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Abstract

Deep neural networks, costly to train and rich in intellectual property value, are
increasingly threatened by model extraction attacks that compromise their confiden-
tiality. Previous attacks have succeeded in reverse-engineering model parameters
up to a precision of float64 for models trained on random data with at most three
hidden layers using cryptanalytical techniques. However, the process was identified
to be very time consuming and not feasible for larger and deeper models trained on
standard benchmarks. Our study evaluates the feasibility of parameter extraction
methods of Carlini et al. [1] further enhanced by Canales-Martínez et al. [2] for
models trained on standard benchmarks. We introduce a unified codebase that
integrates previous methods and reveal that computational tools can significantly
influence performance. We develop further optimisations to the end-to-end attack
and improve the efficiency of extracting weight signs by up to 14.8 times com-
pared to former methods through the identification of easier and harder to extract
neurons. Contrary to prior assumptions, we identify extraction of weights, not
extraction of weight signs, as the critical bottleneck. With our improvements, a
16,721 parameter model with 2 hidden layers trained on MNIST is extracted within
only 98 minutes compared to at least 150 minutes previously. Finally, addressing
methodological deficiencies observed in previous studies, we propose new ways of
robust benchmarking for future model extraction attacks.

1 Introduction

Training machine learning (ML) models requires not only vast datasets and extensive computational
resources but also expert knowledge, making the process costly. This makes models lucrative robbery
targets. The rise of ML-as-a-service further amplifies the challenges associated with balancing public
query accessibility and safeguarding model confidentiality. This shows the emerging risk of model
extraction attacks, where adversaries aim to replicate a model’s predictive capabilities from a black
box setting where only the input and output can be observed. Previous attacks have approached
model extraction either precisely, obtaining a copy of the victim model, or approximately, obtaining
an imprecise copy of the victim model. Components of the model that have been the target of
extraction include training hyperparameters [3], architectures [4] [5] [6], and learned parameters
such as weights and biases in deep neural networks (DNNs) [1] [7].

In this paper, we are interested in precise model extraction and use the most recent advances of
cryptanalytical extraction of DNNs by Carlini et al. [1] and Canales-Martínez et al. [2] as our starting
point. Carlini et al. previously demonstrated that it is feasible to extract model signatures – normalised
weights of neural networks – on relatively small models with up to three hidden layers. For 1 hidden
layer models the parameter count tested was up to 100,480, however, for 2 and 3 hidden layer models,
which are increasingly difficult to extract, the maximum parameter count for models tested was
4,020. While signature extraction was generally determined as straightforward, sign extraction of the
weights was identified as a bottleneck with further work needed. Following this, Canales-Martínez
et al. [2] improved sign extraction speed from exponential to polynomial time, with their Neuron
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Wiggle method. However, Canales-Martínez et al. stopped short of evaluating the full extraction
pipeline, focusing only on the signs.

In our work, we perform a deeper performance evaluation of the signature and sign extraction methods.
We first create a comprehensive codebase that integrates Carlini et al. [1]’s signature extraction
technique with the sign extraction technique of Canales-Martínez et al. [2], allowing for systematic
and fair benchmarking. We identify inefficiencies in the combined signature–sign method interactions
and discover that we can significantly improve on the end-to-end attack efficacy. Importantly, we
find that Canales-Martínez et al.’s sign extraction already eliminates the sign extraction bottleneck
observed in prior work. Further improving on sign extraction we speed up the process by up to 14.8
times compared to Canales-Martínez et al., so that sign extraction only takes up as little as 0.002%
of the whole extraction time for larger models. For larger models due to randomness of the start
of the search and the position of neurons in space, the signature extraction can take a long time,
highlighting the importance of considering the full pipeline extraction compared to only the sign
extraction. For smaller or less complex models, signature extraction is much faster, and then the
sign extraction time becomes more significant. For these models we see on average that the whole
parameter extraction process is sped up by about 1.2 times and a speed up of up to 6.6 times can be
attained when quantizing some extraction sub-routines to float32.

We make the following contributions:

1. Optimizing Extraction Strategies: We modify the extraction process to only sign extract
neurons requiring trivial effort, finding that spending more time in extracting harder to sign-
extract neurons does not lead to higher success in correct sign extraction. This significantly
reduces the number of queries needed. We find that these harder to sign-extract neurons’
sign extraction can be pipelined with other operations, improving both robustness and speed
of sign extraction. An additional deduplication process and a suggestion to quantize some
sub-routines speeds up the overall extraction time.

2. Redefining Bottlenecks in Extraction Processes: By optimizing sign extraction, we find
that, contrary to earlier studies, extraction is now dominated by signature extraction. This
shifts the focus of optimization efforts for achieving scalable high-fidelity extraction.

3. Addressing Methodological Shortcomings: We determine that improvements reported
in some prior work come from unfair comparison between (1) standard benchmarks and
models trained on random data; (2) models trained with different randomness; (3) models
extracted using different randomness; (4) models with more hidden layers or different sizes.

Our codebase can be found at https://github.com/hannafoe/cryptanalytical-extraction.

2 Related Work

The analysis of neural network model extraction strategies in Jagielski et al. [8] categorises three
types of extraction attacks. Functionally equivalent extraction aims to replicate the target model’s
output for each input and is the most exact method of extraction. Fidelity extraction seeks to closely
mirror the target model’s output on specific data distributions, such as label agreement. Task accuracy
extraction aims to match or surpass the target model’s task performance without replicating errors.
Fidelity and accuracy differ in that the goal for fidelity is close replication of the target model, where
the target model is considered the benchmark label, whereas for task accuracy the goal is to closely
mirror the ground-truth labels of the dataset.

2.1 Learning-based Methods: Fidelity and Task accuracy extraction

Learning-based methods that train a substitute model closely mirroring the target model are used
for fidelity and task accuracy extraction. Since knowledge from the target blackbox model is
transferred to a simpler model, architecture knowledge is not always necessary [9], but according
to Oh et al. [3] is found to raise fidelity. Moreover, while the training dataset is often not assumed,
many works such as Tramèr et al. [10] assume knowledge of the problem domain and training data
statistics to recover data distributions, and it has been shown that models trained on non-domain data
significantly underperform [9, 11]. For instance, Papernot et al. [12] train models on self-created
datasets mimicking MNIST, while others use GANs or other methods to produce data for training
(Oliynyk et al. [13], Truong et al. [14], Correia-Silva et al. [15]).
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Jagielski et al. [8] discuss how learning-based methodologies face challenges due to various non-
deterministic factors, such as the random initialization of model parameters, batch formation sequence,
and the unpredictable behaviours in GPU processing. In a study where the adversary is assumed
to have complete access to both the training data and hyperparameters, and where the original
model is used as a labeling oracle to help train a replication model with the same parameters from
scratch, 93.4% was the maximum fidelity reached by the replicated model. This is attributed to the
non-deterministic elements in the learning processes of both the original and replicated model. More
recent work by Martinelli et al. [16] that suggests that high fidelity can actually be reached with
learning based methods. However, they assume a slightly different setting, and this only works for
smaller networks, and appears to be more expensive.

2.2 Cryptanalytical Methods: Functionally equivalent extraction

The fidelity limitations of learning-based methods have prompted the development of techniques
based on side-channel analysis or cryptanalysis to precisely extract parameters and achieve functional
equivalence. Notable methods, such as those introduced by Lowd and Meek [17], Milli et al.
[18], Batina et al. [19], Jagielski et al. [8], while contributing to this area, exhibit limitations in
handling standard benchmarks or are confined to neural networks with only two layers, limiting its
practicality. Rolnick and Körding [7] and Carlini et al. [1], attempt to extend cryptanalytical attacks
to deeper neural networks but face efficiency limitations in larger models. Side-channel techniques
appear inefficient for parameter extraction and are primarily used for architecture extraction [4] [6],
and so we focus on cryptanalytical parameter extraction continuing from Carlini et al. [1]’s work.

Carlini et al. [1] successfully extract model parameters from fully connected neural networks with
precision up to float64, applicable even to deeper models with multiple hidden layers. Their
tests show that a model with one hidden layer allows extraction of up to 100,480 parameters using
221.5 queries, while a three-layer model with 1,110 parameters is extracted with 217.8 queries. This
technique requires that the DNN uses ReLU activations, that the weights are in high precision, and
that the output logits can be obtained. Unlike learning-based methods, it does not rely on known
training data since it uses queries generated from a normal distribution or calculated coordinates that
expose network parameters. However, the extraction of deeper models has not been tested, and all
tests are conducted on ‘random’ models trained on data randomly drawn from a normal distribution.
Their extraction is divided into two parts which includes the extraction of weight values up to a
multiple and the extraction of the sign of the weights. The authors also note that sign extraction,
while requiring only a polynomial number of queries, requires an exponential amount of time. The
approach requires an exhaustive search over 2n, where n is the number of neurons in a layer [2].

Canales-Martínez et al. [2] improved the sign extraction to be polynomial time. They apply extraction
to a model with 8 hidden layers with 256 neurons each trained on CIFAR10, claiming that the entire
sign extraction only required 30 minutes on a 256-core computer. However, Canales-Martínez et al.
did not test the signature extraction and assumed signature extraction time to be relatively insignificant.
So, these claims only hold for the sign extraction part of parameter extraction.

In our work, we use models trained on MNIST and CIFAR10, as well as randomly generated data, to
benchmark full parameter extraction. Prior works have focused only on partial parameter extraction
[2] or full extraction on models trained on random data [1]. Considering metrics such as query
and time efficiency, we analyze the performance impact of Canales-Martínez et al.’s sign extraction
method and propose additional optimization strategies.

3 Methodology

In what follows we explain the background methodology of sign extraction in Section 3.1 and its
inefficiencies in prior work in Section 3.2, describe improvements to it and analyse its effect on the
whole parameter extraction in Sections 3.3, 3.4, and finally outline some other improvements in
Section 3.5.

3.1 Background: Understanding Sign Extraction

Neurons are the most basic components of neural networks. They create decision boundary hyper-
planes in the parameter space and our goal is to identify these. These boundaries are defined by
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weights and the bias associated with the neuron and it is this hyperplane equation that ultimately
decides which inputs activate a neuron. Each neuron contributes to the final output of the model by
either activating or deactivating with some given input. Locating the decision boundaries involves
two main steps: identifying the neuron’s value and determining its sign. While the exact scale of the
hyperplane’s normal vector is not crucial (as the hyperplane can be identified up to a multiplicative
factor), the sign is critical as it determines how it partitions the parameter space and on which side of
the hyperplane the inputs fall. In other words, the orientation of the decision boundary hyperplane
is determined by the sign of the neuron. In a DNN, the sign determines the outcome of the matrix
multiplication involving the input and weight matrix and the subsequent application of the ReLU
activation. Depending on the sign of a neuron, a positive outcome could change to negative and
be turned into 0 through the ReLU activation, turning off the neuron’s contribution to the final
model output. Carlini et al. [1] introduce the concept of a neuron’s signature, a set of normalised
weight ratios (a1

a1
, a2

a1
, . . . ,

adi−1

a1
), where each ai is an individual weight. Each signature signifies

the neuron’s decision boundary up to sign. They, however, identify the subsequent extraction of the
sign as the bottleneck of the whole parameter extraction process. This is why Canales-Martínez et al.
[2] develop the Neuron Wiggle method which speeds sign extraction up to polynomial time. In the
following, we describe this sign extraction method, in order to describe our contributions on top of
this. Please refer to Carlini et al. [1] and Canales-Martínez et al. [2] for an explanation of the whole
parameter extraction routine that includes signature extraction.

Neuron Wiggle Sign Recovery: A wiggle at layer i is defined as a vector δ ∈ Rdi−1 of perturbations,
where di−1 is the dimension of layer i − 1. The preimage of this wiggle at the input layer is
added to witnesses, i.e., inputs x that place a neuron η on the decision boundary of being activated or
deactivated. At these ‘critical points’ on the decision boundary, the output of the neuron is 0 and hence
the effect of the perturbation on the neuron can be isolated. We define Âi to be the extracted weight
matrix in layer i and Âi

k to be the kth row corresponding to the weights of neuron k. Then, when the
perturbation is added to the witness, neuron k of layer i changes its value by ek = ⟨Âi

k, δ⟩, i.e., the
dot product of the extracted weights of neuron k with the wiggle. Say the vector c = {c1, ..., cdi

}
expresses the output coefficients of x in layer i. Then the difference in output that is induced by the
wiggle can be expressed as

∑
k∈I ckek, where I contains all indices of active neurons in layer i.

We compute the maximal wiggle that affects only one neuron by aligning the wiggle δ parallel to Âi
j .

This alignment ensures that the absolute value of the dot product |⟨Âi
j , δ⟩| is maximised, making

δ effective in activating the target neuron j while minimizing impact on others. The reason for
this is because δ being parallel to Âi

j has either the same sign or opposite sign to Âi
j . So then, all

summands in the dot product will have the same sign, preventing cancelling out each others effects
and maximizing the summation. If no other row is a multiple of ηj then the dot product of the row
concerning ηj with the wiggle should be bigger than the dot product of the wiggle with any other row
of the extracted matrix. Overall, neuron wiggle sign recovery involves the following steps:

1. Project Âi
j onto the orthogonal basis for the vector space at layer i − 1 and scale this

projection to a small norm, εi−1, so that its influence in the output is minimal and only on
the targeted neuron.

2. Calculate the preimage of this vector δ to obtain a wiggle in the input dimension
(F (i−1))−1(δ) = △.

3. Calculate f(x∗), f(x∗ +△), f(x∗ −△).
4. Examine whether addition or subtraction of the wiggle activates the neuron.

a. If adding △ increases the magnitude of the output more than subtracting it, i.e.,
|f(x∗ −△)− f(x∗)| < |f(x∗ +△)− f(x∗)|, then ηj is positive. So, Âi

j = Ai
j .

b. Conversely, if subtracting △ results in a higher magnitude of the output difference, i.e.,
|f(x∗ −△)− f(x∗)| > |f(x∗ +△)− f(x∗)|, then ηj is negative. So, −Âi

j = Ai
j

In this paper, we focus on further reducing s, the critical parameter affecting sign extraction confidence
and performance in Canales-Martínez et al. [2]’s method. Ultimately our optimisations reduce sign
extraction to become an insignificant fraction of time and query effort of parameter extraction.

Why is Confidence needed? From the above explanation, the output effect of a target neuron is repre-
sented as the vector cjej , where cj is the coefficient and ej is the effect of the target neuron. The com-
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Figure 1: (a) Compares the running times for Carlini’s signature extraction versus Carlini’s sign
extraction, Canales-Martinez (CM)’s sign extraction with s = 200 setting in the original implemen-
tation and in the unified implementation and Our sign extraction with s = 15 setting. The tests are
across ten models with increasing layer sizes from 10−5−5−1 to 100−50−50−1, detailing times
for a single layer’s extraction in a non-parallelised setting. (b) Depicts how the average percentage
of correctly recovered neurons in a layer changes when the number of sign extractions s changes.
Raising the number of sign extractions s to more than 15 does not significantly raise the number of
correctly recovered neurons. (c) Graph showing confidences of sign recovery when a hard neuron’s
euclidean distance to its neighbours is manipulated. These results are on hard to sign extract neurons
25 and 26 of an MNIST trained 784-32x8-1 model extracted with seed 42. The confidence metric
scales from 1 to 0.5 first on the confidence of false sign recovery, which is equivalent to 0 to 0.5
of confidence in true sign recovery and then from 0.5 to 1 on the confidence of true sign recovery,
resulting in the scale going from 1− 0.5− 1.

bined output effect of all other active neurons ∈ I is expressed as
∑

k∈I\{j} ckek. Incorrect sign re-
covery occurs under certain conditions: (Necessary Condition) the signs of cjej and

∑
k∈I\{j} ckek

are opposite; (Sufficient Condition:) the magnitude of cjej is not significant compared to the magni-

tude of
∑

k∈I\{j} ckek. This leads to a scenario where
∣∣∣cjej +∑

k∈I\{j} ckek

∣∣∣ < ∣∣∣∑k∈I\{j} ckek

∣∣∣,
meaning that the total activation output when the target neuron is active is less than the output
when the target neuron is inactive. This arises when the effect of the target neuron’s activation is
overwhelmed by the opposing effects of the other neurons. Thus, we refer to “hard” neurons as those
for which it is particularly challenging to compute a wiggle that isolates the neuron effectively.

To reliably determine the correct sign of the target neuron’s effect, it is necessary that |cjej | >
2
∣∣∣∑k∈I\{j} ckek

∣∣∣, which implies that the influence of the target neuron’s wiggle must be greater
than twice the aggregate effect of the other active neurons’ wiggles. However, this criterion cannot
be checked in practice because we would need to single out the contribution of each of the other
neurons to the output given the witness plus perturbation as input. Yet, since the witness is not a
witness to any of the other neurons, we cannot single out their effects. This is why Canales-Martínez
et al. [2] introduce the concept of confidence. A series of s different sign extractions on s critical
points and varying δ are conducted to gather diverse output responses. The confidence of this sign
recovery is smajority/s, where smajority is the number of sign extractions supporting the majority
sign. The idea is that with more sign extractions, enough Neuron Wiggles will be constructed that
are not overwhelmed by the opposing effects of other neurons, so that a confident decision can be
made. In fact, according to Canales-Martínez et al., the problem of wrong signs extracted with the
Neuron Wiggle method should be “fixable by testing more critical points” [2]. So, after testing on
CIFAR10, they decide on fixing s to 200 and recommend rerunning the Neuron Wiggle method on
the least-confident 10% of sign recoveries.

3.2 Our Discoveries: Confidence In Practice

In practice, many neurons do not exhibit increased confidence even with additional iterations s. After
an initially higher confidence on average due to not having seen enough samples, the confidence
stabilises after about 10 iterations. Moreover, as illustrated in Figure 1(b), the number of correctly
identified neurons does not increase beyond s = 25 for many models. Furthermore, sign recovery
confidence varies notably. Neurons that are correctly recovered typically show a confidence level
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above 0.75, while those incorrectly recovered average 0.64. This suggests that neurons with lower
confidence are more likely to be incorrectly recovered, providing a practical indicator of recovery
accuracy.

‘Easy’ and ‘Hard’ to Sign Extract Neurons: The idea that some neuron signs are “easier” to extract
and some are “harder” to extract can be understood by picturing two neurons that are positioned very
close to each other within a layer. Creating a “wiggle” that activates one without impacting adjacent
neurons is difficult and becomes more complex as the number of tightly clustered neurons increases,
hindering the ability to isolate and activate a single target neuron effectively.

In Figure 1(c), the change in confidence and true versus false sign recovery is depicted when a hard
neuron’s euclidean distance to its neighbours is manipulated. The blue dots depict the confidence
of the two originally hard to extract neurons. To manipulate the target neuron to be further away
from other neurons, Gaussian noise was added and to manipulate the target neuron to be closer to a
cluster of the closest neurons, part of the distance to these closest neurons was added to make the
target neuron the midpoint between closest neurons. One can see that if the target neuron is closer
to other neurons, with high confidence the wrong sign will be recovered, whereas if the distance to
other neurons is further, with high confidence the correct sign will be recovered.

The Effect of an Incorrect Sign in the Extraction Process: Prior extraction performance evaluations
have primarily utilised models trained on random data originally developed by Carlini et al.. However,
observations indicate that the percentage of correctly extracted neurons is significantly higher for the
CIFAR10 and MNIST datasets compared to random models, prompting us to test standard benchmarks.

Understanding the impact of a sign flip is key to determining the right balance between efficiency
and correctness. For example, in a CIFAR10 model with 128 neurons and 8 hidden layers, keeping
one hard-to-extract neuron sign flipped in layer 2 decreases the test accuracy to 0.9451 compared
to the original model. With 5 sign flips, test accuracy falls between 0.55 and 0.68, and with 28
sign flips, it further declines to 0.268. These results illustrate that the effect of a sign flip is more
significant than previously believed, suggesting that all prior methods of sign extraction may not
have been adequate for consecutive layers’ extractions, as none of them offered perfectly accurate
sign extraction. The importance of accurate sign extraction is underscored by the failure of signature
recovery in subsequent layers if even a single neuron’s sign in a prior layer is incorrect.

3.3 Method for Correct and Efficient Extraction

Following the discovery that the confidence level and the number of correctly recovered neurons
stabilises after about s = 15 iterations, we propose that sign extraction can be made more efficient by
running it with less iterations. Further, we find that ‘hard’ to sign extract neurons’ signs cannot be
extracted with the Neuron Wiggle method. Given that the sign of some neurons cannot be determined,
a new robust method for determining them must be sought. Our approach is to test possible values for
these hard to extract signs in the next layer. Correct signs can be detected as they will allow signature
extraction to complete in the next layer without an error. Conversely, incorrect sign values will result
in an error and the signature process can be stopped and restarted with a different combination of
neuron signs. This process can be streamlined further in following way:

(1) Hard to extract neurons are determined as those with low confidence (between 0.5 and 0.6
of true or false confidence since it is not known if true or false) after 15 iterations (s = 15).

(2) The next layer is extracted in parallel for each possible combinations of signs for these
low-confidence neurons. If, for instance, there are five such neurons, 25 signature extraction
processes are initiated. At latest in the sign extraction an error is thrown for an incorrect sig-
nature extraction through a check described below. Each process with an error is terminated.
Ultimately, only one error-free process should remain, ensuring accurate layer extraction
without significantly extending execution time.

Note: When extracting one target neuron’s sign, errors in the ‘sample distance check’ lead to having
to rerun that iteration of the sign extraction with a new critical point. If an iteration has had to be
rerun more than 10− 20 times with high probability it can be deemed that the signature extraction
must have been erroneous. Since each iteration in the sign recovery costs 5 queries this will equate
to about 100 queries until we have a strong indication that the signature extraction for at least one
neuron was wrong. If we wanted to, this could be used to check the correctness of each neuron’s
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signature, by trying sign extraction for each in this way. If the sign extraction was wrong in the
previous layer, all neuron signatures will be wrong. If the sign extraction in the previous layer was
right but there was an error in the subsequent signature extraction, usually only one or two neuron
signatures will be wrong. This check is also a good way to find these one or two erroneous signature
extractions early on, so that the signature extraction can be rerun for these neurons before continuing
with extraction in subsequent layers.

The Sample Distance Check: Specifically, the sample distance check fails continuously if the
signature recovery is incorrect. The sign recovery compares the outputs f(x∗), f(x∗ + ∆), and
f(x∗ − ∆) with the subtractions sL = f(x∗ − ∆) − f(x∗) and sR = f(x∗ + ∆) − f(x∗). If
||sL− sR|| ≤ 10−13, then the process is aborted and restarts at a new critical point, as such a small
difference suggests that the neuron’s activation state may not have changed. This indicates a potential
error in identifying a critical point. The threshold of 10−13 is used due to the precision limitations
of float64 being at about 10−15 and correct wiggles typically impacting the output in the order of
10−9. Consecutive failures suggest that there must be errors in the neuron’s signature since the search
for additional critical points in the sign extraction is guided by them.

3.4 Sign Extraction as Bottleneck?

According to Carlini et al. [1], the most time-intensive aspect of parameter extraction is sign extraction.
Canales-Martínez et al. [2] enhance efficiency with the Neuron Wiggle method, reducing the operation
complexity in a single layer to O(sdid

3), where s is the number of critical points needed for sign
recovery, and d is the maximum of d0 and di. Since Canales-Martínez et al. [2] only included the
running time of their sign extraction in seconds without query numbers or a direct comparison to the
signature extraction, from reading their paper, it appears as if the sign extraction is still the bottleneck
in the parameter extraction. Running Carlini et al. [1]’s and Canales-Martínez et al. [2]’s codebase
separately also underscores this discovery [ref. Figure 1(a) CM original]. However, comparing query
numbers [ref. Figure 4 in Appendix C] and unifying the pipeline with Carlini’s signature extraction
to ensure comparability between signature and sign extraction time shows that contrary to prior
results, sign extraction is not the bottleneck anymore [ref. Figure 1(a) CM unified]. In fact, with
our adaptations it becomes the least time-significant part of parameter extraction. Please refer to
Appendix C for more details on the implementation difference between CM original and CM unified.

3.5 Further Improvements

1. Improvements in Signature Extraction:
(a) The process of finding partial signatures was improved to find specific missing partial

signatures which diversify the view and help to construct the full signature.
(b) The memory and running time was improved by discarding all partial signatures that

do not contribute a new view to the full signature (memory deduplication).
2. Improvements in Precision Improvement: (The precision improvement function improves

precision from float32 to float64.)
(a) The precision improvement function was adjusted to become usable for MNIST models.
(b) The precision improvement function was identified as unnecessary to obtain signs. Sign

extraction can be performed in float16 or float32 just as correctly.
(c) The precision improvement function was identified as unnecessary for the next layer’s

signature and sign recovery if goal is the extraction of weights and biases to the
precision of float32 instead of float64. Moreover, if float64 precision is needed
this can run in parallel to extraction of the next layer.

Please refer to Appendix A for more details on these improvements.

4 Evaluation

4.1 Scalability and Accuracy in Neuron Sign Prediction

We assess the accuracy of neuron sign predictions on standard benchmarks by examining MNIST and
CIFAR models with various configurations of hidden layers. We find that the number of low confident
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and incorrectly identified neurons do not exceed 10. In this way, things should remain scalable, as
parallelisation does not exceed more than 210 signature extractions. More details are in Appendix B.

4.2 Performance

Model Information Extraction Time [s] Reduction
Model Params Signature Sign Sign Total

C+CM Ours C CM Ours CM→ Ours C→ CM CM→ Ours
10-5x2-1 30 18.08 18.65 76.39 0.82 0.05 ×16.40 ×5.00 ×1.01

20-10x2-1 110 13.38 13.17 86.38 1.59 0.12 ×13.25 ×6.66 ×1.13
30-15x2-1 240 22.81 22.39 141.24 2.37 0.16 ×14.81 ×6.52 ×1.12
40-20x2-1 420 27.59 27.96 193.52 3.46 0.28 ×12.36 ×7.12 ×1.10
50-25x2-1 650 29.34 29.64 ≈ 1.3 · 105 4.98 0.34 ×14.65 ≈ ×3788.73 ×1.15
60-30x2-1 930 41.79 40.80 ≈ 5.4 · 106 6.52 0.50 ×13.04 ≈ ×1.1 · 105 ×1.17
70-35x2-1 1260 107.70 46.15 - 10.58 0.77 ×13.74 - ×2.52
80-40x2-1 1640 67.01 65.93 - 13.46 0.94 ×14.32 - ×1.20
90-45x2-1 2070 96.28 94.37 - 18.61 1.41 ×13.20 - ×1.20

100-50x2-1 2550 206.65 186.53 - 20.47 1.82 ×11.25 - ×1.21

Table 1: Extraction Performance Carlini (C), Canales-Martinez (CM) versus Ours on layer 2 of
random models. Since extraction times vary significantly between layers in different models, we
perform comparison of layer by layer extraction time and not whole model extraction time. We
compare layer 2 because layer 1 and 3 are more straightforward to extract. A 10-5x2-1 model,
following Carlini et al. [1], represents input layer of size 10, two hidden layers of size 5 and output
layer of size 1. The numbers highlighted in red capture the gist of the performance improvement and
the numbers in blue are our best performances.

Carlini vs. Canales-Martinez: Table 1 illustrates the performance gains achieved by Canales-
Martinez et al.’s (CM) extraction method and our extraction method compared to the previous version
from Carlini et al. (C). The performance was tested on AMD Ryzen 7 4700U processor with 16GB
RAM. CM’s sign extraction reduces the overall parameter extraction time in an exponential manner.

Carlini + Canales-Martinez vs. Ours: Moreover, our approach to parameter extraction has proven
to be up to 16.40 times faster in the sign extraction and up to 2.52 times faster in the whole parameter
extraction compared to Canales-Martínez et al. [2]. Only some of the signature extractions show
significant improvements. This is because the enhancements in the critical point search process
and memory deduplication (discarding irrelevant critical points) only improves performance in
some cases. However, if as suggested we were to bypass precision improvement in the signature
extraction, since this can run in parallel while already starting sign extraction and the subsequent
layer’s extraction, then higher performance improvement is possible. For the extractions in Table 1 the
precision improvement makes up approximately 26%, 82%, 68%, 59%, 69%, 61%, 63%, 53%, 43%
and 45% of signature extraction time respectively, resulting in an overall extraction speedup of
[1.36, 6.01, 3.44, 2.64, 3.60, 2.94, 6.63, 2.52, 2.08, 2.18] if precision improvement is disregarded.

Additionally, we have achieved performance gains in our sign extraction by setting the parameter s to
15, utilizing knowledge about easy and hard to extract neurons. As mentioned in Section 3.5, the
sign extraction can be performed equivalently in float16, float32, or float64 without affecting
correctness of sign extraction. While Table 1 shows results for float32 sign extraction, empirically
the performance for float16 and float64 is almost identical. The precise sign extraction time can
change up to a few seconds if the signature extraction precision is lower, causing more errors to be
thrown, in which case float16 performs most stably.

Efficiency Gains from Memory Deduplication: Our analysis reveals significant improvements in
signature extraction efficiency when implementing memory deduplication in the signature extraction,
particularly in larger models. When examining the mean differences across four extraction seeds,
we observed that for layer 2 of a random model with 128 neurons per hidden layer, the signature
extraction process was 1.3 times more time-efficient, 1.2 times more query-efficient, and 1.2 times
more memory-efficient with memory deduplication. For layer 2 of an MNIST model with 64 neurons
it was on average 2 times as time efficient, 1.2 times as query efficient and 1.3 times as memory
efficient. These findings underscore efficiency gains through memory deduplication, contributing
significantly to reductions in memory usage and extraction time. A further graph on how the whole
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parameter extraction scales for MNIST models with increasing layer sizes, and the calculation of the
extraction time in the model used in the abstract can be found in Appendix C.

5 Discussion

Model Information Signature [s] Sign [s] Queries
Model (Training Seed) Layer Params Mean Var Mean Var Mean Var

784-8x2-1 (s1) 2 72 10.39 0.25 0.25 0.002 5.13 · 104 4.9 · 108
784-16x2-1 (s1) 2 272 7.22 8.85 0.60 0.005 6.92 · 104 9.3 · 108
784-32x2-1 (s1) 2 1056 22.58 31.59 2.07 0.61 2.28 · 105 3.7 · 109
784-64x2-1 (s1) 2 4096 135.32 2.9 · 103 7.17 6.32 9.03 · 105 1.9 · 1010
784-128x2-1 (s1) 2 16512 758.5 1.5 · 105 30.46 8.02 4.17 · 106 1.1 · 106
784-128x2-1 (s2) 2 16512 1040.85 103.32 30.66 5.72 4.35 · 106 1.5 · 106

MNIST784-8x2-1 (s2) 2 72 12.75 9.17 0.26 0 49, 730 9.6 · 105
MNIST784-16x2-1 (s2) 2 272 19.15 37.03 0.67 0.01 1.92 · 105 4.6 · 109
MNIST784-32x2-1 (s2) 2 1056 98.10 1179.81 2.00 0.07 7.7 · 105 8.0 · 1010
MNIST784-64x2-1 (s2) 2 4096 496.2 1.5 · 105 6.32 0.32 3.05 · 106 1.1 · 1013
MNIST784-64x2-1 (s1) 2 4096 4649.95 1.6 · 106 6.85 1.79 4.9 · 106 2.8 · 1013

MNIST784-16x8-1 (s2) 1 12560 1 · 104 - 63.04 - 5.38 · 106 -
MNIST784-16x8-1 (s2) 2 272 470.19 3.4 · 104 0.67 0 5.27 · 105 1.2 · 1010
MNIST784-16x8-1 (s2) 4 272 > 36hrs
MNIST784-16x8-1 (s2) 8 272 > 36hrs
MNIST784-16x8-1 (s2) 9 17 0.01 0 0 0 100 0

MNIST784-16x3-1 (s1) 2 272 1854.42 2 · 106 0.96 0.15 9.7 · 106 5.2 · 1013
MNIST784-16x3-1 (s1) 3 272 6.9 · 104 - 0.54 - 4.4 · 107 -
Table 2: Extraction Performance across models, training seeds and extractions seeds. The two
different training seeds used are denoted as s1 and s2. The measurements were all taken over four
extraction seeds. All signature extraction times are without the precision improvement function, since
for MNIST models this takes up to 33 times longer than the actual signature extraction time and we
have shown that this can be skipped or handled while already proceeding with further extraction
processes. Extractions of deeper layers of MNIST784-16x8-1 did not lead to a full extraction after 36
hours with 6/16 and 0/16 extracted for layers 4 and 8. The most interesting contrasting results for
discussion are highlighted pairwise in colours. In green one can see how layer 2 extraction for the
same number of neurons can vary with model depth. In blue one can see the variance of extracting
two models trained similarly but on different randomness. In red one can see how deeper layers
become increasingly hard to extract.

5.1 Running Time of different models

In Table 2 an overview of different model extractions are presented. All extractions in this table were
run on a High Performance Cluster with Intel’s 10th generation Intel Core processors icelake. In the
following, three cases are presented which show the limitations of the signature extraction:

Case “Random” vs. MNIST Models: “Random” models were used for testing by Carlini et al. [1].
These are not configured for a specific task but train 100 epochs on randomly generated data. The
MNIST models’ we additionally analysed have accuracies ranging from 0.67 to 0.94 for the two hidden
layer models and is 0.91 for the 8 hidden layer model. In Table 2 one can see that extraction for these
“random” models is much faster compared to extraction of MNIST models. A look into the kernel
density estimate of the weights visualises that the concentration of weights near 0 is much higher
for real world models trained on MNIST or CIFAR10. These models exhibit greater representation
sparsity, meaning that a significant number of neurons are rarely activated. As a result, many neurons
are grouped together in a compact region of the parameter space where activations are infrequent and
close to zero, highlighting their minimal impact on the model’s predictions. Consequently, locating
specific coordinates for these seldom-activated neurons is challenging, as it is difficult to identify
inputs that effectively trigger their activation.
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Case Deeper Models: Deeper models are harder to extract. As can be seen in Table 2, comparing
the extraction time of the second layer in a two hidden layer model and in an eight hidden layer model
makes this apparent. Additionally, extraction of deeper layers is increasingly time consuming – in
order to obtain the full signature of a neuron, a set of critical points that activates all previous layer’s
neurons must be found. Only then can the neuron be looked at from all perspectives, so that the
full signature can be obtained. Carlini et al. [1] and Canales-Martínez et al. [2] mention increasing
difficulty of extraction for deeper networks in the context of expansive networks. These networks
feature inner layers with more neurons than the number of inputs they receive. If any hidden layer’s
expansion factor exceeds that of the smallest layer by too much, problems may arise.

Case Random Seeds: Although trained in the same way, the training seed seems to impact how well
models can be extracted. Additionally, extraction seeds make a big difference in the efficiency of
signature extraction. For example, up to 8 hours runtime difference were noted for the extraction of
MNIST784-16x8-1 model’s layer 2, when utilising different training and extraction seeds. Furthermore,
a variance of just the extraction seed in a MNIST784-64x2-1 model’s layer 2 made a difference of
938 seconds. Additional insight on variance can be seen in Table 2, where average model extraction
time for models trained similarly but with different seeds can be as high as nine times and the query
variance for different extraction seeds as high as 1013. In some cases specific seeds trigger incorrect
extraction of some neurons. For example, for the extraction of MNIST784-16x3-1 model’s layer
2, extraction seeds 0, 10, 42, took over 1,000 seconds each and returned 4, 5, and 10 incorrectly
extracted neurons, while for extraction seed 40 the extraction took only 54 seconds and was fully
correct. Hence, for replicability underlying randomness should be considered.

6 Conclusion

Unifying previous methods into one codebase has facilitated a more thorough benchmarking of
cryptanalytical parameter extraction techniques. Increased performance and robustness was achieved
through new insights into neuron characteristics such as the identification of harder neurons whose
sign extraction cannot be robustly performed with the Neuron Wiggle technique. Instead, we find a
way to check for incorrect extractions in the next layer’s extraction. Consequently we propose that
the next layer’s extraction can be performed in parallel for all combinations of these neurons’ signs
and then incorrect extractions can be filtered out through this check later in the pipeline. Contrary to
previous assumptions, we found that signature extraction presents a more significant bottleneck than
sign extraction, prompting a reevaluation of focus areas in parameter extraction. Furthermore, our
evaluation revealed discrepancies in extraction times across models, with models trained on random
data proving easier to extract than those on structured datasets like MNIST due to representation
sparsity. Notably, models with fewer than four hidden layers exhibited quicker extraction times,
sometimes within one to two hours, whereas deeper models faced increased extraction difficulties.
Highlighting the variability of extraction difficulty, we propose comprehensive benchmarking of
model extraction methods considering factors such as the target model’s training dataset, training
method, layer size, depth, the specific layer targeted, along with the use of varying seeds to reflect
the impact of randomness. To allow for comparison among implementations, the underlying ML
framework, computer hardware, extraction time and query number are also important to note.
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A Further Improvements explained

A.1 Further Refinements in Signature Extraction

A.1.1 Brief Explanation of Signature Extraction

Here we assume that we been able to find critical points, which are on the decision boundary of
activating or deactivating a neuron in our target layer, we describe briefly the idea of how Carlini
et al. [1]’s signature extraction works. To understand how the critical point search works in detail,
please refer to Carlini et al. [1].

Let us first go into the case of signature recovery for a neuron ηj in the first layer with corresponding
critical point x∗ ∈ Rd0 . We know that a critical point lies on the decision boundary for ηj to turn on or
off. So, if we move a tiny amount into some direction this will either turn the neuron active or inactive.
Since we are actually in the space of hyperplanes, there are actually d0 directions we can go to turn
the neuron on or off. If we construct input queries such that we can find the gradients in each of these
directions then this will reveal the value for the neuron. The gradient in each direction essentially
quantifies the rate at which ηj’s output changes with respect to small shifts in the input. Therefore,
understanding these gradients allows us to infer the weights that ηj assigns to each dimension of the
input space.

Mathematically, we construct the input queries αi,− = ∂f
∂ei

(x∗ − εei) and αi,+ = ∂f
∂ei

(x∗ + εei)

with ε ∈ R a small number and {e1, ..., ed0} a standard basis of Rd0 . These are partial derivatives
(gradients) in direction ei. Either αi,− or αi,+ will tip ηj into an active state. If we subtract αi,−
from αi,+ then the gradient information for all neurons except for ηj will cancel out, essentially
revealing second order partial derivatives of f at x∗ in direction ei. This gives us a multiple of the
value for weight ai of ηj . Repeating this procedure in d0 directions will gives us a complete set of
multiples of neuron coordinates a1, . . . , ad0

. To obtain a comparable basis between the elements we
normalise them by dividing a1, . . . , ad0

by some ak, usually a1. This now recovers the full signature
(a1

a1
, a2

a1
, . . . ,

ad0

a1
). Critical points associated to the same neuron produce identical signatures, whereas

those related to neurons in different layers create different signatures. This distinction allows us to
identify signatures corresponding to neurons in layer 1.

Signatures in consequent layers cannot be as easily found because the direct control of input in the
blackbox model is lost, so changing the input in one dimension at a time will not work. Instead of
ei a vector δk of length d0 in some random direction is sampled from N (0, εId0

). Then we find
the second order partial derivative {yk} = {∂2f(x∗)

∂δ1∂δk
} for k = {1, ..., di−1} in a similar fashion as

before by adding and subtracting the δk vector to the critical point, computing its partial derivative
and subtracting αi,− from αi,+. Having found second order partial derivatives in di−1 directions, we
construct a hidden matrix H which denotes the output up to the previous layer i− 1 for each input
x∗ + δk. This hidden matrix also reveals at which places the ReLU in previous layers has set some
values to zero, turning neurons off. Now, solving for a in the dot product < H, a >= y with the least
squares approximation gives us the signature of a neuron. However, since ReLUs in previous layers
might have already set some values of the input to zero, different critical points give varying partial
signatures. These must be combined to reconstruct the actual full signature.

Unification of Partial Signatures

The output up to layer j, f1..j(x∗) for some critical point x∗, is likely to have some negative values,
effectively turning the neuron off, so that only a partial signature can be recovered for neuron η∗ of
layer j + 1. Hence, as already mentioned different partial signatures are combined to unify into one
complete signature for a neuron. On average half of the neurons in the previous layer are negative
and all points in the neighbourhood of x∗ will produce entries of zero in the partial signature at those
indices. Now, given x1, x2 witnesses to critical points of neuron η∗, imagine that f1..j(x1) produces
a partial signature with entries t1 ⊂ {1, ..., dj} and f1..j(x2) correspondingly t2 ⊂ {1, ..., dj}. Then,
as long as t1 ∩ t2 has at least one element a joint set t1 ∪ t2 can be made. Assume r1 to be the
weight vector produced with x1 with entries t1 and r2 the weight vector for x2. Then both are
solutions for the same matrix row Aj

i , so should be equivalent at indices r1 ∩ r2 up to some multiple:
r1[t1 ∩ t2] = c ∗ r2[t1 ∩ t2]. From this one can compute c to recover r1,2[t1 ∩ t2]. This unification
procedure at the same time is also a check whether x1 and x2 are truly witnesses for the same critical
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point. Because if this fails then r1 and r2 are not scalable by one c and hence not parallel to each
other. This is also why it is helpful to have a set t1 ∩ t2 ≥ 2 for cross-checking.

Computing the optimal scaling constant for unification

If only a single reference vector r1 is used for scaling this can lead to significant imprecisions. The
normalization for each partial signature is calculated with Â1

i,j/Â
1
i,k, where k is usually set to 1.

However, if for example A1
i,k < 10−α, where α ≫ 0 and other Ai,k values are considerably larger,

then normalization will produce precision errors and the further adjustment to other partial signatures
through rescaling with a constant c according to a single reference vector will accumulate even more
of them.

To mitigate these errors, Carlini et al. propose a more robust approach:

1. Compute partial signatures r1, . . . , rn for all witnesses found for a layer l.

2. Cluster these signatures into sets {Sj}dl
j=1. Signatures that are the same up to an error

tolerance and scale should be grouped together. They are deemed to correspond to the same
neuron.

3. For each set, determine the optimal unification constant that normalises the scale of all the
different partial signatures within the set.

In this way the propagation of errors through scaling should be minimised.

Graph Clustering of Neuron Vectors: We utilise graph clustering to determine subsets S of neuron
vectors. Define each vector rm in cluster n by its coordinate ram. A graph G = (V,E) is constructed
where each vertex in V represents a vector ri, and an edge in E connects two vertices if their vectors
are sufficiently similar to suggest they belong to the same neuron. Specifically, vertices ri and rj are
connected if the sum of indicators

∑
k 1[|rki − rkj | < ϵ] exceeds log d0, suggesting close proximity

in at least log d0 dimensions. Carlini et al. [1] suggest that an ϵ of 10−5 is effective.

To obtain the best scaling factor for a partial signature a it is paired with another partial signature
b from the same neuron and aligned such that ria = rib · Cab for as many indices i as possible. The
calculation of all possible scales between two partial signatures can be expressed in a matrix of
ratios, where each entry is Mi,a,b = ria/r

i
b. We then select Cab = medianiMi,a,b as the scaling

factor between signatures a and b, with the standard deviation eab = stdeviMi,a,b serving as the error
estimate.

If unifying row x with a and then combining with b preserves precision, then ideally Cax ·Cxb = Cab.
If not, and the combined error eax+exb is less than eab, the scaling factor Cab is updated to Cax ·Cxb,
optimizing the scale unification. This process is iterated until no further improvements are found,
and the optimal dimension for unification is determined by a = argmina

∑
b eab, resulting in the

finalised vector Ca.

A.1.2 Refinements

There is a more targeted critical point search that is described in Carlini et al. [1]. This has been
slightly adapted to ensure discovery of a diverse set of critical points for each neuron so that the
partial signatures obtained are complementing each other to a full signature and not repeating the
same partial signature. For this, the indices of the still missing parts of the full signature are tracked
and they are used to guide subsequent critical point searches. Additional debugging now prevents
infinite loops that had previously been found in some signature extraction processes. They had been
initiated in the targeted critical point search.

Furthermore, we discovered that for a whole set of easy to find neurons the full signature is already
obtained after few rounds of the graph clustering algorithm. Yet, the general, untargeted critical
point search continues until at least three critical points are found for each neuron. This not only
accumulates critical points necessary for neurons whose signature was not fully found yet, but
also accumulates a lot of critical points for neurons where the full signature was already obtained.
However, this is very inefficient for the graph clustering because the number of critical points and
partial signatures that must be computed each iteration keeps increasing. Hence, we have implemented
a memory deduplication technique that discards of critical points and their partial signatures if for a
particular neuron the full signature has already been obtained. Furthermore, in the targeted critical
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point search, critical points that merely repeat existing partial signatures and do not provide new
insights are also discarded. In this way memory is saved to store unnecessary critical points and
partial signatures and the extraction process is sped up by not having to graph cluster unnecessary
partial signatures.

A.2 Further Refinements in Precision Improvement

A.2.1 Brief Explanation of Precision Improvement

(a) (b) (c)

Figure 2: (a) Neuron and Critical Points before Precision Improvement (b) Neuron and Critical Points
after Precision Improvement (c) An Example of When Precision Improvement Fails. Neuron ηl is
close to the critical point than ηk and so this critical point is converted to a critical point for ηl instead
of for ηk.

In the signature extraction process small errors can be introduced in the calculation of the parameters
which could accumulate to bigger errors in subsequent layers. Additionally, even if extraction is
precise up to machine precision, the limited precision of float64 can accumulate an error over
time. This is why Carlini et al. [1] develop a method for improving the precision which brings the
error from 2−15 down to 2−35 or lower. For each neuron ηk in layer j, j witnesses are computed by
querying the up to layer j extracted model f̂1...j , so that we obtain a set {xi}

dj

i=1 [ref. Fig. 2a]. For
each xi, if this is also a witness of the true model then its value V (η;xi) = 0, if it is imprecise then
the value will lie between 0 and some small error ϵ. So, if we find that the value is still imprecise
then we can take a random vector θ ∈ Rd0 of small magnitude from the input space and find the true
witness xi through a binary search in an interval [xi + θ;xi − θ]. Repeating this procedure for each
xi will produce a true set of witnesses {x′

i}
dj

i=1 [ref. Fig 2b].

Subsequently, the improved witness coordinates are put through the model up to layer j − 1 to obtain
hidden vectors, h′

i = f̂1...j−1(x
′
i). Since all previous layers are assumed to already be precise at this

point, if x′
i is truly a witness of ηk then the output from layer j for ηk should be 0, i.e., Aj

k ∗ h′
i = 0.

Now, we try to fit a line through all critical points by solving with least squares error solution to the
system of equations H ∗x = [1...1], where H is the hidden matrix made up of the hidden vectors [ref.
Fig. 2b]. If the least squares solution error has gone down, the newly calculated neuron coordinate
is swapped in for the previous coordinate. This process can be repeated until a certain precision is
reached.

In practice, it could happen that in the conversion from xi to x′
i, accidentally the found x′

i now is a
witness to a different neuron. This is the case if a different neuron is closer to xi than ηk [ref. Figure
2c]. Hence, the magnitude of θ becomes very important, as a too big value would contribute to this
phenomenon but a too small θ would fail to find a new x′

i. Carlini et al. [1] set this to 0.1 to start with,
as this was a value with which approximately half of the attempts at finding a new witness x′

i failed.
If too many solutions are found, θ is reduced to half and if no solutions are found θ is multiplied by
1.1. If the new solution is Aj

k ∗ h′
i < Aj

k ∗ hi, then the new least squares approximation is set to be
the new coordinate of ηk.

A.2.2 Refinements

Finding a true set of witnesses (critical points) and fitting a new line
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The precision improvement function struggled to identify critical points for MNIST models efficiently
and often failed in the precision improvement function. Tackling the first part of the problem which
is producing a true set of witnesses {x′

i}
dj

i=1, several changes were made for enhanced correctness
and efficiency.

The method for discovering critical points was refined. Critical points are calculated with a regression
function that uses a loss function based on the magnitude of Aj

k ∗h′
i, where h′

i = f̂1...j−1(x
′
i). If x′

i is
truly a witness of ηk then the output should equate to zero. Originally, the loss was calculated as the
sum of all values in the zero vector, which occasionally led to suboptimal points where most values
were near zero except one or two outliers. To address this, the maximum value of the vector was
added to the loss, i.e.,

∑
(Aj

k ∗ h′
i) +max(Aj

k ∗ h′
i), ensuring all significant deviations are accounted

for in the loss calculation. Additionally, previously identified critical points for ηk are now included
as starting points in the search for new witnesses. These points aid the optimization of the training
process.

Refinements have also been made to the criteria for rejecting critical points computed. Initially, a
critical point was rejected if the smallest activation in the target layer was smaller or equal to 90% of
the smallest activation in the target layer. In practice this, however, only rejected critical points if
the minimum activation was equal to 0. This was triggered endlessly for some models. To improve
accuracy, the rejection now occurs if the maximum value max(Aj

k ∗ h′
i) exceeds 1e − 5, aligning

with the approach used in the loss function.

Furthermore, in the second step, where a line is fitted through critical points to pinpoint a more
precise coordinate for Aj

k, new coordinates with values near zero were causing inaccuracies and were
thus rejected if any value fell below 10−5. This filtering process effectively eliminated problematic
suggestions that previously impacted correct signature extraction.

Do we need precision improvement?

The improvements in the precision improvement enabled testing of this function for MNIST models,
however, even with some changes to enhance efficiency, the precision improvement function turned
out to be another bottleneck of the parameter extraction. After working correctly, the initial version
took 34.7 seconds on average per neuron for the precision improvement for a layer with 8 neurons
from a small MNIST model. Employing some of the tweaks decreased this to about 23.3 seconds.
However, this being 33 times more than the signature recovery time and 17 times more than the sign
recovery time, still seemed like a major bottleneck. This raises the question: is such high precision
necessary?

Currently, signature extraction achieves a precision between 10−8 and 10−10, which aligns with
float32 standards. The precision improvement function aimed to enhance precision to approximately
10−15, venturing into float64 territory. Previously, we needed a float64 accuracy to proceed with
the sign extraction, as we assume the blackbox model to be in float64. However, experiments in
which the extracted weights are changed to float32 and even float16 precision show that this does
not significantly impact the accuracy of the sign recovery. In this setting the target blackbox model is
still assumed to be in float64 precision and the only things that are changed in the sign extraction
are the precision of the extracted weights and biases and some parameters regarding epsilon values.

During sign extraction at these higher quantization levels, faults in the sample distance check start to
become more frequent and sometimes the computation of the wiggle fails. Nevertheless, the sign
extraction is still able to complete without becoming stuck in an infinite loop of error. Although
recalculation of critical points is sometimes necessary due to sample distance check faults, both
float32 and float64 showed similar query efficiency, with float16 lagging due to more frequent
errors. In terms of processing time, float32 extraction proved faster than using float64, while
float16 was slower because of increased fault rates. Ultimately, we do not need to extract up to
float64 precision for the subsequent sign recovery and can therefore skip the precision enhancement
function, making extraction a lot more efficient.

This raises the question of whether subsequent layers can effectively be extracted with prior layers
at float32 precision, and whether the following sign extraction processes remain functional. The
answer is yes, the precision is often lower than if we had worked with previous layers extracted to
float64, but it still extracts a correct signature. For example, for an MNIST model extracted with
prior layers at float32 precision the subsequent layer signature still extracts up to precision of
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Figure 3: (a) The change of accuracy to original model’s predictions with sign flips of hard to sign
extract neurons in layer 3 of a CIFAR model with 128 neurons. The order of sign flipping was iterated
over all combinations of ordering the 5 neurons to produce the error bounds. (b) Percentage of
correctly recovered neurons in MNIST and CIFAR models with layer sizes ranging from 4 to 256. (c)
Depicts how the number of incorrectly recovered neurons rises as the accuracy gain of a model due
to larger layer size diminishes.

between 10−6 to 10−8, where if the prior layer was extracted up to float64 precision the subsequent
layer extraction precision was between 10−7 to 10−9 . Occasionally, the subsequent sign extraction
in float32 does not work and gets stuck on the sample distance check fault. However, employing
float16 settings in these instances circumvents these errors, allowing the process to complete
correctly.

A remaining concern is that the precision will start decreasing more and more from layer to layer, so
that deeper layers’ signature extractions may start becoming infeasible. Yet, precision improvements
for a previous layer can be computed in parallel with the start of extraction for subsequent layers.
This approach ensures that once the precision of an earlier layer is enhanced to near float64 levels,
it can replace the earlier float32 precision extraction, thus maintaining the integrity and feasibility
of the overall extraction process.

B Scalability and Accuracy in Neuron Sign Prediction

Prior extraction performance evaluations have primarily utilised models trained on random data
originally developed by Carlini et al. [1]. However, observations indicate that the percentage of
correctly sign extracted neurons is significantly higher for models trained on standard benchmarks
compared to random models. We assess the accuracy of neuron sign predictions on MNIST and
CIFAR10 models with various configurations of hidden layers. Specifically, we analyze MNIST
models with either 2 or 8 hidden layers, and CIFAR10 models with 8 hidden layers and layer sizes
ranging from 22 to 28. To handle neurons with potentially incorrect signs, the next layer is extracted
with all possible combinations of signs for these low-confidence neurons. The one error free extraction
will confirm the correct signs for us (see Section 3.3). We assume that it is reasonable to handle up to
10 low-confidence neurons per layer and up to 210 parallel signature extractions.

The Number of Incorrect Neurons < 10?

Our findings reveal that MNIST models with only 2 hidden layers exhibit a significantly higher number
of incorrectly predicted neuron signs compared to those with 8 hidden layers, despite being trained
under identical conditions [ref. Fig. 3(b)]. Given that most target models possess at least 8 hidden
layers, this should be no problem in real life setting.

Furthermore, as shown in Figure 3(c), the number of incorrectly extracted neurons increases for
models where adding more neurons to a layer did not significantly improve model accuracy. This
plateau in performance indicates that for these models fewer neurons could have been sufficient for
effective predictions. If we were to envision the neuron distribution of such a network, it is likely that
many neurons would be positioned closely together, contributing to the decision-making process in a
similar manner.

A structurally pruned network, which eliminates closely spaced redundant nodes, typically avoids
these problems, placing neurons distinctly in the parameter space. This placement enhances sign
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prediction accuracy. Consequently, the described sign extraction method with parallelisation in the
subsequent layer’s signature extraction should effectively scale with network size, since real-world
models are most likely to exhibit these characteristics.

As shown in Figure 3, CIFAR10 and MNIST models with 8 hidden layers have a maximum threshold
of incorrectly predicted neurons of 10 in the MNIST model with hidden layer size 256. Yet, this hidden
layer size is already unnecessary for the prediction of MNIST as can be seen in the graph since accuracy
does not improve much. Taking this model out from our samples we are left with 13 models, where
the maximum number of incorrectly recovered neurons is 4 if we run sign extraction s = 15 iterations
for each model. These numbers underscore the methods real-world applicability. In fact, Canales-
Martinez et al. [2] suggest that in high-dimensional spaces, the likelihood of two random vectors being
perpendicular increases with the number of neurons in a layer, thereby enhancing the distinctiveness
of the target neuron’s wiggle. This property makes neurons predominantly straightforward to extract
signs from, further affirming the method’s robustness in real-world applications.

Incorrect Neurons ⊆ Low Confidence Neurons?

Finally, we must determine if the incorrectly recovered neurons fall under the low-confidence category,
defined by a confidence below 0.6 with s = 15. In the sample of 13 models, most incorrectly
extracted neurons were part of the low-confidence group. However, in 4 of the 13 models, there
was an additional neuron incorrectly identified outside this group. Therefore, about 30% of the time,
another extraction round with s = 15 may be required. Typically, after a subsequent round, these
previously misidentified neurons flip sign again and can be identified in this way. These neurons that
experience a sign flip can then be included into the parallel signature extraction.

C Scalability of Whole Parameter Extraction

Explanation of the runtime numbers in the Abstract: In the abstract we give the extraction
time of a whole MNIST model of size 784-64x2-1 with 16,721 parameters. For both the original
computation and our improved computation, the precision improvement function is excluded. In the
original implementation the precision improvement function did not work for MNIST models and in
our implementation the precision improvement function still took multiple times longer than other
parts of the extraction. While we show that precision improvement is not necessarily needed, it would
have been an unfair comparison to include this computational time only in the original computation.
Furthermore, as shown in Section A.2.2, a precision of 10−8 is already obtained without employing
the precision improvement function.

Additionally, we run both extraction computations under an optimal scenario, where prior layers’
extractions are assumed to be correct. For example, if layer 3 is extracted, layer 1 and 2 are assumed
to have already been correctly extracted. In practice, the method is not always that robust. For some
extractions up to one or two neurons’ signatures are sometimes extracted incorrectly and in the sign
extraction both Canales-Martínez et al.’s and our version include some incorrectly sign identified low
confident neurons (see Figure 1(b)). As suggested in Section 3.3, these errors can be found with the
‘sample distance check’. However, this also means that in practice if errors are found, the signature
extraction needs to be rerun. Similarly, for low confidence in sign extraction, 2x signature extraction
need to be run, where x is the number of low confidence neurons.

We tested the extraction time over four extraction seeds. Extraction of layer 1 took approximately 138
minutes and 9,272,363 queries on average in the original Carlini+Canales-Martinez implementation
and approximately 90 minutes and 5,157,296 queries on average in our implementation. Extrac-
tion of layer 2 took approximately 12 minutes and 4,630,078 queries on average in the original
Carlini+Canales-Martinez implementation and approximately 8 minutes and 3,046,048 queries on
average in our implementation. The final layer, layer 3, only takes 0.0008 seconds because a more
direct method involving a system of linear equations can be used.

Idealised Extraction: Out codebase is built to extract weights and biases for one layer at a time
following the example of Canales-Martínez et al.’s codebase. This was helpful for understanding
the differences in extraction times for different layers. The extraction process becomes much more
difficult for deeper layers but becomes very easy again for the last layer. Since extraction is performed
layer by layer, previous layers are always assumed to be extracted correctly. Because of this idealised
setting in our codebase, we have not actually implemented a parallelised signature extraction, since
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this only becomes necessary if a prior layer’s sign extraction was faulty. To get extraction times
and query numbers for the whole extraction we have rerun the code for different layers separately,
assuming that all prior layers’ extraction were correct. To run the signature extraction on some next
layer for all sign configurations of neurons with low confidence, the code for these can be run at the
same time on different nodes.

Nevertheless, it is important to understand that if one executed all configurations in parallel, then while
the extraction time stays on similar levels, the query numbers would be multiple times higher than
they are for running signature extraction on just one configuration. In a parallelised version, queries
in the general critical point search could be shared, but queries for the faster targeted critical point
search could not be shared. Furthermore, while the easiest way to find an error was in the subsequent
layer’s sign extraction, further analysis of the signature extraction might reveal ways of finding faults
earlier on that indicate the sign configuration in the prior layer was incorrect. Additionally, if the
implementation considered the whole pipeline extraction, the critical points found that do not belong
to the target layer could be saved to use in later layers. This could save us from having to execute
some queries in the first part of the general critical point search for later layers.
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Figure 4: Compares the query numbers for Carlini’s signature extraction versus Canales-Martinez
(CM)’s sign extraction with s = 200 setting and Our sign extraction with s = 15 setting across ten
models with increasing layer sizes from 10−5−5−1 to 100−50−50−1, detailing query numbers
for a single layer’s extraction.

Model Information Extraction Time [s]
Model Params Signature Sign (unified) Sign (original)

C+CM Ours C CM Ours CM Ours
10-5x2-1 30 18.08 18.65 76.39 0.82 0.05 156.54 6.00

20-10x2-1 110 13.38 13.17 86.38 1.59 0.12 184.63 13.16
30-15x2-1 240 22.81 22.39 141.24 2.37 0.16 254.06 18.55
40-20x2-1 420 27.59 27.96 193.52 3.46 0.28 317.57 23.93
50-25x2-1 650 29.34 29.64 ≈ 1.3 · 105 4.98 0.34 439.40 30.50
60-30x2-1 930 41.79 40.80 ≈ 5.4 · 106 6.52 0.50 478.91 36.16
70-35x2-1 1260 107.70 46.15 - 10.58 0.77 588.14 42.50
80-40x2-1 1640 67.01 65.93 - 13.46 0.94 667.79 48.68
90-45x2-1 2070 96.28 94.37 - 18.61 1.41 743.04 55.04

100-50x2-1 2550 206.65 186.53 - 20.47 1.82 844.72 61.21
Table 3: Extraction Performance Carlini (C), Canales-Martinez (CM) versus Ours on layer 2 of
random models. The sign (unified) is the sign extraction time from the unified codebase, which has
been used throughout the paper. The sign (original) time is the sign extraction time from the separate
original codebase from CM. These are denoted here for completion.
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Explanation of Canales-Martínez et al.’s original versus unified implementation: When unifying
the codebases we noticed that Carlini et al.’s codebase had been written using jax as their machine
learning library and their query calls were executed as a jax matrix multiplication of the weights and
bias with the input. In contrast, Canales-Martínez et al.’s codebase was using TensorFlow and their
query calls were executed through the predict() function in TensorFlow. To unify the codebase and
ensure comparability between signature and sign extraction we chose to use jax as the basis machine
learning library. This version, is the CM unified version that we use throughout the rest of the paper.
The original and unified version do not exhibit any difference in query numbers or theory of the
Neuron Wiggle sign extraction. Under Sign (original) in Table 3 one can see the sign extraction
times with the separate original codebase from Canales-Martínez et al..

4 8 16 32 64

0

200

400

600

800

Layer Size

Ti
m

e
[s

]

Total Recovery Time vs. Layer Size

Total Signature Recovery Time
Total Sign Recovery Time

4 8 16 32 64

0

0.5

1

·105

Layer Size

Q
ue

ri
es

Avg Num Queries vs. Layer Size

Avg Signature Recov. Queries
Avg Sign Recov. Queries

Figure 5: (a) Total signature recovery time and total sign recovery time of layer 2 of MNIST models
with 2 hidden layers with layer sizes 4,8,16,32 and 64. The signature extraction was run with seeds
0,10,40 and 42. (b) Average number of queries for signature and sign recovery per neuron of layer 2
of MNIST models. These graphs do not include the precision improvement time or queries.

Explanation of Figure 5: Figure 5 shows how signature recovery and sign recovery for the second
layer in MNIST models with layer structures ranging from 3072− 4− 4− 1 to 3072− 64− 64− 1
scale. The signature extraction was run with four different random seeds. In 5(a) we can see that the
total sign recovery time is a lot smaller compared to the signature recovery time. This is due to two
factors: First, the signature recovery takes longer in MNIST models compared to the random models
we were looking at earlier. Second, the sign recovery takes a fraction of the time it took before.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim to have sped up parameter extraction and specifically sign extraction
and provide Table 1 in the performance evaluation to show this. We also claim to have used
models trained on standard benchmarks and use models trained on CIFAR10 and MNIST
throughout the paper and specifically use MNIST trained models for the discussion which
centers around Table 2. We claim that we address methodological deficiencies, which we
address in our Discussion section, where significant differences in extraction performance
are noted for “random” models versus models trained on standard benchmarks, deeper
models and random seeds for training and extraction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In our discussion we present the large variance this parameter extraction
method has when using different training datasets (‘random’ or MNIST), different layer sizes,
different model depths and differing training and extraction seeds. In some cases such little
variations can lead to significantly longer extraction times.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We mention that as in the prior cryptanalytical extraction by Carlini et al. [1]
we assume that the DNN uses ReLU activations, that the weights are in high precision, and
that the output logits can be obtained. We reiterate how the Neuron Wiggle sign extraction
works from Canales-Martínez et al. [2]’s paper and expand on some concepts that we
empirically justify since we are working with heuristics. We do not provide any Theorems
or Lemmas.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the details of the machines the experiments were run on (AMD
Ryzen 7 4700U processor with 16GB RAM and Intel’s 10th generation Intel Core processor
icelake). We also provide information about the datasets models were trained on, the model
sizes and accuracies and especially in Table 2, present all results over a mean of four
extractions on different random seeds. We also note the ML framework that was used
(jax) and include query numbers in the Appendix in case of extraction time comparability
difficulties. The code for producing the ‘random’ models can also be found in Carlini
et al. [1]’s codebase and all our model training on standard benchmarks follows similar
training details as can be found in Canales-Martínez et al. [2]’s codebase for training CIFAR
models. Furthermore, the main technical contributions we give are all detailed in the main
paper and the Appendix and can be added into prior codebases from Carlini et al. [1] and
Canales-Martínez et al. [2]. We have now also included a link to our github code base:
https://github.com/hannafoe/cryptanalytical-extraction
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide a link to our github code base:
https://github.com/hannafoe/cryptanalytical-extraction
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

23

19518 https://doi.org/10.52202/079017-0615

https://github.com/hannafoe/cryptanalytical-extraction
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Answer: [Yes]
Justification: The code for producing the ‘random’ models can be found in Carlini et al.
[1]’s codebase and all our model training on standard benchmarks follows similar training
details as can be found in Canales-Martínez et al. [2]’s codebase for training CIFAR models.
Overall, since model training is not the focus of the paper, however, we include more details
about model size, model depth and the characteristics of the model that influence extraction.
So, models with similar characteristics should have comparable extraction times.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide calculations of variances for parameter extraction time and provide
graphs that detail findings on multiple test models.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the details of the machines the experiments were run on (AMD
Ryzen 7 4700U processor with 16GB RAM and Intel’s 10th generation Intel Core processor
icelake). Code will also be released.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do not work with human participants and only consider standard public
benchmarks.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The setting considered in the paper is toy and considers models that are rarely
used in practice.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not yet present a high risk of misuse as methods detailed have
only been successful at attacking smaller and not as deep models.

25

19520 https://doi.org/10.52202/079017-0615

https://neurips.cc/public/EthicsGuidelines


Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We mention throughout our work that the basis of our cryptanalytical extraction
is from Canales-Martínez et al. [2] and Carlini et al. [1].
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Mainly we work on the basis of Carlini et al. [1] and Canales-Martínez et al.
[2]’s work and detail any adaptations in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: We do not work with Human Subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work did not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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