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Abstract

Human image animation involves generating videos from a character photo, al-
lowing user control and unlocking the potential for video and movie production.
While recent approaches yield impressive results using high-quality training data,
the inaccessibility of these datasets hampers fair and transparent benchmarking.
Moreover, these approaches prioritize 2D human motion and overlook the sig-
nificance of camera motions in videos, leading to limited control and unstable
video generation. To demystify the training data, we present HumanVid, the first
large-scale high-quality dataset tailored for human image animation, which com-
bines crafted real-world and synthetic data. For the real-world data, we compile a
vast collection of real-world videos from the internet. We developed and applied
careful filtering rules to ensure video quality, resulting in a curated collection of
20K high-resolution (1080P) human-centric videos. Human and camera motion
annotation is accomplished using a 2D pose estimator and a SLAM-based method.
To expand our synthetic dataset, we collected 10K 3D avatar assets and leveraged
existing assets of body shapes, skin textures and clothings. Notably, we introduce
a rule-based camera trajectory generation method, enabling the synthetic pipeline
to incorporate diverse and precise camera motion annotation, which can rarely be
found in real-world data. To verify the effectiveness of HumanVid, we establish
a baseline model named CamAnimate, short for Camera-controllable Human
Animation, that considers both human and camera motions as conditions. Through
extensive experimentation, we demonstrate that such simple baseline training on
our HumanVid achieves state-of-the-art performance in controlling both human
pose and camera motions, setting a new benchmark. Demo, data and code could be
found in the project website: https://humanvid.github.io/.

1 Introduction

High-quality and highly controllable human image animation has significantly progressed as an
emerging popular task [15, 28, 31, 74]. Imagine the possibilities of recreating iconic movie perfor-
mances using just a single photo of the characters, capturing them from any desired angle. This
technique has the potential to significantly impact video and movie production. In this study, we
focus on animating characters from a single image, considering both human and camera motions as
crucial factors for generating realistic human videos.

Despite recent advances [28, 88], human image animation presents two main challenges: the absence
of a high-quality public dataset and the neglect of camera motions in human videos. Specifically,
state-of-the-art approaches rely on private datasets for training similar models, underscoring the

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

20111 https://doi.org/10.52202/079017-0635

https://humanvid.github.io/


Figure 1: Illustration of controlling human poses and camera trajectories in our scalable synthetic data
from anime characters (top) and human-like characters (bottom). Our synthetic videos has realistic
human and background appearance and diverse camera trajectories.

importance of datasets in this field. However, these datasets remain inaccessible, while accessible
alternatives like TikTok [29] and UBC-Fashion [80] possess limitations in scale and quality, hindering
fair and transparency evaluation and community development. Furthermore, despite leveraging
private datasets, these methods struggle to animate characters from new viewpoints with camera
movement. They primarily rely on 2D pose extraction from static camera videos [75], neglecting the
crucial aspect of camera motion. This design choice compromises video controllability and impedes
high-quality character animation for complex motions.

To address the lack of a high-quality public dataset with accurate camera motion annotations, we
introduce a synthetic dataset along with a high-quality real-world video dataset for human image
animation. Our scalable pipeline allows us to create a large-scale dataset with precise annotations for
both human and camera motions. Through extensive experiments, we validate the significance of this
dataset combination in achieving high-quality and controllable human image animation.

To begin with, we compile a vast collection of real-world videos from diverse scenes on copyright-free
internet platforms. This uncurated dataset often contains noise, such as frequent shot changes, user-
generated special visual effects, occlusions and object motions. To ensure high-quality videos, we
employ a carefully designed rule-based filtering strategy to ensure that pixel motions in our collected
videos are exclusively resulted from human and camera motions. Additionally, we utilize SLAM-
based methods [69, 62] for accurate camera trajectory extraction and a precise pose estimator [75] to
extract human pose sequences. This results in a remarkable collection of over 20K human-centric
videos in 1080P resolution. Experimental results demonstrate that training models exclusively on this
curated video dataset achieve state-of-the-art performances.

Synthesizing diverse and high-fidelity human videos for animation is non-trivial. Existing 3D
synthetic datasets for humans primarily focus on reconstruction or perception, resulting in limited
appearance diversity, over-smoothed textures, and restricted camera motions [10, 76]. To overcome
these limitations, we first augment our dataset with approximately 10K copyright-free 3D avatar
assets. These assets undergo rigorous rigging using motions from motion-captured datasets [40]
and open-source software [4], enabling a wide range of character shapes, appearances, and human
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motions. Notably, to compensate for the limited camera motions observed in real-world videos,
we introduce an innovative rule-based camera trajectory system, enriching the diversity of camera
movements in training data. Specifically, multiple camera locations are randomly sampled for the
keyframes throughout the space, and each camera is purposefully directed toward the human face.
We connect and smooth these sampled camera keyframes to create natural camera movements similar
to those found in professional videos and films. This design enables us to generate lifelike human
videos with accurate annotations of human and camera motions. The illustration of our synthetic data
in the rendering process is shown in Fig. 1. Our experiments conclusively demonstrate that utilizing
our synthetic dataset significantly enhances animation, particularly regarding motion control.

To validate the collected dataset, we incorporate camera control [22] into a widely-used human video
generation model that only considers pose condition [28]. Our main contributions are as follows,

• To the best of our knowledge, HumanVid is the first large-scale video dataset for human
image animation. It contains both high-quality Internet videos with diverse appearance and
synthetic videos with accurate human pose and camera pose annotations.

• We design a scalable rendering pipeline from Unreal Engine 5 that facilitates lifelike human
video generation and provides accurate annotations of human and camera motions.

• Through extensive experiments, we validate the effectiveness of each dataset component,
establish a new state-of-the-art, and create a comprehensive and transparent evaluation
benchmark for the field.

2 Related Work

Human Image Animation. The task of human image animation aims to generate coherent human
videos from a single image. To enhance controllability, the mainstream works in this field often
employ explicit human skeleton representation, e.g., OpenPose [13, 58, 72] and DensePose [19], as
additional guidance. Early solutions are majorly developed upon GANs for image animation and
pose transfers [14, 49, 55, 56, 57, 79, 84]. More recently, diffusion models (DMs) [24, 61, 42, 68]
have been drawing attention from human image animation considering their remarkable success and
high-quality results in image [51, 43, 48, 53, 7, 46] and video [11, 87, 59, 26, 25, 52, 77, 67, 21]
synthesis. For instance, MagicDance [15] proposes a two-stage training strategy to disentangle the
learning of appearance and human motion. Animate Anyone [28] utilizes a reference network to
extract the appearance representation from the source image and adopts a motion module similar
to AnimateDiff [21] to enhance temporal consistency. It also incorporates a lightweight pose
guider to encode pose information to the pre-trained models. Similarly, MagicAnimate [74] adopts
DensePose [19] as the motion representation and uses a ControlNet [81] to encode pose information.
Champ [88] further introduces the SMPL [38] model sequence and the rendered depth and normal for
better alignment. Though with remarkable visual quality, these works mostly adopt a static camera
setting and do not consider camera viewpoint movement.

Camera-aware Video Generation. As a significant component in video and movie production,
camera viewpoint movement determines the content dynamics and the overall feeling of the audience.
While many works focus on guiding video generative models with structural signals [17, 77, 66,
83, 32, 20], less attention has been paid to controlling the pose/viewpoint of camera in generating
videos [73, 78]. To control camera motion with reference videos, MotionDirector [85] proposes
a dual-path LoRA [27] adapter to decouple the motion and appearance learning and can roughly
control camera movements to produce a surrounding shot. For more precise control, MotionCtrl [71]
directly injects the camera extrinsic matrix to the temporal attention layer in pre-trained text-to-video
models and can precisely specify the camera viewpoint by providing camera poses at inference.
CameraCtrl [22] further enhances the controllability by representing the camera pose with Plücker ray
embeddings [60, 36]. CamViG [41] explores the camera control in token-based video generator [34]
by introducing camera embedding as a new modality. Furthermore, JAWS [65] and Jiang et. al. [30]
explore video generation via cinematic transfer from existing videos. To the best of our knowledge,
our paper is the first to introduce camera control into the human-centric video generation task.

Human Video Datasets. Diverse and large-scale human-centric video datasets are essential for en-
abling human image animation tasks. For real-world datasets collected from the Internet, TikTok [29]
provides 340 human-centric video clips from social media with diverse appearances and performances,
while UBC-Fashion [80] contains 500 fashion video clips with blank backgrounds. To scale up the
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Figure 2: Illustration of the clothed SMPL-X characters rendered with diverse backgrounds.

dataset at a lower cost, several synthetic datasets have been proposed. SURREAL [64] generates over
6M realistic images of people rendered from 3D sequences of captured human poses, AGORA [44]
renders from real human scans in diverse poses and natural clothing, and HSPACE [8] combines
diverse individuals with different motions and scenes, obtaining the animation by fitting a human
body model. GTA-Human [12] constructs a dataset with the GTA-V game engine, featuring a diverse
set of subjects, actions, and scenarios. SynBody [76] includes 1.7M images with 3D human body
annotations, covering diverse body models, actions, viewpoints, and scene styles. BEDLAM [10]
renders people in realistic scenes and utilizes physics simulation to obtain realistically rendered
clothing. While previous synthetic human datasets were designed for pose estimation or multi-view
reconstruction, our work is the first to explore the use of synthetic data for video generation.

3 Dataset

Given that diffusion models typically require large amounts of data, we are pioneering the use of
synthetic data in human video generation. While previous datasets [10, 76] only contain single-view
image data or clips with basic camera movements (i.e. zoom-in, orbit), we show that accurate
annotations, extensive scale and rich camera trajectories from synthetic data could be vital for
generation. Our synthetic videos are rendered by Unreal Engine 5 (UE5) [3] or Blender [16].
To enhance the diversity of human appearance, we also curate human-centric internet videos from
copyright-free platforms and leverage pose estimation methods [75] for automatic annotation. Both
synthetic and internet data are fully scalable without any human supervision.

3.1 Synthetic Data Construction

The synthetic video data are rendered with one character moving in various 3D scenes using diverse
camera trajectories. Consequently, constructing the synthetic data involves three key steps: character
creation, motion retargeting, and 3D scene and camera placement.

3.1.1 Character Creation

We create two types of characters in the diverse domains: (1) Human-like characters from SMPL-
X [45] meshes and clothing. (2) Anime characters from user-uploaded assets. Diverse body shapes
and skin textures, 3D clothing and textures are considered for highly varied human representation.

Body shapes and skin tone. For human-like characters, we sample body shapes from a diverse set
of 271 body shapes with different BMI collected from the ARGOA [44] and CAESAR [50] datasets
following Bedlam [10]. To reduce the gender and ethnicity bias, we use 50 female and 50 male
commercial high-resolution skin albedo textures from Meshcapade [18] with seven ethnic groups.

3D Clothing and textures. To generate realistic human videos, it’s crucial to have 3D clothing
motions that are physically plausible and consistent with human body movements. For instance,
the LSMPL-X representation from Synbody [76] adds a clothing layer to SMPL-X [45], but lacks
realistic physics simulation for clothing motion, leading to unnatural movements in loose-fitting
clothes like dresses. We collect 111 unique outfits, including T-shirts, sweaters, coats, jeans and skirts
from Bedlam [10] dataset, and use commercial simulation software [1] to obtain realistic clothing
deformations. On top of realistic meshes of human mesh and clothing from physics simulation, 1,691
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Figure 3: Illustration of the light condition control in the rendering process.

unique clothing textures are used for diverse clothing appearances. We shows examples of clothed
SMPL-X characters in Fig. 2.

Anime characters. To enhance the diversity of characters in our synthetic data, we focused on
VRoidHub [6], a platform designed for sharing 3D character models. Creators on VRoidHub have
uploaded a vast array of intricate 3D character models, featuring diverse appearances, clothing styles,
and hairstyles. From this rich repository, we manually selected 10K characters for rendering.

3.1.2 Motion Retargeting

Given the character assets, we transfer diverse motions to these characters by re-targeting motion data
from various sources, including motion capture datasets [40] and open-source software Rokoko [4].

SPML-X characters. For human-like SMPL-X [45] characters, we sample human motions from
large-scale motion capture datasets [40]. To enhance motion diversity, we sample based on motion
annotations from [47], following the approach of Bedlam [10].

Anime characters. Conversely, anime character assets could have diverse skeleton lengths. We
utilize the re-targeting software [4] to transfer existing motions to the anime character assets. The
clothing and hair are treated as part of the body, so their motion is also determined by source motions.

3.1.3 3D Scenes and Camera Placements

3D Scenes. The realistic and diverse 3D scene backgrounds for synthetic video are constructed from
about 100 panoramic HDRI images [2] or high-quality 3D scenes to cover both indoor and outdoor
environment. We manually select panorama images with flat ground for characters to move on, while
avoiding excessive scene components that might lead to unnatural human-scene interactions. We
also exclude images with uniform visual patterns across different views, such as grasslands, deserts,
or farms. The selected panorama backgrounds feature high-quality, complex texture details that
highlight varying background textures from different camera angles.

Camera Trajectory Design. Unlike [10, 76, 44], our dataset highlights rich and diverse camera
trajectories in human-centric videos. Each camera trajectory consists of a sequence of 6-DoF
translations and rotations. We carefully design a rule-based camera motion generation pipeline
to obtain diverse trajectories. This pipeline randomly sample camera locations adaptive to human
positions and orientations in the keyframes, and use spline interpolation to get smooth camera
locations and rotations in the whole sequence. Specifically, in each keyframe, we randomly sample
camera locations within a semi-cylinder of radius ∈ [3m, 5m] and height ∈ [0.6m, 1.2m] in front
of the human. Then, we set the camera orientation’s yaw and pitch to point at the person. To
create a more natural camera trajectory that smoothly follows the person, we adjust the camera’s
position by adding the human’s position offset from the keyframe to the camera position in each
frame. Finally, we also sample the roll of camera rotation ∈ [−30◦, 30◦] in keyframes. Our design
of camera keyframe sampling enables all types of camera trajectories, significantly enhancing the
camera trajectory diversity and cinematic effect of human videos compared to existing video datasets.

Rendering and Annotations. We render the image sequences of SMPL-X characters using UE5
game engine and the built-in movie render function (Movie Render Queue) for high-quality images.
The anime characters are rigged and rendered with blender. With our synthetic data source, a variety
of ground-truth annotations, including camera trajectories, human skeletons, segmentation masks,
depth maps and normal maps, could be obtained without manual efforts. Although our dataset is
curated for human video generation, these ground-truth annotations could also be useful for other
downstream applications. Thanks to the Unreal Engine, we could render photo-realistic videos with
controllable human appearance and motion, scene, and light condition. As shown in Fig. 3, the light
direction in the rendering process could be controlled from −17◦ to 13◦.
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Table 1: Comparison of our Internet and synthetic data size with existing datasets.

Dataset Clips Frames Resolution Camera Pose Human Pose
TikTok [29] 340 93k 604×1080 Static Fitting
UBC-Fashion [80] 500 192k 720 × 964 Static Fitting
IDEA-400 [37] 12k 2.5M 720P Static Fitting
Bedlam [10] 10k 1.5M 720P Ground Truth Ground Truth

Ours Real 20k 10M 1080P Fitting Fitting
Ours Synthetic (SMPL-X) 50k 8M 720P Ground Truth Ground Truth
Ours Synthetic (Anime) 25k 2M 1080P Ground Truth Ground Truth

Table 2: Statistics of the diversity of appearance, motion and scene in HumanVid.

Dataset Split #Subject #Motion #Scene Avg. Clip Length

Internet videos 24,012 24,012 19,688 (= #video) 16.65s

Synthetic (SMPL-X)
271 (body shapes)

× 100 (skin textures)
× 1,691 (clothings)

2,311 100 (HDRIs)
+ 587 (3D scenes) 6.34s

Synthetic (Anime) 10K (anime assets) 40 100 (HDRIs)
+ 93 (3D scenes) 3.2s

3.2 Internet Data Curation

To enhance the appearance diversity of synthetic videos, we collect real human-centric videos from
copyright-free internet platforms [5], where the pixel motions in videos is only resulted from human
skeleton motion or camera motion, without any object movements or background dynamics. We
utilize the Pexels API [5] to scrape data based on around 100 keywords and employed a pose
detector [75] to analyze the data. The pose detector focused on measuring the upper body keypoints’
confidence, the ratio of the largest human bounding box over the frame r, the average number of
humans present in each frame n, and the average motion (position offsets) of the keypoints ∆p̄. With
these statistics, we apply a specific filtering criteria: a) the human should occupy the main part of the
image (r > 0.07); b) there should be few people (n ≤ 4); c) there should be a noticeable motion in
keypoints to remove static videos (∆p̄ > 0.01); d) No exits, entrances or occlusions of individuals in
videos (| n−round(n) |< 0.01). As a result, we collect around 20k high-quality, real human-centric
video clips with various human and scene appearances.

Camera Trajectory Estimation. Reconstructing global camera trajectories from in-the-wild videos
is a challenging problem. For the curated human-centric videos, we adopt TRAM [69] to utilize a
SLAM method [62] for recovering camera extrinsic parameters from in-the-wild videos with explicit
human movement. To ensure camera parameters are robust to dynamic humans, we employ a masking
technique [33] that removes dynamic regions from both input images and dense bundle adjustment
steps. To prevent major estimation errors, we configure the SLAM system to use only background
features for camera motion estimation. To convert camera estimation to metric scale, we leverage
semantic cues from the background by utilizing noisy depth predictions [9]. Consequently, we recover
accurate, metric-scale camera motion that serves as an optimal camera condition for training diffusion
models. When videos have backgrounds lacking texture and the SLAM system cannot accurately
reconstruct camera motion, we treat these cases as having static cameras. Additionally, we filter out
videos with very large rotations or translations, such as cycling, or those with sudden shot changes,
as these videos fall outside the scope of human image animation.

Statistics. As shown in Tab. 1, our Real Internet dataset, with over 20k clips and 10M frames at
1080P resolution, significantly surpasses existing datasets like TikTok [29], UBC-Fashion [80] and
IDEA-400 [37] in both size and resolution. Additionally, our synthetic dataset from SMPL-X and
Anime characters, is 5× larger in scale compared to Bedlam [10], providing accurate camera and
human pose groundtruth, and more diverse camera trajectories. For statistics of our HumanVid, Tab. 2
shows the statistics of human appearance, motion and scene.

3.3 CamAnimate

To validate our dataset’s capability for animating humans with moving cameras, we propose a
simple baseline for the camera-controllable human image animation task, named CamAnimate. By
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Figure 4: Illustration of the network architecture of our proposed CamAnimate.

leveraging CameraCtrl [22]’s advanced camera pose control and Animate Anyone [28]’s character
animation framework, CamAnimate ensures consistent and high-quality human video generation
with simultaneous human and camera movements. As shown in Fig. 4, it utilizes plücker embeddings
to accurately parameterize camera trajectories and incorporates an additional camera pose encoder to
encode camera information for the Denoising UNet via zero-convolution [81], while ReferenceNet
and a pose guider maintain appearance consistency and pose controllability. By training our method
on general human videos with both camera and human movement, these two types of motion can
be decoupled in the network and learned by separate modules in an end-to-end manner. In addition
to the moving camera setting, CamAnimate can seamlessly generate static-camera human videos.
Please refer to Sec. A.1 for more implementation details of CamAnimate.

4 Experiments

Evaluation Benchmark. Due to the lack of a unified benchmark for previous methods, the testing
protocols for each method have been varied significantly. However, when the form of the samples
differs, the disparity between the reference image and the target image can vary greatly, leading to
highly inconsistent results for the same method when inferring different reference and target images.
Therefore, as the first large-scale dataset, we provide a unified testing protocol for human video
generation. Specifically, we use the middle frame as the reference image, predict frames in the range
[1,72) with a stride of 3, resulting in a sequence of 24 frames. Finally, we evaluate each video under
this setting using PSNR [70], SSIM [70], LPIPS [82], FID [23], and FVD [63] metrics.

We use the last 40 videos from the TikTok dataset [29] out of a total of 340 videos as the test set
for evaluation on static camera. For UBC-Fashion [80], we use the official split with 500 videos
for training and 100 videos for testing. Additionally, we provide 40 videos each in both portrait
and landscape orientations as a test set for evaluation on moving camera human video generation,
sampled from our collected Internet videos. It is worth noting that SSIM, PSNR, and LPIPS are only
reliable under static camera conditions without any human turning. For human videos with camera
movements, these reconstruction metrics may not be trustworthy, as video generation inherently
involves ambiguity, where we prefer generation metrics like FID and FVD.

4.1 Comparison with the State-of-the-Art

In this section, we compare our baseline model with previous state-of-the-art methods, namely
Animate Anyone [28], Magic-animate [74] and Champ [88]. As animate anyone is not open-sourced,
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Table 3: Comparison with SOTA on TikTok and UBC-Fashion dataset with static camera. † means its
official implementation is not trained on UBC-Fashion’s training set.

TikTok Test Set SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓ FID ↓
Animate Anyone [28] 0.752 16.971 0.288 935.6 52.26
Magic-animate [74] 0.748 17.890 0.270 876.0 56.84
Champ [88] 0.778 18.434 0.267 736.1 50.76
Ours 0.778 18.762 0.247 691.8 41.35

UBC-Fashion Test SSIM↑ PSNR↑ LPIPS↓ FVD↓ FID↓
Magic-animate [74]† 0.602 6.663 0.552 1583.9 118.76
Animate Anyone [28] 0.914 23.163 0.069 345.4 33.77
Champ [88] 0.922 25.269 0.057 269.4 27.35
Ours 0.929 25.921 0.049 256.6 29.30

Reference Ours GTAnimate Anyone Magic-animate Champ

70

49

49

70/22 vs 63

Figure 5: Qualitative comparisons with previous SOTA methods on the test set.

we use a third-party implementation1. We use the official implementations for other two methods. As
shown in Tab. 3, although our method is trained on videos with moving cameras, it is still able generate
high-quality static camera videos on TikTok and UBC-Fashion dataset and achieves best performance
in almost all metrics due to our precise camera control ability. For human videos with camera
movement on our test set shown in Tab. 4, previous methods commonly do not consider the camera
condition, so they struggle to produce natural videos with camera movements. Such result could
be observed from both reconstruction metrics like SSIM, PSNR, and LPIPS and generation metrics
like FID and FVD. In our training set, we found that the performance could be further improved
upon Animate Anyone’s training recipe by increasing the effective batch size from 8 × 8 = 64 to
4 × 8 × 8 = 256 through gradient accumulation, while maintaining 30,000 iterations in stage 1
training. This enhancement suggests our dataset’s superior scale and diversity.

User-study. We also conduct a user-study to compare our method with previous methods, as shown
in Tab. 5. We collect 2 videos from Tiktok test set and 8 videos from our test set, and compare
our results with other three methods’ results as a ranking question with 4 options. A total of 20
participants take part in our user study and we assign 3, 2, 1 points for the first, second and third
method respectively. The final average score is normalized by total points, so the upper bound of this
metric is 0.5. We conclude the average points and top-1 preference of each method in Tab. 5, which
shows a dominate advantage (0.44 points and 0.73 top-1 preference) over previous methods due to
their artifacts in appearance, human pose and camera movements.

Qualitative comparisons. In Fig. 5 , we show the qualitative comparison with previous SOTA
methods, where the artifacts are highlighted by red boxes. We show that previous SOTA methods may
have different artifacts when applied to our challenging evaluation test sets. For example, animate
anyone suffers from inaccurate and low-quality appearances of humans. Champ suffers from missing

1https://github.com/MooreThreads/Moore-AnimateAnyone
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Table 4: Comparison with SOTA on our collected human videos with camera movements.

Landscape SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓ FID ↓
Animate Anyone [28] 0.602 16.108 0.368 1248.4 97.74
Magic-animate [74] 0.543 15.567 0.361 1325.2 109.33
Champ [88] 0.653 15.028 0.426 1985.2 100.59
Ours (1× batch size) 0.641 18.008 0.309 960.1 77.73
Ours (4× batch size) 0.672 19.534 0.275 732.7 46.06

Portrait SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓ FID ↓
Animate Anyone [28] 0.613 15.514 0.379 1254.1 88.70
Magic-animate [74] 0.621 16.091 0.341 1418.8 123.94
Champ [88] 0.669 16.021 0.360 1316.9 84.59
Ours (1× batch size) 0.675 18.081 0.309 816.5 75.67
Ours (4× batch size) 0.678 18.939 0.303 792.2 54.02

Figure 6: Qualitative results on in-the-wild videos with realistic camera movements.

3D skeletons due to the difficulty of estimating accurate 3D skeletons, especially in a crowded scene.
Magic-animate is not able to correctly generate human face expressions due to the ambiguity of face
representation of DensePose. Our method generates accurate facial expressions, body poses, and
background motions that correspond to camera movements.

Qualitative results on in-the-wild cases. In Fig. 6, we further show our methods ability in generating
in-the-wild videos with explicit camera movements. We show that we can achieve high-quality and
visually pleasant videos that is close to the actual movies filmed by professionals. We hope that our
dataset and the baseline method could serve as a solid base for generating movie-level human videos.
Additional video results are available on the project page2.

4.2 Ablation Study

Contribution Decomposition of Dataset and Method. We construct a variant that training the
original Animate Anyone on HumanVid dataset without considering camera condition to verify that
existing methods could not be directly applied to our dataset. Since most videos in HumanVid have
moving cameras, it creates inherent ambiguity for models attempting to learn both camera movement
and human movement simultaneously. Thus, the performance of CamAnimate and the variant trained
on the same training set shows significant difference, as shown in Tab. 6. It indicates that the camera
encoder in our CamAnimate is necessary for training human video generation models on HumanVid.

Training Strategy. Due to limited appearance diversity, synthetic data alone proves insufficient
for training effective human image animation models, resulting in non-semantic, uniform textures
that lack meaningful structure. While training with Internet videos enables appearance transfer and

2https://humanvid.github.io/
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Table 5: User study on videos of Tiktok dataset and our test set.

Method Average Score Top-1 Preference

Animate Anyone [28] 0.171 0.10
Magic-animate [74] 0.133 0.03
Champ [88] 0.256 0.14
Ours 0.440 0.73

Table 6: Comparison with original Animate Anyone trained without camera condition.

TikTok Test Set SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓ FID ↓
Animate Anyone [28] 0.658 15.954 0.337 1133.1 53.65
Ours 0.778 18.762 0.247 691.8 41.35

Table 7: Comparison of training strategies on different data parts.

TikTok Test Set Stage 1 w/
Syn. Data

Stage 2 w/
Syn. Data SSIM↑ PSNR↑ LPIPS↓ FVD↓ FID↓

Variant 1 × × 0.677 15.957 0.333 1066.9 53.08
Variant 2 ✓ ✓ 0.734 17.339 0.287 980.3 56.32

Ours × ✓ 0.778 18.762 0.247 691.8 41.35

pose control capabilities, camera control remains challenging. This limitation primarily stems from
the difficulty in extracting accurate camera trajectories from Internet videos using COLMAP [54]
or SLAM methods [62], as moving subjects often obscure static backgrounds. To address this, we
leverage our synthetic data to enhance camera control accuracy and overall visual quality through a
two-stage training strategy. In stage 1, we finetune the ReferenceNet, Pose Guider, DenoisingNet,
and Camera Encoder. In stage 2, we focus solely on finetuning the Camera Encoder and Temporal
Modules in DenoisingNet. This approach effectively combines high-quality Internet videos for human
appearance modeling with synthetic videos for improved camera control. As shown in Tab. 7, our
final model outperforms both Variant 1 (using only Internet videos) and Variant 2 (using both video
types for both training stages).

Camera Trajectory Evaluation. Due to the inaccurate camera trajectories estimated from our gener-
ated videos, it is difficult to obtain accurate camera-related metrics (Translation Error and Rotation
Error) used in CameraCtrl [22]. The primary reason is that the generated videos in CameraCtrl only
have static scenes and moving cameras, where COLMAP [54] is proven to be effective in extracting
accurate camera trajectories. However, because we have moving people and moving cameras, such
Structure-from-Motion methods will fail in our setting. Thus, we leave it to our future work to
quantitatively verify the camera control ability.

5 Conclusion

In this paper, our study addresses the significant challenges in the field of human image animation by
introducing a novel combination of a high-quality real-world video dataset and a meticulously crafted
synthetic dataset. Our proposed dataset not only enhances the visual quality and controllability of
human animations, but also introduces a new benchmark for camera control in human videos. Without
bells and whistles, our proposed simple baseline demonstrate superior performance when it is trained
on our combined dataset, particularly in scenarios involving complex human and camera motions.
We believe our dataset establishes a foundation for transparent and comprehensive evaluations in this
field, facilitating future advances in video and movie production.

Limitations. The annotation of our Internet data heavily rely on pose estimation [75, 19] and
SLAM [69, 62] methods, which could introduce noises into the camera and pose annotations. The
number of asset and background scenes in the synthetic part is limited when we compare it to real
videos. The rendering quality is also worse than the real videos captured by professional cameras.

Broader Impacts. Our dataset and baseline method are highly effective at creating realistic human
videos. Nonetheless, it’s important to recognize that improvements in generative model technologies
could lead to the creation of realistic deepfakes, which may be misused to spread misinformation.
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A Appendix

A.1 Implementation Details of CamAnimate

We use the checkpoint of Stable Diffusion 1.5 [51] to initialize the Denoising UNet and ReferenceNet,
and use the weights of ControlNet [81] on OpenPose [13] to initialize the Pose Guider. The camera
encoder weights from CameraCtrl [22] are used to initialize our camera encoder. We mix train
horizontal and vertical videos with a resolution of (long side, short side) = (896, 512), i.e., for
horizontal videos (w, h) = (896, 512) and for vertical videos (w, h) = (512, 896). Each batch only
samples either all horizontal or all vertical videos, and the choice between horizontal and vertical
videos is made randomly between batches. The setting of such resolution is according to the GPU
memory in our experiments, i.e., maximum GPU memory usage with such pairs of batch size and
resolution in both stages. We empirically find that such resolution could achieve a balance of visual
quality and computational cost. In the first stage, we train all network parameters using a batch size
of 8. In the second stage, we freeze the denoising UNet, reference UNet, and pose guider, and only
train the camera encoder and motion module. The motion module in the second stage is initialized
with the weights from AnimateDiff [21] V3. The frame rate is set to 24, and the batch size is 1. We
use 8 NVIDIA A100 GPUs for all training stages and 1 NVIDIA A100 GPU for testing. The first
and second stages are trained for 30,000 and 10,000 iterations, respectively, with a learning rate of
1e-5 and AdamW optimizer [39]. Our camera embedding representation is the Plücker embedding
from CameraCtrl, which is computed from the camera’s intrinsic and extrinsic parameters. For real
internet data, the intrinsic parameters are set using a heuristic value, while the extrinsic parameters
are obtained using SLAM [62] methods. For synthetic data, the intrinsic and extrinsic parameters
are directly exported. For the 4 × batch size setting in stage 1, we use 8 NVIDIA A100 GPUs with
gradient accumulation step as 4, or 32 NVIDIA A100 GPUs with gradient accumulation step as 1.
The batch size per GPU is always 8 due to the GPU memory limits. We also train the network for
30,000 iterations in 4 × batch size setting and use the learning rate as 1e-5.

A.2 More Details about Rendering of Synthetic Data

Flow chart of the synthetic data creation pipeline. In Fig. 7, we show a detailed flow chart to help
readers better understand our rendering process.

Camera
Trajectory

AnnotationsCharacter 
Creation

SMPL-X Model
Simulated Outfits
Clothing Textures

User-generated
anime characters

Motion
Retargeting

SMPL-X Motions

Commercial
rigging software

3D Scenes

HDRI Panorama
Images

3D Scenes

Random trajectories

Random yaw, pitch, rolls

Tracking shots

Camera trajectories

3D Human poses

Depth, normal

Segmentation masks

Figure 7: Flow chart of our synthetic data creation pipeline.

Process of anime characters creation. In Fig. 8, we show the illustration of video rendering process
in creating anime characters.

A.3 Camera Movement Comparison

As our goal is to train a controllable video diffusion model conditioned on camera trajectory and
human pose, we think that let the model be trained on a large range of camera movements (i.e.,
offsets) in all 6 dimensions (XYZ, roll, yaw, pitch) is important. It is also the major motivation to
construct the synthetic part of data in our HumanVid dataset. In Fig. 9, we show statistics of camera
pose offsets of these 6 dimensions. Quantitative results shows that the frame-wise camera pose offset
(i.e., the camera movement of next frame) of synthetic data part shows larger distribution than the real
data part. It illustrates that our camera trajectory design produces large enough camera movement
for modeling natural camera movements in the Internet videos. Besides, experimental results on
in-the-wild cases in inference shows that model trained on such camera trajectories could follow
camera trajectories in real world videos very well.
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Anime characters Motion Animated characters

Figure 8: Illustration of the process of creating our synthetic assets in anime characters.

Figure 9: Statistics of camera movement strength comparison between synthetic data and real data in
the space of location and rotation.

Besides, the current trajectory of camera is achieved by setting two keyframes: the first frame and
the last frame. Although two keyframes could already enable the camera movement to cover a large
region, it is also possible to create synthetic videos using three keyframes and five keyframes in our
rendering pipeline. Such cases could be found in the supplementary materials or the project website.

A.4 Visualization of Human Mask, Depth and Normal

In Fig. 10, we show the example of paired data of RGB image, human segmentation mask, depth
map and normal map. It is achieved by putting SMPL-X characters [10] at a random place of a
large-scale city scene dataset [35]. The scene and human are jointly rendered by Unreal Engine. As
the major focus of our dataset is not 3D information, we only shows that our rendering pipeline is
able to produce human mask, depth and normal, yet our dataset will not provide them.

A.5 Visualization of Human Keypoints Tracking

While our rendering pipeline primarily focuses on generating synthetic videos with human pose and
camera parameters, it can also perform point tracking functionality similar to PointOdyssey [86]. As
demonstrated in Fig. 11, we present a preliminary example of human keypoint tracking, where we
specifically track human keypoints rather than all scene or object points. Our rendering pipeline has
the potential to support point tracking data generation with some additional development.
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Figure 10: Illustration of human segmentation mask (top right), normal map (bottom left), and depth
map (bottom right) in our synthetic data.

Figure 11: Illustration of human keypoints tracking by leveraging our synthetic data creation
pipeline.

A.6 Details of User Study Questionnaires.

We show the description of our user study as follows.

We tested 10 samples, each using 4 different character animation methods.
Please make a comprehensive judgment based on the following factors with
descending importance.
1. Appearance of the character (compared to the first frame) and naturalness
of the movement;
2. Smoothness of the background when the camera is moving;
3. Stability of the image and minimal color flickering.
Please rank the 4 animations for each sample in order of preference.

Then, for each question, we provide the image of first frame, and 4 videos generated by 4 methods.
The order of videos are randomized for each question to ensure the fairness of user study.
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B Dataset Documentation

This dataset is designed to train camera-controllable human image animation models. Once trained,
these models can also perform previous setting of static camera human image animation by passing
camera parameters that represent a static camera to the model. For the latest documentation, please
refer to the code in Github3.

To train a human image animation model on HumanVid, follow these steps:

• Download internet videos using the video URLs provided in the text files. Additionally,
download the synthetic videos and camera parameters from the cloud drive.

• Extract human poses from both internet and synthetic videos using DWPose [75].

• Extract camera trajectories for internet videos using Droid-SLAM [62] following
TRAM [69], i.e., using Segment Anything [33] to mask out humans before SLAM.

• Compile all valid camera parameters, RGB videos, and human pose videos into a JSON file
as meta-information.

• Download pretrained checkpoints for CLIP, SD 1.5, Animatediff, CameraCtrl, etc.

• Train the first stage of CamAnimate, which involves learning image-level appearance and
pose control. The camera encoder at the image level is also trained in this stage.

• Train the second stage of CamAnimate, which focuses on learning video-level motion
representations and camera control capabilities.

Camera Parameter Format. Following Droid-SLAM [62], we use the TUM camera format4 to save
the camera parameters. Each data line adheres to the following structure: ’timestamp tx ty tz qx qy qz
qw’. The timestamp is a floating-point number representing the elapsed seconds since the Unix epoch.
The values tx, ty, and tz (float numbers) denote the position of the optical center of the color camera
relative to the world origin as defined by the motion capture system. The values qx, qy, qz, and qw
(float numbers) represent the orientation of the optical center of the color camera in the form of a unit
quaternion, again relative to the world origin as defined by the motion capture system. For camera
parameters of internet videos estimated by Droid-SLAM, these are camera-to-world parameters.
For synthetic data exported by rendering engines, we set these as world-to-camera parameters. The
last two columns of camera parameters for synthetic data represent camera intrinsics, which is the
normalized focal length according to the RealEstate10K dataset 5, i.e., (focal_length / sensor_width,
focal_length / sensor_height).

C Author Statements

We use the CC-BY 4.0 6 license for our HumanVid dataset. We promise that we bear all responsibility
in case of violation of rights.

C.1 Licenses

In our dataset, we use assets from the following sources, and we list their licenses below.

BEDLAM [10]: The licensor of Bedlam grants us to use the asset of SMPL and SMPL-X parameters,
3D body and clothing meshes, 2D textures, and scripts for academic usage, according to the statement
of their website 7. We use such assets to generate SMPL-X character videos in our HumanVid dataset.

Pexels [5]: Pexels is a copyright-free website that grants us to use their videos for free according to
the statement of their website8. We use videos from Pexels as the internet videos part in our dataset.

3https://github.com/zhenzhiwang/HumanVid
4https://cvg.cit.tum.de/data/datasets/rgbd-dataset/file_formats
5https://google.github.io/realestate10k/download.html
6https://creativecommons.org/licenses/by/4.0/
7https://bedlam.is.tuebingen.mpg.de/license.html
8https://www.pexels.com/license/

20

20130https://doi.org/10.52202/079017-0635

https://github.com/zhenzhiwang/HumanVid
https://cvg.cit.tum.de/data/datasets/rgbd-dataset/file_formats
https://google.github.io/realestate10k/download.html
https://creativecommons.org/licenses/by/4.0/
https://bedlam.is.tuebingen.mpg.de/license.html
https://www.pexels.com/license/


VroidHub [6]: VroidHub is a platform that collects user-generated contents. The description of
license for each 3D asset is in this website9. All the 3D avatars we used in our dataset clearly show
the permission of usage in their individual websites.

Rokoko [4]: Rokoko is a open-source blender addon to do motion retargeting on animatable 3D
avatars. Its license is in this Github Repo 10, which grants us to use it in our dataset.

D Maintenance Plan

We will maintain the synthetic videos of our dataset by a cloud drive. For internet videos, we will
provide video links to download raw videos from the website, as we could not redistribute these
videos.

9https://hub.vroid.com/en/license?allowed_to_use_user=everyone&characterization_
allowed_user=everyone&corporate_commercial_use=allow&credit=necessary&modification=
disallow&personal_commercial_use=nonprofit&redistribution=disallow&sexual_
expression=allow&version=1&violent_expression=allow

10https://github.com/Rokoko/rokoko-studio-live-blender/blob/master/LICENSE.md

21

20131 https://doi.org/10.52202/079017-0635

https://hub.vroid.com/en/license?allowed_to_use_user=everyone&characterization_allowed_user=everyone&corporate_commercial_use=allow&credit=necessary&modification=disallow&personal_commercial_use=nonprofit&redistribution=disallow&sexual_expression=allow&version=1&violent_expression=allow
https://hub.vroid.com/en/license?allowed_to_use_user=everyone&characterization_allowed_user=everyone&corporate_commercial_use=allow&credit=necessary&modification=disallow&personal_commercial_use=nonprofit&redistribution=disallow&sexual_expression=allow&version=1&violent_expression=allow
https://hub.vroid.com/en/license?allowed_to_use_user=everyone&characterization_allowed_user=everyone&corporate_commercial_use=allow&credit=necessary&modification=disallow&personal_commercial_use=nonprofit&redistribution=disallow&sexual_expression=allow&version=1&violent_expression=allow
https://hub.vroid.com/en/license?allowed_to_use_user=everyone&characterization_allowed_user=everyone&corporate_commercial_use=allow&credit=necessary&modification=disallow&personal_commercial_use=nonprofit&redistribution=disallow&sexual_expression=allow&version=1&violent_expression=allow
https://github.com/Rokoko/rokoko-studio-live-blender/blob/master/LICENSE.md



