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Abstract

Transformers have excelled in natural language modeling and one reason behind
this success is their exceptional ability to combine contextual informal and global
knowledge. However, the theoretical basis remains unclear. In this paper, first we
introduce the Sparse Contextual Bigram (SCB), a natural extension of the classical
bigram model, where the next token’s generation depends on a sparse set of earlier
positions determined by the last token. We then analyze the training dynamics and
sample complexity of learning SCB using a one-layer linear transformer with a
gradient-based algorithm. We show that when trained from scratch, the training
process can be split into an initial sample-intensive stage where the correlation
is boosted from zero to a nontrivial value, followed by a more sample-efficient
stage of further improvement. Additionally, we prove that, provided a nontrivial
correlation between the downstream and pretraining tasks, finetuning from a
pretrained model allows us to bypass the initial sample-intensive stage. We also
empirically demonstrate that our algorithm can outperform SGD in this setting and
discuss its relationship with the usual softmax-based transformers.

1 Introduction

Transformers have played a central role in modern deep learning, achieving significant success across
various fields, including language modeling (OpenAl, 2023), computer vision (Dosovitskiy et al.,
2020), and natural sciences (Jumper et al., 2021). The core of transformers is the self-attention layer
(Vaswani et al., 2017), which can attend to any subset of the input sequence to output a weighted
linear combination of the (transformed) tokens.

Several capabilities of the transformers contribute to their success in language modeling. First,
they can extract contextual information from the input token sequences, which is essential in some
arithmetic tasks (Edelman et al., 2022; Liu et al., 2022; Nanda et al., 2023; Yao et al., 2021). In
addition, transformers can memorize global in-domain knowledge (Petroni et al., 2019; Zhang et al.,
2023a; Haviv et al., 2022; Carlini et al., 2021). These two abilities combined enable transformers
to predict the next token based on the in-context information as well as global knowledge (OpenAl,
2023) acquired during training.

To theoretically understand how transformers learn both capabilities, we propose a minimalist data-
generating model, the Sparse Contextual Bigram (SCB). This model builds on the classical bigram
model and requires learning both contextual information and the (global) transition probabilities.
Here, the next token depends on the transition matrix P and a sparse set of prior tokens that is
determined by the last token. In particular, SCB can be represented by a one-layer linear transformer
— a simplified architecture that can serve as an abstraction for studying transformer optimization (Ahn
et al., 2023), which makes it suitable for theoretical analysis.

* Equal contribution.
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In this paper, we investigate the training dynamics and sample complexity of training a linear
transformer to learn the SCB task using a stochastic gradient-based algorithm. Our contributions are
summarized as follows:

* Data model: We introduce the Sparse Contextual Bigram (SCB) model, a simple task that
requires the model to learn both in-context and global information.

» Convergence: We prove convergence guarantees for a one-layer linear transformer trained on
with the nonconvex ¢ -regularized MSE loss using preconditioned projected proximal descent,
given a dataset sampled from the SCB model.

» Sample Complexity: Under mild conditions on the data distribution, initialization, and hyperpa-
rameters, we prove that our algorithm can recover the ground-truth with polynomial dependence
on the sequence length 7, number of states N, and the sparsity parameter 0 < 7. We show
that the training first goes through an initial sample-intensive stage which boosts the signal with
poly(T) samples, followed by a more sample-efficient stage to achieve final convergence with
poly(N, Q) samples. We empirically verify that our gradient-based methods converge to the
ground truth with a small batch size, while unregularized stochastic gradient descent fails due to
the large variance.

» Transfer Learning: We prove that, when there is a nontrivial correlation between the pretraining
and downstream tasks, we can transfer a pre-trained model to bypass the first sample intensive
stage, so that our algorithm converges to the ground truth of the downstream task with only
poly (N, Q) samples.

1.1 Related works

Training dynamics of transformers. Several works have studied the learnability aspects of
specific transformer architectures. Jelassi et al. (2022) demonstrated that a Vision Transformer
(ViT) (Dosovitskiy et al., 2020) trained through GD, augmented with positional-embedding attention
matrices, can effectively capture spatial structures. Li et al. (2023) investigated the sample complexity
necessary to achieve good generalization performance on a similar ViT model. Tarzanagh et al. (2023)
established a connection between the optimization landscape of self-attention and the formulation of
a hard-margin Support Vector Machine (SVM) problem that separates and selects specific optimal
tokens and established global convergence under strong assumptions. Tian et al. (2023a,b) provided
insights into the training dynamics of the self-attention and MLP layers, respectively, although they
did not establish convergence guarantees.

Another line of work focuses on the training dynamics of in-context learning. Mahankali et al. (2023)
was among the first to introduce linear regression as an in-context learning task, while Zhang et al.
(2023b) proved global convergence of gradient flow for a single-layer linear self-attention layer on this
task. Huang et al. (2023) provided a convergence guarantee for a one-layer transformer with softmax
attention on a similar task where the in-context tokens are drawn from a specific data distribution.
Chen et al. (2024) generalized the single-task linear regression task to a multi-task setting and proved
the global convergence of multi-head attention architecture using gradient flow on the population
loss with specific initialization. In contrast, our work focuses on the language modeling ability of
transformers instead of their in-context learning ability.

Several recent works analyzed transformers from a Markov chain perspective. Bietti et al. (2024)
studied the in-context bigram (phrased as induction head) from an associative memory viewpoint.
Nichani et al. (2024) proved that a simplified two-layer transformer can learn the induction head and
generalize it to certain latent causal graphs. Edelman et al. (2024) further investigated training process
on bigram and general n-gram tasks, and observed multi-phase dynamics. Makkuva et al. (2024)
studied the loss landscape of transformers trained on sequences sampled from a single Markov Chain.
Our SCB model extends the classical bigram models to allow context-dependent sparse attention on
previous tokens.

Several works, including Tian et al. (2023a); Zhang et al. (2023b); Huang et al. (2023); Tarzanagh
et al. (2023); Nichani et al. (2024); Kim and Suzuki (2024), and ours, use a similar reparameterization,
consolidating the key and query matrices into a single matrix W to simplify the dynamics of the
training process. Most previous studies (Tian et al., 2023a; Zhang et al., 2023b; Huang et al., 2023;
Tarzanagh et al., 2023; Nichani et al., 2024; Kim and Suzuki, 2024; Wang et al., 2024; Chen et al.,
2024) uses population loss to simplify the analysis. In contrast, our work goes beyond the population
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loss to analyze the sample complexity of the stochastic gradient descent dynamics. Although Li et al.
(2023) also investigated the sample complexity on a different task, their model requires a pre-trained
initialization, while our model is trained from scratch.

Transfer Learning. Transfer learning (Devlin et al., 2018) has gained significant attention in this deep
learning era. From a theoretical perspective, several works have investigated the statistical guarantees
of transfer learning from the representation learning perspective (Tripuraneni et al., 2020; Du et al.,
2020; Arora et al., 2019; Hanneke et al., 2023). Recent studies on transfer learning mostly focus on
linear models (Li et al., 2022; Tian and Feng, 2023; Fei and Li, 2021; Zhang et al., 2022; Ju et al.,
2023; Dar and Baraniuk, 2022). For dynamics of transfer learning, Lampinen and Ganguli (2018)
studied the behaviors of multi-layer linear networks in a teacher-student setting, while Dhifallah and
Lu (2021) analyzed single-layer perceptrons. Damian et al. (2022) showed that a two-layer neural
network can efficiently learn polynomials dependent on a few directions, enabling transfer learning.

To the best of our knowledge, this is the first work studying transfer learning for transformers Moreover,
unlike previous works that assume a shared structure between the pretraining and downstream tasks,
we only require them to have a non-trivial correlation, which is a much weaker assumption.

1.2 Qutline of this paper

In Section 2 we formalize the problem setup, including the SCB task, the transformer architecture,
and the training algorithm. Section 3 consists of our main results, and we analyze the population
dynamics to provide intuitions. Section 4 contains our transfer learning results. Experimental results
can be found in Section 5.

2  Setup

In this section, we describe our data-generating model, the one-layer linear transformer architecture,
and the training algorithm.

Notations. We use [T'] to denote the set {1, 2, ..., T}. Matrices and vectors are denoted in upper-case
bold letters (A, V, A, etc.) and lower-case bold letters (a, ¢, etc.), respectively. For norm, ||-|| denotes
> norm and || - || denotes the Frobenius norm. Additionally, for g € R, ||A||,, denotes y-norm for
matrix A € RV for arbitrary d, which is defined as ||A||f, := Tr (Adiag(u)A™). We use 1{-} to

denote the indicator function. We use O(-) to hide logarithmic factors in the asymptotic notations.

2.1 Data-generating model: Sparse Contextual Bigram

The bigram model, where the next token depends only on the current one, is arguably one of
the simplest language models. To learn this model, it suffices to learn the transition probabilities
P € RNXN where P, = P[X;41 = n | X, = m], which is achievable through a linear model (0-layer
transformer).

A natural way to extend the classical bigram model is to allow the next token to depend on a
context-dependent set of previous tokens. This extension can model situations such as generating the
words after the phrase “by Theorem 3.2, which requires us to retrieve the statement of “Theorem
3.2”. Here, we propose a simple extension of this type, which we call the Sparse Contextual Bigram
(SCB). The contextual information is encoded by a sparse probability vector g determined by the last
token. To generate the next token, the model retrieves the tokens referenced by g and applies the
transition matrix P (global knowledge) to one of them according to the distribution q.

Formally, our data-generating model SCB can be described as follows. Let 7' be the sequence length
and [N] the vocabulary. Let P € RVXN be a transition matrix, with column'! Py being the transition
probability vector of token k. Suppose that u € RIZ\’O is the stationary distribution of P.

Each input sequence consists of 7 + 1 tokens (x1, ..., x741), i.i.d. sampled from distribution u. The
output token (label) is generated as follows. For each k € [N], there is a probability vector g %) € RZO
that represents the tokens the model needs to attend to when the last token x74 is k. For notational

I'This differs from the convention of the usual Markov Chain literature where the rows are the transition
probability vectors. We use this convention as it is more compatible with our notations.
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simplicity, we will write x = (x{,...,x7), X = (ex,,...,ex;) and @ = (g1, ..., qN)) e RT*V,
When x741 = k, the output token x,, is sampled from the distribution

T
P(xo =n|xr =k,x) = > ¢ Py, Vne[N]. (M

t=1

In words, we first sample a position s € [T] according to ¢‘¥) and then run one step of the Markov
Chain P from x; to generate x,. Note that this model can be represented by a one-layer linear
transformer (see the next subsection for details). We make the following assumptions on SCB task.

Assumption 2.1 (Sparse Contextual Bigram, SCB). In the SCB task, we assume the following:

(a) (Q-sparse) For some Q < T and each ofq(k), at most Q entries are nonzero.

(b) (Well-conditioned) There exists some constant C > 1 such that for every k € [N] and
te[T], ¢® € [1/(CQ).C/Q] ifit is nonzero, and i € [1/(CN),C/N].

(c) (Nontrivial transition) ||P||fl — Nl = [l

(d) (Long sequence) T > (NQ)'°.

Remark on condition (c). We say the transition P is trivial if the transition probability vectors
are all the same, i.e., P = ul". In this case, we have ||P||/24 = (u1", upu™) = ||u||*. Requiring
||P||f4 — |lgll® = ||gll? rules out situations where P is too close to the trivial one. Also, note that for
any well-conditioned u, we have || y||2 > Q(1/N). *»

In this work, we focus on the case where (x, x741,X,) are given as (one data point of) the training data
with (x1,...,x741) i.i.d. sampled from u. The SCB task can be extended to a sequence-to-sequence
model: we drop x; and append x,, to get a new input sequence (x, ..., X7+],X,), and then repeat
the same sampling procedure to generate another token. This generates a sequence (x;);>, where
(X742, X741, - . . ) are not independent, and this makes our model a true language model. We leave the
study of the more complicated learning-from-(x;);?, task to future works.

2.2 Transformer architecture

Our learner model is a one-layer single-head linear transformer (Akyiirek et al., 2022; Zhang et al.,
2023b; Ahn et al., 2023). A general linear transformer can be expressed as: F(x,x741;V,A) =
VE (E7 AE) , where E is the embedding of the input tokens and positions, and A, V are the parameters
of the attention and output layers, respectively. In our setting, we only need a simpler model:

F(x,x1:1;V, A) := VX (IrAe,,, ) = VXa“1+), 2)

where V € RV*N and A € RT*N are the trainable parameters, and a®) denotes the k-th column
of A. This model uses cross-attention (replacing the last E with e,,,, ), uses only the positional
embeddings together with the last token to compute the attention weights (replacing the second E
with Ir7), and discards the positional embeddings in the output layer (replacing the first E with X).
This is equivalent to manually set certain blocks in the weight matrices to 0, which is a common
practice in the theoretical literature to simplify the analysis (Nichani et al., 2024; Huang et al., 2023;
Zhang et al., 2023b).

Note that our data-generating model (1) can be represented using (2) by setting A = Q and V = P.
We will show that a modified version of SGD can approximately recover this ground-truth model.

2.3 Training algorithm

We assume that the stationary distribution u and certain norms of the ground-truth P and Q are
known when choosing the initialization and learning rate. The goal here is to recover P and Q. Our
loss function is the ¢;-regularized MSE loss. The standard way to optimize an ¢;-regularized loss is to
use the proximal gradient descent. We adopt this algorithm with several additional pre-conditioning
and a projection step to ensure some basic properties.
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Formally, let the per-sample loss be defined as
1 2
106, x741, %03V, A) = = [lex, = VXAew, | 3)

We initialize A = 1715 /T to have uniform attention and V = 17 to be the trivial transition. At each
(@)

TH1° xgi) }i’l to form a mini-batch. The £;-regularized

step 7 > 0, we sample B fresh samples {x(i),x
mini-batch loss is defined as

B, N
(Be ) (1) () ()\Br. ] (0 ) 3. (k)
A (C U A Y '_B_T;l(x D30l ’V*A)”kZ:;H“ ||1

where 4 > 0 is a parameter that controls the strength of regularization. Let V‘(,BT)I and VE‘BT) l
denote the mini-batch gradients of the original / w.r.t. V and A, respectively. We then define the
preconditioned gradients as

R 1517 , pup’
ViE = (IN - TN) (V(VB”Z) diag(1/p) (IN e ) ;
)

oo L (p 1) (geo) vy
a® "t =7 ak b € [N].

Here, the 1/u rescaling plays a role similar to importance sampling. We multiply Vi,BT)l with
I-117/N and I — pu™ /|| p|)? to ensure at least 1,V =1},17A =1}, and Vu = p always hold
throughout training. Note that we project each column of V to the affine space {v € RT : 1Ty = 1}

instead of the probability simplex. This is sufficient for our analysis and is much easier to compute
than the latter. We update the output layer using

Ve =Ve =y V7L (5)

where ny > 0 is the step size. Now, consider the attention layer. Due to the existence of the
{1-regularization, the update rule becomes a simple variant of the standard proximal gradient descent.
Formally, for step size n4 > 0, each k € [N] and ¢t € [T], we have

0, if <a,’

a

a(TIi’l/) =al - Z—/I:Vfﬁﬁ)l , (preconditioned GD step),
(k) e (k)
"y _ %1 T A, ifa, 7/ 2 A, -
Arel = (k') (proximal step), (6)

t, 7+l

T+ 7+1 7+1 7+1

” " ” 1
a®) = Proj (a(k’ )) =a&") 4 (l —17a% )) =, (projection step).
{1Ta=1} T

For the proximal step, we will later show that no at(k) can ever become smaller than —A4, so it suffices
to consider those two cases. During the proximal step, all small ai “) are set to 0, and A is subtracted

from all large coordinates. For notational simplicity, we define g/(lkT) = —n;l (a(T’i)1

can write the update as a(T]_?l = a(Tk) - 1A g(Tk). We will choose 4 = 0 in certain stages of training. In

this case, (6) becomes the usual projected preconditioned gradient descent and we have

- a.(,k>) so that we

(k)

T+l

=a'® — V81 (when=0).

a alk)

Our algorithm consists of three stages with different hyperparameters being used in different stages
and certain rounding required between stages. The pseudocode is given in Algorithm 1 and more
details on the projection/normalization steps are provided in Appendix E and F. When we train the
model from scratch, all three stages are used and the initialization is Vo = u1™ and A = 1T1L /T.

Transfer learning. When doing transfer learning, the initialization will be obtained from the weights
of the pre-trained model and one step of gradient update. Then, we will run Algorithm I from Stage 2.
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Algorithm 1 Projected preconditioned ¢;-proximal gradient descent

Input: Stationary distribution y; initialization Vy, A¢; learning rates nX) s ng), i € [3]; threshold Ap;
regularization strength A; times 71, 72, 73
Stage 1: Run (5) and (6) with 4 = ngl), ny = ni,l), A =0 for 77 steps;
Thresholding-projection: V& € [n], 4 = /¥ 1{a® > 10}];, a® — (I7 - 1717/T)a™®)
Stage 2: Run (5) and (6) with na = 7, v = n’, A = A for 5 — i steps;
Thresholding-normalization: Vk € [n], é©) = [agk) ]l{agk) > Q(1/0)}],. a®
a® /17g"*)
Stage 3: Run (5) and (6) with g =0, ny = 7]&,3), A =0 for 73 — 73 steps;

Output: Ag, Vg,

3 Results for training from scratch

In this section, we consider the situations where we train the model from scratch, i.e., the initialization
is Vo = u1" and Ap = 117 /T and discuss the ideas of the proof of the following theorem.
Theorem 3.1 (Theorem G.1). Let € > 0 be our target accuracy and 97 = min{t > 0
max{ay r,aa -} = O(1/(ON))}. We can choose the hyperparameters in Algorithm 1 such
that within poly(N, Q, 1/&,10gT) steps, we have ||A — Q||121 < eand |V - P||,21 < & with prob-
ability at least 1 — § and the numbers of samples used before and after Ty are poly(T,5) and
poly(N, Q, 1/e,logT, ), respectively.

The overall strategy is analyzing the population process and then controlling the distance between the
mini-batch trajectory and the population process®. In Section 3.1, we discuss the key properties of the
population process that simplify the analysis. After that, we describe the dynamics of the algorithm
and the signal-noise-ratio (SNR) in each of the three stages of Algorithm 1 in Section 3.2~3.4.

3.1 The population process

In this subsection, we analyze the behavior of the population process and the evolution of the
signal-noise ratio. More details can be found in Appendix C, where the so-called population projected
process are defined and rigorously analyzed.

For ease of presentation, we assume A = 0 and access to the population loss £ := E . In other words,
we consider the projected preconditioned gradient descent. By Lemma B.8, the dynamics of the
population process is controlled by

Verr = Ve =y (IAIE (V= u17) = (@, A),, (P - 1)),

1 (N
Aror = A= (V05 = ) ()= 2) = (.22, = ) (4 - 7).

One can prove via induction on 7 that V (resp. A) always stays on the straight line crossing u17 and
P (resp. 117 /T and Q). In other words, there exists some time-dependent real numbers @y -, @4 1,
By, = 1- ay. o, Bar = 1 —aa,,suchthat V, = (lv,TP+,BV’T[J1T and A; = as,0 +ﬁA,711T/T.
The same calculation yields the following equations that govern the dynamics of ay and @ 4:
1- ay

T 9

@y r+1 =y, +nyvKo (1 —apsay) aa + v

@41 = @A +AKp (1 —ayaa) ay,
where ay o = a9 = 0, Kp = ”P”;Zt —|lpll*> = 1/N and Ko = ||Q||i - 1/T 2 1/Q. Choose
nv =1n/Kg and na = n/Kp, and we can write the above in matrix form as

0 1 L (1-av)/T
1 0 Ko 0

avy, r
A, T

ay r+1
A, 7+1

. ®)

=n(l - asay) [

2Strictly speaking, what we actually control is the distance of the mini-batch trajectory to the subspace the
population process lies. This allows us to prevent the potential exponential growth of the error caused by error
compounding in the analysis. For details on this technique, see Appendix C.
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Hence, in order to analyze the population process, it suffices to analyze the above 2-dimensional ODE.
In what follows, when we say the signal, we usually refer to these a’s or some quantities whose size
is proportional to them. In particular, as one can see from (8), the size of the expected gradients is
proportional to ay and/or a4

Note that when both ay, a4 are still small, the population dynamics of ay, @4 are a linear system
with coefficient matrix n [? (1)] and drift [ ”T{)KQ ] The drift term will provide a small initial signal

that guides the process toward the correct direction and then the linear term will amplify this signal.
Since the linear term is close to O at initial and the initial signal provided by the drift term has order
1/T, we should expect that poly T samples are necessary to distinguish it from noises (Stage 1). After
the signal becomes reasonably large, the first term will have order 1/poly(N, Q), and we can then
rely on it (combined with the /;-regularization) instead of the drift term to learn the model (Stage 2).

3.2 Stage 1: boosting the signal

At initialization, we have ay = @4 = 0. We define Stage 1 to be the phase until at least one of them
has grown from 0 to some small o; = 1/poly(N, Q). Note that in this stage, the mini-batch version
of (8) is approximately equivalent to

0 If|ev.. n (1/T
<ol of o] 5 |
where &1, se and &,ppr0x represent the errors introduced by the difference between the mini-batch
and population gradients, and the fact that we are not exactly on the population trajectory. If we had
infinite amount of samples so that both &, se and &,p5r0x Were 0, then the second term on the RHS
of (9) could provide a small positive signal to @ and the first term would quickly boost it to oy within
71 =log(T)/n iterations. In order for the above analysis to work, we need both &5 se and &5pprox
to be at least O(1)/T small. Since, unfortunately, £,,; s does not scale with 1/7, we need poly(T)
samples to ensure these conditions.

av r+1

QA 7+1 + Enoise + €approx, &)

We conjecture that this poly(7’) dependence is unavoidable (when only a polynomial amount of
computing time is available). That is because around the initialization, the only signal comes from
the second term and the first term amplifies whatever the second term provides, even if it has been
corrupted by the errors. It either takes poly(7') fresh samples each step to reveal the signal or poly(7)
steps (whence also poly(7) samples) for the random noises to (hopefully) cancel with each other.

3.3 Stage 2: learning the model

We know that at the end of Stage 1, at least one of @y and @4 is o; = 1/poly(Q, N) large. Hence, one
may expect that the signal is 1/poly(Q, N) large now so that we no longer need to make the noises
1/T small and therefore, only poly(N, Q) samples are needed. Unfortunately, this argument will not
work directly, since the variance of the mini-batch gradients scales with T.* Therefore, we still need
poly(T) samples to reduce the squared £,-norm of &,,,; s from Q(7) to 1/poly(Q, N). To address
this issue, we introduce the ¢;-regularizer and use a variant of proximal gradient descent.

The idea is, while the concentration in the ¢, sense is difficult, controlling the {w-error is easy as
every entry of V, ! is bounded whence subgaussian. As a result, we can make the coordinate-
wise difference between the population and mini-batch gradients 1/poly(N, Q) small using only
poly(N, Q) log T samples by a standard concentration argument. Moreover, we have (cf. the proof of
Lemma E.3)

Q1/0), ifg® %o,

10
0(ava§k)), if q,(k) =0. (10)

—Eaaik)l = urayKp (qgk) - avat(k)) = urayKp X {

Thus, as long as ay > 1/poly(N, Q), the {-norm of the gradient noise being small is enough to

create a separation between those useful entries (q,(k) # 0) and useless entries (q,(k) = 0) and ensure

the ¢»-error of those Q useful entries is small.

3We will often drop the time subscript T and write @y := ay 7 for simplicity.

Mtis possible almost explicitly to compute the covariance matrix through some tedious calculation. Intuitively,
the reason it scale with T is V&) [ has T entries with most of them almost uncorrelated in a certain sense.
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The above analysis suggests removing all small entries from the gradient will work. Now, we
claim that ¢;-regularization and proximal gradient descent naturally implement this strategy, at least
approximately. We believe softmax-based attention layers also automatically implement this strategy.
See Section 5 for more discussion on the relationship between our model and softmax transformers.

Note that, at the end of Stage 1 and after the thresholding-projection step — which is approximately

equivalent to running one proximal step first — we know that all useful a,(k) are at least Q(ay/Q) =
1/poly(N, Q), while all useless entries are of size O(1)/T. By our previous discussion, we know
that if A is chosen appropriately, with poly(N, Q,logT) samples, the gradients w.r.t. those useful
entries can be made approximately correct, while the gradients w.r.t. those useless entries are much
smaller than A. Thus, after one gradient step, the absolute value of each of those useless a ;k) is still
much smaller than 2. As a result, they will be set to 0 in the proximal step (and to O(1/T) after the
projection step), which is equivalent to filtering out all those entries, up to a small bias. Therefore,
the proximal gradient updates stay close to the population trajectory, and the growth of the signals
a4, @y can be analyzed using the population dynamics.

We end Stage 2 when (ay + @4)/2 ~ 1. Similar to Stage 1, this also only takes 75 = O(1/n) steps.
We also show that the difference between the mini-batch trajectory and the “population trajectory”
can decrease to a small value (cf. Lemma E.10). This allows us to decouple the error introduced by
Stage 1 and the target accuracy. We defer the proof details to Appendix E.

3.4 Stage 3: final rounding and convergence

The purpose of Stage 3 is to fix a minor issue regarding |@y — @4|. Taylor expand (8) around
(aa,ay) = (1,1) and one will notice that although (ay + @4)/2 can converge to 1 at a linear rate
(and the approximation error also decreases exponentially fast), the convergence rate of a4 — ay is
much slower, and the process will get stuck around (1 + 6, 1 — &) for some small nonzero §, instead
of converging to (1, 1). To accelerate this process, we directly round A via normalization, which is
possible only after the approximation error becomes small in Stage 2. Then we freeze A and train V
to the desired accuracy. More details about this stage can be found in Appendix F.

4 Results for transfer learning

The transferability of neural networks and transformers and their benefits have been widely observed
and studied in both practice and theory. It is often assumed that the downstream and pretraining tasks
share a common structure or representations/features, and these models can learn these common
structures during training, and then leverage them in fine-tuning.

In this section, we offer a different perspective: as long as there is a (potentially small) nontrivial
correlation between the pretraining and downstream tasks, the pretrained model can be used to provide
a nonzero initial signal, allowing us to bypass the initial sample-intensive signal-boosting stage.

Formally, we consider the following setting. Let P be the transition matrix of the pretraining task and
(P, Q) the transition matrix and Q-matrix of the downstream task. We still assume Assumption 2.1.

In addition, we assume P and P share the same stationary distribution g, ||ﬁ||i =0(1) ||P||121 and
<ﬁ, P>/1 | ;1||2 > ||u ||* . The last condition can be viewed as the transfer learning version of condition

(c) of Assumption 2.1. Note that we allow the correlation between P and P to be as small as o 1).

Theorem 4.1 (informal version of Theorem H.3). Consider the above setting. Initialize A = 117 /T,
V = 6P + (1 - O)ul”™ for some small 6 > 0, and run one step of gradient update on A. Then,
running Algorithm 1 from Stage 2 allows us to recover (P, Q) to e-accuracy with high probability
with poly(N, Q, 1/&,1og T) samples.

To intuitively see why using poly(N, Q, 1/&,log T) samples is possible, recall from (9) that the reason
we need poly(7') samples in Stage 1 is the signal is additive and has order O (1/T), so we need the size
of the noise to be at most O(1/T). On the other hand, when we initialize V = 6P + (1 — ) u17, we
have ay > ©(6/(NKp)) > 1/T. Then we can rely on ay, instead of the 1/T-sized additive signal,
to boost the signal of a4 to w(1/T) in one step, which leads to a sample complexity that depends on
ay instead of the 1/T-sized additive signal. Then, we can reuse the analysis of Stage 2 and 3 to show
that the downstream (P, Q) can be approximately recovered using poly(N, O, 1/&,logT).
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Note that unlike the case of training from scratch, when performing transfer learning, the initial
approximation error Ay ||, i.e., the distance between V and its population projection, can be much
larger than the signal ay, and it might seem unreasonable to expect that we can leverage the small
signal in the presence of a large approximation error. To handle this issue, we show that the influence
of ||Av||/2‘ on the dynamics scales with @4 (~ ay), which is small. In addition, we also show that
as long as a4 is bounded away from 0 and the batch size is large, the approximation error will not
grow. This allows us to ignore the approximation errors in the signal-boosting stage until we enter the
regime of the Stage 2 analysis.

S Experiments and relationship with softmax transformers

This section contains our experimental results. We also discuss the relationship between our linear
model and the usual softmax transformers.

Experiment setup We use the same shallow transformer model (2) to train on the synthetic data.
The data distribution follows the SCB model (1) with a randomly sampled transition matrix P together
with its stationary y, and the ground truth attention pattern Q. We choose the number of states N = 3,
sparsity Q = 2, and the sequence length 7 = 5000 > N, Q. We use a batch size B = 64 to run the
online projected proximal gradient descent with A = 1e-5 and the vanilla SGD for 7~ = 1000 iterations.
Through the signal boosting stage 7 € [0,400], we use n7; = 0.01 to accelerate the process. After
T > 400, we use 17, = 0.005 for further improvement. For SGD, we add another set of experiments
with 7}, = 0.001 to prevent potential instability. For more details, see Appendix L.

5.1 Convergence

Our experiments (cf. Fig. 1) show that after switching to proximal gradient descent after Stage 1 (the
signal-boosting stage), both ||P — V||, and ||A — @||,, decrease faster than SGD. The final distance
to the ground-truth after normalization gets close to 0, and the similarity between the ground truth
and parameters quickly converges close to 1. In comparison, SGD struggles to converge with the
same small batch size and large learning rate, while the convergence rate is too slow when a smaller
learning rate is used. This phenomenon verifies our theory that the variance of the original stochastic
gradient will be too large for SGD to converge when T’ >> Q, N, while proximal gradient descent with
an {; regularizer can resolve this issue.

0301 Tl
S025 ™~ £038
B 2 _—
= o
< 0.20 <
3 3061
o0 0
o 0.15 )
2 8
g 8 0.4
5 0.10 5V
g —— P = V]|, ours % — IQ = All. ours
8 054 |P = V|, SGD a 1Q - A, SGD
21— P V], 56D smal 024 — e~ Al 56D smal
0.004 “k Final error.‘ ours ‘ ‘ ‘A" - :k Final evror“ours ‘ ‘ *‘,
0 200 400 600 800 1000 0 200 400 600 800 1000

iteration iteration

Figure 1: Convergence analysis: We plot the distance to the ground truth ||V — P||,,, |A — Q]| in
different settings. After stage 1 ends at 7 = 400 (when a4, ay = 0.1), we use vanilla SGD and our
proximal gradient method to train the transformer. Compared with SGD, the ¢ regularized proximal
gradient descent quickly converges, and the final solution (the star) recovers the ground truth. SGD
either suffers from the large gradient variance (when 1, is large) or a slow convergence rate (small 777).

5.2 Relationship between our model and softmax transformers

We claim that they have our linear model and softmax transformers have qualitatively similar behaviors:
there will be a sample-intensive initial stage, and after the model and the target have a nontrivial
correlation, proximal gradient descent/SGD will become much more sample efficient.

For ease of presentation, in the following, we will assume N = 1, write a := a(l), and assume the
ground-truth ¢ := ¢(" is e; = (1,0, ...,0). Most of our argument below can be generalized to the
general setting at least at a heuristic level. Recall that our linear model is f(X;V,a) = VXa. Bya
softmax transformer, we mean the model f,(X;V,w) = VXo(w) =: VXa, where o is the softmax
function and w € R is the trainable first-layer weights.
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Figure 2: Similarity between the softmax and linear attention. We train two transformers with
(1) (Left) softmax attention and (2) (Middle) linear attention layer on the SCB tasks with the same
ground-truth (T = 50, N = 10, Q = 2). The attention pattern and the value matrix (learned transition
matrix) are very similar (left two plots) and they converge to approximately the same loss (right plot).

Let / denote the (per-sample) loss. We have V,, [(f(X)) = (diag(ay,) —asal) (VX) VI(f(X)).
As aresult, the dynamics of the attention weights are controlled by

a(t+1)=~a(t)—-n (I - E) (VX)TVI(f(X)), in our linear model,

ar(t+1) ~a,(7) —n(diag(a,) - aa-a;) (VX)"VI(f,(X)), in softmax transformers.

In other words, the main difference is that there will be a preconditioning matrix (diag(a) — aaT)2 in
the dynamics of softmax transformers.

Near initialization, i.e., when the attention pattern is still close to the uniform attention, we have
1 (71t
T? T

are approximately equivalent up to a change in learning rates.

(diag(ag) - aaa;)2 X ) In other words, our linear model and softmax transformers

Now, suppose that there is a nontrivial correlation between a  and ¢ = ey, say, a1 is a small constant

while all other entries are O(1/T). In this case, we have (diag(a ) — a(Ta;)2 ~ag1(1-aq1)eref+
O(1/T). Effectively, softmax transformers automatically adjust the learning rate according to a. ;
and roughly ignore those positions with a small attention weight to stabilize the gradients. Note that
this is also what £;-regularization does in our algorithm. In fact, mimicking this behavior is one of the
motivations of using £;-regularization in our linear setting. We run further experiments to highlight
the resemblance between softmax attention and our linear attention model (Figure 2).

6 Conclusion and discussion

In this paper, we propose the Sparse Contextual Bigram (SCB) model, which is a natural extension
of the bigram model, that requires both contextual and global information. Then, we analyze the
problem of learning a SCB model using a one-layer linear transformer and a gradient-based algorithm.
We prove quantitative bounds on the convergence rate and the sample complexity. In particular, we
show when trained from scratch, the training process can be split into two stages, where the first stage
uses a lot of samples to boost the signal from zero to a nontrivial value, while the second stage is
much more sample-efficient. Then, we consider the problem in a transfer learning setting and prove
that when there is a nontrivial correlation between the pretraining and downstream tasks, the first
sample intensive stage can be bypassed.

Our data-generating model and results also lead to some interesting future directions. For example,
can we improve the sample complexity of the first stage? What can we gain if the datapoints are
sequences generated by repeatedly applying the SCB model?
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A Limitation

In this section, we briefly discuss the limitation of this work.

First, we consider one-layer single-head linear transformers with certain (blocks of the) weights
merged or fixed. Though this simplification are widely used in theoretical works and linear and
nonlinear transformers share some training behaviors (Ahn et al., 2023), this architecture is still very
far away from the transformers used in practice.

We also use a non-standard training algorithm that has several manually separated stages. Some
parts of the modification are made to address certain issues of linear transformers, while the other
are made to simplify the analysis. It would be interesting (and more challenging) to consider more
natural/practical training algorithms.

Finally, for our data-generating model, we only use it to generate one next token, instead of repeatedly
apply SCB on the previous generated results to obtain a long sequence. In our setting, the contextual
tokens are independent. While this simplifies the analysis, it deviates from how natural language
works.

B Probabilities, expectations, and variances

We collect in this section closed-form formulas for the probabilities of certain events, and the
expectations and variances of some random vectors of interest. All proofs are deferred to the end of
this section.

B.1 Probabilities
Lemma B.1. Foranyt € [T] and k,n,m € [N], we have

P(xo = m,x = m | X741 = k) = ¢\ Py pnptom + (1 —q* )),unﬂm
Lemma B.2. Foranys #1t € [T], k,n,m,l € [N], we have

P(x{) =n | XT+1 = k’xs =m,XxXr = l) = k)Pn m +qt(k)Pn,l + (1 qka) qz(k)) Hn-

B.2 Gradient and Expectations

Lemma B.3. Suppose the last input token x| and a := Axry). The gradients of the objective are
Vyl=(VXa-e,,) (Xa)T,
Va(k)l = ]1{xr+1 = k}(VX)T (VXa - ex())

Lemma B.4. Forany k € [N] and s,t € [T], we have

diag(p), s=t,
E(k) [exg ] E[er Xt] - {””Ta S ¢ t

Lemma B.5. ForanyV € RV*N with Vu = p and s,t € [T], we have

N 2

VI, s=t,
E E[ -
- Vi V1 = {Ilullg, s # 1.

Lemma B.6. ForanyV € RV*N with Vu = pandt € [T], we have

(k k
BOVe, =g VP, + (1-a) lull.
Lemma B.7 (Expected gradients).

EVyl = ||l Vdiag(w) + (1 - 1AI2) up”
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~ Q. A),, Pdiag() - (1-(Q, A),,) ",
B V! = i (VI = llal) @) + e 1]
~ g™ (V. P), = i (1= O ) 1wl
Lemma B.8 (Expected preconditioned gradients).

EVyi= |||} (V- p1") =(Q,A), (P - p17),

. 1 1
B a1 = (VI = 1) (a® = 7] = (.2, = ) (- 7).
B.3 Deferred proofs of this section
B.3.1 Probabilities
Proof of Lemma B.1. For notational simplicity, define x _; = (xy,...,X;—1,Xs+1,...,x7). We com-

pute
P(xo =n,x; =m | x741 = k)

Z P(xpo =n,x; =m,X_; =M | X741 = k)

me[N]T-!

Z P(xo =n|x; =m,x_; = M, x741 = k)

me[N]T-1

XP(x; =m,x_; =m | xp4 = k).

By the independence assumption, we have P(x; = m,x_; = mt | xp41 = k) =P(x; =m,x_, = m) =
P(x;, = m)P(x_, = m). For the first factor, we have P(x, = n | x, = m,x_; = W, x741 = k) =
;k)P,,,m + Dssr Qik)Pn,mS. Therefore,
P(xo = n,x; =m | xg41 = k)
= Z ( Ek)Pn,m + Z vak)Pn,nﬁs P(xt = m) IP)(x—t = ’ﬁ)
me[T]N-1 s#t
= Qz(k)Pn,m + Z Qa(“k) Z Pn,rhs P(x—t = ’ﬁ) Hm-
s#t he[T]N-1
Note that for any s # ¢
N
Z Pn,n%s P(xft = ’ﬁ) = Z Z Pn,rhs,urhs) P(xfs,ft = ’ﬁfx) = HMn-
me|[T]N-1 w_se[T]N-2 \ig=1
Thus,
k k
P(xo =0, Xy =m | X141 = k) = (Qz( )Pn,m + qu )/Jn) Hm
S#t
k k
= Qz( )Pn,mym + (1 - qi )) Hnfhm-
O

Proof of Lemma B.2. For notational simplicity, let x_; _, denote the vector obtained by removing
the s, ¢t coordinates from x. Then, we compute

P(xu =n | Xr4 =k, xg =m,x; = l)

= Z Pxo=nx_g5 s =m | xr41 =k, xs =m,x; = 1)
me[N]T-2
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Z Pxo =n|xre =k, xg =m,x; =L, x_g s =m)P(x_s,_; = W)

me[N]T-2
- Z g Py +q P+ Z a0 Py |P(x s = i)
e[ N|T-2 i¢{s,t}

k k k k
:qg )an+61( )Pnl+(l qg) qt( )),un-

O

B.3.2 Expectations

Proof of Lemma B.3. For each sample X, we have

1(x,x741,%0; V,A) := % ||ex0 -VXAey,,, ||2
and a Then we have the matrix differential:
dl = (VXa-e,) dVXa+(VXa—-e,,) VXda
Therefore,
Vyl=(VXa-e,,) (Xa)T,
Vol = 1{xrs =k} VX)" (VXa-ey,)

O

Proof of Lemma B.4. When s # t, we have E%) [e, ey ]= EX) e, JEX) lex,] = uu™. Whens =1,
we have E®) ey, el | = YV | ucere; = diag(p). O

Proof of Lemma B.5. When s # t, we have

N N N
Z E[Vn,xs Vn,x,] = Z E Va xq Z (Z /JkVn k
n=1 n=1

N
Pkt ) VakVua = pTVTVp = |l

1 n=1

Mzi

k.l

When s =¢, we have YY EV2 =3NSV Vv nk ||V||2 N

n,x;
Proof of Lemma B.6. Recall Lemma B.1. Then, we compute

N
E(k)vxo,xt = Z Vn,m P(xo =n,xX;=m I XT+1 = k)

n,m=1

_th) Z Vo,mPnmfm + ( (k)) Z Vomtntm

n,m=1 n,m=1

=g WP+ (1-0) uTVa

O

Proof of Lemma B.7. First, we consider Vy! = (VXa —e,,) (Xa)", and compute E(Xa)(Xa)"
and Ee,_ (Xa)". Write Xa = Ztrzl aey,. Then, we have

T
EX [(Xa)(Xa)T| = ) a¥al") Bley,e]]

s,t=1
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T
= Z (k))z Eleye, ]+ Z (k)at(k) Ele, ey, ]
=1 S#t
&

2
a(k)H )HHT,

where the last line comes from Lemma B.4. Then, we compute

T T
EO ey, (Xa)T] = ) aVEW (e, €] ] —Z Y P = n,x, = m | X141 = K) ]y e

t=1

Za ( M Pdiag(p) + (1 - q,(k))mf)

T
=
= <q(k),a(k)>Pdiag(/J) + (1 _ <q<k>’a<k>>) ™,

where the second line comes from Lemma B.1. Thus, for Vy [, we have

N N
EVyl=V ) uB® [(Xa)(Xa)T] = )" uEW [ex, (Xa)T]
k=1 k=1

= A, Vdiag(w) + (1~ I1AI2) Viu™ = (@, A),, Pdiag(p) — (1 - (@, A),.) uu”

Now, consider V ! = 1{xrs1 = k}(VX)T (VXa - e,,) and compute EX)(VX)T(VX) and
E®) (VX)Te,,. By Lemma B.5, for each s, € [T], we have

VI, s=1,
5

eJER[(VX)T(VX)]e, =EX [(Vey,)Vey,] = i EVix, Vix, = {”ﬂ” D ser
In matrix form, this is
BOWX)TVX = (IVIE - ) 1+ 107 ]
Then, by Lemma B.6, for each ¢t € [T], we have
e B[(VX) e, | =ER [(Vey) ey, ] =BEXV,
=g VP, + (1= ) .

In matrix for, this is
BLVX) ex,] =g (V. P),+ (1= D) 1l

Combine these together, and we obtain
i EVyul =EX [(VX)TVX]a™® —EX [(VX)Tey, |
= (IVIZ = 1) @ + 111l - g (V. P), = (1= ¢®) llal®.

Proof of Lemma B.8. Recall from Lemma B.7 that
BVyi = || Al Vdiag() + (1= |AI2) Vap™
- (@, A),, Pdiag(u) - (1= (@, A),,) ",
B Vqul = i (IVIF, = lalP) @ + et 1l

~ g™ (V. P, = i (1= 4D ) Il
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For Vy, we have

T T
Vdiag (o) diag(1/ 2 (1— %) _y B
el el
T T
Pdiag(p)diag(1/p) (1 _ ke 2) —p- B
Il Il
T T
pp" diag(1/p) (1— e 2) =T - BE
Il Il

In particular, note that the pu™ /|| u ||? terms will cancel with each other. Thus, we have
EVvi= ALV + (1= IAIL) 117 - (@, 4), P~ (1-(Q.4),) u1”
= Al (V-p1") - (Q.A), (P—p1").

For V,u [, we have

2 2 17 (k)
E St = (IVIE~ 1) (15 a® — (1= B2} g0 vy,

|

( T)q“‘)u

(VI = 1al?) (a<’<> ) (<k> )<v,P>ﬂ+(q<k>—%) lull?
l

a2 )= (P 1?) (a0 - 7).

(VI = lal®

B.4 Concentration

In this section, we provide concentration inequalities for the gradients of the loss function. The
concentration is applied on the gradient noise term

hy ¢ = (%B)z - Eﬁvl)
har o= (VP 1-8941)
where @‘(,B)l and @I(L‘B)l are the preconditioned empirical gradients computed from a batch of size B.
Here, we first consider the concentration of the original gradients:
Vyl=(VXa-e,,)(Xa)T,
Vol =1{xrs =k} VX)" (VXa-ey,)

and then consider the concentration of the preconditioned gradients. In this paper, we focus on |||,
as the mostly used metric for the gradient matrices.

First we prove a naive concentration w.r.t. any random vector y with bounded second moment with
any ||-|.
Lemma B.9. Fix 6,& > 0. Let y be a D-dimensional random vector with E ||y||*> < G. Define
y®& .= B! Zf:l yi; where (y;); are i.i.d. versions of y. If
G
B> g,
then with probability at least 1 — 6, we have ||y —Ey|| < e.

Proof of Lemma B.9. Assume w.l.o.g. that Ey = 0. First, note that

2 1 X
By =5 Y EGiy) =5 ZEuy I?< -

i,j=1
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Hence, by the Markov inequality, we have
2 E (B)
By > ) =2 (HJ’(B)H § gz) Dl il
£ B&?
Thus, for fixed &, € (0, 1), if we choose B = G/(6<?), then we have with probability at least 1 — &,
)] = . =

Now we upper bound the infinity norm of the preconditioned gradients to apply concentration.

Lemma B.10. Suppose that |[Vec V|, = 0(1),V =V + Ay, A = A + Ay, where V.e RNV s q
transition probability matrix, and in the attention matrix A each column @) is a probability vector.
Moreover, |Asll%, |Av ||% < O(1/T). Then, we have

V0], < ON). [[VecOy 1], < OV

Proof. We first consider the infinity norm of the original gradient. Recall that the gradient for V and
A are

Vool =1{xry = k}(VX)T(VXa'® —e,)
Vyl=(VXa-e,,)(Xa)"

and the preconditioned gradient is:
. 1y17 ) T
VBl = (IN - TN) (V<VBT)1) diag(1/p) ( N — —)

]l
. 171}
g L (IT— d T) (v81).
Mk T

We first consider the maximum absolute value in the original gradients. For V) [, we have

|17 = V)T (VX2

< |1t = VOTVXGD)|_# 1z = VX (e,
T
< Snel[aTX] ;at(Vexs)TVext +Snel[aTx] |(Vexs)TexU|

The first term can be upper-bounded in the following way:

T

Z ag (Vexs )Tvexr

t=1

T

T
D @(Ve ) Ve, + ) Ai(Vey,) Ve,

t=1 t=1

T
(1 £y ||Aa,,||1) max|(Vey,) Ve,

t=1

max
se(T]

max
se(T]

IA

< (14 VT[Aa,ll2) max |(Vex ) TVey,|

Since V =V + Ay and || Ay ||%, ||Aa]|% < O(1/T), we have max , |(VexS)TVex,| upper bounded by
O(1). Therefore

T

Z a,(Vey,) Ve,

t=1

max
se[T]

<0(1)

And similarly, the second term maxX,e[r] \(VexS)Tex0| can be bounded by O (1) because the infinity
norm of V is also upper bounded by O(1). Therefore, we know ||V, (|| < O(1).

Now we consider the preconditioned gradient A o ,f))l

. 1T1
B, B
195 e = H— (IT - ) (V,&J!)H
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RS (V(B >1)

<
— k
Mk w

L (1r1g\ s,
+ ﬂ—k( - )(vmz) < O(N)

0 00

since pg > 4 forall k € [N].
We use similar technique on @‘(,B’)l . First, we prove the infinity norm upper bound on the original
gradient.
[ VecVy I||, = |[Vec (VXa - e,) (Xa)T||,
=|[Vec (VXa) (Xa)||, +|[Vec (ex, (Xa)T)||,

T

Z a;Vec (ex,e,)
=1
T

Z i Vec (e, e;)

t=1

VXa). (Xa) |+
,r?ea[’}]K a), (Xa)/|

0o

IA

(VXa)ll, ||(Xa)]]|, +

)

T
Z A4 (@ + Aadll) [Vey,

s,t=1

o llexll

+ Z@ +1Aall) [[Vee (ex €T, < ©(D).
t=1

And therefore, the preconditioned gradient can also be bounded.

& (Be) Inly (B2) 1\ 4 nu’
19557 e = || 2 = =57 | (9371 diag 1/ (2 = 255
™ Mo
.
(V(VBTU) diag(1/p) (1 Ll 2)
llell
1n17, T
NN (V(B )l) dlag(l/y)( ””2)
llell
< O(N)
since uy > 4 for all k € [N]. Now we finished the proof. O

With the upper bound of the infinity norm, we have the following upper bound on the second order
moments of the preconditioned gradients of A and V.

Corollary B.11. With the same setting in Lemma B.10 and ||¢a(k) l||oo < O(N), ”Vec@vlﬂm < O(N).
Moreover, ||Aa||%, |Av ||% < O(1/T). Then, we have

E[Vall}, < 0(TNY), E[f¥vi], < 0(N?)

Proof. We directly upper bound |W Al”i and |WVI||,2, using the upper bound on infinity norm. Since
lIAAlI%, lAv]|% < O(1/T), we have the infinity norm be upper bounded by

[Vaw!], < ON), [[VecVy ], < O(N)
Then, we can first bound the Frobenius norm ||V 47||2., ||@Vl||%‘ We have V € RN*N A e RTXN 5o
IOy 113 < N2 [Ovi|, = OV*), 19ll% < NT [VecVal|’, = O(NT).
That leads to:

||sz|| = (Vyl, Vyl diag(n)) < 0( )||Vvl||F < O(N?)

¥l = (Val. Val diag(u)) < 0( ) IValll7 < O(N?T)

where the second inequality comes from the assumption that u ~ @(1/N). O
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Now with the upper bound of the second moments of the gradients, we begin to prove the concentration
of the gradients. We first consider the first-order terms that need to be bounded in the signal dynamics:

<hV’P>/J <hA’ Q>,u
KrKo = KrKg

Lemma B.12. Fix &,6 > 0. Under Assumption 2.1, suppose |Wa<k)l”oo < O(N), ’WVZHDO < O(N).

If B > ©(1) max (N4, Q2N2) %, then with probability at least 1 — §, we have:
(hv,P), (ha, Q) <
KpKg " | KpKg |~

Proof. Note hy = é i @a(ki) Ii)—-E @am [, thus we have the upper bound for each coordinate of
the gradient error bounded by ®(N). Similarly, we have the upper bound for each coordinate of the
gradient error of Ay bounded by ®(N).

Then, we can bound the infinity norm of (Vy (i), P),, and (Val(D), P),:
(v 1G), Pu| |0 et YW@ Prm
KpKg | KpKg
N2 Vv i@)|, 1Pl
KpKg
3
< O(1)N '
KpKo
2£=1 Zy]:{:] @Al(i)n,an,m
KpKg

(IPllo < 1)

(Val(i), @)y
KpKg

v [Val()] . 121l
KpKg
O(1)QN?

< TKQ (12l = 1)

(Q is Q-sparse.)

Note that E [Va<k,->l(i) - EVa(wl] =0,E [Vyl(i) — E Vy!] = 0, which means the two terms above
have expectation 0. Since hy4, hy are both averages of B gradients of a single sample, we use
Hoeftding Inequality:

hy.P -B&e?K3 K
P —<V >” >¢e| <2exp —_Fre
KPKQ N6
(ha, Q| ~Bs’KpKp
<2exp| ————
KrKg N4Q?
4
By union bound, if B > max (N2, 0?) % it has at least 1 — § probability, s.t.
€ P Q
<hV’P>/1 <hA7 Q>/J <s
KeKg |~ | Kpkg |~

O

Then we finish this section with the concentration of the second order terms || 4||> and || Ay ||>, which
need to be bounded in the error evolution.

Lemma B.13. Fix £,6 > 0. Under Assumption 2.1, if E||Vy 1|2, = Tmp; = O(N?),E||Val|% =
Tmpy = O(TN?), B > G(TN ) then with probability at least 1 — 6, we have:

lhally <& lhvi, <e.
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Proof. Similar to Lemma B.12, Ehy = 0,Eh4 = 0. By Lemma B.9, when we pick B > G(T—l\;z) we
O

o
have |4l < &. ||y ||, < & with probability at least 1 — 6. ‘

C The population projected process

In this section, we define the projection of the true SGD process onto the “space of population
trajectories”. Then, we derive formulas for the dynamics of projected process and the distance of the
true SGD process to the space of population trajectories. All proofs — except for those short ones —
are deferred to the end of this section.

C.1 Definition of the population projection

The main reason we analyze the population process first is that on the population trajectory, both
layers possess special structures. Recall that

EVyi= Al (V- p1") - (Q,A), (P—p17),
. 1717 1-17
BVal = (IVIE - ) (A - %) ~ (VP = ) (Q - %) ,

and we initialize Vo—ul1"™ = 0and A —117 /T = 0. Note that for any (z;)+,ifzo = 0and z = Az + Bz.,
then z, o« z, for all 7 > 0. In other words, z moves only along the direction z. and therefore, can be
characterized by a single real number. This is exactly the same case of V — 17 and A — 117 /T in
the population case. Hence, in the population case, V stays on the line crossing 417 and P, and A
stays on the line crossing 117 /T and Q.

Unfortunately, mini-batch SGD does not stay exactly on the population trajectory. We can still,
however, look at the projection of SGD onto the “population trajectories”. Formally, for any V, A
satisfying 13,V =15,,17A = 1], and Vu = p, we define

@y := argmin ||aP +(1-—a)plf, - V”/zl ’
a€eR

171,

a0 + (1 -a) —A

@4 = argmin
aeR

i
By setting the derivative to be 0, we can obtain the following closed-form formulas for ay and @ 4.
Note: Without specification, we drop the the time subscript T and consider ay := ay, . for similicity.
Lemma C.1. ForanyV, A satisfying 1,V = 15,,1;A = 15, and Vu = p, we have
ay =Kyp/Kp and as=Kap/Kp,

where Kp = ||P||, = ||, Kvp = (V. P), — ull’, Ko = Q|7 - 1/T, Kag = (A.Q), — 1/T.
For notational simplicity, we define Sy = 1 —ay, Ba =1 — a4,

_ - ~ 17

V:aVP+ﬁvy1 and AzaAQ+ﬁAT.

Then, define Ay =V — V and Ap=A- A so that we can decompose V = V+ Ay and A = A+ Aq.
By our construction, we have V — u1™ 1 Ay and similarly for A4. We will now show that we can in
fact drop u17.

Lemma C.2. Forany V' = 0P + (1 = Q)ul" and A’ = 0Q + (1 — O)117 /T with 6 € R, we
have (Ay, V"), = 0 and (Aa,A"),, = 0. In particular, we have (Ay, P),, = <AV,V>H = 0 and

(A, Q), = <AA,A># =0.

0. Hence, {(Ay,V’) = (Ay,V’ — ul1™) = 0. For

Proof. Note that (ulT,AV)# = (/,t, (V- V)y) =
= <1T(A—A),1T/T>ﬂ =0. U

(Aa,A’), it suffices to note that (A4, 117/T),,

The following lemma the basic definitions and results about the population projection.
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Lemma C.3 (Definitions and basic results on the population projection). Suppose that V, A satisfy
1,V =17,17A =1, and Vu = p. We define the following:

Kp = |IPIl}, = lul®,  Kve=(V,P), = lul’*, Kv=IVI-lul?,
ay =Kyp/Kp, Bv=1-ay, V=ayP+Bypul’,
Ay =V -V,
Ko = QI - 1/T, Kag=(A.Q),-1/T, Ka=|Al;-1/T,
aa=Kag/Kg, Ba=1-PBa A=asd+palrl/T,
Ag=A-A.
Moreover, by Lemma C.2, the following hold.
Kyp = <V,P>ﬂ —lull* = avKp,
Ky = |[V|2 + AV IZ = lal® = o} Kp + 1AV 2,
Kag =(A.Q),-1/T = asKo,

Ka = ||| + A4l = 1/T = &3Ko + 1Al -

C.2 Dynamics of the population projected process and the approximation error
We write
Ve =Ve —nvEVy I -y (@‘(/B)l - E@vl) = V. —nyEVyl - nvhy -,
Ar1=A; —naEVal =74 (@QB)Z - E@Al) = Ar —1aEVal —naha -,

where the expectations are taken over the fresh samples at step 7.

First, we expand the expected preconditioned gradients around the population projection.
Lemma C.4 (Expanding the gradients).

171},

. 1717
]EVAlzKpa’V (a’v(IA—l) (Q— )+KPCY%/AA+||A\/||§I (A— N),

T
av—l

EﬁleQ'AKQ (aAch—l) (P—/.llT)+ (P—/llT)

1
+ (aﬁKQ + f) Ay + [[Aall* (V = p17).

Then, we compute the dynamics of the projected process.
Lemma C.5 (Dynamics of the population projection).

—ay
T

1
@y r41 = av,r +nvKg (1 —asay) as + 1y

il

_ 2_ v
nvay [|Aall Xy <hV,T9P>’u

na
@p 741 = @A +aKp (1 —ayaa) av —naaa ||Av||,21 -2 (ha.0Q)

KQ Mo

Note that V = pu1™ + ay (P — ul17) and A = 1715, /T + aa(Q — 1715, /T). Hence, this also gives
Sformulas for VT+1 and ATH.

Now, we consider the dynamics of the errors.
Lemma C.6 (Dynamics of the errors).

2
[aarally = (1= naKpad = nalAVIZ) IAal

=24 (1= naKpad - nalAVIZ) (Aa. ha),
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772

A 2 2 2
- K_Q <hA,T’ Q>,Ll + T]A ||hA||/1 >

2
2 1
vl = (1 =v (0K + 1) = 1A v
1
w20y (1= (0Ko 1) =y IAAIR) Av. v,

77
V(P hy ), +my v |7,
C.3 Onmitted proofs in this section
Proof of Lemma C.1. We compute
1 2
E@JhP+U—andT—VM=<wP+U—a”ﬂT—KP—hW”
:<aP+(1—anaT—VJﬁﬂzaKp+an—<Vva
Set the derivative to be 0, and we get ay = ((V, P),, - llull®)/K p. Similarly, we compute

T 2

aQ+(l—a)%—A :<aQ+(l— )—T—A Q—£>
H u

1
Eaaf
17
<aQ+(l—a)——A Q>
=a(lIQI - 1/T) - (4.0, - 7).
Again, set the derivative to be 0, and we get a4 = ((A, 0, - 1/T) /(||Q||,21 - 1/T).
Proof of Lemma C.4. Recall from Lemma B.8 that
R 1 1
801 (0 L) V- - [ 2] 2,
. 171 1717
E¥al = Ky (A— TTN) Kvp (Q— ! )
First, consider the dynamics of A. By Lemma C.3, we can further decompose it as

. 171} 1717
EVAZZ(CY%/KP+”A\/HI21) (A— TN)—CY\/KP(Q— ]:T )

1T1T 1+17 1T1T
= Kpay (av (A— ) ( L ))+||Av||,2, (A— TN)
.1 1T 1 1T 1717
::Kpav(av(Aﬁ- r ) ( r ))+K}aéAA-+HAVHi(An— irN)

T 1T1T
::Kpav(avaA—l)(Q—- TN)-FKPQVAA+”AVH (4— TN).

Similarly, we can rewrite the expected preconditioned gradient of V' as

IEVVl—(aAKQ-k )(V ul™) — (aAKQ-+%)(P-le)+uAAu20/—u1T)
_ (aAKQ . ) (V = p17) - (a/AKQ . %) (P - 1)

1
+(a%KQ4—T)AV+HAAH207—yIU
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ay — 1
= aaKp (@aay — 1) (P - p17) + VT (P—ul")
2 1 2 T
+(a,AKQ+T)AV+”AA” (V—/Jl )
O

Proof of Lemma C.5. Recall that @y = (V,P), /Kp and s = (A,Q), /Ko. First, consider the
dynamics of V. By Lemma C.4 and Lemma C.3, we have

(Vv L +hV,T,P>#

Qv r+1 = Qv — Ny

Kp
_ nv _ T _nvav-l, o
_aV,T—K—PaAKQ(aAaV D(P-pul",P), Xp T (P-pl",P),
hy ., P)
nv 2 T < Voot u
— ALV = 1T, P -y ——— &
APV =17, P), v
=ay.r+nvKo (1 —aaay)aa+1 1_av—na/ [|A ||2—n—v<h P)
v, +1vKo AQV) @A+ 1y — vay ||Aa Kp VP

Similarly, for V, we have

(VaL+ha Q>ﬂ
Ko

QA 741 = XA T —TA

117
=aar— 77—AKPafv (avaa—1) <Q - N,Q>
KQ T u

<hA,T, Q>,u
Ko

T

171
A 2 TN
- ”AV”/J <A - >Q> —naA
Ko T u

A
= aar +1aKp (1 - avan) ay - naaa Ay}, - Ko (res Q>ﬂ :

Proof of Lemma C.6. First, consider the dynamics of A4, which is given by

171,

Aa.rr1 = Aa —aKpabAg —na AV A - —naha
u

171,
=

+ (77A01A ||AV||,2, + Z—z <hA,TvQ>#) (Q -

Decompose A into A+A A, rearrange terms, and we obtain

Aacr1 = Ax —naKpayAa —na ||AV||f4 Ag

S TS I 171}
—nAnAvni(A— T”)+nAaA||Av||,%(Q— T”)
1715

+Z_g<hA,T5Q>M(Q_ TN)—UAhA.

Note that A — 117 /T = a4Q + (1 — a4)117 /T — 117 /T = a4(Q — 117 /T). Hence, we have

Aacet =Ax —naKpay Ay =14 ||AV||,21 Aa

2 N 2 N
—naaa ||Avli10 - T )"‘UAQ’A”A 7 —T)

+ 24 (s Q) Q—ITIL —nah
KQ A,T> u T nana
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1,17
TN) —naha.

= (1 - naKpai —na ||AV||f, AA) As + [Z—z <hA,T,Q>” (Q -

Recall that (A4, Q — 11T/T)# =0,]Q - llT/T||lzl =Kp, and <1T1L/T, hA># = 0. Hence,

171,

2
“AA,T+1||i = H(l ~naKpad, —na ||AV||,21) Ag + IZ—Z (ha,r, Q>M (Q - ) —naha

M
2)\? 2 nA ? 2
= (1-nakpad - na IAvIE) 1842 + ( i <hA,T,Q>”) Ko+’ Ihall;

=24 (1= naKpad - nalAVIZ) (Aa. a),

- (ha.r.0), (@.ha),

2
= (1 —-naKpay —na ||Av||f,) IAAllL, = 274 (1 -naKpay —na ||Av||f,) (Aa,ha),
2

2 2 My
+ny llhall, = == (ha-. Q
A M KQ < >

Now, consider Ay . Similar to the previous calculation, we have

2
P

1
Ay z41 = Ay — 1y (CMIZL‘KQ + T) Av = v |AAlI* Ay = nvhy

a/v—l

—ny (P—p17) =y lIAAl* (V - p17)

1-ay nv
- (Uv 7 ivay Al - X» <hV,T’P>”) (P—p1T)

1
= (1 -1y (aiKQ + ?) —-nv ||AA||2) Ay
nv
+ K_p <hV’T,P>” (P - ﬂlT) - nvhv.
Again, note that Ay L, P — ul", ||P - ulTlli = Kp, and (u1", hy), = 0. Hence, we have
2 1 :
vl = (1= (00 + 1) = v 1A v

1
+2ny (1 -nv (O&KQ + f) -nv ||AA||2) (Av, hy),

Ty

R P Iy I

D Stage 1: signal boosting

In this section, we assume both ay and a 4 are close to 0. In this case, we can approximate Lemma C.5

with
I AL (hy, P,
ay,r+1 ® Qy,r +Haa + U% —nay Ko -n KoKp s
IAVIE  (ha,Q),,
AA,r+1 ® A,z TTIQY —1]QA Kp -7 KrKo .
We can also write this matrix form as
[av,m] N [av,, o [— A4l /Ko L ] [av,f]
QA 1+1 QAT 1 — ”AV”# /Kp dA T
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aa IAVI2 /(KpKo)
(ha.Q), | (KpKo).

Suppose that ||AA||/2, /Ko and ||Av||f, /K p are both bounded by §2. Then, we have

+n 0

1/(TKQ)] .

1
av,ea1 + @acr1 2 (147 -26%) (av,r + @ar) + N
TKg

(hy,P),  (haQ), (b

KoKr | KpKg

Aslong as 0 < 1 and we choose a sufficiently large batch size so that the second line is bounded by
n/(2TKg), ay + a4 grows exponentially fast. Similarly, one can also bound the difference between
ay and a 4. Formally, we have the following lemma.

Lemma D.1 (Main result of Stage 1). Define the end of Stage 1 as

1 O(1
91 := min {T >0 : max{ay r, s} = min{z, %}} .
Suppose n < 1/10,nv - =n/Ko, and na,- = n/Kp for some n < min{Kp,Kqp}. Let By > 0 be the

T2Q*N3 .
@ﬁ are chosen s.t. with
mm{KP,KQ}

1
< , (12)
4TKo

probability 1 — 6+

(hy,P),
KoKp

(ha,Q),
KrKo

number fresh samples we use at step T. Suppose that B > O
. 12 1/2 1 .
@(l)mln{K Ky ,—}mln{KQ,KP}

max{
0 VoN'?
max vl el < e )

Then, the following hold with probability at least 1 — 6p:
(a) Ti <0O(1)log(TKp)/n.
(b) Throughout Stage 1, |A4||> < A/T and ||Ay||> < AT, where

1.1 @(1)}

A= min{4KQ,Z P’W

(c) At Ti, we have ay + as = @(QLN) and |ay — aa| < _(Tal((lQ)-

(d) Forall T < Ti, we have ||V]|w < ©(1), | Alle < ©(1/Q).

The proof of this lemma is a large induction argument. We will first assume the bounds on [|A4]l,,
and ||Ay ||, are true, so that the approximation (11) is valid. This will give us an upper bound on the
length of Stage 1. Then, we show that within this many steps, the errors cannot exceed the given
maximum values. Thus, the induction hypotheses are true and Lemma D.1 can be established.

Part I of the proof of Lemma D.1: Signal growth rate

Proof. Since ayays < % by definition of Stage I, we can rewrite Lemma C.5 as

av,e+1 + @A 2 (1+30/4) (av,c +@ac) + 1
T T T T 4TKQ
1AAll7 IAVIG  (hv Py, (haiQ),
e . _ _
ko T ke T T Kokr " KpKo
1 1
> (1+3n/4 F )+ — —nay — ~fas — —— X2
(1+3n/4) (av,r +aaz) Uil i L Sy on
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U
= 1+—) + + N,
( ) laver + aa) T4TK,

where the second line comes from induction hypothesis (b) and (12). Recursively expand the RHS,
and we obtain

+ >(1+77)T + + : : ((1+U)T 1) 1
a a =) | a — | == =) 1) =
Ve RAT= U ) \TVOTEAY T ok | T 2TK 2 2TK,

Since the RHS is upper bounded by 1 by definition of stage I, and we obtain

log(TK,
T7 < @)(1)%.

Part II of the proof of Lemma D.1: Upper bounds on [|A[|,,

Proof. Recall from Lemma C.6 that

lav.cally < v <[ +2nv v ], v o], + 03 v I
Iaacally, < 18aell, + 204 [An el Ve ell, + % eI -

By part I of the proof, Stage 1 takes at most ©(1) log(TKg)/n steps. Hence, it suffices to bound

. 2 . . . _ - J1 1 o)
the increase of these ||Al|;, in this many steps. Recall the notation A = min {ZKQ’ iKp, m} By

induction hypothesis (b), we have for all 7,

lav il < 1av oIl + 20w vl v ], + 7 v I,
< [av <[, + 200 VAT [y o], + 73 v [,

i 1 2 2
< ||AV T||2 + @(DnVA/T _ \/A/Tmln{Kp,KQ} . 2@(1)A -min{K ’KQ}

Iaaaill, < Aaell, + 204 8n el lea el + 0l <1,
< [Anell, +20aVATT [ el + 0 <L,

TR O()nA/T /AT min{Kp,Kp} . ,O(D)A - min{K3, K3}
< ||Aa, .
Tl Kp log(TKg) TK2 log(TKo)

Since Stage I at most takes 77 = ©(1) log(TK ) /n steps, the increase of ”AA’T”i and HAA,T”i in
7 < 97 are at most (since Ay g =0, Ay o = 0):

. : 2 2
A ”2 . O(1)n+\/A/T \/A/Tmln{Kp,KQ}+n2®(1)A'mlﬂ{K Ko} )
V.t = :
m Ko log(TKp) TK} log(TKp)
3 O()nyA/T AJT min{Kp,Ko} +772(9(1)A-min{1<2,Ké} < AT
- Ko log(TKg) TK} log(TKo)’ B
IawP < O()nyA/T A/Tmin{Kp, Ko} ,O(DA-min{K7, K} t
Azll, = : +n
r Kp log(TKo) TK2 log(TKg)’
3 O()n/AT \/A/Tmin{Kp,KQ}_’_ ,O(DA - min{K3, K3} < AT
s . 1= .
Kp log(TKg) TK2 log(TKo)’
Therefore, we completed the induction for the error terms. O
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Part III of the proof of Lemma D.1: Ending state
Proof. First, consider the distance between ay and a 4. Similar to the part I of the proof, we rewrite
Lemma C.5 as
1- ay
TKo
1Al IAVIE,  (hy.P),  (ha.Q),
X +naa

v, r+1 — @are1 = — (1 =0 (1 —avaa)) (av,r —aa ) +1

- +
ey Kr " Kokp " KpKg

=—(1—77/2)(01VT—(¥A1)+0(77%)

Thus, whenever ay,r — @a,r > Q(1/(TKp)), it will start to decrease. Since the amount of increase
at each step is also upper bounded by O(1/(TKp)), this implies |av,  — aa,-| < O(1/(TKp)). The
other direction can be proved in the same way.

Finally, we bound the possible amount of overshot. By the part I of the proof, we can also upper
bound the signal term growth

ay r+1 + @y 741 < (1 + 277) (a’v,q— + (lA,T) +0 L .
TKo

Since ay r + s r < 1 forall T < 77, we have ay + a4 = @(Q]—N) at time 77. O

Part IV of the proof of Lemma D.1: Upper bound on Infinity norm of V and A

Here we consider the upper bound of the weights V and A, which can be used in the concentration
section below.

Proof. First, we upper bound the infinity norm of V.
[Vello = IV + Av lleo < [Vl + 1AV lloo < [[Ve]l o, + 1AV -
and we can upper bound ||Ay || by its g-norm:
1AV I, = (Av. Avdiag() = + AV
Thus we have ||V ||e < ||VT”OO +0O(1)VN ||Ay Il < ||VT||00 + @(QZLN) by Induction hypothesis (b).
And we can further bound ||V, ||__:
V]|, = llov.eP+ (1= av.)ud || < [Pl + 111" o < ©(1).
Therefore, we have ||V |l < O(1).
Similarly, for A we have (since ||A- || =171} /T + @a,- (@ - 171} /T)||, < C/Q.)
Azl = |A7 + Aslleo < [|A<]| +1Aslle < [|A< + 1Al < ©(1/0).

Part V of the proof of Lemma D.1: Concentration

Finally, we need to ensure that with high probability, all the error terms k& cannot exceed the given
bounds throughout < 77. We use Lemma B.12 and Lemma B.13 to bound the concentration of the
error terms.

24 NS 2
By Lemma B.13 and union bound, we have that if B, > ST QO N Tile (TKo)
6Tmm{Ki,,KQ,l}

probability at least 1 — 6 /2, the following holds for all r < 77:

, then with

O(1) min {Kl/2 K;,/z, QZNW}mm{K Kp}

s ”,u} s \/_1
TlogTKgp

max {Jv..],, .|
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1610g(TKQ)

@(1)'n~T2max{N2,Q2}N4log( =

) , then

By Lemma B.12 and union bound, we have that if B, >
with probability at least 1 — §/2, the following holds for all # < 77:

v P 1 [ Q)
KpKo |~ 4TKo' | KpKo

2
KP

<L
4TKo

And by union bound, we have that with probability at least 1 — ¢, all the bounds above hold for all
t < 771. Therefore, we conclude the proof of Lemma D.1.
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E Stage 2: learning the model

In this Stage 2, we use a positive A for the £;-regularization. In this case, we can write the update rule
of each a®) as

a®) = g UAV(B )l

=a; (gradient descent step),

‘r+1 a(k)
a*) _a, italk) >
a(k’l ) o et ] Tzr,:’f) (proximal step), (14)

T+lt 0, if la 1 <4,

k Kk k) 1 -

(T+)1 a(T+1 ) (1 17a ‘(r+1 )) T (projection step).

For notational simplicity, we define
k —1, (k k
6 - 0 - o).

We further define G 1, = —1,' (A741 — A7) as the full gradient of the matrix A.

First, we will show that with appropriate rounding at the beginning of Stage 2, we can ensure
gik) ~nE @a(ml using only B, oc log(7T') fresh samples at each step (Section E.1).

E.1 Rounding and gradient denoising

Recall that the first step of the Stage 2 is rounding each a¥) by setting all small coordinates to 0
and then projecting it back to the affine space the probability simplex lies. Since after Stage 1, there

will be a separation between a( ) with ¢ € g% and r ¢ ¢'%) | this rounding step makes all a(k) with
t ¢ ¢'®) have the same small value.

Also recall that we use {j-regularization and proximal gradients in the Stage 2. Effectively, the
¢1-regularization ensures those useless a( ) are always O (before projection). Then, similar to the first
rounding step, projection will again make then have the same small value.

In this subsection, we formalize the above argument. We show that the rounding step can recover
the support of ¢¥), analyze its influence on a4 and the distance to the population subspace. Then,
we analyze the effect of use of the proximal gradients and show that with poly(N, Q) log(T) fresh
samples at each step, we can make sure the difference between update and the population update is
small with high probability.

Lemma E.1 (Separation between noise and signal). Assume that at the beginning of Stage 2, we have
0 VN
ay =20 ?+Q NllAall,]-

Then, we can choose a threshold Oryp = O(av/Q) s.t. a( ) < O1mp lﬂ”q(k) 0.

Proof. Note that there exists some universal constant ¢ > 0 such that qik) > ¢/Q for all nonzero

q,(k) and pg > ¢/N for all k € [N]. Recall that the population process A = a4Q + (1 — )11} /T.

Hence, for all k € [N] and ¢ € [T],
a® <1, ifreq®
d,(k) > cay/Q, ifreq®

Then, note that

T N
1Aal2 = 3D (0 - a)
t=1 k=1
§ %ii (a9 =) 2 £ [vee(d - ) 2 < Vee(d - ).

1

~
I
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Hence, for any k € [N] and t € [T], we have |at(k) - d,(k)| < [|Aall,, ¥N/c. Combine these together,
and we obtain

al® < 1T+ |Aall, VNJe, ift¢q™),
al® > cay/Q ~ |Aall, VN/c, ifteq®.
Hence, in order to get a separation,

20 30VN
=+
T cls

T + Al NTe < 3 (cov/Q - IAal, VNTe)

lAAll, < av.
O

Lemma E.2 (Effect of rounding). Under the conditions of Lemma E. 1, choose A as in Lemma E. I,
and set

17 T 1

k) 1 - (k) (]1 k) 5 3 ) 2
a ( T )a o | {a,” = A} T
T 1

— g (k) ) _ (k)| 2
—a Q(]l{at 22}) |1 § | =

teq®

We have ap — ax+O0(1)/T and |AllZ, — lIAAll}, +O(1)/T.

Proof. For notational simplicity, put b(¥) = a®) © (IL{a,(k) > /l})thl. By Lemma E. 1, we know b (¥)
is supported within q(k). Set bh) = Zthl b;k). Then, we can write
a® b0 4 (1- M) %

Recall that a4 = Kxg/Kg where Kap = (A, Q) = S ki (@™, q®). Hence, for each k € [N],

we have
(a9, — (5, 4®) + (1-5) <%,q<k>>
1
—(a®.q®)+(1-5") =
As a result,

N
1
— +—E l—b(k))z + —.
ap aa Tk:lluk( ap T

Now, consider the effect of projection on the distance to the population subspace. We will use
subscript new to indicate values after rounding and use notations such as a®) to denote the values

before rounding. Recall that [|A4ll7, = 3, i [la® - d(k)Hz. We have

2 2

(k) _ =(k)

Apew — Apew

1 1 1
b(k) + (1 - b(k))? - f — (A new (q(k) - f)

2

1
=||p* —
T

— @pnewg® — (bu«)

- Q'A,new)

2 2 1
= b(k) - a'A,newq(k)H + (b(k) - a’A,new) f

1
-2 (b<k) - a'A,new) <b(k) - a’A,newq(k), T>

2 21
= [p® = (@a+ 0@ = (b - anen) 5
Note that

2 11 2 1
A e SRR B e R
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2 1
o - aag® - (1 -an? g
Hence,

(k) _ =(k)

2 2
Apew — Apew - ”a(k) - d<k)“

2
< p® —aig® - ng) _ Hb<k> _aAq<k)H2+ @ Lo

T

Thus, [[A4ll% < [[Aal% +O(1)/T. O

As we have seen in Stage 1, the norm of V) ! can scale linearly with 7. Hence, in order to make
h, . has size O(1) in terms of [|-[|, it is necessary to use poly(7’) samples, which is undesirable.
However, note that all entries of V,x ! are bounded, and therefore are subgaussian. Hence, for each
entry of V, ) [, with O (log T') samples, we can make sure the relative error is small with probability at
least 1 — 1/poly(7T’). By union bound, this means the |||, error can be made small using only log(7)
samples. Note that there is a separation between the signal and noise parts of EV, . This implies
that we can distinguish them using log(7") samples and directly remove the noise part. Formally, we
have the following lemma.

NT
a1 < 1T ift ¢ ¢, [Vl < O(1), and |A4ll,, < c(1-av)/(VNQ) and||Av [}, < c(1-av)Kp
for some small constant ¢ > 0. For the target accuracy €rnp = 0( ), we have with probability

Lemma E.3 (Gradient denoising). Given € € (@(ﬂ) 0.1). Suppose that for any k,m,n € [N],

on
1 —8+. If we choose

N*Q* CNT
Br2C 2 2Q 2 ( s )
gcay, Ky T
for some large constant C > 0. Then, for each k € [N], with probability at least 1 — S1rp, we have
T avap
(92?))1 = (1 + ETmp) Eaagk)l >0 (W) Vt € q(k),
(Be)y _ 1 ayKp\ eKp "
6a;k) l—O(f+8Tmp NQ )_0(N3Q2 Vteéq .

Proof. For s € [T], recall that
0,00l = xry = k}(Vey)" (VXa-ey,),
Eaagml = uxKvas — uiKvpgs.
First, consider the expectations. If s ¢ ¢¥), then by our assumption, we have | E 6a§k) l| = uxKvas =
O(Ky/(NT)). Meanwhile, for s € ¢(¥), we have
—Ed,wl > pKvp(gs - as) + p(Ky = Kyp)as

> i (ov (1 - av)Kpa, - avKp [Aall, VN - [AVIE a) .

As aresult, we have for any k € [N] and s € q(k),

—ay

K K lAall, < ¢ ,
Bl > < 50 (ﬁ) - "o
IAVIE, < e(1 - av)Kp,

for some small constant ¢ > 0. Then, for the size of each entry, we have

N
<|(Ver,)TVXa|+|(Vey,) ey, | < Z a,Zan,stn,X,HImexsl <N.

req®  n=1

6,001
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-subgaussian, whence 6<ﬁf))l is NZK‘%mp

Therefore, 9 (k)l is N2K*

each & > 0, we have

Tmp /B+-subgaussian. As a result, for

2p
P a(ﬁ))z Ed,wl ¢ <2exp( =3 )
Apply union bound and we get
~£°B+ £°B;
P[||Val —EV4l|| = €] <2TNexp e = exp [log(2NT) — e

Recall that the separation between the expectations is cayKp/(NQ). Hence, it suffices to choose
& =cayKp/(2NQ). Then, to make the failure probability at most §rnp, we can choose B, as follows:

2B, N“Q2 CNT
log s
N2 5r

exp (1og(2NT)— )Sé, & B >C——=
ay K

for some large constant C > 0. Then, to boost the accuracy from 1/2 to erry, it suffices to increase

the batch size to C— 2 5 log (CNT) O
sTmp VK
Using this lemma, we can pick 4 = O( 521;’;3) to sparsify our proximal gradient. Notice that our

proximal gradient is a biased estimate of the true preconditioned gradient, but the separation guarantees
that it is possible to make the error controllable. The following lemma calculates the error each

proximal step introduces. Here we define h A = Gflki - E@Al instead of h because of the bias
introduced by the proximal gradient.

Lemma E.4. Under the same setting of Lemma E.3, if the batch size

N3Q* (ZCNT) O(N®Q3) }
log , )

2.2 12 2
g*ay Ky O o€

B; > max {C

the noise attention score |a,(k)| <O(1T) forallt ¢ ¢ and all k € [N], and A = @(5215\’,’3 ) then

with probability 1 — 6, the gradient error at iteration T

Vsl i= 160~ E9all, < 0 55 )

Proof. For notational simplicity, we drop the superscript k. The goal is to estimate the difference
between E V[ and g, r by calculating the magnitude of the bias of the proximal gradient together
with the concentration error.

We consider the population gradient first. Since we have {a, - };¢4 are all the same in Stage 2, we can
write

(1 =be)lge
a,; = [aT]q + W where b, = Za,,

and recall the projected preconditioned gradient for A.

A~ 1 1
BVl = (IVI2 - lluI?) (a<k> - T) ~ (VP al?) (q<k> . _) _

teq

T

Therefore, we have
( 1-b; ) qu

A A 1 <
EVal = [EVal], +Ry o+ (VI = V. Py) =

Now, we consider g by calculating the expression of a,,;. First, note that by Lemma E.3, we have

1 _ a/ _
t, 7+l T t,7+l1
1/T. Moreover, it also implies that it suffices to focus on [a”’

a ) 1{t € q}. This implies that {a, r+1}:¢¢ are all the same and the value is at most

- 14, for which we have

L .
[a71]g =@y lq — g =[ac]q - [V((zB )l] - Ay,
Mk q
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Therefore, 3,  a " = 2ieq O (BT)l — QA and

’ —
t,7+l T

_ _ N [wBo,] _ n B.) 1
arvi = laclg = [Va z]q A1,,+( ~beron Za l+Q/l)T

k teq

(1—b7-)1qc 77 [
=a;—————— — —
T-0 Hk

Thus, we can write an explicit update

1 (B7) n (Bz) 1 (1 _'br)lqc
- Vo 7l +— 1 —(1-b:+— ) 0, 7'1+024 _—
B ,Uk[ ] n ( Hk ;‘ nT n(T - Q)

1
V,S,Bf>z]q—uq+(1—b L ZO(B’)HQA)T

k ieq

1 ITV(B )l
& (Br) n (BT)
—[Va l]q+ 1-b; + E d, l+Q/l

T k fe
N (1=b7)1ge N A
nr-0) "
Then the gradient error at step 7 can be decomposed into:
gir—E @al = @,(,B’)l -E @al ] (Concentration error)
1,17V, n
1—b+ 6(3)1+ /l—+ 1
T e QT
tEq
(L=bolge (1= T> “ e e
+————— -Ky———— — (IVIl; = (V.P),)—— (Gradient bias error)
n(T -Q) r-9 T
Here the gradient bias error can be further simplified to
1 1-b,+01 2
—ZaCEBT)l——+Q+— 1, (1%)
HiT £ nT n

14¢ (2%)
nT(T - Q) T T !
First, we estimate the concentration error. Similar to Lemma B.10, we first upper bound the infinity
norm of the gradient. Consider the maximum absolute value in the original gradients. For V[, we
have

+[Q(1 ~ b = Q) QAT —qTKy _ Ticg a1 VI = (V. P),

|17 = V)T (VX - e,

< [ttera = VO TVXGD)|_#[1ara = VX (e,
T
< max ;at(Vexs)TVext + max |(Vex,) e, |

The first term can be upper-bounded in the following way:

Dlad+ ) |a,|) max |(Vey,) Vey|

teq t¢q
< @(l)ma}x|(Vexs)TVext
S,

T

Z a,(Vey,) Ve, | <

t=1

max
se(T]

maxg ; \(Vexs) Ve,, | upper bounded by O(1). Therefore

The second inequality is due to Ia(k)l < OQ)T) fort ¢ q. Since V,,, < O(1), we have

T
max Z a;(Vey,) Vey,

s€e[T] pa

<0(1)
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And similarly, the second term maX,e[r] \(VexS)Texo| can be bounded by O(1) because the infinity
norm of V is also upper bounded by O(1). Therefore, we know ||V, || < O(1).

Now we consider the preconditioned gradient @(BT)I:

171}
(BT) r (B‘r)
]
1 v (B ) 1117\ (o0
ﬂ—le( ““)l o e T (Va<k> l)

. . 2
since g > & forall k € [N]. Now since [VQB’)I] is Q-sparse, we have ]EH[VAl]q” < O(ON?).
M

<

< O(N)

(o)

By Lemma B.9, when B, > G(N Q ) with probability 1 —
& (Br) i
-z O(QNz)
Then, consider the gradient bias term. With the selected A = @( QSZI;’,’;) (BT)l ) < 0( 13552) for

t ¢ g, with probability 1 — §,/2 we have the y-norm of first term (since Kp < O(N)):

oS ama 24, 0.
TZaa, l+T+/1) Vo

té¢q

& € & &
< O(QNz) +0(TN2\/§) +0(Q3/2N2) < O(QNz)'

and the second term can be upper-bounded by

120 < (o) + o L) o[ X)) -7 < o 25

) ac(fzr)l =0(1), and ||V||,2, <N

IADN <

% =055

Combine all three terms and by union bound, we have with probability 1 — 5,

since R

A

| =||6 ) -2 9.1
’ u
< (k)
= uellgy ) —EV <k>l||2<0( )
2l ~= on:
since ur = O(1/N). O

E.2 Model aligning and the decrease of the errors

First, we show that the signal will continue to grow and approximation error will decrease. This
decouples the error at the end of Stage 1 and the final error. In particular, we show that eventually we

will have @y + a4 ~ 2, [|Aall}, ~ 0 and Ay |7 ~ 0°.

For notational simplicity, define 6% = ||AA||/24 /Ko and 63, = ||Av||/24 /Kp. Recall Lemma C.5 and
Lemma C.6 and that we choose v =1/Kg, na = n/Kp. The dynamics of the signals and the errors
can be described using®

1 ay (hy .. P),

n 2
a =ay . +n (1 —agay) as + — —-nayd;, - n———=o,
virel =ay,r + 1 ( AQY) QA Ko T nayoé, —n KrKo

SHowever, we cannot ensure a A ~ ay since a4 — ay is not contractive toward the end of training due to the
magnitude of gradient noise.This issue can be fixed by a final rounding stage (See Appendix F).

SHere h A = h A,r because each gradient step is changed to the £1-regularized gradient. It does not change
the main parts in the population process.
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<ilA,T9 Q>

@ar+1 = @ar +77 (1 — avaa) ay —naady — 1 KrKo £,
and
2 <AAsilA,T>
&ret = (1103 =085 ) 6% =20 (1 - nat —no} ) ————*
PAQO

2
A 2 7
2<hA’T’Q>/1 2“hA’T u
- + ,
K3 K, 1 K2Kg

2
1 1 (Av, hy)
62, . =|1-nldd+——=+6%|| 63 +2n[1-nla%+ +62 £
e ( "(af‘ Kot * °4)) v T TAT ko 70| Tkekg
NGRS
2 2 2
K K3 ' KpKD

E.2.1 Lemmas for the dynamics

Before we come to the final convergence analysis, we first simplify the dynamics with some basic
lemmas.

Lemma E.5 (Dynamics of the errors). For the errors, we have

62 <ex (—27702)62 +3n|da+n A 2.
A, T+1 p 1% A, T A KP\/@ KP\/@
kv, | kv
62 . <ex (—2 a2)52 +3n |6y + “ ‘o
V,7+1 p n A V.t n \4 n\/K_PKQ \/I(_PKQ

Proof. First, we write

2 (Aa ha)
&y e = (1= 0% —003)" 6% = 29 (1 - e, —ns})) KoKo
2
R 2 hia ‘
_ 2<hA,T7 Q)y nz M
2 2 2
K2K} K2Ko
N A 2
i, e
u 2 u

2
S e o i oroe
PYARQ P

g sl |

Kr Ko | KryKo'

2
< (1—770%,—776?4) 6i+3n oA+

For the first term, we have

2 2
(1 - na%, - néi) < exp (—na%, - néi) < exp (—27]&%,) .

Thus, for 6§ 4, we have

i, | I,

+n .
AT kpJKg | kKo

63‘,7“ < exp (—2770%,) 63‘,7 +3n(6
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Similarly, for 6y, we have

2 2
1 oy llhv|| Iy ||

6 L <|l-nladd+—==+84]] 6L +3 B 132 A

V,t+1 ( n ((YA K T \'4 n '_KPKQ n KPK2Q

lhvii, | vl
< exp (—27701124) 6%, + 37 (6V + n\/K_Kﬂ \/K_Kﬂ
PKQ PKQ

Lemma E.6 (Dynamics of a4 — ay). The difference between the signals evolves as follows

(av,r+1 = @a,z+1)? < exp (=207 (1 — aaav)) (ay — @a)?

+8n L+62+62 ” VTH £

A vt
KoT VKpKo Kp@

Proof. First, we write

@V, 41 — AA 741 = Qv 7 — A7 — N (1 —aaay) (ay — aa)

n 1-ay 2 <hV,T9 P>I~4 2 <hA,T7 Q>’u
+ —T]a’vé 7]—+7]C¥A5V+I]—
Ko T KrKo KrKo

=1 (1 -7 (1 - asay)) (@v — as) + Tmp.

Therefore, we have
(av,re1 = @a01)” = (1 = (1 = @aay)) (ay — @a) + Trp)”
= (1-n(1 - aaay))’ (av — aa)’
+2(1—=5(1 - aaay)) (ay — aa) Tmp + Tmp?
<exp (=217 (1 — aaav)) (ay — @a)’
+3|ay — a4||Tmp| + Tmp?.

Then, for Tmp, we compute

h
1 v, H AT
0.577! | Tmp| < — +c52 52, + T

KoT vt \/KPKQ KPN/KQ

In particular, this implies |Tmp| < 1. Thus, we have

(v 1 = @ar41)? < exp (=27 (1 — aaav)) (@v — @a)? + 4| Tmp|

<exp (=27 (1 — aaay)) (ay — a)?

o, li],
+87 LY v <]

Kor T0aTovT \/K_PKQ KP\/@

Lemma E.7. Suppose that both avy, aa are at most 1. Then, we have

1 -

vy 41 + @A 41 < (1 _na/v+aA)(1 _ Cl/v+Cl’A)+ ay +ap (52 52)
2 2 2 2

L
2\/_KQ ZKP\/@

https://doi.org/10.52202/079017-0642 20341



Proof. First, we write

Qv 41+ QA1 = Qv +aar+17 (1 —aaay) (v +aa)
N i 1- ay e 52 e 62 <hV,T7P>“ B <hA,T7 Q>ﬂ

=l av,r + @A, +TmPgg + NTmpPeyy.

For the signal growth, note that @say < (@ +a%)/2 < (ay + @4)/2. Hence,

(I —aaay) (ay +ap) 2 % (av +aa) (2—ay —aa).

For the error terms, we have

vl ||hA,
\/_KQ KP\/@

(hv .z, P># (ha,z.Q)

+ U
KpKo KpKo

Thus, we have

ay +ap _52 —52)

AV, 4l + WA 41 Z @y + a7 +7 (@y +@4) (1 -

vl [,

n n ,
VKpKo  Kp+\Ko

and, therefore,

1 Qy 741 + @A 741 < (1 _nav+aA) (1 _ av+aA) + ay +aap (62 +62)

2 2 2 2
ha, -
gl |yl
T2 VKpKog 2 KPN/KQ
O]
LemmaE.8. Putcs=1-apand ey =1 —ay. When |e4], |lev| < 1/2, we have
(ea,+1 +8v,r01)” < exp (—21) (ea +&v)* +8nlea + evleasy + 16n° ey,
+8nlea+evl| —= ! +06% +06% + Iy <[, “hAT
nea+éy vt .
KoT VKpKo KP\IKQ
Proof. Similar to the proof of the previous lemma, we write
Qv 41+ QA r41 = @y H@ar +1 (1 —aaay) (av +aa)
+il—av . 62 . 62 B <hV,T7P>’u B <hA,TsQ>#
Ko T nNayo, —NaAoy — 1N KrKo n KrKo

=l av,r + @A r +TMPgg + NTMPeyy
For the signal term, we have
Tmpge = (1 = (1 —ea)(1 —ev)) (2—ea —&v)
=(2-cga-sv)(ea+ey) —casv (2—ea—¢v).

For the error term, we have

1 2|y o, 2 Hh“ T
+26% +25% + £y
KoT VKpKo P\/KQ

| Tmperr| <
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Combine these together, and we obtain

EA i1t EV i1 =EaAr+EVr—N(2—ga—¢ev) (ga+ey)

” v “ T u
+ (2— - )+2 —1 +(52+52 T
NEAEY & Ey) t2n
A A KT A V \/_K \/_

= (1-n(2-ea—¢€vy)) (ea+ey) + Tmp.

Thus,
(eare1 +ev,e0)’ = (1 -7 (2= 84— &v)) (64 + v) + Tmp)’
<exp(-2n(2—e4 —¢ev)) (ea+ev)? +2|ea +&v||Tmp| + Tmp?.
Note that
1 172y <1, p
|Tmp| < 4n|eaey + ——— + 04 + 0y +
KoT T047 VKrKo Kp\/@

Recall |e4l, |ey| < 1/2. Thus,

(€a,r+1 + sv,7+1)2 <exp(-2n) (ea+ ev)2

1 72y | HhArH
8 +OH Oy + ;
+8nlea +evl ('SASV " Kol KoT v VKrKo KP\/@
2.2 .2 1 2 ”hv T“ ”hA T“
vlorleasv+\ g * O+ oy "VKrKo ' KeyKo

<exp(-2n) (ea+ ev)2 +8nles + ev|eaey + 167 61248%,

k h
+8nlea + ev| (L +62 +62 + ” V,'r”'u .\ ” A,TH#

KoT 4"V VKpKo KpKo|

O

Lemma E.9. Suppose that (X;). satisfies X¢41 < e 2X; + B for some A € (0,1], B > 0. If
Xo < 2B/ A, then we have X+ < 3B/A forall T > 0. If Xo > 2B/ A, then we have X, < 3B/A for all

>80 + log (XOA)

Proof. Since e™ < 1 - A/2for A € (0,1], we have X, < X; — AX./2 + B. Hence, whenever
X, > 2B/A, we will have X1 < X,. Moreover, if X; < 2B/A, we have X,; <2B/A+ B < 3B/A.
This proves the first part of the lemma.

Now, suppose that Xy > 2B/A. When X; > 3B/ A, we have

Xep < Xr —AX:/2+B < X, — AX./6 < e 40X,
Thus, it takes at most & 4 log (X"A) steps to reduce X, from X, to 3B/A. After that, the previous
analysis applies. O

E.2.2 Main lemma of Stage 2

We split the analysis of Stage 2 into two substage. Let ¢, € (0, 0.05) be a small constant. Define
951 := inf {T > (ay,r+aar)/2>21- ca} .
Wecall {t : 7 < 751} stage 2.1 and {7 : 7 > 7.1} stage 2.2. For notational simplicity, we define

I
KQT \/K_PKQ Kp+/Ko

Note that this can be made essentially arbitrarily small by choosing a large enough batch size.

Errgman = max
T
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Lemma E.10. Suppose that the following hold at the beginning of Stage 2 (after thresholding and
projection):

(a) av,ap = a®@
(b) 6% +6%, < (6)%
Let 8. be our target value for 6 o and dy. Choose A as in Lemma E.4. Suppose that

max {6(2), Errsmall} Errsmall < 63, Errsmall < O((1<2)),

1
max {((}'V"]T - aA,frl)z,é(z),Errsmall} <0 (m) .

Then, within O(1/(na®) +1log(1/6.) /1) steps, we will have 52, 6%/ < 62 and ay, a4 € (0.9,1.1).

Remark. Note that our conditions on ay, a4 and 6@ are much weaker that what one can obtain
from Stage 1. This allows us to apply the analysis here to transfer learning. »

The following proof should be treated as a large induction argument though we do not explicitly write
down the induction as in the proof of Stage 1. In particular, we will show (by induction) that the
approximation errors d 4 and dy are small, so that most of the naive bounds on the entries of A and V
can be transferred to A and V. In particular, |V,,_,,| = O(1) for all n,m € [N] so that our bounds

in Section E.1 are valid, and |a,(k>| = 0(1) for all k € [N], t € [N], which implies that after the
projection step, aik) =0(1)T) forallt ¢ g®.
Proof of the Lemma E.10

Common results for Stage 2.1 and 2.2  First, we prove some basic results that hold for both Stage 2.1
and 2.2. First, we show (by induction) that @y, s > @® and 6% + 6% < §® hold throughout
Stage 2. Recall from Lemma E.5 that

Jia], ]
n H H
Kp+Kg | Kp Ko

< exp (—27](0'(2))2) 5124,7 + nErrgmal -

5%7”1 < exp (—21]0/%,) 5%77 +3n{da+

Hence, as long as Errgnan < 0(1)6@ /(a®)?, we can ensure 62 +62 < (6@)? always hold.

A, 7+l V,t+l
Stage 2.1: signal growth By Lemma E.7, we have

1-

vy r+1 + @A 7+1 < (1 _na’v+6lA) (1 _ Olv+0/A)+ ay +ap
2 2 2 2

When (@y +@4)/2 < 1 —cq and @y, as > @, we have

(5‘24 + 5%/) + T]El‘l'sma”.

Caq 2 na(Z)ca.

ay +ap (1 av+aA)> ay +ap
2 2 -

Hence, as long as Errgpay < a/(z)ca/Z and 6@ < Ca/2, we have

1-

(2)
Qy 41 T QA 741 s(l—QaV+aA)(l—aV+aA)£exp _na ( _Clv+aA).
2 2 2 2 2 2

Thus, stage 2.1 takes at most O(1/(na(?)) steps.
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Stage 2.1: difference between the @’s By Lemma E.6, we have
(v 1 — @a,re1)” < exp (=21 (1 — aaav)) (av — @a)’ + 8 ((5(2))2 + Efrsman) .

By the AM-GM inequality, we have e qay < ((@a+ay)/2)? < (1—cq4)?. Therefore, | —apay > cq
and the above inequality can be further rewritten as

(@v,+1 = @a,r41)7 < exp (=2¢an) (@y — a@a)? + 87 ((5(2))2 + Effsmall) .

Thus, by (the proof of) Lemma E.9, we have

4 ((6(2))2 + Errsmall) }

(av,r - @ar)” < max {2((lv,fr1 —aan)’, .
07

Stage 2.2: error decrease By Lemma E.5, we have
634’”1 < exp (—Zna/%/) 634,7 + 37 max {6(2), Errsmau> Errgman
<exp(-n) 6,24,1 + 37 max {6(2), Errsman} Errgman.
Thus, by Lemma E.9, we have

log(1/6.
(5124’7 < O(1) max {6(2),Errsmau} Errgman < (55, YT >0 (M) .

n

/6+)
n

In other words, Stage 2.2 takes at most O (&) steps.

Stage 2.2: stability of ay + @4 Recall from Lemma E.8 and Lemma E.6 that
(ear+1 +€v,r41)* < exp(=21) (ea +&v) +8nlea + evieaey + 16n° %6l
+8nlea +ev| (5(2) + Errsmau) ,

(av.+1 — aA,T+1)2 <exp(-2n (1 -aasay)) (ay — aA)2 +8n (6(2) + Errsma“) .

We wish to maintain the induction hypotheses |ay — a4| = |ey — €4| = 6 for some 6_ = o(1) and
(@pa+ay)/2 < 1+c/log(1/6.) =1 1+6,.

First, assume these conditions are true. Then, we have
(@v,r1 = @aee1)? < exp (O(D/log(1/6.)) (v = a)? +87 (6 + Ertypan)
Since Stage 2.2 takes at most O (log(1/d.)/n) steps, when the constant ¢ is small, we have
(av.+ - aA,T)2 <2 ((ozv,qg_1 - a'A,75_1)2, +8 (6(2) + Errsma“))
< O(1) max {(Q/V,ﬁ.l - aA;yil)z, 5®, Errsmau} =:0_.

We can choose the parameters appropriately so that 6_ < 0(6,). Then, when 4 + ey € (264, —-6.),
we have, for some large universal constant C > 0,

(ea,r+1 + 8V,T+l)2 < exp (-27) 03— + Cﬂgi + angi +Cnb. (6(2) + Errsmall)

< exp(-2n) 93 + Cr]H?r +Cnb,.0_

< 62

This establishes the induction hypotheses on ay + @ 4.
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F Stage 3: Final Convergence

As mentioned last section, we cannot ensure a4 ~ @y Since a s — @y is not contractive toward the end
of training. However, we can add a final rounding step and then continue train the model to recover
the ground-truth with e-error.

First, we formally define our rounding procedure. Let ¢ > 0 be a small constant (cf. the proof of
Lemma F.1). For each k € [N], define

5 (k)
ak) [ (k) g [ (k) () ._ 4
a'" = [a, 1 {a, > c/Q}]tem and a =

This A* := [a(*’k)]ke[ N7 is our rounded version of A. For the error between A* and Q, we have the
following lemma.

Lemma F.1 (Rounding A). Lete € (®(Q2/T2), 0.1) be our target accuracy. Suppose thatp = 1—€4
for some |e4| < 0.1 and A4l < (5124f0r some 0 < 64 < 1/(QVN). Then, after rounding, we have

Q2

lA.-Ql% <0 (F + cﬁNQ) .

In particular, to achieve & accuracy in terms of ||-|| ,, we only need |e 4| < 0.1 and 6% < 0(g/VNQ).

Remark. In particular, this lemma implies that as long as €4 is not too large, after rounding, the
error depends solely on ||A A||/21. )

Proof. For notational simplicity, we omit the superscript k for now. Write
1 1
a=d+As=avqg+(l-ay) +Ac=(1-ca)g+eag +Aa

Note that ||Ag || < [|Agll2 < O(I)W”AAH” < O(VNéy). Since all nonzero g, are lower bounded
by Q(1/Q), we have, for any s € g and ¢ ¢ ¢,

Q) |eal _ Q)
@25 =~ 0 (W) =75

leal 1
la;| - +0 (\/N(SA) < E

Hence, we can choose a small constant ¢ > 0, so that

IA

1
@ := [a1{la) 2 ¢/Q)rerr) = (1 = 24)g + £a=7 + [Adlg,

where for v € RT, v, € RT is defined as [v,1{r € q}]ie;T) here. Now, consider the difference
between ¢ and d/17d. We have

le=1—8A+%iO(Q\/N6A),

and therefore,
0 = G (1—ea)g+ealy /T +[Ady
18 (1-24) +£40/T % 0 (QVNG,4)
_ (I-ea)g +ealy/T + [Adlg
(1-¢a)

= (g + 0 (ealy /T + [Adly)) (1 +0 (aAQ/T + Q\/N&A))
= g+ 03 (8AQ/T +ONGA) .

(1 L0 (sAQ/T+ Q\/N&A))

Thus,

2 H2
£,0 2
ot oaNe|.

N
2
1. - Q12 = Y et - ¥ = 0
k=1

20346 https://doi.org/10.52202/079017-0642



Lemma F.2. Let € € (0(1)/(KoT),0.1) be our target accuracy. Suppose that ||[A = Q||,, < 64+ <
0.01€ and ||Av ||, < 6y < 0.01 at the beginning of Stage 3, and ||hv ||, < ceVKpKg for all T and a
sufficiently small constant c. Then, we have ||V - P||%, < & forall T > T3 + O(log(1/e)/n).

Proof. Under the condition ||A — QI|,, < 4.+, we have [[Aall, < [|[A - Q]| < J4,. and

1

o (00,2) a0 0 ().

Recall that we only train V in Stage 3. Note that by Lemma C.3,
- 2
IV =PIl = ||V = Pl +IAvIl; = (1 = av)*Kp + [AvI < (1= av)* +[Av]l; -
Hence, to get £ accuracy, it suffices to have (1 — ay)? < /2 and lAv|% < &/2.

First, for @y, by Lemma C.5 and vy = 17/K¢, we have

1—ay nv
ay 41 = ay,c +nvKo (1 —ayaa) ay +nv —nvay Al - — (hy <. P)

T Kp u
1 <hV,T’P>#
=ay,c+n(l —ay)ay £n0 (@ + 5A,*av) +n0 “KrKo
Hence,
2 1 <hV,T3P>M g
(I-ay) =0 -nay) (1 -ay ) 70 (m +6A,*Q'V) +=n0 “KrKo
2 1 <hV’T’P>M
<exp(-2nay) (1 —ay,;)” +n0 (@ + 6A,*av) +10 KoKy
<exp(-n) (1 - a/V,T)2 +0.1ne.
For ||A4]|%, by (the proof of) Lemma E.5, we have
2 ) 2 vl | vl
Av,atlll < exp (2003 ) [Av.e 7 + 30 [ Ay <]l +
” v, +1”M R ” v ”H ! (” v “H UVKPKQ VKpKg

2
<exp(-n) ||AV,T||# +0.1ne.
Thus, by LemmaE.9, we have (1 — ay)? < &/2and ||AV||/21 < g/2forallt > 72+O (log(1/e)/n). O

Corollary F.3. Let £ € (©(1)/(KgT),0.1) be our target accuracy. Suppose that as € (0.9,1.1),
||AA||/21 < 0(&¢/(QVN)), and ||AV||lzl < 0.01. Then with poly(N, Q, 1/&) samples, we have with high
probability that |A — Q||,21 <eand|V - P||i < & after Stage 3, which takes O (log(1/g)/n) steps.

Proof. Tt suffices to combine the previous two lemmas, the concentration results in Section B, and
apply union bound. O

G Proof of the main theorem

In this section, we combine the results from the last three sections and prove the following formal
version of Theorem 3.1.

Theorem G.1. Let € > 0 be our target accuracy and 77 = min{r > 0 : max{av r,@a } =
BO(1/(QN))}. We can choose the hyperparameters in Algorithm 1 such that within
O (log(T)/m1 + 1/(na®) +log(1/€)/n) steps, we have ||A — Q||2 < eand ||V -P|? < & with
probability at least 1 — § and the number of samples used before and after T1 are poly(T, §) and
poly(N, Q, 1/&,10g T, 6), respectively.
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Proof. The results for Stage 1 follow directly from Lemma D.1. Now, consider the results for
Stage 2 and 3. First, by Corollary F.3, it suffices to make sure at time 73, we have a4 € (0.9, 1.1),

lAAl> < O(e/(QVN)) and ||Ay || < 0.01 (with high probability). By Lemma D.1, we know the
following hold at time 77 w.h.p:

@,y =O(1/(QN)) and [Aall}. AV < O(1/T).

Therefore, by Lemma E.1, if we choose the threshold to be ®(1/(Q?N)), then after thresholding

and projection, we have a§k> = O(1/T) forall t ¢ ¢©). Thus, by Lemma E.3 and Lemma E.4, with

poly(Q, N, 1/&,log(T)) samples, we have with high probability that aﬁk) =O(1/T) forall t ¢ g(¥)

holds and Hit AH satisfies the requirements in Lemma E.10 throughout Stage 2. Thus, by Lemma E.10
u

with 62 = O(g/QVN), at the end of Stage 2, we have with high probability that a4 € (0.9, 1.1),

lAAl1% < O(g/(QVN)) and ||Ay||% < 0.01. When combined with Corollary F.3, this completes the
proof. O

H Transfer learning

Lemma H.1 (Initialization). Suppose that we have learned P and <ﬁ,P># > 2 ||/.t||2, |}A’Hi =

o(1) ||P||,21 Let V =0P + (1 — 0)ul™ for some 6 € (0, 1). We have

6 2 2
O|——1].0(0 d AV, < ©(1)6°Kp.
ave[ (NKP) (0)| and |Avl (1)6°Kp

Proof. First, consider Ay. Since [|Ay ||, is the distance to a projection, we have
IAvIZ < |V - (6P + (1 - 0)u")|[}, = 62| P - P|, < ©(1)6* | P|2 = ©(1)6*Kp.
For ay, we compute
(V. P), =l = 0 (. PY,, = I1ul) 2 0llul> = ©(1)0/N.
In particular, this implies ay > © (NL;@) O

Lemma H.2 (First gradient step). Let A = 117 /T and V given by Lemma H.I. Let &1y, <
O(1/(NKp)). Run one gradient step with poly(N, Q,10gT, 1/ernyp) samples and n = 1, remove all

entries of a'®) with |a,(k)| < ©(0/(NKp)) and the replace a™ with the projection (I — 117 /T)a'®).
2 2
With high probability, we have a s = (1 + O(&rmp))ay and ||AA||121 <0 (% + %)

Proof. The proof idea is essentially the same as Lemma E.3, though the reinitialization of the first
layer allows better estimations in several places. Recall that for each s € [T], we have

aqu)l =1{x741 = k}(VexS)T (VXl/T - exo) s
Ed,wl = uxKy /T - Ky pgs.

Also recall from Lemma C.3 that Kyp = ayKp and Ky = a%,Kp + ||AV||f,. For any s € g0, we
have

ay Kp + ”AV”i . HavKpgs
T - 2

—Eaagkﬂ = ux |avKpgs —

where the inequality comes from prayKpgs > Q(ay/N?/Q) > 1/T. Meanwhile, for any s ¢ [T],
we have EQ_ ! =O(1/T).
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Meanwhile, for any s € [T] we have

‘6a<_k>l < O(N).

0:Xs

T
< [(Vew TVEUT| +|(Ver) ey, | < & 3 (V. Vo) 1V,
t=1

Thus, by some standard concentration argument similar to the one in Lemma E.3, we can show that
with poly(N, Q, 1/ay, 1/&rnp,logT) samples, we can make sure with high probability,

G‘Efk;)l = (1 &mp) Ec’)at(k)l = (1 £ &1np) pravKpgs Vi e q'®),
Thus, after one gradient step with n = 1, we have
a") = (1 £ ernp)avg Vieq®,
a,(k) =0 (sTmp%) Vit ¢ q(k).

Recall from Lemma H.1 that @y € [©(8/(NKp)),®(6)]. Hence, we can choose the threshold 2 to
be ©(6/(NKp)) and ey < 1/(NKp) so that

a® = [at(k)]l{at(k) > /10}] - [(1 + ernp)ayg P 1{r € g0 .
te[T] te[T]

Now, set .
a® — (I-117/7)a™ = (1 £ O (£1mp))avqg® + Oce(1) .
Note that this implies that after the first step, we have

St (a®,g®) — 1T ay(1£ 0 () QI +0(Q/T)
ap = =
Ko Ko

= (1 + O(ETmp))a'V,

and

0 T

N 2 e _a% 1
1Al < Y pna® = (ava® + (1= anT)| <02y ).
l=1 "

O

Theorem H.3 (Main theorem for transfer learning). Let € > O be our target accuracy. Consider the

same setting of Lemma H.1 and Lemma H.2. Choose 6 = 4JO(1/log(1/¢)) and &1np = O (m)

Then, after one step of update on A as in Lemma H.2, A and V satisfies the conditions of Lemma E. 10,
and therefore we can learn (P, Q) to e-accuracy using poly(N, Q, 1/¢e,1/6) samples with probability
at least 1 — § within poly(N, Q, 1/g,1/0) steps.

I Additional Experiment

For all our experiments, we use Numpy and run on a normal laptop which takes about 20 minutes.

Setup. In all our experiments, we choose 7' = 5000, Q = 2, N = 3. The architecture is
F(x,x741;V, A) := VX (IrAey,,,) = VXa®), (15)

and the data model is the SCB (1) data-generating model. The batch size is B = 64 and the
regularization hyperparameter is A = le-5. The total time is 7~ = 1000 iterations where stage 1 takes
7 € [0,400] with learning rate ; = 0.01. After T > 400, we use 72 = 0.005 for further improvement
(stages 2 and 3).

Hyperparameter selection. Due to the limitation of computational resources, we do experiments
with N € [3,20] for real-world batched gradient experiments, and N € {100,500},7 = 100000
experiments by using Gaussian noise SGD simulations based on the dynamics of Lemma C.5 and
C.6. As T needs to scale with N polynomially, it would be beyond our computation capability to
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experiment with larger N. As for other hyperparameters, A is chosen based on our theoretical results
(Theorem 3.1 and G.1): 1 ~ ©(eKp/Q?N?) in Lemma E.4. The batch size can be chosen from
standard {64, 128,256}, while smaller batch size will lead to divergence for both SGD and regularized
GD. 7 is chosen as the largest learning rate without divergence.

Besides the original parameters, we consider the approximation error after the normalization step
(stage 3) in real-time. That is thresholding and normalizing the attention block

Vk € [n],a® = [aP1{a™ > Q1/0)}];. a® —a®/17a™

and we do further gradient descent to recover V. In this case, we will directly use the linear regression
solution on population loss for V.

Here we report in addition: (1) original signal projection on the population process trajectory a4, ay
and the distance to the trajectory A4, Ay. (2) The approximation error/similarity before and after
normalization for both SGD and proximal gradient descent. We conclude that in all metrics proximal
gradient descent performs better than the vanilla gradient descent with a small batch size (when the
noise is large).

081 . ours Ay, ours
av, ours — Ay, ours
a4, SGD 0.8 Ay, SGD
0.64 ay, SGD 5 Ay, SGD
8 8.6
?, S 0.6
o4 2
= 0 04
& 9] £
0 o = 302
0.0 0.0 e —
0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration

Figure 3: Signals a4, @y and the distance to population process A4, Ay. For the SGD, the distance
to the population process of the attention matrix A keeps growing and dominates the signal term.
That explains the failure to learn the correct attention pattern, which leads to saturation of the signal.
In comparison, our proximal methods dramatically help reduce the gradient noise and keep close to
the population process. Though ||A4|| eventually grows up due to the bias of the gradient estimate
(the original signal growth is also slowed down), after normalization it can still approximately learn
the correct pattern. Both ||Ay || stay small empirically.
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Figure 4: Similarity with the ground-truth. The figure shows after Stage 1, normalization helps
further improve the solution of the proximal method. Meanwhile, with or without normalization, our
proximal method always outperforms the vanilla SGD, which fails to recover the ground-truth.

We tried different orders of state number N and show that ¢; regularization is necessary and outperforms
SGD when batch size is small (gradient noise is large). Due to computation limitation, we experiment
with real batched gradienton N < 20,7 < 5000, and do SGD simulation by combining our population
gradient + Gaussian noise (to mimic the batch gradient noise) for N < 500,7 < 100000.

We also corroborate our previous experiments with the new test loss plot to show the convergence
of training. Note that since there are multiple global minima for the linear attention, ¢; regularized
dynamics eventually will make A and Q deviate from the ground-truth while representing the same
function. That is why the loss converges but the distance to the ground-truth increases after some
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point, making the final normalization step essential to recover the ground-truth. Another point is that
according to our theory, the regularization will eventually distort the learned pattern when trained for
too many iterations. Empirically, the loss also increases a little after it converges. Therefore, we must
stop early and normalize before the distortion happens.
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Figure 5: Convergence analysis. We plot the distance to the ground-truth and the test loss for
N = 3,10, 20 (from top to bottom). It shows that when gradient noise is large, £; regularized algorithm
with normalization and early-stopping can almost perfectly recover the ground-truth (the star), while
SGD struggles to learn the target function. Figure 3 (Appendix I) also shows when the gradient noise
is large, SGD never learns ground-truth Q even with normalization.
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Figure 6: Simulation with larger N and 7. We simulate the SGD/{; regularized dynamics by
replacing the batched noise with Gaussian noise in the dynamics formula in Lemma C.5 and C.6. The
gaussian noise variance scales with the inverse of batch size. The experiments show that the conclusions
drawn from the small N cases still hold in those simulations: when 7' = 100000, N = 100/500, our
{1 regularized algorithm can recover the ground-truth since the distance to the population trajectory
(A4, Ay) stays very small, while the error along SGD trajectories quickly increases with the same
batch size.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We accurately summarized our claims and contributions in the abstract as well
as the introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: It is included in Appendix A.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The assumptions and conditions are included in the Setup section 2.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: All information is included in Section 5 and Appendix I.
Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
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Answer: [Yes]
Justification: We will upload the codes in the supplementary materials.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more
details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All information is included in Section 5 and Appendix I.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our experiments are for dynamics simulations. We do not include perfor-
mance/accuracy results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]
Justification: All information is included in Section 5 and Appendix I.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This work is a pure theory paper without potential harmful effect.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This work is a theoretical paper without direct societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper is a theoretical work without such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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