7, 27]. We
represent the combined loss as:

LKD+GAN(Gθ, Dψ) := LKD(Gθ) + Ladv(Gθ, Dψ).
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Theorem B.4. Let pϕ0 be the density determined the teacher DM. Suppose that GAN admits an
optimal discriminator D∗.

• In PaGoDA, assume that the network parametrized generator class {Gθ} is expressive
enough so that it can simultaneously optimize both Lrec(Gθ) and Ladv(Gθ;D

∗) with a same
minimizer. Namely, argminθ{Lrec(Gθ)} ∩ argminθ{Ladv(Gθ;D

∗)} ≠ ∅. Then

pθ∗,PaGoDA := Gθ∗,PaGoDA♯pprior = pdata.

• In contrast, suppose that pϕ0
̸= pdata, then under similar conditions for KD+GAN where

argminθ{LKD(Gθ)} ∩ argminθ{Ladv(Gθ;D
∗)} ̸= ∅, there is no minimizer θ∗ so that

pθ∗,KD+GAN := Gθ∗,KD+GAN♯pprior = pdata.

The first part of the proof of the theorem follows from the following Lemma.
Lemma B.5. If argminθ{f(θ)} ∩ argminθ{g(θ)} ≠ ∅, then argminθ{f(θ) + g(θ)} =
argminθ{f(θ)} ∩ argminθ{g(θ)}.

Proof. First, we prove the relationship argminθ{f(θ) + g(θ)} ⊇ argminθ{f(θ)} ∩
argminθ{g(θ)}. Indeed, it holds without additional assumption. Suppose that θ∗ ∈
argminθ{f(θ)} ∩ argminθ{g(θ)}. Then for any θ, we have f(θ) ≥ f(θ∗) and g(θ) ≥ g(θ∗),
which implies f(θ) + g(θ) ≥ f(θ∗) + g(θ∗). That is, θ∗ ∈ argminθ{f(θ) + g(θ)}.

On the other hand, suppose that θ∗ ∈ argminθ{f(θ) + g(θ)}. We want to prove that θ∗ ∈
argminθ{f(θ)}∩argminθ{g(θ)}. Let θ∗∩ ∈ argminθ{f(θ)}∩argminθ{g(θ)}, where we notice
that the existence of θ∗∩ is guaranteed by the assumption. In particular, we have f(θ∗) ≥ f(θ∗∩) and
g(θ∗) ≥ g(θ∗∩). Then for any θ, we have

min
θ

{f(θ) + g(θ)} = f(θ∗) + g(θ∗) ≥ f(θ∗∩) + g(θ∗∩) ≥ min
θ

{f(θ) + g(θ)}.

Thus, minθ{f(θ) + g(θ)} = f(θ∗) + g(θ∗) = f(θ∗∩) + g(θ∗∩) and[
f(θ∗)− f(θ∗∩)

]
+

[
g(θ∗)− g(θ∗∩)

]
= 0.

This implies f(θ∗) = f(θ∗∩) = minθ{f(θ)} and g(θ∗) = g(θ∗∩) = minθ{g(θ)}, as the individual
terms are nonnegative. Therefore, θ∗ ∈ argminθ{f(θ)} ∩ argminθ{g(θ)}, which concludes the
proof.

Proof of Theorem B.4. With the lemma above, let θ∗ ∈ argminθ LPaGoDA(Gθ, D
∗). Conse-

quently, θ∗ should also simultaneously minimize both Lrec and Ladv. Minimizing Lrec implies
that pθ∗,PaGoDA = Gθ∗,PaGoDA♯pT,ϕ0 , where pT,ϕ0 represents the density derived from solving the
teacher’s empirical PF-ODE forward, starting from pdata. On the other hand, optimizing Ladv implies
that pθ∗,PaGoDA = pdata by applying Theorem 1 in [29]. This establishes the first part of the theorem.

In the second part, suppose on the contrary that there is a minimizer θ∗ of LKD+GAN such that
pθ∗,KD+GAN = pdata. Again, by applying the above lemma, we infer that θ∗ should also minimize
LKD (and Ladv). This implies that pθ∗,KD+GAN = pϕ0 . However, this contradicts our assumption that
pdata ̸= pϕ0 . Thus, such a minizer does not exist and the second part of the theorem is proven.

■

We remark that (1) optimality of LGAN(θ) may not be unique in θ, and that (2) the first part of the
theorem can be directly extended to scenarios involving downsampling in the encoder .

B.3 Stability Analysis

B.3.1 Preliminaries of Dynamical System

To study its convergence and stability, we first introduce the prerequisites for Lyapunov stability [83,
84] in a general setup. Let F : Ξ → Ξ be a continuously differentiable operator (that is, C 1 operator),
where Ω ⊂ RN . We consider the discrete iteration dynamical system defined by

ξk+1 = F(ξk) with ξ0 ∈ Ω.
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Namely, ξk+1 = F (k)(ξ0) := F ◦ · · · ◦ F︸ ︷︷ ︸
k-copies

(ξ0). A point ξ∗ ∈ Ω is called a fixed point or equilibrium

(we use the terms interchangeably) of F if ξ∗ = F(ξ∗). The stability and convergence analysis
focuses on how the dynamical system F (k)(ξ0) approaches a fixed point as iterations k are sufficiently
large.
Definition B.1. (Stability [84]) Let ξ∗ be an equilibrium of the C 1 operator F : Ω → Ω. The
equilibrium ξ∗ is said to be

• stable if for every ϵ > 0 there is a δ > 0 so that whenever ∥ξ − ξ∗∥2 < δ, we have∥∥F (k)(ξ)− ξ∗
∥∥
2
< ϵ for all k ∈ N ∪ {0}.

• asymptotically stable if ξ∗ is stable, and there is a δ > 0 so that whenever ∥ξ − ξ∗∥2 < δ,
we have limk→∞

∥∥F (k)(ξ)− ξ∗
∥∥
2
= 0.

• exponentially stable if ξ∗ is asymptotically stable, and there is a δ > 0 and α, β > 0
so that whenever ∥ξ − ξ∗∥2 < δ, we have

∥∥F (k)(ξ)− ξ∗
∥∥
2
≤ α ∥ξ − ξ∗∥2 e−βk for all

k ∈ N ∪ {0}. The largest β > 0 that satisfies the inequality for exponential stability is
referred to as the rate of convergence.

Let Γ be a subset of the set of all equilibria. We say the dynamical system F (k) locally converges on
Γ if F (k) is exponentially stable at any point in Γ.

The intuitions of the above stability notions are

• A stable equilibrium indicates that if an initialization is within some δ-neighborhood of
the equilibrium, the iterations starting from that initialization will always remain within an
ϵ-neighborhood of the equilibrium, for any arbitrarily chosen ϵ.

• An asymptotically stable equilibrium indicates that iterations starting near the equilibrium
not only remain close but ultimately converge to the equilibrium.

• An asymptotically stable equilibrium indicates that the iterations not only converge but do
so at a rate no slower than the rate e−βk with respective to iteration step k.

Analyzing the eigenvalues of the Jacobian ∇ξF(ξ∗) of the operator F at an equilibrium ξ∗ is a
crucial tool for studying stability. In principle [83, 84], if we can ensure that the Jacobian of F at
some equilibrium has only eigenvalues with strictly negative real parts, then the dynamical system
F (k) is asymptotically stable at that equilibrium. In particular, we refer to a matrix as a Hurwitz
matrix if all its eigenvalues have strictly negative real parts.

In the following lemma, we present a necessary condition to ensure that a special class of matrices
will be Hurwitz.
Lemma B.6. (Necessary condition for a Hurwitz matrix [21]) Consider the following matrix J ∈
R(N+M)×(N+M) with P ∈ RN×N , Q ∈ RM×M , and B ∈ RM×N .

J =

[
P −BT

B Q

]
.

Suppose that B is full rank. Then all eigenvalues of J have negative real part, if either (1) P is
negative definite and Q is negative semi-definite, or (2) P is negative semi-definite and Q is negative
definite.

B.3.2 Preliminaries for Analysis of PaGoDA Training

We consider PaGoDA’s training, integrating reconstruction and adversarial losses with a weight
η > 0.

L(θ,ψ) := Epdata(x)

[
η ∥x−Gθ(E(x))∥22 + f(Dψ(x))

]
+ EpGθ

(x)

[
f(−Dψ(x))

]
(19)

= Epdata(x)

[
η ∥x−Gθ(E(x))∥22 + f(Dψ(x))

]
+ Epprior(z)

[
f(−Dψ(Gθ(z)))

]
. (20)

Here, f : R → R is a continuous differentiable function. In the vanilla GAN [29], the f -function
is taken as f(u) := − log

(
1 + exp(−u)

)
, where f ′(u) = exp(−u)/

(
1 + exp(−u)

)
> 0 and
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f ′′(u) = − exp(−u)/
(
1 + exp(−u)

)
< 0 for all u ∈ R. We maintain the generality of f and will

prove the training stability of PaGoDA across a wide class of f .

The velocity field v(θ,ψ) corresponding to the gradient descent update is

v(θ,ψ) :=

[
−∇θL(θ,ψ)
∇ψL(θ,ψ)

]
.

Gradient descent is a special case of fixed-point iteration. Now, we specify the operator F as an
alternative gradient descent operator. That is, we consider Fh := FD,h ◦ FG,h with a learning rate
h > 0. Here,

FG,h(θ,ψ) :=

[
θ − h∇θL(θ,ψ)

ψ

]
and FD,h(θ,ψ) :=

[
θ

ψ + h∇ψL(θ,ψ)

]
.

A point (θ∗,ψ∗) is called an equilibrium of the system defined by v if v(θ∗,ψ∗) = 0 (equivalently,
Fh(θ

∗,ψ∗) = 0). We can analyze the learning dynamic via the Jacobian matrix of v(θ,ψ) which is
defined as the following:

J (θ,ψ) :=

[
−∇2

θL(θ,ψ) −∇2
θ,ψL(θ,ψ)

∇2
θ,ψL(θ,ψ) ∇2

ψL(θ,ψ)

]
.

The following proposition relates Lemma B.8 to the stability of the gradient descent operator Fh,
serving as the main tool to prove the training stability of PaGoDA in Theorem B.9.
Lemma B.7. (Locally stable on manifold – modification of [21]) Suppose that the gradient descent
operator Fh = Fh(υ,ω) is a C 1 mapping. Let (υ∗,ω∗) be an equilibrium (fixed point) of Fh.
Assume that there is a neighborhood Ω of ω∗ so that Fh admits equilibrium on {υ∗} × Ω:

Fh(υ
∗,ω) = (υ∗,ω) for all ω ∈ Ω.

If all the eigenvalues of J := ∇υFh(υ
∗,ω∗) have negative real parts, then for a sufficiently small

learning rate h, the gradient descent iteration defined by Fh locally converges on Γ := {(υ∗,ω)
∣∣ω ∈

Ω} with a rate of convergence |λmax|. Here, λmax denotes the eigenvalue of J with the largest absolute
value.

Proof of Lemma B.7. This proposition is followed by Lemma A.5. and Theorem A.3. of [21]. ■

B.3.3 PaGoDA’s Training is Stable

Proving PaGoDA’s stability involves two steps: First, derive the components of First, deriving the
components of J (θ∗,ψ∗). Second, verify that these components satisfy Lemma B.6. After these, we
can apply Lemma B.7 to conclude PaGoDA’s training stability whenever the learning rate h > 0 is
sufficiently small.
Assumption III-1. (i) E is not an identity map.

(ii) At θ∗, pθ∗ = pdata, and x = Gθ∗(E(x)) for a.e. x ∈ supp
(
pdata

)
.

(iii) At ψ∗, Dψ∗(x) = 0 and ∇xDψ∗(x) = 0 for x ∈ supp(pdata).
Lemma B.8. Suppose that Assumption III-1 holds for an equilibrium (θ∗,ψ∗). Then the Jacobian at
the equilibrium can be computed as

J (θ∗,ψ∗) =

[
KGG −KT

DG
KDG KDD

]
.

Here, and

KGG =− 2ηEpdata(x)

[
∇θGθ∗(E(x))T · ∇θGθ∗(E(x))

]
+ f ′(0)Epprior(z)

[
∇θGθ∗(z)T · ∇2

xDψ∗(Gθ∗(z)) · ∇θGθ∗(z)
]
.

KDG = −f ′(0)∇θEpGθ
(x)

[
∇ψDψ∗(x)

]∣∣∣
θ=θ∗

KDD = 2f ′′(0)Epdata(x)

[
∇ψDψ∗(x) · ∇ψDψ∗(x)T

]
.
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Proof of Lemma B.8. We first compute the gradients of L in terms of θ and ψ, where we utilize
the formulations Eqs. (19) and (20), respectively.

∇θL(θ,ψ) =− 2ηEpdata(x)

[
⟨x−Gθ(E(x)),∇θGθ(E(x))⟩

]
− Epprior(z)

[
f ′(−Dψ(Gθ(z))) · ∇xDψ(Gθ(z)) · ∇θGθ(z)

]
. (21)

∇ψL(θ,ψ) = Epdata(x)

[
f ′(Dψ(x))∇ψDψ(x))

]
− EpGθ

(x)

[
f ′(−Dψ(x))∇ψDψ(x))

]
. (22)

∇2
θL(θ,ψ) = 2ηEpdata(x)

[
⟨∇θGθ(E(x)),∇θGθ(E(x))⟩

]
− 2ηEpdata(x)

[
⟨x−Gθ(E(x)),∇2

θGθ(E(x))⟩
]

+ Epprior(z)

[
f ′′(−Dψ(Gθ(z))) · ∇xDψ(Gθ(z)) · ∇θGθ(z) · ∇xDψ(Gθ(z)) · ∇θGθ(z)

]
− Epprior(z)

[
f ′(−Dψ(Gθ(z))) · ∇θGθ(z)T · ∇2

xDψ(Gθ(z)) · ∇θGθ(z)
]

− Epprior(z)

[
f ′(−Dψ(Gθ(z))) · ∇xDψ(Gθ(z)) · ∇2

θGθ(z)
]
.

According to Assumption III-1 (ii) and (iii), we have

∇2
θL(θ∗,ψ∗) = 2ηEpdata(x)

[
∇θGθ∗(E(x))T · ∇θGθ∗(E(x))

]
− f ′(0)Epprior(z)

[
∇θGθ∗(z)T · ∇2

xDψ(Gθ∗(z)) · ∇θGθ∗(z)
]
.

Thus, we obtain

KGG = −∇2
θL(θ∗,ψ∗)

= − 2ηEpdata(x)

[
∇θGθ∗(E(x))T · ∇θGθ∗(E(x))

]
+ f ′(0)Epprior(z)

[
∇θGθ∗(z)T · ∇2

xDψ(Gθ∗(z)) · ∇θGθ∗(z)
]
.

To compute KDG, we first derive ∇θL from Eq. (19) as

∇θL(θ,ψ) = − 2ηEpdata(x)

[
⟨x−Gθ(E(x)),∇θGθ(E(x))⟩

]
+∇θEpGθ

(x)

[
f(−Dψ(x))

]
.

Thus, we can compute

∇2
θ,ψL(θ,ψ) = −∇θEpGθ

(x)

[
f ′(−Dψ(x)) · ∇ψDψ(x)

]
,

and hence,

KDG = ∇2
θ,ψL(θ∗,ψ∗) = −f ′(0)∇θEpGθ

(x)

[
∇ψDψ∗(x)

]∣∣∣
θ=θ∗

.

To compute KDD, we can obtain from Eq. (20) that

∇2
ψL(θ,ψ) = Epdata(x)

[
f ′′(Dψ(x))∇ψDψ(x) · ∇ψDψ(x)T

]
+ EpGθ

(x)

[
f ′′(−Dψ(x))∇ψDψ(x) · ∇ψDψ(x)T

]
+ Epdata(x)

[
f ′(Dψ(x))∇2

ψDψ(x))
]
− EpGθ

(x)

[
f ′(−Dψ(x))∇2

ψDψ(x))
]
.

Hence, by using Assumption III-1 (ii) and (iii), we get

KDD = ∇2
ψL(θ∗,ψ∗) = 2f ′′(0)Epdata(x)

[
∇ψDψ∗(x) · ∇ψDψ∗(x)T

]
.

■

We consider the following two sets

MG :=
{
θ
∣∣pθ = pdata, x = Gθ(E(x)) for a.e. x ∈ supp

(
pdata

)}
MD :=

{
ψ
∣∣S(ψ) = 0

}
,

where S(ψ) := Epdata(x)

[
|Dψ(x)|2 + ∥∇xDψ(x)∥22

]
. Also, we let Tψ∗MD denote the tangent

space of MD at ψ∗.
Assumption III-2. (i) The second continuously differentiable function f : R → R satisfies:

f ′(0) > 0 and f ′′(0) < 0.

(ii) There is a δ > 0 so that MG ∩ Bδ(θ
∗) and MD ∩ Bδ(ψ

∗) are C 1 manifolds.
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(iii) ∇θGθ∗(E(x))T · ∇θGθ∗(E(x)) is positive definite, for all x ∈ supp
(
pdata

)
.

(iv) ∂wh(ψ
∗) ̸= 0 for any w /∈ Tψ∗MD, where h(ψ) := ∇θEpGθ

(x)

[
Dψ(x)

]∣∣∣
θ=θ∗

.

(v) wT∇2
xDψ∗(x)w ≥ 0, for all w /∈ Tθ∗MG and x ∈ supp(pdata).

Remark. Two special cases are either (v-1) ∇2
xDψ∗(x) = 0 for x ∈ supp(pdata), or (v-2)

wT∇2
xDψ∗(x)w > 0, for all w /∈ Tθ∗MG and x ∈ supp(pdata).

Theorem B.9. Suppose that Assumptions III-1 and III-2 hold for an equilibrium (θ∗,ψ∗) and η > 0
is sufficiently large. Then the alternative gradient descent iteration Fh described in Section B.3.2 is
locally convergent on MG ×MD for a sufficiently small learning rate h > 0.

Proof of Theorem B.9. The argument is motivated by [21]. We notice that MG ×MD is a subset
of all equilibria of the operators Fh (or v(θ,ψ)). This is because that for any (θ,ψ) ∈ MG ×MD,
we have pθ = pdata, x = Gθ(E(x)), Dψ(x) = 0, and ∇xDψ(x) = 0 for x ∈ supp(pdata). From
Eqs. (21) and (22), we then can obtain ∇θL(θ,ψ) = ∇ψL(θ,ψ) = 0, meaning (θ,ψ) is an
equilibrium.

Now, we show that the alternating gradient descent converges locally on MG ×MD by verifying
Lemma B.8 is fulfilled, and hence, Lemma B.7 can be applied. Let (θ∗,ψ∗) ∈ MG ×MD. There is
a C 1-diffeomorphism Ψ that transforms a neighborhood of (θ∗,ψ∗) onto an open set in R(N+M)

due to Assumption III-2 (ii). More precisely, we can compute the relation of Fh and v after the
Ψ-reparametrization. Let ζ := Ψ(θ,ψ), and

FΨ
h (ζ) := Ψ ◦ Fh ◦Ψ−1(ζ)

vΨ(ζ) := Ψ′(θ,ψ) ·
(
v ◦Ψ−1(ζ)

)
.

Then

∇ζFΨ
h (ζ∗) = ∇θ,ψΨ(θ∗,ψ∗) · ∇θ,ψFh(θ

∗,ψ∗) · ∇θ,ψΨ(θ∗,ψ∗)−1

∇ζv
Ψ(ζ∗) = ∇θ,ψΨ(θ∗,ψ∗) · ∇θ,ψv(θ∗,ψ∗) · ∇θ,ψΨ(θ∗,ψ∗)−1.

We remark that similar matrices have identical ranks and spectrum. Therefore, without loss of the
generality, we can assume that (θ∗,ψ∗) = (0N ,0M ) ∈ RN × RM , and

MG = Tθ∗MG = {0}NG × RN−NG

MD = Tψ∗MD = {0}MD × RM−MD .

We write the new parameterizations as θ := (υG,ωG) ∈ RNG × RN−NG and ψ := (υD,ωD) ∈
RMD × RM−MD . For simplicity, we write v(θ,ψ) := v(υG,ωG,υD,ωD). To apply Lemma B.7,
we now aim to show that ∇(υG,υD)v(θ

∗,ψ∗) only admits eigenvalues with negative real parts. From
Lemma B.8,

∇(υG,υD)v(θ
∗,ψ∗) =

[
K̂GG −K̂T

DG

K̂DG K̂DD

]
.

Here, K̂GG, K̂DG, and K̂DD represent submatrices of KGG, KDG, and KDD, respectively, with
coordinates (υG,υD), indicating the Jacobian of v with derivatives taken along the υG and υD

directions.

First of all, we show that KDD is generally negative semi-definite. Let ξ ∈ R(N+M) be any vector.
Then

ξTKDDξ = 2f ′′(0)Epdata(x)

[
ξT∇ψDψ∗(x) · ∇ψDψ∗(x)T ξ

]
= 2f ′′(0)Epdata(x)

[(
∇ψDψ∗(x)T ξ

)T · ∇ψDψ∗(x)T ξ
]
≤ 0,

because f ′′(0) < 0 from Assumption III-2 (i). Thus, for any ξ̂G ∈ RNG and ξ̂D ∈ RMD if we
consider ξ̂ := (ξ̂G, ξ̂D) in (υG,υD)-coordinate,

ξ̂T K̂DDξ̂ = ξTKDDξ ≤ 0,
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where ξ := (ξ̂G,0N−NG
, ξ̂D,0M−MD

) ∈ R(N+M).

Next, we demonstrate that K̂DG is full rank. We observe that ξ̂D ̸= 0 if and only if ξ /∈ Tψ∗MD.
Then, according to Assumption III-2 (iv), we deduce that if ξ̂D ̸= 0

KDGξ = −f ′(0)∇θEpGθ∗ (x)

[
∇ψDψ∗(x) · ξ

]∣∣∣
θ=θ∗

= −f ′(0)∂ξh(ψ
∗) ̸= 0.

The elements of KDGξ corresponding to the υD-coordinates are represented by K̂DGξ̂D, while those
corresponding to the ωD-coordinates are 0. Therefore, we conclude that K̂DGξ̂D ̸= 0. Consequently,
by the rank–nullity theorem, K̂DG is full-rank.

Finally, by using similar arguments by selecting (υG,υD)-coordinate, without loss of generality, we
only need to show KGG is negative definite. By applying Assumption III-2 (i) and (v), the following
lemma concludes that if η > 0 is sufficiently large, we can conclude the negative definiteness of
∇2
θL(θ∗,ψ∗) under Assumption III-2 (v-2).

Lemma B.10. Let A be positive definite, and B be positive semi-definite. Then there is a ηmin > 0
so that −ηA+B is negative definite for all η > ηmin.

The lemma holds because, for positive (semi-) definite matrix X, we generally have

λmax(X) ∥w∥2 ≥ wTXw ≥ λmin(X) ∥w∥2 ,

for all w. Here, λmax(X) and λmin(X) denote the maximum and minimum eigenvalues of X, respec-
tively. Thus if select η > λmax(B)

λmin(A) , then for any w ̸= 0, we have

wT (−ηA+B)w = −ηwTAw +wTBw ≤
(
− ηλmin(A) + λmax(B)

)
∥w∥22 < 0.

By applying Lemma B.6, we know that ∇(υG,υD)v(θ
∗,ψ∗) only has eigenvalues with negative real

parts. Therefore, with a sufficiently small learning rate h > 0, Lemma B.7 guarantees the locally
convergence of Fh on MG ×MD.

■

B.3.4 Literature on Stability Analysis of Adversarial Training

Studying the stability of GAN training from a dynamical systems perspective has been a popular
approach [85, 22, 21, 86–89]. Generally, proving or disproving whether adversarial training is stable
is challenging. However, [21] provides an example (Dirac-GAN) showing that, in general, GANs are
not stable unless additional conditions are imposed.

As a result, researchers have explored additional conditions to stabilize GAN training. Essentially,
the goal is to impose extra regularizations on the GAN loss LGAN(θ,ψ) := Epdata(x)

[
f(Dψ(x))

]
+

EpGθ
(x)

[
f(−Dψ(x))

]
, or its velocity field vGAN(θ,ψ) :=

[
−∇θLGAN(θ,ψ)
∇ψLGAN(θ,ψ)

]
to ensure that the

resulting Jacobian is Hurwitz. To elaborate further, we revisit the Jacobian JGAN of the vanilla GAN,
given by vGAN(θ,ψ):

JGAN(θ,ψ) :=

[
−∇2

θLGAN(θ,ψ) −∇2
θ,ψLGAN(θ,ψ)

∇2
θ,ψLGAN(θ,ψ) ∇2

ψLGAN(θ,ψ)

]
=

[
KGG −KT

DG
KDG KDD

]
.

Here, we slightly abuse the notation from Section B.3.3 by using Kij , i, j ∈ {D,G}, to denote the
corresponding components in JGAN. By similar argument of Lemma B.8, we can obtain (indeed,
η = 0 in Lemma B.8) that

KGG = f ′(0)Epprior(z)

[
∇θGθ∗(z)T · ∇2

xDψ∗(Gθ∗(z)) · ∇θGθ∗(z)
]
.

KDG = −f ′(0)∇θEpGθ
(x)

[
∇ψDψ∗(x)

]∣∣∣
θ=θ∗

KDD = 2f ′′(0)Epdata(x)

[
∇ψDψ∗(x) · ∇ψDψ∗(x)T

]
.

Conceptually [83, 84], if we can ensure that the Jacobian at some equilibrium has only eigenvalues
with strictly negative real parts, then the gradient descent iteration of LGAN is asymptotically stable
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Table 8: Comparison of various assumptions on stability analysis.
Method KGG KDD

[22]’s Vanilla GAN Both pdata and pθ covers the
whole space RD.

Additional technical
assumptions (difficult to
verify).

[21]’s Vanilla GAN
• Dψ∗(x) = ∇xDψ∗(x) = 0

on supp(pdata).
• ∇2

xDψ∗(x) positive
definite.

This implies KGG is negative
definite.

No further assumptions.

[21]’s Regularized GAN
• Dψ∗(x) = ∇xDψ∗(x) = 0

on supp(pdata).
• ∇2

xDψ∗(x) = 0 on
supp(pdata).

This simply implies
KGG = 0.

By introducing a regularizer to
modify the vector field v and
obtaining a new vector field ṽ,
they can determine an LDD so
that K̃DD := KDD − LDD is
negative definite. Therefore, it
is not vanilla GAN anymore.

PaGoDA
• Dψ∗(x) = ∇xDψ∗(x) = 0

on supp(pdata).
• ∇2

xDψ∗(x) just need to be
positive semi-definite on
supp(pdata).

Then with η > 0 chosen to be
sufficiently large in PaGoDA,
KGG is negative definite.

No further assumptions.

at that equilibrium. Therefore, the objective of many studies [85, 22, 21, 89] is to find conditions
to verify Lemma B.6. We focus on discussing the conditions for KGG and KDD to be negative
(semi-)definite, as this distinguishes PaGoDA’s Theorem B.9 from the existing literature.

Under Assumption III-2 (i) that f ′′(0) < 0, it is worth noting that KDD is generally negative semi-
definite without additional conditions. Hence, studies [85, 22, 21] attempted to impose additional
regularizers on JGAN or vGAN to ensure that either KDD is negative definite (as in [22, 21]) or KGG

is negative definite (as in [21]). In Table 8, we provide a comparison of the various assumptions, at a
high-level, drawn from the literature.

We emphasize that PaGoDA does not require ∇2
xDψ∗(x) to be strictly positive definite, thanks to

PaGoDA’s reconstruction loss. Specifically, it accommodates the scenario where ∇2
xDψ∗(x) = 0 on

supp(pdata). It’s noteworthy that this capability enables PaGoDA to address cases where the instability
of GAN is demonstrated, as exemplified by examples provided by [21].
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C Limitations and Broader Impacts

Limitations. Algorithmically, the reconstruction loss is incompatible with the classifier-free guidance,
which requires us to adopt the original distillation loss. However, as reconstruction loss directly
uses the real data, it provides additional merit to decoder training, resulting in better performance as
evidenced in the experiments. Theoretically, some theoretical assumptions of PaGoDA are challenging
to verify in practice. For example, Theorems B.1 and B.3 require certain Lipschitz continuity of the
score functions. This assumption is difficult to maintain at t = 0 due to the potential concentration
of the data manifold in a lower-dimensional space, causing singularity. However, by truncating the
PF-ODE solving at t = δ (for some δ > 0), which is common in practice, this singularity is avoided,
making the Lipschitz continuity assumption more feasible. In addition, Theorem B.4’s assumption of
the existence of a common minimizer can be difficult to verify empirically. However, with proper
neural network parametrization and effective optimization, this assumption becomes more feasible.
At last, verifying Assumptions III-1 and III-2 concerning the optimal properties of the generator
and discriminator (Gθ, Dψ) is challenging in practice. These assumptions, essential for general
(Lyapunov) stability analysis, are difficult to validate empirically. However, they appear reasonable
based on our experimental observations. Last, empirically, PaGoDA’s T2I generation capability relies
heavily on the scale and quality of the training dataset.

Broader Impacts. PaGoDA, as a general media generative model, carries the risk of producing
harmful or inappropriate content, such as deepfake images, graphic violence, or offensive material.
To mitigate these risks, we avoid using the LAION dataset [33] in our model training, but robust
content filtering and moderation mechanisms are essential to additionally prevent the generation of
unethical or harmful media.

42

19208https://doi.org/10.52202/079017-0606




