DropBP: Accelerating Fine-Tuning of Large Language
Models by Dropping Backward Propagation

Sunghyeon Woo'* Baesung Park’>* Byeongwook Kim? Minjung Jo?
Se Jung Kwon’ Dongsuk Jeon' Dongsoo Lee?
Seoul National University' NAVER Cloud?

Abstract

Large language models (LLMs) have achieved significant success across various
domains. However, training these LLMs typically involves substantial memory
and computational costs during both forward and backward propagation. While
parameter-efficient fine-tuning (PEFT) considerably reduces the training memory
associated with parameters, it does not address the significant computational costs
and activation memory. In this paper, we propose Dropping Backward Propagation
(DropBP), a novel approach designed to reduce computational costs and activation
memory while maintaining accuracy. DropBP randomly drops layers during back-
ward propagation, which is essentially equivalent to training shallow submodules
generated by undropped layers and residual connections. Additionally, DropBP
calculates the sensitivity of each layer to assign an appropriate drop rate, thereby
stabilizing the training process. DropBP is not only applicable to full fine-tuning
but can also be orthogonally integrated with all types of PEFT by dropping layers
during backward propagation. Specifically, DropBP can reduce training time by
44% with comparable accuracy to the baseline, accelerate convergence to the same
perplexity by 1.5x, and enable training with a sequence length 6.2 larger on
a single NVIDIA-A100 GPU. Furthermore, our DropBP enabled a throughput
increase of 79% on a NVIDIA A100 GPU and 117% on an Intel Gaudi2 HPU. The
code is available at https://github.com/WooSunghyeon/dropbpl

1 Introduction

Since the advent of the transformer architecture [1]], the field of language modelling has experienced
dramatic advancements. Especially, following the scaling laws [2, 3], the development of Large
Language Models (LLMs) [4. 5, 16l [7 8} 9] continues with the aim of achieving or outperforming
human capabilities. However, tremendously increasing the size of the model results in significant
costs for training from scratch. An alternative approach for developing high-capability LLMs without
the costly pretraining on extensive datasets is instruction tuning [10} [11} |12} [13]]. This method
fine-tunes well-trained foundation models on relatively small instruction-following datasets, enabling
the models to better understand and follow prompts.

While fine-tuning Large Language Models (LLMs) on instruction-following datasets is more cost-
effective than training from scratch, it still requires substantial memory for parameters and activations,
along with significant floating-point operations (FLOPs). In this context, Parameter-Efficient Fine-
Tuning (PEFT) techniques [[14}[15/[16] effectively reduce the memory required for parameter gradients
and optimizer states by freezing pretrained weights and selectively training newly added modules.
Moreover, when combined with quantization methods [[17, (18,19} 20, these techniques can further
significantly decrease the memory requirements for parameters.

"Equal contribution
Intern at NAVER Cloud

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

20170 https://doi.org/10.52202/079017-0637

https://github.com/WooSunghyeon/dropbp

Forward Propagation Backward Propagation m

. 300 =
z 2
£ 250 2
Kl © 3K
a 3]
5 48% 3
@ 200 o, o
2 1919 | 7% 153.1 > 6.2x
o 3 x
2 150 2
Py >< 3.7K
g 232 g
= 400 29.6 o
jou 5 K 2.0K
= ©
T 50 9038 o 17.7 117.5 T 1.2K
= : z 0.6K
Ful-FT Ful-FT+DropBP LoRA LoRA+DropBP QLoRA QLORA QLORA QLoRA
(p=0.875) (p=0.875) DropBP DropBP DropBP
(p=0.5) (p=0.75) (p=0.875)
(a) Training time per sample of LLaMA2-7B. (b) Available max sequence length of LLaMA2-70B.

Figure 1: Performance enhancements in fine-tuning large language models using DropBP when the p
represents the target average drop rate for backward propagation: (a) Training time per sample for
fine-tuning LLaMA2-7B with DropBP, at a sequence length of 512 and a micro batch size of 2. (b)
Available max sequence length for fine-tuning LLaMA2-70B with DropBP, at a micro batch size of 1
on an NVIDIA-A100 GPU.

While Parameter-Efficient Fine-Tuning (PEFT) has successfully reduced memory associated with
parameters, two significant challenges remain for efficient fine-tuning: computational cost and
activation memory, both of which are linked to the backpropagation [21]]. First, fine-tuning Large
Language Models (LLMs) using a backpropagation requires substantial floating-point operations
(FLOPs). Specifically, the backpropagation algorithm necessitates forward propagation to calculate
outputs and backward propagation to compute gradients for inputs and parameters. Notably, backward
propagation demands twice the computational operations compared to forward propagation, thus
becoming the primary bottleneck. Second, all intermediate outputs (i.e., activations) generated during
forward propagation must be stored for compute in backward propagation. This activations consume
considerable memory, which becomes especially critical when training LLMs on long sequence
contexts [22, 23]].

In this paper, we introduce Dropping Backward Propagation (DropBP), an efficient fine-tuning
algorithm for LLMs that significantly reduces computational costs and activation memory. DropBP
randomly drops layers during backward propagation, which is essentially equivalent to training
shallow submodules generated by undropped layers and residual connections. As a result, these
undropped layers no longer require FLOPs and activation memory during backward propagation.
Additionally, DropBP calculates the sensitivity of each layer, an indicator of its impact on the total
training process, to adjust drop rate. This careful calibration of drop rate according to layer sensitivity
ensures more stable training. This DropBP algorithm can be seamlessly integrated with any PEFT
algorithm, operating orthogonally by simply dropping layers during backward propagation.

We implemented DropBP as an easy-to-integrate PyTorch library [24], requiring only minimal
changes to the existing training codes. In experiments, DropBP successfully reduces training time as
shown in Fig. [Ta] maintaining comparable accuracy on the MMLU [25] and commonsense reasoning
tasks [26} 27} 28| 29/ 30]]. The DropBP also accelerated the convergence of the same perplexity by
1.5x in LLaMA2-70B [8]]. Moreover, DropBP substantially decreases activation memory, increasing
an available maximum sequence length by up to 6.2 x in LLaMA2-70B on a single NVIDIA A100
GPU [31], as shown in Fig. Finally, our DropBP increases training throughput by up to 79%
and 117% on a single NVIDIA A100 GPU and Intel Gaudi2 HPU [32]], respectively, when fully
fine-tuning LLaMA3-8B [9]. In summary, the main contributions of our paper are:

* We propose DropBP, an efficient fine-tuning algorithm that randomly drops backward
propagation based on layer sensitivity.

https://doi.org/10.52202/079017-0637 20171

* We implemented DropBP as a user-friendly PyTorch extension with a straightforward API
for ease of use, making it easily applicable to existing training codes.

* DropBP reduces training time by 44% with comparable accuracy, increases convergence
speed by 1.5x , increases the available maximum sequence length up to 6.2 x, and enhances
training throughput up to 117%.

2 Background & Motivation

Backpropagation Backpropagation [33]], a core algorithm for training deep neural networks,
involves both forward and backward propagation. Specifically, the training process in the linear layer
is represented as follows:

Forward Prop: H,,; = W x H;,, €))]
Backward Prop: VH;, = wT x VH,.¢ 2)
VW = VH,,, x H}, 3)

where H and W represent the activations and parameters, respectively, with *x’ indicating matrix
multiplication operation. The gradients of H and W are denoted by VH and VW. The computational
costs during forward propagation primarily arises from matrix multiplication for computing output
activations by Eq. |1} In backward propagation, the computational burden is primarily due to matrix
multiplication for calculating input gradients by Eq. [2]and parameter gradients by Eq. 3] Note that
the computational costs of these equations are almost equal. Consequently, the FLOPs required for
backward propagation including Eqgs. [2]and [3]are approximately 2 as large as the FLOPs needed
for forward propagation by Eq. |1} Furthermore, the activations of all layers (H?;L) must be stored in
memory for use in backward propagation computations in Eq. [3} Therefore, focusing on reducing the
computations during backward propagation is crucial for decreasing both the overall computational
costs and the activation memory.

Interpretation the model with residual connections Residual connections are one of the widely
used methods to address the issue of vanishing gradients [34]. Transformer [1] also incorporates
residual connections that bypass multi-head attention and feedforward networks. Networks utilizing
these residual connections can be interpreted as ensembles of several submodules [35]]. For example,
if we expand the model with three residual connections as shown in Fig. [24] it can be represented as a
combination of eight submodules, as depicted in Fig. 2b| From this perspective, a network with n
layers can be interpreted as an ensemble of 2" submodules [35]].

AR~

®J1F1|—$J—|F2|—$j—|F3|—<L—» %szF4F3

(a) 3-layers model with residual connections. (b) Combination of multiple submodules.

Figure 2: Interpreting the model with residual connections as a combination of multiple submodules.

3 Methodology

3.1 Dropping Backward propagation

In Section [2] we observed that the backpropagation algorithm consumes a significant amount of
FLOPs and activation memory, particularly for the backward propagation. To reduce this overhead,

20172 https://doi.org/10.52202/079017-0637

Forward Propagation Backward Propagation
Xout v Xout

4
=0.
@ No drop e :P GBJ-I Fy 1—45‘,{ F,]/@U—] F3 l—él%—
Position-wise Position-wise
MLP

MLP
@ No drop p=0.3 [Fy]@[F I/’

o

]

Multi-Head Multi-Head
Attention Attention ©
S (0
+
®
X, in VX in
(a) The concept of DropBP. (b) DropBP as combiation of shallow submodules.

Figure 3: The overveiw of DropBP.

we propose a straightforward approach: Dropping Backward Propagation (DropBP). DropBP is
designed to drop layers exclusively during backward propagation, effectively reducing both FLOPs
and activation memory for the dropped layers, as demonstrated in following equations:

Ximm = Xz’n +D i (fATTN(fLN (in))) (4)
Xout = szm + Dpi+1 (fFFN (fLN (X’me))) (5)

Here, X;,, Xout, and X;,,,, represent the input, output, and immediate activation between the
attention layer and feedforward network in a transformer block, respectively. farrn, frrn, and
frn denote the attention layer, feedforward network, and layer normalization of the transformer
block. The DropBP layer, defined as D, (X), skips backward propagation in the input X with a
probability of p, while not dropping forward propagation. Following to Eqs. [and [5] backward
propagation in the attention layer and feedforward network is dropped with probabilities p; and p;4 1,
respectively, as shown in Fig. 3a]

We can view the transformer as a collection of a lot of submodules composed of various modules
(i.e., farrn o fon and frpn o frn) with residual connections, as described in Section 2. When the
transformer block contains n units, each including multi-head attention and a feedforward network,
the model can be interpreted as an ensemble of 22" submodules. From this perspective, DropBP can
be interpreted as training only certain shallow submodules. For example, as shown in Fig. [3H] if the
F5 layer is dropped, only the shallow submodule composed of the remaining layers is trained during
backward propagation. Therefore, if the overall drop rate is p, DropBP can be interpreted as training
shallow submodules with the depth of 2n (1 — p) or less, since 2np layers are dropped. We anticipate
that training these smaller modules alone can effectively fine-tune well-pretrained LLMs, based on
the analysis that shallow submodules have a significant impact on the overall training process as
detailed in Appendix [A]

3.2 Sensitivity-based Drop Rate Allocation

In Section[3.1] we introduce DropBP, which selectively drops layers during backward propagation
and trains only certain shallow submodules. In addition, we hypothesized that the significance of
individual layers and the submodules encompassing these layers varies in their impact on the overall
training process. Therefore, we assign different drop rate to each layer based on sensitivity, which
is defined by defined by how much each layer and its encompassing submodules affect the overall
training process in terms of parameter gradient. Specifically, we calculate the sensitivity of a layer by
the variance in L2-norm of parameter gradients between when the backward propagation of that layer

https://doi.org/10.52202/079017-0637 20173

is skipped or not, inspired by GradNormVar [36], a memory efficient gradient variance approximation,
as below:

St =3 (IVWill — [[VW"||2)? ©6)

(2

where S; denotes of the [-th layer. Here, VW, represnets the parameter gradient of the i-th layer
when no layers are dropped, while VWl(.l) denotes the parameter gradient of the ¢-th layer when the
[-th layer is dropped during backward propagation. After calculating the sensitivity for each layer, we
aim to minimize the expected sensitivities across all layers-essentially the expected gradient variance
caused by DropBP-under a given FLOPs as follow:

min 2(1 —p)Si, st Z(l —p))F; < F @)

where p; denotes the drop rate, and F; denotes the FLOPs of the i-th layer during backward
propagation. F; represents the target FLOPs, derived from the target average drop rate pg,q (i.€.
F; = (1 — pavg) >_; F). In other words, we determine the drop rates across all layers that minimize
the expected sensitivities of the model, while satisfying a given FLOPs budget, by solving Problem

In practice, DropBP addresses the Prob. [7jusing a simple greedy algorithm, as detailed in Section &

4 Evaluation

4.1 Implementation and Settings

1 import torch 1 import torch
2 from dropbp.layer import DropgP 2 from dropbp.handler import DropBPHandler
4 class Block(torch.nn.Modoule): # transformer block 4 model = ... # define a model
5 def __init_ (self, ..): 5 optimizer = ... # define a optimizer Step 2. Set the initial drop rate
self.norm 1 = ... 6 idropbp_handler = DropBPHandler(model) |
7 self.attn = ... 7 Earopbp,handler.set,minal,arop,rate(drop,rate)
8 self.norm 2 = ... _Step 1. Insert a DropBP layer 8
. celfomlp = .. into the Transformer Block o % training loop
10 iself.dropbp_attn = Dropsp(layers=[self.norm 1, self.attn], flopsa.)i 10 for iter in ... _v Step 3. Set the dropped layers for each iteration
1 EselF.dropbpimlp = propsp(layers=[self.norm 2, self.mlp], flops=..) | 1 dropbp_handler’ dropbp_handler.set_dropped_layers()
12 def forward(self, x, ..): 12 def backprop Step 4. Adjust the drop rates of layers
13 h = self.attn(self.norm 1(x), ...) 13 output = model(data) based on sensitivities
14 x = self.dropbp_attn(h)+x # instead of 'x = hix' 14 loss = loss_func(output, target)
15 h = self.mlp(self.norm 2(x)) 15 optimizer.zero_grad()
16 x = self.dropbp_mlp(h)+x # instead of 'x = h+x' 16 loss.backward()
17 return x 17 if iter == int(max_iter * 0.1)
18 dropbp_handler. sensitivity based drop_bp(backprop, drop_rate)
19 Step 5. Exclude the case
20 out = model(data) where all layers are dropped
21 Toss = loss_func(output,target)
22 non_grad = dropbp_handler.detact_non_grad()
2 if not(non_grad):
2 Toss backuard()
25 optimizer.step()
(a) Code for preparing a model with DropBP. (b) Code for training with DropBP.

Figure 4: Code implementation for integrating DropBP.

DropBP aims to decrease the training costs in fine-tuning based on backpropagation, consequently
enabling the acceleration of both full fine-tuning and parameter-efficient fine-tuning using back-
propagation. To facilitate practical implementation, we developed a user-friendly DropBP library in
PyTorch [24]], as demonstrated in Fig. [In detail, we implemented a DropBP layer that internally
drops backward propagation in the input direction according to a given drop rate as shown in Fig. fa
The DropBP layer designed to initially receive the FLOPs of the layers that would be skipped (F};) as
initial value to solve Prob. [l

Additionally, we developed a DropBPHandler that automatically solve Prob. [7]by assigning varying
drop rate to each layer using a simple greedy algorithm, as demonstrated in Fig. @b] Specifically, the
process begins by setting the drop rate (p;) of all layers to 0 and then gradually increases them to

20174 https://doi.org/10.52202/079017-0637

align with the target average drop rate (pq.4) set by the user. In each step, the drop rate for each layer
is incremented by 0.1, ensuring that the increase in total expected sensitivity is kept to a minimum.
We train with uniform drop rate for the initial 10% of total iterations and then adjust the drop rate for
each layer based on sensitivity when training is stable. Since sensitivity is calculated only once at the
10% of the entire iteration, the overhead from this calculation is negligible.

We integrated our DropBP code into LitGPT [37] and HuggingFace 38, repositories for training
and evaluating LLMs. We first fine-tuned LLaMA2-7B, 13B, and 70B [8]] on Alpaca [L1] and
Dolly [13]] datasets. The fine-tuned models were evaluated on 5-shot Massive Multitask Language
Understanding (MMLU) tasks [25] and 0-shot commonsense reasoning tasks [26} 27, 128 |29} [30]]
using Im-evaluation-harness [39] library. We also fine-tunes LLaMA3-8B [9] on the Oasst1 dataset
[40] and evaluating the model on MT-Bench task [41] using GPT4o0-mini [S] as a judge. These
experiments were conducted on a single NVIDIA A100 GPU, and we measured the training time,
memory usage, and convergence speed. More details about setup can be found in Appendix [F}

Table 1: Test accuracy on MMLU and commonsense reasoning tasks. In DropBP, drop rate is the
target average drop rate across all layers in backward propagation. Note that Full-FT stands for full

fine-tuning.
MMLU (5-shot) Commonsense Reasoning (0-shot)
Method Drop Rate Dataset Human. STEM Social. Other Avg. | PIQA HS Arc-C Arc-E ()gBQA WG Avg.
LLaMA2-7B - - 435 37.0 51.6 522 457 | 79.1 760 462 74.5 440 693 649
LoRA - Alpaca 42.7 36.3 50.0 512 447 | 80.0 759 485 75.0 462 705 66.0
LoRA+DropBP 0.5 Alpaca 42.8 35.7 50.3 51.0 447 | 796 760 487 75.5 462 69.6 659
LoRA+DropBP 0.75 Alpaca 414 36.3 48.4 50.6 438 | 795 769 480 75.6 474 690 66.1
LoRA+DropBP 0.875 Alpaca 41.5 34.5 49.6 504 437 | 796 772 482 76.3 478 69.1 664
Full-FT - Alpaca 427 35.6 50.4 SI.1 447 | 792 761 480 75.8 452 698 657
Full-FT+DropBP 0.5 Alpaca 426 354 49.8 51.0 444 | 795 762 478 75.4 454 685 655
Full-FT+DropBP 0.75 Alpaca 42.6 36.7 51.2 509 450 | 788 77.0 486 75.8 456 698 659
Full-FT+DropBP 0.875 Alpaca 42.7 353 50.7 512 447 | 792 769 468 75.3 462 693 656
LoRA - Dolly 439 384 53.0 533 467 | 79.0 762 477 71.0 450 69.7 658
LoRA+DropBP 0.5 Dolly 44.0 36.8 53.1 532 464 | 793 763 413 76.5 448 688 655
LoRA+DropBP 0.75 Dolly 43.9 37.0 524 53.1 463 | 794 762 462 75.4 448 688 65.1
LoRA+DropBP 0.875 Dolly 43.6 36.7 523 53.0 461 | 79.1 761 458 75.3 446 684 649
Full-FT - Dolly 433 38.1 53.6 532 46.6 | 793 762 468 76.2 442 689 653
Full-FT+DropBP 0.5 Dolly 434 37.1 529 53.0 462 | 792 762 464 75.6 444 688 65.1
Full-FT+DropBP 0.75 Dolly 43.1 36.7 51.8 52,6 457 | 792 764 458 75.4 446 69.1 65.1
Full-FT+DropBP 0.875 Dolly 42.5 36.8 52.4 524 456 | 792 763 462 75.0 448 69.0 65.1
LLaMA2-13B - - 522 44.1 62.9 61.5 548 | 80.6 794 495 77.4 456 725 675
LoRA - Alpaca 51.7 438 63.3 61.7 547 | 806 795 516 78.5 458 721 68.0
LoRA+DropBP 0.5 Alpaca 524 442 63.1 62.0 550 | 80.7 79.6 509 78.4 448 717 677
LoRA+DropBP 0.75 Alpaca 52.1 442 64.1 61.6 551 | 81.0 797 515 79.1 456 717 68.1
LoRA+DropBP 0.875 Alpaca 51.1 442 63.3 616 546 | 808 798 510 78.2 450 714 677
LoRA - Dolly 51.9 43.6 63.7 62.0 548 | 804 799 511 8.4 456 717 6719
LoRA+DropBP 0.5 Dolly 524 44.1 63.4 62.1 551 | 80.7 799 509 78.5 456 723 68.0
LoRA+DropBP 0.75 Dolly 52.1 443 63.3 61.7 549 | 80.6 798 514 71.8 454 721 678
LoRA+DropBP 0.875 Dolly 52.8 439 63.4 619 551 | 805 797 513 719 452 720 678
LLaMA2-70B - - 64.7 57.0 79.6 740 683 | 824 830 573 80.6 486 774 716
QLoRA - Alpaca 64.9 57.0 79.6 740 683 | 828 833 596 822 484 785 725
QLoRA+DropBP 0.5 Alpaca 65.8 56.2 78.8 73.0 68.1 | 832 829 602 822 480 719 724
QLoRA+DropBP 0.75 Alpaca 65.0 55.2 78.8 735 677 | 835 831 589 81.3 482 713 720
QLoRA+DropBP 0.875 Alpaca 66.4 56.3 79.9 741 688 | 834 837 60.1 81.6 486 780 72.6
QLoRA - Dolly 65.5 58.0 79.7 745 689 | 828 833 583 81.2 480 774 718
QLoRA+DropBP 0.5 Dolly 65.1 572 79.3 741 684 | 828 834 578 81.7 476 781 719
QLoRA+DropBP 0.75 Dolly 65.1 574 79.7 745 68.7 | 824 835 584 82.0 482 718 720
QLoRA+DropBP 0.875 Dolly 65.4 56.6 79.6 741 685 | 831 831 576 81.6 480 785 720

Table 2: Training time, memory usage, and test score on MT-Bench task when fine-tuning LLaMA3-
8B with DropBP on Oasst1 datasets.

Method Mem Time Human. STEM Role. Extract. Writing Reason. Coding Math | Avg.
No-tunes - - 6.25 5.70 5.45 4.85 5.20 4.40 3.20 1.95 4.62
LoRA 57G 27m 7.00 6.40 5.70 5.80 5.30 4.55 3.25 2.95 5.12
+DropBP (p=0.5) 42G 21m 6.55 6.25 6.05 5.50 5.05 4.45 3.75 3.25 5.11
+DropBP (p=0.75) 36G 17m 6.75 5.90 5.80 5.70 5.35 4.30 3.60 3.30 5.09
+DropBP (p=0.875) 32G 16m 6.60 6.55 5.90 5.70 5.70 3.95 3.40 2.80 5.08

4.2 Main Results: Accuracy and Efficiency

Accuracy on MMLU and Commonsense Reasoning We employ DropBP to accelerate baseline
fine-tuning processes, including full fine-tuning (Full-FT), LoRA [14], and QLoRA [18]], on the

https://doi.org/10.52202/079017-0637 20175

Alpaca and Dolly datasets. As demonstrated in Table[T} DropBP achieves accuracy comparable to the
baseline, with deviations less than 1% in all scenarios, and it even outperforms the baseline in several
instances. Specifically, when DropBP is applied to fine-tune LLaMA2-7B, there is a 1% or less
decrease in 5-shot MMLU accuracy compared to the baseline, while maintaining comparable 0-shot
commonsense reasoning accuracy. In contrast, for LLaMA2-13B and LLaMA2-70B, fine-tuning
with DropBP results in almost no decrease in accuracy on the MMLU and commonsense reasoning
tasks, even at the high drop rate of 0.875.

Accuracy on MT-Bench Similar trends are observed in the MT-Bench tasks, with negligible
decreases in accuracy as shown in Table[2] Specifically, when fine-tuning LLaMA3-8B on the Oasst]
dataset, DropBP generates responses of comparable quality to the baseline across various generation
tasks. Although scores slightly decrease as the DropBP rate increases, the model fine-tuned with a
high DropBP rate of 0.875 still achieves significantly higher scores compared to non-tuned models.

Table 3: Time required for fine-tuning LLaMA?2 models with DropBP on the Alpaca datasets when p
denotes the target average drop rate. The number of fine-tuning samples is SOK.

.. DropBP
Model Precision PEFT o (aseline) ™ pe0.5 pe0is pe0.875
BFl6-mixed | LoRA 22h I7n L4h 1.3h
LLaMA2-7B BF16 Full-FT 2.0h 13h LOh 0.8h
LLaMA2-13B BF16 LoRA 2.9h 21h L7h 1.5h
LLaMA2-70B BF16 QLoRA 29.6h 222h 184h 165h

Training Speed and Memory Usage We measured

the fine-tuning time required to obtain the results in :

Table[l] as presented in Table[3] When using DropBP ’ e gasegr;e(o)

to LoRA or QLoRA, training time is reduced by 25%, A\ T DropP (ho0.7%)

38%, and 44% at drop rates of 0.5, 0.75, and 0.875, 61 AN DropBP (p=0.875)

respectively. In contrast, using DropBP to Full-FT re-

sulted in even higher training time reductions of 33%, 5

50%, and 57% at the same drop rates. These findings &

align with the theoretical reduction in FLOPs due

to DropBP, as detailed in Appendix |Bl We also con-

firmed that DropBP can significantly reduce memory

usage during fine-tuning, as shown in Table[2] Specif- 21 1

ically, while not using DropBP results in a memory 1.50 x speed up

consumption of 57GB, applying DropBP with a drop 0 1 3 3 4 5

rate of 0.875 reduces memory usage to 32GB by elim- Training time (Hours)

inating the storage of activation memory for dropped

layers. Additionally, we evaluated the convergence tunine LLaMA2-70B th B OLoRA (b

speed to reach the same validation perplexity (PPL) D8 L : rough QLORA (base-
. sl line) with DropBP on the Alpaca dataset. The

on downstream tasks, as illustrated in Fig. E] and

Fig. [TOUTT]in Appendix[C] The results indicate that P represents the target average drop rate for

’ . =l backward propagation.
our DropBP increases training speed by up to 1.5x
compared to the baseline in LLaMA2-70B.

Figure 5: Validation perplexity (PPL) for fine-

4.3 Usability of DropBP

In this section, we evaluate the usability of DropBP, including its ability to train on long sequence
data and its training throughput in constrained environments, such as a single NVIDIA A100 GPU or
Intel Gaudi2 HPU.

Table 4: Available maximum sequence length for fine-tuning LLaMA2-70B using QLoRA with
DropBP on a NVIDIA A100 GPU, at a micro batch size of 1.
Method QLoRA w/ DropBP
Drop Rate - ; 0.5 0.75 0.875

,,

Max Seq Len 0.6K : 12K (2.0x) 20K@3.3x) 3.7K(6.2x)

20176 https://doi.org/10.52202/079017-0637

We first measured the maximum sequence length that could be trained without an Out Of Memory
(OOM) on a single NVIDIA A100 GPU. The results in Table] indicate that our DropBP considerably
increases the maximum sequence length, by up to 6.2x the baseline when the drop rate was 0.875.
This is because DropBP allows skipping certain layers during backward propagation, eliminating
the need to store activations required for calculating parameter gradients of those skipped layers.
We believe that this property of DropBP will be particularly useful for fine-tuning LLMs with
long-context data [22} [23]].

16
oom

Throughput (sentence/s)
Throughput (sentence/s)

-o- Baseline

—— DropBP (p=0.5)

—— DropBP (p=0.75)
DropBP (p=0.875)

-o- Baseline

—— DropBP (p=0.5)

~—+— DropBP (p=0.75)
DropBP (p=0.875)

20 30
Batch Size per Iteration

(a) Throughput in a single A100 GPU.

Figure 6: Throguhput (sentences/s) on a single NVIDIA A100 GPU on a single NVIDIA A100 GPU
and Intel Gaudi2 HPU when fine-tuning LLaMA3-8B with a sequence length of 512.

40 50 20 30 40

Batch Size per Iteration

(b) Throughput in a single Gaudi2 HPU.

50 60

We also evaluated training throughput when full fine-tuning LLaMA3-8B using BF16 precision on a
single NVIDIA A100 GPU and an Intel Gaudi2 HPU, increasing the batch size up to the point of
OOM errors. As shown in Fig. [6} applying DropBP allows for an increase in batch size per iteration
by up to 3.3 on the NVIDIA A100 GPU and 5.2 on the Intel Gaudi2 HPU, ensuring high hardware
utilization and scalability. Furthermore, DropBP demonstrates a sustained increase in throughput
over the baseline at an identical batch size. Ultimately, with a drop rate of 0.875, DropBP achieves a
throughput of 16.4 sentences/s on the NVIDIA A100 GPU and 28.4 sentences/s on the Intel Gaudi2
HPU, increasing by 79% and 117% over the baseline, respectively.

4.4 Ablation Study

Impact of the Number of Submodules We con-
ducted an ablation study to investigate the impact

of the number of trainable submodules on the fine-
tuning of LLMs. This study compared DropBP,
which trains varying submodules randomly at each
iteration, with layer freezing, which trains submod-
ules composed of only upper layers. Here, the skip
rate p denotes the drop rate in DropBP and the pro-
portion of layers that are frozen in the layer freezing.

First, we analyzed the number of submodules trained
by layer freezing and DropBP. In the case of layer
freezing, the lower 2np layers are frozen and only
the remaining 2n(1 — p) layers are trained. In this
case, the number of trainable upper submodules is
227(1=P) In contrast, DropBP randomly drops 2np
layers at each iteration, allowing it to train all sub-
modules with a depth of 2n(1 — p) or less without
the restriction of training only the submodules com-
posed of the upper layers. In this scenario, since the

number of different submodules at depth ¢ in the entire network is o,,C;, DropBP can train >

2, C; submodules.

--<- Baseline

- Freeze (p=0.5)
Freeze (p=0.75)
Freeze (p=0.875)
DropBP (p=0.5)
DropBP (p=0.75)
DropBP (p=0.875)

5
[%
4
\
3 " \n\ . -
e T S S §
2
0.4 x 10Y7 0.8 x 1017 1.2 x 1017
FLOPs

Figure 7: Validation perplexity (PPL) for fine-
tuning LL.aMA2-7B through LoRA with layer
freezing or DropBP on the Alpaca dataset.

2n(1-p)
i=0

https://doi.org/10.52202/079017-0637

As shown in Table[5] when fine-tuning LLaMA2-7B using layer freezing or DropBP with a high skip
rate of 0.875, we observed a significant 1.8% decrease in accuracy with layer freezing compared to

20177

the baseline, while DropBP exhibited a relatively smaller accuracy decrease of 1.0%. Furthermore,
as illustrated in Fig. |/} the convergence speed to the same validation PPL on the downstream task is
much slower for layer freezing compared to DropBP, especially at high skip rates, where it converges
even more slowly than the baseline. We believe this is due to the ability of DropBP to train a relatively
larger number of submodules (Zfzo 64C1), compared to the fewer submodules trained by layer
freezing (28). Moreover, when fine-tuning LLaMA2-70B, DropBP resulted in a 0.5% increase in
MMLU 5-shot accuracy compared to the baseline, despite a high skip rate of 0.875. This improvement
is due to the large number of layers in LLaMA2-70B, enabling DropBP to train deeper and more

numerous submodules (Zfio 160C;) even with a high skip rate of 0.875.

Table 5: The number of submodules being trained and test accuracy on the 5-shot MMLU tasks with
layer freezing or DropBP on the Alpaca datasets.

LLaMA2-7B LLaMA2-70B
Method LoRA LoRA+Freeze LoRA+DropBP | QLoRA QLoRA+DropBP
Drop Rate - 0.875 0.875 - 0.875
~#of Submodules | 2% 1 28 S e | 2100 S0 HeoCi
Accuracy (%) 447 1 429(-1.8) 43.7 (-1.0) 68.3 68.8 (+0.5)

Impact of Sensitivity-based Drop Rate We

also conducted an ablation study to analyze the Table 6: Test accuracy on the 0-shot commonsense
effectiveness of sensitivity-based drop rate al- reasoning tasks when fine-tuning LLaMA2-7B and
locations. First, we identified the sensitivity of (3B through LoRA with DropBP at uniform or

different layers by calculating Eq. E]during the sensitivity-based drop rate on the Alpaca datasets.
training of LLMs in various scenarios, as illus- The target average drop rate is 0.875.

trated in Fig. [8al and Fig. [7]in Appendix

While the distribution varies slightly depending ~ LLaMA2 s 3B
on the number of parameters, fine-tuning ap- LR le-4 3e-4 led 3ed
proach, and target average drop rate, there is a LoRA 65.7 660 682 68.0

consistent tendency to assign importance to both ~ +DropBP (uniform) - 66.463.1 66.6 ~ 65.8
the initial and final layers. Consequently, drop +DropBP (sens) 666 647 677 673
rates for these layers are allocated to be lower

by a simple greedy algorithm, as explained in Section[4.1]

Additionally, we fine-tuned the LLaMA2-7B and 13B using DropBP on Alpaca datasets, comparing
sensitivity-based allocated drop rates with uniform drop rate. In detail, we compared the average
accuracy of commonsense reasoning tasks when fine-tuning the models with a learning rate of le-4
and 3e-4, as shown in Table[6] Note that the PPL for fine-tuning LLaMA2-7B in Fig. [8b] corresponds
to a learning rate of 3e-4. The results indicate that sensitivity-based drop rates achieved a 1.6% higher

1.0
8 <+ uniform (p=0.875)
06x103 **° 1 ; —s=— sensitivity-based (p=0.875)
0.8
2 J % 6
2 0.4x1073
= * e 105 o« i 5
@ o o
c . o
& o 4
02x1073 0.2
3
0 0 ?
0 10 20 30 40 50 60 12 x 1017 2.4 x 1017 3.6 x 1017
Layer Index FLOPs

(a) Distribution of drop rates determined by sensitivity when (b) Validation PPL with uniform and
the average drop rate is set to 0.875. sensitivity-based allocated drop rates.

Figure 8: Distribution of drop rates and the validation PPL when fine-tuning LLaMA2-7B through
LoRA with DropBP at uniform or sensitivity-based drop rate on Alpaca datasets.

20178 https://doi.org/10.52202/079017-0637

accuracy compared to uniform drop rates with a relatively high learning rate of 3e-4, while there
was no significant difference in accuracy when the learning rate was set to 1e-4 in LLaMA2-7B. Fig.
[8b]also shows that sensitivity-based drop rates consistently stabilized the convergence of validation
loss, whereas uniform drop rates occasionally diverged when the learning rate was set to 3e-4 in
LLaMAZ2-7B. This phenomenon is even more pronounced with LLaMA2-13B, resultingina 1.1%
increase in accuracy through sensitivity-based drop rate allocation, even with a low learning rate
of le-4. In other words, sensitivity-based drop rate allocation helps stabilize the training process,
especially in the case of large learning rates or larger models.

5 Related Works

Parameter-efficient fine-tuning When fine-tuning LLM, substantial amount of memory is required
to store parameters, gradients, and optimizer states. LoRA [14]] successfully reduces the memory
allocated to gradients and optimizer states by inserting trainable rank decomposition matrices into the
linear layers of the model while keeping the original LLM parameters frozen. LLaMA-Adapter [15]]
and LLaMA-Adapter V2 [16] significantly reduce training memory using trainable adoption prompts
and zero-initialized attention mechanisms. Some studies attempt to reduce not only the memory
footprint of gradients and optimizer states but also that of parameters by considering quantization.
PEQA [20], for instance, quantizes the original LLM parameters into a low-bit format and fine-tunes
only the scale factor, thus saving memory for parameters during training. QLoRA [18] and QA-
LoRA [19], built upon LoRA, also employ quantization on the original LM parameters, significantly
reducing parameter memory during training. Our DropBP is orthogonal and easily combinable with
these PEFT techniques, enabling memory and computationally efficient fine-tuning.

Parallelism Parallelism techniques are widely used to accelerate training LLM using multiple GPU
efficiently. Data parallelism [42] is a technique that involves dividing data along the batch dimension
for training across multiple GPUs, which still requires sufficient memory to load the entire model on
each GPU. Conversely, tensor parallelism [43} 44, 45| partitions the model across GPUs, dividing
matrix multiplication operations column-wise and row-wise. Pipeline parallelism [46| 47, 48] involves
partitioning the model depth-wise across GPUs, which enables efficient pipeline scheduling. The
Zero Redundancy Optimizer (ZeRO) [49] and Fully Sharded Data Parallelism (FSDP) [150] shard
parameters, gradients, and optimizer states across multiple GPUs, retrieving parameters when needed
to restore their non-partitioned form, enabling the overlapping of computation and communication
during training. While these parallelism techniques are designed to efficiently manage the massive
computational costs across multiple GPUs, our DropBP specifically aims to reduce the inherent
computational costs required for training process.

Layer dropping Stochastic Depth [51]], the first approach to randomly drop layers during neural
network training, reduces overfitting and costs in image recognition. Layerdrop [52] randomly drops
layers during training and selectively uses some layers during inference, accelerating both processes
for transformers. Progressive Layer Dropping (PLD) [53]] progressively increases the drop rate across
depth and iterations, improving training speed without accuracy degradation in transformers. These
techniques speed up pretraining of small transformer models like BERT [54] by dropping layers
during the entire training process, whereas DropBP, specific to fine-tuning LLMs, drops layers only
during backward propagation. Consequently, as detailed in Appendix [E} our DropBP achieves higher
performance compared to these layer dropping when fine-tuning LLMs.

6 Conclusion

We propose DropBP, an effective algorithm that accelerates the fine-tuning of LLMs by randomly
dropping layers during backward propagation, which can be orthogonally integrated into both full-
fine tuning and parameter-efficient fine-tuning. We developed the DropBP library as a user-friendly
PyTorch extension to facilitate easy integration into existing training codes. Experimental results
demonstrate that DropBP significantly accelerates training speed during the fine-tuning of LLMs,
achieving comparable accuracy to baseline fine-tuning. Furthermore, DropBP reduces activation
memory, enabling long-context training and increasing batch size on limited resources. Consequently,
applying DropBP enables a 79% higher throughput on an NVIDIA A100 GPU and a 117% higher
throughput on an Intel Gaudi2 HPU.

https://doi.org/10.52202/079017-0637 20179

Acknowledgment

This research was supported in part by the NAVER-Intel Co-Lab. The work was conducted by Seoul
National University and reviewed by both NAVER and Intel.

References

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Neurips, Long Beach, CA, USA, December 4-9, 2017,, pages 5998-6008, 2017.

[2] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. CoRR, abs/2001.08361, 2020.

[3] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack W. Rae, and Laurent
Sifre. An empirical analysis of compute-optimal large language model training. In Sanmi
Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, NeurIPS,
New Orleans, LA, USA November 28 - December 9, 2022, 2022.

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Hugo
Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, NeurIPS, virtual, December 6-12, 2020, 2020.

[5] OpenAl. GPT-4 technical report. CoRR, abs/2303.08774, 2023.

[6] Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Slav Petrov,
Melvin Johnson, Ioannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily
Pitler, Timothy P. Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael Is-
ard, Paul Ronald Barham, Tom Hennigan, Benjamin Lee, Fabio Viola, Malcolm Reynolds,
Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens Meyer, Eliza Rutherford, Erica Moreira,
Kareem Ayoub, Megha Goel, George Tucker, Enrique Piqueras, Maxim Krikun, Iain Barr,
Nikolay Savinov, Ivo Danihelka, Becca Roelofs, Anais White, Anders Andreassen, Tamara von
Glehn, Lakshman Yagati, Mehran Kazemi, Lucas Gonzalez, Misha Khalman, Jakub Sygnowski,
and et al. Gemini: A family of highly capable multimodal models. CoRR, abs/2312.11805,
2023.

[7] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023.

[8] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien

20180 https://doi.org/10.52202/079017-0637

Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models. CoRR, abs/2307.09288, 2023.

[9] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne
Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano,
Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily
Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee,
Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell,
Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra,
Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana
Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny
Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng
Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin
Stone, and et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024.

[10] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In
ICLR, virtual, April 25-29, 2022. OpenReview.net, 2022.

[11] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

[12] Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer
Levy. LIMA: less is more for alignment. CoRR, abs/2305.11206, 2023.

[13] Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly open
instruction-tuned llm. Technical report, Databricks, 2023.

[14] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR,
April 25-29, 2022, virtual. OpenReview.net, 2022.

[15] Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li,
Peng Gao, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init
attention. CoRR, abs/2303.16199, 2023.

[16] Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu,
Conghui He, Xiangyu Yue, Hongsheng Li, and Yu Qiao. Llama-adapter V2: parameter-efficient
visual instruction model. CoRR, abs/2304.15010, 2023.

[17] Se Jung Kwon, Jeonghoon Kim, Jeongin Bae, Kang Min Yoo, Jin-Hwa Kim, Baeseong Park,
Byeongwook Kim, Jung-Woo Ha, Nako Sung, and Dongsoo Lee. Alphatuning: Quantization-
aware parameter-efficient adaptation of large-scale pre-trained language models. In Yoav
Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, EMNLP, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 3288-3305. Association for Computational Linguistics,
2022.

[18] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. CoRR, abs/2305.14314, 2023.

[19] Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen,
Xiaopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large
language models. CoRR, abs/2309.14717, 2023.

[20] Jeonghoon Kim, Jung Hyun Lee, Sungdong Kim, Joonsuk Park, Kang Min Yoo, Se Jung Kwon,
and Dongsoo Lee. Memory-efficient fine-tuning of compressed large language models via
sub-4-bit integer quantization. CoRR, abs/2305.14152, 2023.

https://doi.org/10.52202/079017-0637 20181

https://github.com/tatsu-lab/stanford_alpaca

[21] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533-536, 1986.

[22] Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia.
Longlora: Efficient fine-tuning of long-context large language models. CoRR, abs/2309.12307,
2023.

[23] Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis
Martin, Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, Madian Khabsa, Han Fang,
Yashar Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov,
Mike Lewis, Sinong Wang, and Hao Ma. Effective long-context scaling of foundation models.
CoRR, abs/2309.16039, 2023.

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’ Alché-Buc, Emily B. Fox, and Roman Garnett, editors, NeurIPS 2019, Vancouver,
BC, Canada, December 8-14, 2019, pages 8024-8035, 2019.

[25] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In ICLR, virtual,
Austria, May 3-7, 2021. OpenReview.net, 2021.

[26] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning
about physical commonsense in natural language. In AAIL, New York, NY, USA, February 7-12,
2020, pages 7432—7439. AAAI Press, 2020.

[27] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluis Marquez,
editors, ACL, Florence, Italy, July 28- August 2, 2019, pages 4791-4800. Association for
Computational Linguistics, 2019.

[28] Sumithra Bhakthavatsalam, Daniel Khashabi, Tushar Khot, Bhavana Dalvi Mishra, Kyle
Richardson, Ashish Sabharwal, Carissa Schoenick, Oyvind Tafjord, and Peter Clark. Think
you have solved direct-answer question answering? try arc-da, the direct-answer AI2 reasoning
challenge. CoRR, abs/2102.03315, 2021.

[29] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? A new dataset for open book question answering. In Ellen Riloff, David Chiang,
Julia Hockenmaier, and Jun’ichi Tsujii, editors, EMNLP, Brussels, Belgium, October 31 -
November 4, 2018, pages 2381-2391. Association for Computational Linguistics, 2018.

[30] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In AAAL New York, NY, USA, February 7-12,
2020, pages 8732-8740. AAAI Press, 2020.

[31] Martin Svedin, Steven W. D. Chien, Gibson Chikafa, Niclas Jansson, and Artur Podobas.
Benchmarking the nvidia gpu lineage: From early k80 to modern al00 with asynchronous
memory transfers. arXiv preprint arXiv:2106.04979, 2021.

[32] Intel Corporation. Intel gaudi2 ai accelerators white paper. Technical report, Intel Corporation,
2023.

[33] Henry J Kelley. Gradient theory of optimal flight paths. Ars Journal, 30(10):947-954, 1960.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770-778. IEEE
Computer Society, 2016.

[35] Andreas Veit, Michael J. Wilber, and Serge J. Belongie. Residual networks behave like
ensembles of relatively shallow networks. In Daniel D. Lee, Masashi Sugiyama, Ulrike
von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, pages 550-558, 2016.

[36] Sunghyeon Woo, Sunwoo Lee, and Dongsuk Jeon. ALAM: Averaged low-precision activation
for memory-efficient training of transformer models. In The Twelfth International Conference
on Learning Representations, 2024.

20182 https://doi.org/10.52202/079017-0637

[37] Lightning-Al. Lit-gpt. https://github.com/Lightning-AI/lit-gpt} 2023.

[38] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s
transformers: State-of-the-art natural language processing. CoRR, abs/1910.03771, 2019.

[39] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023.

[40] Andreas Kopf, Yannic Kilcher, Dimitri von Riitte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richard Nagyfi, Shahul ES, Sameer
Suri, David Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen,
and Alexander Mattick. Openassistant conversations - democratizing large language model
alignment. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,
and Sergey Levine, editors, Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023.

[41] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena. In Alice Oh, Tristan Naumann,
Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in Neural
Information Processing Systems 36: Annual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

[42] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke,
Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed:
Experiences on accelerating data parallel training. Proc. VLDB Endow., 13(12):3005-3018,
2020.

[43] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism. CoRR, abs/1909.08053, 2019.

[44] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari,
Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, Elton Zheng,
Rewon Child, Reza Yazdani Aminabadi, Julie Bernauer, Xia Song, Mohammad Shoeybi,
Yuxiong He, Michael Houston, Saurabh Tiwary, and Bryan Catanzaro. Using deepspeed and
megatron to train megatron-turing NLG 530b, A large-scale generative language model. CoRR,
abs/2201.11990, 2022.

[45] Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Moham-
mad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer
models. CoRR, abs/2205.05198, 2022.

[46] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu Chen,
HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. Gpipe: Efficient
training of giant neural networks using pipeline parallelism. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’ Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, NeurIPS 2019, Vancouver, BC, Canada, VDecember 8-14, 2019, pages 103-112, 2019.

[47] Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur,
Gregory R. Ganger, and Phillip B. Gibbons. Pipedream: Fast and efficient pipeline parallel
DNN training. CoRR, abs/1806.03377, 2018.

[48] Taebum Kim, Hyoungjoo Kim, Gyeong-In Yu, and Byung-Gon Chun. Bpipe: Memory-balanced
pipeline parallelism for training large language models. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, ICML,
Honolulu, Hawaii, USA, 23-29 July 2023, volume 202 of Proceedings of Machine Learning
Research, pages 16639-16653. PMLR, 2023.

[49] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: memory opti-
mizations toward training trillion parameter models. In Christine Cuicchi, Irene Qualters, and
William T. Kramer, editors, SC 2020, Virtual Event / Atlanta, Georgia, USA, November 9-19,
2020, page 20. IEEE/ACM, 2020.

https://doi.org/10.52202/079017-0637 20183

https://github.com/Lightning-AI/lit-gpt

[50] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania,
Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch FSDP:
experiences on scaling fully sharded data parallel. Proc. VLDB Endow., 16(12):3848-3860,
2023.

[51] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with
stochastic depth. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, ECCV,
Amsterdam, The Netherlands, October 11-14, 2016, volume 9908 of Lecture Notes in Computer
Science, pages 646—661. Springer, 2016.

[52] Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. In ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020.

[53] Minjia Zhang and Yuxiong He. Accelerating training of transformer-based language models
with progressive layer dropping. In Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, NeurIPS, virtual, December 6-12, 2020,
2020.

[54] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio, editors, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 4171-4186. Association for Computational Linguistics, 2019.

[55] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770-778. IEEE Computer Society, 2016.

[56] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David
Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu.
Mixed precision training. CoRR, abs/1710.03740, 2017.

[57] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[58] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In
ICL, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

20184 https://doi.org/10.52202/079017-0637

Appendices

A The importance of short paths in residual networks

In Section 3.1} we interpret transformer models as a collection of numerous blocks, each composed
of various modules with residual connections. Our hypothesis is that we can fine-tune LLMs well by
training only certain shallow submodules. To theoretically analyze this hypothesis, we measured the
impact of submodules based on their path lengths in LLaMA2-7B, as shown in Fig. 0] Specifically,
we followed these steps:

* We first perform a forward pass through the entire network.

* During the backward pass, we randomly sample k residual blocks, which are back-
propagated without passing through skip connections, while the remaining n — k blocks are
bypassed through the skip connections.

* We then measure the norm of the gradient at the input.

We take 100 measurements for each path length k. Subsequently, we multiply by the distribution of
all possible path lengths, which follows a Binomial distribution, to quantify the gradient contribution
from paths of a specific length.

In Fig. Obl we observed that the gradient per path length decreases as the path length increases.
Consequently, Fig. [0c|demonstrates that shorter path lengths have a greater impact on the gradient in
LLaMAZ2-7B. These observations are consistent with the existing findings [35]] in ResNet [55]], which
attributed this phenomenon to vanishing gradients. Therefore, our DropBP enables effective training
LLMs by focusing on training important short submodules.

Distribution of Path Length Gradient Magnitude per Path Length Total Gradient Magnitude per Path Length
x 108 Log S

cale

) = E=] g
s o 10- & -
§ % 2 3106 N
o 1t S0 g RN
£ g 3
2 § 10-% O 1x10
5 5
0 o S
[10 20 30 40 50 60 © [10 20 30 40 50 60 0 10 20 30 40 50 60
Path Length Path Length Path Length
(a) Distribution of path length. (b) Gradient per path length. (c) Total gradient per path length.

Figure 9: The impact of path length for fine-tuning LLaMA2-7B.

B Theoretical FLOPs and Actual Training Time Using DropBP

In this section, we calculate the theoretical FLOPs reduction afforded by DropBP and compare this
reduction to the actual training time reduction as shown in Table[/| As outlined in Section |2} the
computational costs arise from output activation calculations by Eq. [T|during forward propagation,
and input and parameter gradient calculations by Eqgs. [2| and 3| during backward propagation. We
denote the FLOPs for these operations as Fyy¢, Fgrad, and Fparam, respectively. Therefore, the total
FLOPs for the backpropagation algorithm can be calculated by the following equation:

FT:Ffw+Fbw
= out+Fgrad+Fparam (8)

where Fr represents the FLOPs during the entire training process, F'y,, for forward propagation (i.e.
Fgw = Four), and Fy,, for backward propagation (i.e. Fypy = Fgrad + Fparam). DropBP reduces
FLOPs for backward propagation by a target average drop rate (pq.g). Therefore, total FLOPs in
DropBP can be formulated as below:

https://doi.org/10.52202/079017-0637 20185

Fr = Ffw + (1 _p(wg)Fbw
= Lout + (1 - pm)g)(Fgrad + Fpm’am) (9)

Consequently, the theoretical FLOPs reduction ratio by DropBP can be represented as follow:

Pavg (Fgrad + Fparam)

Reduction Ratio by DropBP:
Y P Fout + Fgrad + Fpa'ram

(10)

Note that in full fine-tuning (Full-FT), the computational costs for output calculations, input gradient
calculations, and parameter gradient calculations are nearly identical (i.e., Fout = Fyrad = Fparam)-
Conversely, in parameter-efficient fine-tuning techniques (PEFT) such as LoRA and QLoRA, the
costs of calculating parameter gradients are negligible (Fyyt = Fyrad, Fparam = 0) due to a very
small number of trainable parameters and the freezing of original LLM parameters. By substituting
this into Eq. [T0] the theoretical FLOPs reduction ratio by DropBP can be expressed as:

2
Reduction ratio in Full-FT: 3 Pavg (11)

1
Reduction Ratio in PEFT: 3 Pavg (12)

Therefore, with target average drop rates of 0.5, 0.75, and 0.875, DropBP achieves theoretical FLOPs
reductions in Full-FT of 33%, 50%, and 58%, respectively, according to Eq. This aligns with the
actual training time reduction when utilizing DropBP in Full-FT as shown in Table 3] and Table
This trend is also evident when utilizing DropBP in LoRA and QLoRA. According to Eq. the
reductions in FLOPs for various target average drop rates of 0.5, 0.75, 0.875 are derived as 25%,
38%, and 44 %, respectively. This closely aligns with the actual training time reductions observed
when DropBP is applied to LoRA and QLoRA as demonstrated in Table[7]

Table 7: Training time (ms) per iteration for a sequence length of 512 through Full-FT, LoRA or
QLoRA using DropBP. Mixed refers to mixed precision training [56] using BFloat16 (BF16) and
32-bit. MBS is denoted as the micro batch size. FW, BW, and Total respectively denote the time
consumed for forward propagation, backward propagation, and the entire training process.

Model Method Precision MBS Drop Rate FW BW Total
LoRA Mixed 2 0 159 161 320
LoRA+DropBP Mixed 2 0.5 159 81 (-50%) 239 (-25%)
LoRA+DropBP Mixed 2 0.75 159 43 (-74%) 201 (-37%)
LoRA+DropBP Mixed 2 0.875 158 23 (-86%) 181 (-43%)
LLaMA2-7B Full-FT BF16 2 0 91 192 283
Full-FT+DropBP BF16 2 0.5 91 98 (-49%) 189 (-33%)
Full-FT+DropBP BF16 2 0.75 91 52 (-73%) 143 (-50%)
Full-FT+DropBP BF16 2 0.875 91 30 (-85%) 121 (-57%)
LoRA BF16 2 0 186 236 423
LoRA+DropBP BF16 2 0.5 186 119 (-50%) 306 (-28%)
LLaMA2-13B LoRA+DropBP BF16 2 0.75 187 64 (-73%) 251 (-41%)
LoRA+DropBP BF16 2 0.875 187 33 (-86%) 219 (-48%)
QLoRA BF16 1 0 1033 1100 2133
QLoRA+DropBP BF16 1 0.5 1034 566 (-49%) 1599 (-25%)
LLaMA2-70B | QLoRA+DropBP BF16 1 0.75 1033 290 (-74%) 1323 (-38%)
QLoRA+DropBP BF16 1 0.875 1032 158 (-86%) 1191 (-44%)

20186 https://doi.org/10.52202/079017-0637

C Convergence Speed Up Using DropBP

8 -o-- Baseline 8 " -+o-- Baseline
—— DropBP (p=0.5) —— DropBP (p=0.5)
7 N —— DropBP (p=0.75) 7 —+— DropBP (p=0.75)
2 DropBP (p=0.875) —=— DropBP (p=0.875)
6 6
5 =
& g5
4
4
3
2 o 1+ 3 7S
1.47 x speed up 1.44 x speed up
04x107 08x10Y7 12x10V 04x107 08x10Y 12x10V
LOPs FLOPs
(a) LLaMA2-7B w/ LoRA (Alpaca) (b) LLaMA2-7B w/ LoRA (Dolly)
8 - Baseline 8 -o-- Baseline
DropBP (p=0.5) - —— DropBP (p=0.5)
7 DropBP (p=0.75) 7 \ ‘\‘ —+— DropBP (p=0.75)
DropBP (p=0.875) L\& —=— DropBP (p=0.875)
6
g5 g
a a
4
3
2 T oo *
1.71 x speed up 1.56 x speed up
0.6 x 107 1.2 x 10V 1.8 x 10%7 0.6 x 107 1.2 x 10V 1.8 x 10%7
FLOPs FLOPs
(c) LLaMA2-7B w/ Full-FT (Alpaca) (d) LLaMA2-7B w/ Full-FT (Dolly)
8 -<-- Baseline -+<-- Baseline
—— DropBP (p=0.5) 7 —e— DropBP (p=0.5)
7 ~ —+— DropBP (p=0.75) —— DropBP (p=0.75)
‘o‘ —=— DropBP (p=0.875) 6 DropBP (p=0.875)
6 \
ad as
a a
4
4
3
T 3
1.48 x speed up 1+
1.44 x speed up
08x10Y7 1.6x10Y7 2.4x10Y 08x10Y7 1.6x10Y7 2.4x10Y
LOPs FLOPs
(e) LLaMA2-13B w/ LoRA (Alpaca) (f) LLaMA2-13B w/ LoRA (Dolly)
-<-- Baseline -+©-- Baseline
7 DropBP (p=0.5) 7 —— DropBP (p=0.5)
DropBP (p=0.75) —=— DropBP (p=0.75)
6 DropBP (p=0.875) 6 DropBP (p=0.875)
) 5) 5
& &
4 4
3 3
2 Sl s ot
1.50 x speed up T 2 1.41 szpeed up
0.4x10® 08x10® 12x10!8 04x10"® 08x10¥ 12x10®
FLOPs FLOPs
(g) LLaMA2-70B w/ QLoRA (Alpaca) (h) LLaMA2-70B w/ QLoRA (Dolly)

Figure 10: Validation perplexity (PPL) when fine-tuning LLaMA?2 models through Full-FT, LoRA,
or QLoRA using DropBP on the Alpaca and Dolly datasets.

https://doi.org/10.52202/079017-0637 20187

8 --o-- Baseline

—— DropBP (p=0.5)
—=+— DropBP (p=0.75)
—=— DropBP (p=0.875)

2000 4000 6000 8000
Training Steps

(a) Perplexity curve across training steps.

8 --o-- Baseline

—— DropBP (p=0.5)
—=— DropBP (p=0.75)
—=— DropBP (p=0.875)

0 1 2 3 4 5
Training time (Hours)

(b) Perplexity curve across training time.

Figure 11: Training curves across training steps and time for fine-tuning LLaMA2-70B through
QLoRA with DropBP on the Alpaca datasets.

When analyzing training curves across training steps in Fig. [[Ta] the convergence of loss per step
at a drop rate of 0.5 is almost identical to the baseline. However, with drop rates of 0.75 and 0.875,
the convergence speed per step is slower compared to baseline. Nonetheless, DropBP significantly
reduces the time consumed per training step, because it skips the backward propagation computations
for the dropped layers. Consequently, the convergence speed per training time is actually faster for
DropBP compared to the baseline as shown in Fig. [TTb]

D Distribution of Drop Rates Determined by Sensitivity

12x10°2 o 1o
............. 06x10-2
0.8 0.8
-3
g\n 8 x 10 % é- I %
2 .2 04x1073
s | e ese s 0.5 i E 0.5 i
2 o c o
[} =] =
0 04x1073 o [} [a]
0.2 02x1073 0.2
.
.
. L) 0 0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Layer Index Layer Index

(a) LLaMA2-7B w/ LoRA + DropBP (p=0.5) (b) LLaMA2-7B w/ LoRA + DropBP (p=0.875)

10 1.0
2.4x1072 e
1.8x1071
0.8 0.8
>) >)
£ E £ =
S -2 >
Z16x10 05 S 12x107! 0s®
e s 8
c c
<4 2
& a & a
08x107? 02 0.6x10°! 02
......
. . 0 o 4
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Layer Index Layer Index

(¢) LLaMA2-7B w/ Full-FT + DropBP (p=0.5) (d) LLaMA2-7B w/ Full-FT + DropBP (p=0.875)

20188 https://doi.org/10.52202/079017-0637

https://doi.org/10.52202/079017-0637

o

2.4x107°

e
®

-5
1.6x 10 .

Sensitivity
3
Sensitivity

Droijate

)
o

08x107°

- olls
0 20 40 60 80 100 120 140 160
Layer Index

(e) LLaMA2-70B w/ QLoRA + DropBP (p=0.5)

2.4x107°

1.6 x 1075

0.8 x 1075

A
o

))
[@

Drop Rate

)
o

0 20

40 60 80

100 120 140 160

Layer Index

(f) LLaMA2-70B w/ QLoRA + DropBP (p=0.875)

Figure 7: The distribution of drop rates determined by sensitivity when fine-tuning LLaMA?2 through
Full-FT, LoRA, or QLoRA using DropBP on Alpaca datasets.

E Comparisons between Layer Dropping and DropBP on fine-tuning LL.Ms

In this section, we compare Layerdrop (LD) [52] and Progressive Layer Dropping (PLD) [53] with
DropBP under the same LLMs fine-tuning scenario. We set the relative FLOPs of LD and PLD to
0.75 of the baseline (LoRA), which corresponds to the same relative FLOPs when the drop rate of

DropBP is set to 0.5.

As shown in Fig. [8] our DropBP converges faster to
the same validation PPL compared to LD and PLD.
Moreover, as seen in Table [§] DropBP achieves com-
parable accuracy to the baseline even with a relative
FLOPs of 0.56, whereas LD and PLD experience a
significant accuracy drop of over 5% with a relative
FLOPs of 0.75. We believe this difference arises from
the high sensitivity of forward propagation through-
out the fine-tuning process. Specifically, layer drop-
ping techniques omit certain layers of well-pretrained
LLMs during forward propagation, resulting in sig-
nificant output deviations that adversely impact the
loss and the overall training process. Conversely,
DropBP maintains all layers during forward prop-
agation, thereby ensuring precise outputs and loss
calculations, which facilitate stable training. Please
note that, as explained in Section El, LD and PLD are
designed to accelerate the pretraining of small trans-
former models (SLMs) like BERT by dropping layers
throughout the entire training process while DropBP
only focuses on fine-tuning LLMs. In future stud-
ies, we will explore whether DropBP can similarly

-+ Baseline
= LD (p=0.25)
4+ PLD (p=0.25)
—e— DropBP (p=0.5)
—+— DropBP (p=0.75)
- DropBP (p=0.875)

0.4 x 10Y7

0.8 x 107 12 x10Y7

FLOPs

Figure 8: Validation perplexity (PPL) for fine-
tuning LLaMA2-7B through LoRA (baseline)
with LayerDrop (LD), Progress Layer Drop-
ping (PLD), or DropBP on the Alpaca dataset.
The p represents the target average drop rate
for backward propagation in DropBP.

accelerate the pretraining of transformer models and investigate ways to improve its effectiveness.

Table 8: Test accuracy on the 0-shot commonsense reasoning tasks when fine-tuning LLaMA2-7B
through LoRA with layerdrop (LD), progressive layer dropping (PLD), and DropBP.

Method LoRA (baseline) | LoORA+LD LoRA+PLD | LoRA+DropBP
| =05 =075 p=0.875
Relative FLOPs 1.00 075 075 075 063 0.56
Accuracy (%) 66.0 58.7 61.0 659 66.1 66.4

F Experimental Details

In our experimental setup, the AdamW [57] optimizer and a cosine annealing learning rate scheduler
[S8]] were utilized as common settings. LoRA [14] and QLoRA [[18] were integrated to every linear

20189

layer of our model, with the LoRA parameters r and « set to 8 and 16, respectively. We experimented
with all the learning rates presented in Table [9]and reported the best accuracy achieved in Table

Table 9: Detailed Setup for Table BS and MBS are denoted as the batch size and micro batch
size, respectively. Mixed refers to mixed precision training [56] using BFloat16 (BF16) and 32-bit.

Fine-tuning Dataset # Iterations BS MBS Precision Learning rate

LoRA Alpaca 25K 128 2 Mixed le-4, 3e-4

LLaMA2-7B Dolly 7K 128 2 Mixed le-4, 3e-4
Full-FT Alpaca 25K 128 2 BF16 le-4, 3e-4

Dolly 7K 128 2 BF16 le-4, 3e-4

Alpaca 25K 128 2 BF16 le-4, 3e-4

LLaMAZ-13B | LoRA Dolly 7K 128 2 BF16 le-4, 3e4
Alpaca 25K 128 2 BF16 le-4, 3e-4

LLaMA-30B | QLoRA "y 0 7K 128 2 BF16 le-4, 3e-4
Alpaca 50K 128 1 BF16 Se-5, le-4

LLaMAZ-70B | QLORA — "py e 14K 128 1 BF16 5e-5, le-4
LLaMA3-8B LoRA Oasstl 2.5K 16 4 BF16 3e-4, Se-4

20190 https://doi.org/10.52202/079017-0637

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We appropriately present the contributions of the paper in the Abstract and
Section[T

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Section [5] and Appendix [E| we clearly state that DropBP is developed
specifically for fine-tuning, unlike other layer dropping techniques, and we indicate plans
for further improvements in future research.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

https://doi.org/10.52202/079017-0637 20191

Answer: [Yes]

Justification: In Appendix[B] we mathematically calculate the theoretical reduction in FLOPs
achieved by DropBP. Through experiments presented in Section and Appendix [B| we
confirm that this theoretical reduction closely matches the actual training time reduction.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Section 4.1 and Appendix [F| we provide detailed information to ensure
reproducibility, and in the abstract, we present the anonymous code in Abstract to implement
this.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

20192 https://doi.org/10.52202/079017-0637

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We present the anonymous code for reproducibility in the Abstract.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the experimental details in Section 4.1} Appendix [Fl and the
anonymous code presented in the Abstract.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Although we conducted experiments with multiple seeds and report the average
values, we did not include error bars or statistical information because the deviations were
minimal, and including them would detract from the clarity of the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

https://doi.org/10.52202/079017-0637 20193

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mention the types of devices used for the experiments in Section[d.1] and
provide the time required to reproduce the experimental results in Section[4.2]

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our paper adheres to the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Since we discuss a efficient fine-tuning algorithm for LLMs, we believe that
our work does not have any direct negative societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

20194 https://doi.org/10.52202/079017-0637

https://neurips.cc/public/EthicsGuidelines

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work is related to the efficient fine-tuning of LLMs, and therefore, there
are no specific safeguards described for the responsible release of data or models, as the
nature of our research does not involve high-risk misuse scenarios.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We appropriately cite the original paper and existing codes in Section and
our code in Abstract.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

https://doi.org/10.52202/079017-0637 20195

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the new code with a proper license as an anonymized URL in the
Appendix.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

20196 https://doi.org/10.52202/079017-0637

paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

https://doi.org/10.52202/079017-0637 20197

