
Edit Distance Robust Watermarks for Language
Models

Noah Golowich
nzg@mit.edu

MIT

Ankur Moitra
moitra@mit.edu

MIT

Abstract

Motivated by the problem of detecting AI-generated text, we consider the problem
of watermarking the output of language models with provable guarantees. We aim
for watermarks which satisfy: (a) undetectability, a cryptographic notion intro-
duced in [CGZ24] which stipulates that it is computationally hard to distinguish
watermarked language model outputs from the model’s actual output distribution;
and (b) robustness to channels which introduce a constant fraction of adversarial
insertions, substitutions, and deletions to the watermarked text. Earlier schemes
could only handle stochastic substitutions and deletions, and thus we are aiming
for a more natural and appealing robustness guarantee that holds with respect to
edit distance.
Our main result is a watermarking scheme which achieves both undetectability
and robustness to edits when the alphabet size for the language model is allowed
to grow as a polynomial in the security parameter. To derive such a scheme, we
follow an approach introduced in [CG24], which proceeds via first constructing
pseudorandom codes satisfying undetectability and robustness properties analogous
to those above; our key idea is to handle adversarial insertions and deletions by
interpreting the symbols as indices into the codeword, which we call indexing
pseudorandom codes. Additionally, our codes rely on weaker computational
assumptions than used in previous work. Then we show that there is a generic
transformation from such codes over large alphabets to watermarking schemes for
arbitrary language models.

1 Introduction

The rapid increase in AI-generated content represents a significant challenge for numerous societal
institutions, ranging from education to social media. For instance, the ability of large language models
such as GPT-4 to generate long bodies of text such as essays raises the possibility of increasing
amounts of plagiarism, and the proliferation of AI-generated text, images, and videos on social
media presents challenges regarding large-scale manipulation of online audiences. An important
tool at our disposal in preventing the misuse of such content is watermarking schemes, which are
procedures that embed hidden patterns in AI-produced content using a secret key. Watermarking
schemes allow a detection algorithm with the aid of the secret key to determine with high probability
that the content was produced by the AI model. They do so without noticeably altering the content
from the perspective of any algorithm not possessing the secret key.

Despite a number of recently proposed watermarking schemes, taking both a theoretical perspective
(e.g., [CGZ24, CG24, Zam24, FGJ+23]) as well as a more empirical one (e.g., [KGW+23, KGW+24,
KTHL23]), a crucial challenge that remains elusive is that of ensuring the watermark be robust to
adversaries which can modify the generated content. A watermarking scheme is of little use if it is too
easy to change the model’s output so as to remove the watermark. On the other hand, a sufficiently

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

20645 https://doi.org/10.52202/079017-0652

resourceful adversary can simply train their own unwatermarked model. Thus it is necessary to strike
a balance in terms of the power of adversaries to which a watermarking scheme enjoys robustness.
In this paper, we give the first watermarking schemes with provable robustness to adversaries that
make a constant fraction of arbitrary substitutions, insertions, and deletions to the output. This is a
substantial improvement over previous schemes [CG24], which could only tolerate a constant fraction
of adversarial substitutions or a constant fraction of i.i.d. deletions under additional stochasticity
assumptions on the language model. Our results therefore represent progress towards the overarching
goal of constructing watermarking schemes which are robust to resource-limited adversaries.

1.1 Setup: watermarking schemes

We consider the task of watermarking the output of a language model Model, which is simply defined
as a mapping from a sequence of tokens t1, . . . , ti−1 to a distribution over the next token.1 Though we
use the terminology “language model” and “text” throughout the paper, our framework can be used
to model a host of autoregressive models including those for generation of images, audio, and videos
(e.g., [YXK+22, TJY+24]) in addition to text. As this paper is theoretical in nature, we work only
with this abstraction of an autoregressive model, keeping in mind that single tokens could represent,
e.g., sequences of letters [SHB16] or discretized patches of an image [YLK+22, RvdOV19].2

A watermarking schemeW for Model consists of a tuple of efficient algorithms,

W = (Setup,Wat,Detect)

where Setup generates a secret key at random, Wat uses Model and the secret key to produce a
sequence of text with a watermark embedded in it, and Detect uses the secret key to determine
whether a given sequence of text is watermarked. Moreover, Detect has no knowledge of Model. W
should satisfy the following three properties:

• Undetectability [CGZ24]: Text generated from the watermarking protocol Wat should be compu-
tationally indistinguishable to text generated by the true model Model, to any polynomial-time
algorithm which can repeatedly query either Wat or Model. (Other notions, namely distortion-
freeness [KTHL23], have been considered in place of undetectability, but are significantly weaker;
see Example A.1.)

• Soundness: Any fixed sequence of text (not produced by Wat) should not be detected as water-
marked, with high probability (over the generation of the secret key).

• Edit-Robustness: A sequence which can be obtained by calling the watermarking procedure
Wat and then making a constant fraction of adversarial edits (i.e., substitutions, insertions, and
deletions) to its output will still be detected as watermarked by Detect with high probability.

Whereas several existing watermarking schemes achieve undetectability and soundness, the main
contribution of our work is to achieve the notion of edit-robustness given above. Robustness, broadly
construed, has long been recognized as essential for constructing useful watermarking schemes
[ARC+01, ARH+02], yet nearly all of the existing provable guarantees on watermarking do not
yield robustness to any constant fraction of edits. We remark that some works (e.g., [CGZ24]) can
handle a subconstant fraction of edits. However, we argue that the right notion of adversary is that
which makes a constant fraction of edits: there is a relatively low bar for a malicious adversary
attempting to remove the watermark by changing the text at a constant rate while avoiding significant
quality degradations, such as randomly replacing 5% of words with a synonym. Moreover, even if
an adversary is not actively trying to remove a watermark, it is reasonable to expect that an “honest”
editor who is merely trying to improve the text’s quality will introduce edits at a constant rate. The
lens of coding theory provides further motivation for recovering from such channels that introduce a
constant fraction of errors: doing so is a longstanding gold standard in the field [GRS19].

1Note also that it is typically assumed that Model takes as input a prompt; for simplicity, we absorb such
a prompt in the definition of Model, which technically introduces a different model for each possible prompt.
Nothing in our results changes if we instead explicitly allow Model to take as input a prompt. (In particular, our
watermarking detection algorithms do not assume any knowledge of Model, and therefore of the prompt.)

2In the setting of text, transforming a token sequence to readable text (i.e., sequences of letters) and then back
to tokens may not necessarily recover the original token sequence. Any errors induced via this transformation
would likely be of small edit distance, and therefore we incorporate them as part of the adversary for which our
watermarks have robustness. See also [KGW+23, Section 7] for related discussion on “tokenization attacks”.

2

20646https://doi.org/10.52202/079017-0652

The only prior work in the literature which obtains watermarking schemes with provable robust-
ness guarantees against such “constant-rate” attacks was [CG24], which constructed watermarking
schemes robust to a constant fraction of deletions and substitutions. Moreover, in order to handle
any deletions at all, [CG24] needs to assume that: (a) the deletions and substitutions are made
independently at each position with some fixed probability; and (b) the language model is equivalent
to a binary symmetric channel in a certain sense, a strong assumption which is contradicted by
decades of study in linguistics, which posit that earlier words strongly influence the distribution of
subsequent words [Bib09].3

Finally, we emphasize that the task of obtaining robustness against adversaries that can make a
constant fraction of insertions, deletions, and substitutions, as opposed to merely substitutions, is well-
motivated by an extensive line of work on edit distance (e.g., [OR07, AKO10, AO11, AN20], amongst
many others). The edit distance between two strings is the minimum number of insertions, deletions,
and substitutions needed to transform one string into the other. Edit distance has found numerous
applications in areas ranging from computational biology to information retrieval [Nav01]. This
fundamental role of edit distance results from the fact that many natural processes induce small edit-
distance perturbations on strings: for instance, mutations of DNA can involve insertions or deletions
as well as substitutions, as do the changes people typically make to documents. Procedures that make
such changes therefore represent a reasonable adversary in our present setting of watermarking.

1.2 Main result

Our main result states that watermarking schemes with all of the aforementioned properties exist
under a standard cryptographic assumption:
Theorem 1.1 (Informal version of Theorem E.2). Suppose that local weak PRFs exist (per Assumption
3.1). Then for any security parameter λ ∈ N, there is a watermarking scheme over an alphabet
of size poly(λ) for model outputs of length poly(λ), which is sound, undetectable with respect to
algorithms running in time poly(λ), and robust to a constant fraction of substitutions, insertions, and
deletions when the sequence of generated text has “entropy rate” at least some constant.

As is typical in cryptographic settings, the guarantee of Theorem 1.1 involves a security parameter
λ, which controls the power of a distinguishing algorithm (in the context of undetectability) as
well as the failure probability of soundness and edit-robustness (which are negl(λ); see the formal
version in Appendix E). The requirement that the sequence of generated text have constant entropy
rate (meaning that on average, the tokens are generated from conditional distributions which have
entropy at least a constant fraction of the maximum possible entropy) is easily seen to be necessary,4
and lower bounds on the entropy are standard amongst essentially all watermarking schemes, even
without any robustness requirement [CGZ24, FGJ+23, CG24, Zam24]. Indeed, watermarking a
near-deterministic language model is impossible since it can only produce a small number of outputs;
the entropy assumption quantifies the extent to which the language model is near-deterministic.

One potential limitation of Theorem 1.1 is the requirement that the alphabet size of the language
model (i.e., number of tokens) grow as a polynomial in λ. This limitation is mitigated by the following
observations: first, in many domains, the number of tokens used by existing (or future) tokenizers may
already be quite large, i.e., at least in the thousands [SHB16, YLK+22]; second, in practice one could
use various heuristics to increase the number of tokens, such as by grouping together consecutive
sequences of tokens to create larger alphabets of “mega-tokens”. Finally, again invoking the language
of coding theory, a common approach to constructing good codes is via concatenation, which combine
an outer code with large alphabet together with an inner code that encodes individual symbols of
the large alphabet using a smaller alphabet. Theorem 1.1 (as well as Theorem 4.1, discussed below)
could play the role of the outer code in such a concatenation strategy for watermarking schemes;
finding the analogue of an inner code to decrease the alphabet size represents an important direction
for future work.

3We remark that, even for the case of substitutions, the result of [CG24] (Lemma 23 & Theorem 5 within) only
states robustness against i.i.d. substitutions, i.e., a binary symmetric channel. Nevertheless, a straightforward
modification to the proof of [CG24, Theorem 5] allows one to establish robustness a constant fraction of
adversarial substitutions. However, entirely different techniques are needed to handle the case where insertions
and deletions are also allowed.

4If only an α = o(1) fraction of tokens have nonzero entropy, then an adversary could simply replace those
tokens with any fixed token and thus remove all entropy.

3

20647 https://doi.org/10.52202/079017-0652

Roadmap of techniques. The proof of Theorem 1.1 proceeds via constructing new pseudorandom
codes (PRCs), which are cryptographic objects originally introduced by [CG24] to derive water-
marking schemes robust to i.i.d. random (i.e., non-adversarial) subsitutions and deletions. Roughly
speaking, a pseuorandom code is an error-correcting code equipped with a secret key used for encod-
ing and decoding, which looks random to any polynomial-time algorithm that does not hold a secret
key. We establish the following ingredients pertaining to PRCs:

• First, we design a a PRC over the binary alphabet which is robust to a constant fraction of
adversarial substitutions, under Assumption 3.1 (Theorem 3.2; see Section 3). This assumption is,
qualitatively speaking, weaker than the cryptographic assumptions in [CG24].

• Next, we give a generic reduction which, given any PRC over the binary alphabet robust to
substitutions, yields a PRC over a polynomial-sized alphabet robust to any constant fraction of
substitutions, insertions, and deletions (Theorem 4.1; see Section 4). A central idea in this latter
PRC is to interpret symbols of the larger alphabet as indices into codewords of the former PRC;
hence, we call it an indexing PRC.

• Finally, we establish a generic reduction which converts any PRC over a larger alphabet robust
to substitutions, insertions, and deletions to a watermarking scheme with analogous robustness
properties (Theorem E.1; see Section 5).

Theorem 1.1 follows by composing the components above. These components have the advantage
of being modular in nature, meaning that one could, for instance, plug in the substitution PRCs
of [CG24] in place of the first item to obtain a guarantee analogous to Theorem 1.1 but under the
(qualitatively stronger) cryptographic assumptions of [CG24].

In order to handle deletions, [CG24] uses a type of PRC they call a majority code. This code is
only robust when the substitutions and deletions are made in an i.i.d. manner. In their reduction that
converts a PRC to a watermarking scheme, the language model may induce certain errors on the PRC
codewords. Since these errors may not be correctable by the majority code unless they are assumed to
be i.i.d., [CG24] need to assume that the language model is equivalent to a BSC. Our use of indexing
PRCs avoids this significant shortcoming.

2 Preliminaries

We begin with the definition of a pseudorandom code (PRC), as introduced in [CG24]. A pseu-
dorandom code is defined over an alphabet Σ, which is simply a finite set. We denote the set of
all finite-length strings over Σ by Σ?. As is typical when defining cryptographic primitives, our
pseudorandom codes depend on a security parameter λ ∈ N; as λ is increased, the amount of security
afforded by the PRC also increases. A function f : N→ R≥0 is called negligible if for any C > 0,
there exists λ0 so that f(λ) ≤ λ−C for all λ > λ0. We use negl(λ) to denote a negligible function,
whose precise value can change from line to line.

Given an alphabet Σ, a channel is a mapping E which associates to any x ∈ Σ? a distribution E(x)
over Σ?. With slight abuse of notation, we will often let E(x) denote a random variable y drawn
from E(x): for instance, when we write a statement of the form “with probability 1 − negl(n),
DHam(x, E(x)) ≤ pn”, we mean that DHam(x, y) ≤ pn with probability 1− negl(n) over y ∼ E(x).

We primarily focus on secret key PRCs for simplicitity; our arguments (in particular, those regarding
edit-robust PRCs) apply identically to the case of public-key PRCs [CG24, Definition 2], though
for simplicity we focus solely on secret-key PRCs. A secret-key PRC may be viewed as a variant
of a secret-key encryption scheme in which the ciphertext enjoys certain robustness properties to
adversarial perturbations. Formally, a PRC is specified by functions KeyGen,Encode,Decode, which
behave as follows: KeyGen outputs a secret key, Encode uses the secret key to “encrypt” a message,
and Decode uses the secret key to “decode” a string. If the string passed to Decode is the output of
Encode, perhaps with a bounded number of adversarial perturbations, then Decode should output the
message originally passed to Encode (robustness). Outputs of Encode should also look random to
polynomial-time algorithms (undetectability), and Decode should almost always fail when given any
fixed string (i.e., not an output of Encode) as input. These definitions are formalized below:

Definition 2.1 (Secret-key Pseudorandom code (PRC)). Let λ ∈ N denote a security parameter,
and suppose that for each λ ∈ N an associated alphabet Σ(λ) is given. Moreover, suppose that

4

20648https://doi.org/10.52202/079017-0652

for each λ, a collection E (λ) of channels E : Σ(λ)? → ∆(Σ(λ)?) is given. A secret-key pseudo-
random code (PRC) with robustness to E is a triple of probabilistic polynomial-time algorithms
(KeyGen,Encode,Decode) satisfying the following:

• For some functions n, k, `sk : N→ N, for all λ ∈ N, we have KeyGen(1λ) ∈ {0, 1}`sk(λ), Encode :
{1λ} × {0, 1}`sk(λ) × Σk(λ) → Σn(λ), and Decode : {1λ} × {0, 1}`sk(λ) × Σ? → Σk(λ) ∪ {⊥}.

• For any λ ∈ N and message m ∈ Σk(λ), the code is robust to any channel E ∈ E (λ), which means
that:

Pr
sk←KeyGen(1λ)

(
Decode(1λ, sk, E(x)) = m | x← Encode(1λ, sk,m)

)
≥ 1− negl(λ).

Moreover, for any fixed y ∈ Σ?, the code is sound, which means that:

Pr
sk←KeyGen(1λ)

(
Decode(1λ, sk, y) =⊥

)
≥ 1− negl(λ).

• The code is undetectable which means that: for any λ ∈ N for any probabilistic polynomial-time
adversary Adv,∣∣∣∣ Pr

sk←KeyGen(1λ)

(
AdvEncode(1λ,sk,·)(1λ) = 1

)
− Pr

sk←KeyGen(1λ)

(
AdvU (1λ) = 1

)∣∣∣∣ ≤ negl(λ), (1)

where U denotes an oracle which responds with a freshly drawn uniformly random string in Σn(λ)

on each call (to any input).

The block length of the PRC is defined to be n(λ). For all of our pseudorandom codes, we will have
n(λ), k(λ), `sk(λ) ≤ poly(λ). Moreover, we take as a convention that n(λ) ≥ λ for all λ (this may
be ensured without loss of generality by rescaling n(λ)). Our focus will primarily be on zero-bit
PRCs, which are particularly useful for watermarking language model outputs.

Definition 2.2 (Zero-bit PRC). A zero-bit PRC is one for which k(λ) = 0 for all λ, i.e., the only
possible message is m = ∅.

[CG24, Section 6] shows a generic reduction that converts any zero-bit PRC into a general PRC with
constant rate, meaning that k(λ)/n(λ) = Ω(1). We remark that the same reduction can be applied to
our PRCs with edit robustness, though we do not pursue this direction further in this paper.

Definition 2.3 (Substitution-bounded). For p ∈ (0, 1), a channel E over alphabet Σ is p-substitution-
bounded if for any n ∈ N, y ∈ Σn, for z ∼ E(y), DHam(y, z) ≤ pn holds almost surely.

Definition 2.4 (Edit-bounded channel). Fix an alphabet Σ together with p ∈ (0, 1). A channel E over
Σ is defined to be p-edit-bounded if for any x ∈ Σ? with n := |x|, y ∼ E(x) may be obtained from
x by applying a total of at most pn substitutions, insertions, and deletions, almost surely. Moreover,
there exists a probabilistic polynomial-time algorithm which, given x, outputs a sample y ∼ E(x).5

3 Secret-key substitution PRCs from weaker assumptions

In this section, we discuss a new construction of binary PRCs for substitution channels. Though such
PRCs were also obtained by [CG24], the codes in [CG24] relied on relatively strong average-case
hardness assumptions, in the sense that they imply the existence of public-key cryptography (i.e.,
in the context of Impagliazzo’s Five Worlds [Imp95], they imply primitives in “Cryptomania”). In
contrast, our construction relies only on the hardness of the existence of a family of pseudorandom
functions that enjoys a certain locality property; such an assumption is generally believed to be
weaker than the ones in [CG24], in the sense that it is only known to yield cryptographic primitives
in “Minicrypt”, though we are not aware of a formal separation.

We first recall the definition of pseudorandom function (PRF) families, which are PRF families for
which the adversary can only query the pseudorandom function at a uniformly random input x.

5The computational efficiency of E is only needed for our watermarking schemes. It is not necessary to
obtain edit-robust PRCs; see Remark D.2

5

20649 https://doi.org/10.52202/079017-0652

Definition 3.1 (Weak PRF family). Fix functions `(λ), n(λ) : N → N of a security parameter λ,
and a collection of functions {Fs : {0, 1}n(λ) → {0, 1}}, indexed by s ∈ {0, 1}`(λ), for λ ∈ N.
We say that the collection {Fs}s is a weak pseudorandom function family (weak PRF) if for every
probabilistic polynomial-time algorithm Adv which outputs a single bit (i.e., 0 or 1), it holds that∣∣∣∣Es∼{0,1}`(λ)

[
Ãdv

Fs(·)
(1n(λ))

]
− EFUnif

[
Ãdv

FUnif

(1n(λ))
]∣∣∣∣ ≤ negl(λ), (2)

where Ãdv
G

, for a mapping G : {0, 1}n(λ) → {0, 1} means that Adv can make calls to the function
G, and for each call receives a tuple (x,G), for x ∼ Unif({0, 1}n). (In particular, the tilde refers to
the fact that Adv can only call G(x) on a uniformly chosen x.) Moreover, FUnif : {0, 1}n → {0, 1}
denotes a uniformly random function. We will often refer to the functionG that Adv can make queries
to as the oracle Adv has access to. Given q ∈ [0, 1/2), we say that {Fs}s is a weak PRF family with
noise level q if (2) holds where each call to Fs(·) by Adv returns Fs(x)⊕ e where x ∼ Unif({0, 1})n
and e ∼ Ber(q).

Our new construction of PRCs is based off of local (weak) PRFs, which are PRFs for which the
output depends on a small number of input bits.
Definition 3.2 (Local function family). Let τ ∈ N. A family of functions {Fs : {0, 1}n → {0, 1}}
indexed by s is defined to be τ -local if for each s, Fs(x) only depends on at most τ bits of x, i.e., for
each s there are distinct indices j1, . . . , jτ ∈ [n] together with a function Gs : {0, 1}τ → {0, 1} so
that Fs(x) = Gs(xj1 , . . . , xjτ) for all x ∈ {0, 1}n.

Our main computational assumption is the existence of a weak PRF family which is τ -local for τ of
logarithmic size:
Assumption 3.1 (Local Weak PRFs). For some functions `(λ), n(λ), τ(λ) : N → N with
`(λ), n(λ) ≤ poly(λ) and τ(λ) ≤ log n(λ), there exists a weak PRF family {Fs : {0, 1}n(λ) →
{0, 1}}s∈{0,1}`(λ) for some noise level q < 1/2 which is τ(λ)-local, for each λ ∈ N.

In Appendix C.2, we discuss how Assumption 3.1 follows from standard average-case hardness
assumptions, notably the hardness of learning log(n)-juntas over Unif({0, 1}n). As specific exam-
ples, either hardness of the log(n)-sparse noisy parity problem [FGKP09, BFJ+94, GRV11, Val15]
or hardness of weakly learning a particular family of functions presented in [BFKL94] (see also
[Blu03]) implies Assumption 3.1.

The PRC construction. Our construction of PRCs based on Assumption 3.1 is presented in
Algorithm 2: given a function family F satisfying Assumption 3.1 with noise level q together
with some p < 1/2 representing the maximum fraction of substitutions to correct, we construct
PRF-PRC[F , p, q] = (KeyGen,Encode,Decode) as follows. The construction depends on some
parameters N(λ),m(λ) ≤ poly(λ), specified in (3):

• KeyGen(1λ) chooses a function in F (indexed by s) together with a uniformly random z ∼
Unif({0, 1}N(λ)) and a uniform permutation π : [N(λ)]→ [N(λ)], and returns sk = (s, z, π).

• Encode(1λ, (s, z, π), ∅) draws m(λ) uniformly random elements of {0, 1}n(λ), x1, . . . , xm(λ),
applies Fs to each of them and flips the result with probability q to obtain bits (w1, . . . , wm(λ)),
and perturbs the concatenation ((xi, wi))i∈[m(λ)] according to z, π as on Line 9.

• Decode(1λ, (s, z, π), y) first “unperturbs” y to obtain a string ((xi, wi))i∈[m(λ)] as in Encode, and
then outputs ∅ if

∑m(λ)
j=1 1{wj = Fs(xj)} is above a threshold; otherwise, it outputs ⊥.

Theorem 3.2. Given p, q < 1/2 and a function family F together with noise level q satisfying
Assumption 3.1, then PRF-PRC[F , p, q] (Algorithm 2) is a zero-bit binary-alphabet secret-key PRC
(per Definition 2.2) with robustness to all p-bounded substitution channels.

The proof of Theorem 3.2 is given in Appendix C.3.

4 From substitution PRCs to edit-robust PRCs

In this section, we discuss our construction of PRCs which are robust to edit-bounded channels. To
do so, we reduce to PRCs robust to substitution-bounded channels. Suppose we are given a PRC

6

20650https://doi.org/10.52202/079017-0652

PRCSub with block length n(λ) over the binary alphabet which is robust to any (1/2− p0)-bounded
substitution channel, for p0 ∈ (0, 1/2). Given a parameter ρ ≥ 1, we construct an indexing PRC,
PRCIdx[PRCSub, ρ] (in Algorithm 1), which is robust to any p-edit-bounded channel, where the
parameter p depends on p0, ρ in a manner that will be explained below. The code PRCIdx[PRCSub, ρ]
has polynomially large alphabet Σ(λ) := [q(λ)], where q(λ) = ρ · n(λ). We denote the block length
of PRCIdx[PRCSub, ρ] by m(λ) (which is defined to be dln(2) ·n(λ)e) to distinguish it from the block
length n(λ) of PRCSub.

Construction of PRCIdx[PRCSub, ρ]. The idea behind PRCIdx[PRCSub, ρ] is simple: we interpret
each symbol of PRCIdx[PRCSub, ρ] as an index into a codeword of PRCSub, so that the existence
of a symbol in a given codeword of PRCIdx[PRCSub, ρ] should be interpreted as the corresponding
codeword for PRCSub as having a “1” in the position corresponding to that symbol. To ensure stronger
robustness guarantees, it turns out to be necessary to introduce redundancy in the sense that for each
integer j ∈ [n(λ)] (representing an index of a codeword of PRCSub), there are ρ different elements
of [q(λ)] which correspond to index j. The choice of these ρ elements for each j is specified a
mapping ψ : [q(λ)]→ [n(λ)] with |ψ−1(j)| = ρ for all j, which is chosen randomly in the KeyGen
function of PRCIdx[PRCSub, ρ]. With this intuition in mind, we proceed to overview the individual
KeyGen,Encode,Decode functions of PRCIdx[PRCSub, ρ] in Algorithm 1:

• The KeyGen(1λ) function generates a secret key sk for PRCSub using KeyGenSub. It also generates
a random function ψ as described above, and returns the tuple (sk, ψ), which is the secret key for
PRCIdx[PRCSub, ρ].

• The Encode(1λ, (sk, ψ),m) function calls the encoding method EncodeSub for PRCSub, which
yields a string y0 ∈ {0, 1}n(λ). It then chooses a string y ∈ [n(λ)]m(λ) which has the property
that the set of distinct elements of y, which we denote by Unique(y), has small set difference with
the set S0 := {i ∈ [n(λ)] : y0

i = 1} of indices at which y0 has a “1”. The precise way in which
the sets Unique(y) and S0 differ is determined by the function PerturbDifference in Algorithm 1,
and is needed to ensure that the output of Encode(1λ, sk,m) is indistinguishable from the uniform
distribution over [n(λ)]m(λ) (i.e., that the PRC is undetectable). Finally, Encode returns a string
z ∈ [q(λ)]m(λ) where each coordinate zj is a uniformly random pre-image of yj under ψ.

• The Decode(1λ, (sk, ψ), z) function calls the substitution PRC decode function, DecodeSub, on
the string y′ ∈ {0, 1}n(λ) which has a 1 in position i ∈ [n(λ)] if and only if i ∈ Unique(ψ(z)).
For future reference, we denote this string by y′ = Dψ(z), i.e., Dψ(z)i = 1{i ∈ Unique(ψ(z))}.

Theorem 4.1 below shows that PRCIdx[PRCSub, ρ] has robustness to any channel which makes a large
fraction (at most 1− Crobp0) of substitutions, insertions, and deletions.
Theorem 4.1. There are constantsC0, Crob ≥ 1 so that the following holds. For any p0 < (10Crob)−1

and PRC PRCSub with block length n(λ) which is robust to all (1/2 − p0)-substitution-bounded
channels, for any ρ ≥ C0/p0, PRCIdx[PRCSub, ρ] (Algorithm 1) is a pseudorandom code over an
alphabet of size dρ · n(λ)e and block length at most n(λ), which has robustness to any (1− Crobp0)-
edit-bounded channel (per Definition 2.4).

Proof overview for Theorem 4.1. To prove Theorem 4.1, we need to establish the soundness,
undetectability, and robustness of PRCIdx[PRCSub, ρ]. Soundness is an immediate consequence
of soundness of PRCSub (Lemma D.2). Undetectability is likewise straightforward, using unde-
tectability of PRCSub together with the fact that the output of PerturbDifference(n,m, y0), for
y0 ∼ Unif({0, 1})n, is uniform on [n]m (Lemma D.2). The bulk of the proof consists in establishing
robustness.

A natural attempt to establish robustness would proceed as follows: given a string z ∈ [n(λ)]m(λ)

(to be interpreted as an output of Encode(1λ, (sk, ψ),m)), a single insertion or deletion in z can
change at most one symbol of Dψ(z), and a single substitution in z can change at most two symbols
of Dψ(z). Thus, it is straightforward to show a statement of the following form: if PRCSub is
(1/2− p0)-substitution bounded and 2p < 1/2− p0, then PRCIdx[PRCSub, ρ] is robust to the class of
p-edit-bounded channels. (Technically, some additional work is needed since the PerturbDifference
function introduces some additional substitutions in the underlying binary codeword, though we
ignore this detail for now since with an appropriate choice of parameters the number of such errors
will be of lower order.)

7

20651 https://doi.org/10.52202/079017-0652

Algorithm 1 Indexing PRC: PRCIdx[PRCSub, ρ]

Require: PRC for substitutions: (KeyGenSub,EncodeSub,DecodeSub), together with functions n :

N → N, ` : N → N characterizing the block length and key length, respectively; parameter
ρ > 1. Functions m(λ) := dln(2) · n(λ)e, q(λ) := ρ · n(λ).

1: function KeyGen(1λ)
2: Define sk← KeyGenSub(1λ).
3: Let ψ : [q(λ)] → [n(λ)] be a uniformly random function conditioned on |ψ−1(j)| = ρ for

each j ∈ [n(λ)].
4: return (sk, ψ).

5: function Encode(1λ, (sk, ψ),m)
6: Set y0 ← EncodeSub(1λ, sk,m) ∈ {0, 1}n(λ).
7: Set y ← PerturbDifference(n(λ),m(λ), y0).
8: For each j ∈ [m(λ)], choose zj ∼ Unif({a : ψ(a) = yj}).
9: return z = (z1, . . . , zm(λ)).

10: function Decode(1λ, (sk, ψ), z)
11: Define y := ψ(z) = (ψ(z1), . . . , ψ(zm(λ))).
12: Define y′ ∈ {0, 1}n by y′i = 1{i ∈ Unique(y)}.
13: return DecodeSub(1λ, sk, y′).

14: function PerturbDifference(n,m, y0)
15: Set S0 := {i ∈ [n] : y0

i = 1}.
16: Sample y1 ∼ Unif([n]m).
17: Set S1 := Unique(y1) ⊂ [n].
18: if |S0\S1| ≥ |S1\S0| then
19: Let σ : S1\S0 → S0\S1 denote a uniformly random injective mapping.
20: For each a ∈ S1\S0, let y be formed by replacing each instance of a in y1 with σ(a).
21: else
22: Let τ : S0\S1 → S1\S0 denote a uniformly random injective mapping.
23: For each a ∈ S0\S1, let y be formed by replacing each instance of τ(a) in y1 with a.

24: return y.

Unfortunately, such a result does not have sufficiently good robustness for our application to wa-
termarking. As will be discussed in Section 5, our procedure which watermarks a language model
Model by “embedding” a codeword z of a PRC in a sequence of text output by Model introduces
a fraction 1 − α of errors to z, all of which are substitutions. Here α is some constant which is
related to the entropy rate of Model. Using the naive approach above, we are constrained to a rate
of substitutions p bounded as p < 1/4, thus forcing 1 − α < 1/4 and so disallowing all but high
entropy rates.

To compensate, we make use of the fact that the randomly chosen mapping ψ : [q(λ)] → [n(λ)]
maps multiple (namely, ρ) symbols in [q(λ)] to each symbol in [n(λ)], when performing decoding. In
particular, consider any fixed channel E over the alphabet [q(λ)]. For simplicity in our overview here,
we assume that E is deterministic (so that it is specified by a mapping E : [q(λ)]m → [q(λ)]? for
each m ∈ N), though essentially the same argument works for randomized E . Consider a codeword
z ∈ [q(λ)]m(λ) which is output by Encode(1λ, (sk, ψ),m). By undetectability of the code, with
high probability over Encode, we will have that |Unique(ψ(z))| ≈ n(λ)/2±O(

√
n(λ)), since by

our choice of m(λ) = dn(λ) · ln(2)e, a uniformly random string z̃ ∼ Unif([q(λ)]m(λ)) satisfies
|Unique(ψ(z̃))| ≈ n(λ)/2±O(

√
n(λ)) with high probability.6

6Here we let ψ(z) := (ψ(z1), . . . , ψ(zm(λ))).

8

20652https://doi.org/10.52202/079017-0652

Supposing that E is promised to make at most a fraction 1 − p of edits, then z′ := E(z) shares
at least p ·m(λ) symbols with z. Let us suppose for simplicity here that z′ ∈ [q(λ)]m(λ), so that
the insertions and deletions of E are balanced (a slight modification of the argument handles the
general case). Of the remaining (1− p) ·m(λ) symbols of z′, by the random choice of ψ and since
|Unique(ψ(z))| ≈ n(λ)/2, each one is roughly equally likely to map (under ψ) to an element in
Unique(ψ(z)) as to an element in [n(λ)]\Unique(ψ(z)). Thus, in going from the set Unique(ψ(z))
to the set Unique(ψ(z′)), we should expect to change at most roughly (1 − p) · n(λ)/2 elements.
This intuition is made precise in the following lemma:

Lemma 4.2 (Informal version of Lemma D.7). Given a channel E as above which makes a (1− p)-
fraction of edits (i.e., substitutions, insertions, and deletions), with 1− negl(λ) probability over the
draw of of (sk, ψ)← KeyGen(1λ) and z ← Encode(1λ, (sk, ψ),m) we can bound the set difference
between Unique(ψ(z)),Unique(ψ(E(z))) as follows:

|∆(Unique(ψ(z)),Unique(ψ(E(z)))| ≤ (1− Ω(p)) · n(λ).

Since the Hamming distance DHam(Dψ(z), Dψ(z′)) is equal to the size of the set difference
|∆(Unique(ψ(z)),Unique(ψ(z′))|, we arrive at the conclusion that DHam(Dψ(z), Dψ(z′)) .
(1 − Ω(p)) · n(λ)/2 with high probability over the draw of ψ in KeyGen. Since p0 can be cho-
sen arbitrarily small, we have substitution PRCs PRCSub which can correct a (1− Ω(p))/2 fraction
of substitutions. Thus, we obtain as a consequence that PRCIdx[PRCSub, ρ] can correct a (1 − p)
fraction of substitutions, insertions, and deletions.

The argument above omits many details, notably involving the high-probability event referenced in
Lemma 4.2. To establish that such an event occurs with high probability (over the draw of ψ), we
need to use Dobrushin’s concentration inequality (Theorem F.3) for data with limited dependencies.
Roughly speaking, this inequality comes into play because the sets ψ−1(1), . . . , ψ−1(n(λ)) ⊂ [q(λ)]
are not fully independent (since, e.g., they must be disjoint). Nevertheless, we may bound their
dependencies, assuming that n(λ) is sufficiently large as compared to ρ.

5 From large-alphabet PRCs to watermarking

In this section, we overview our reduction (stated in Theorem 5.1) that converts a PRC with robustness
to channels making a bounded number of adversarial edits to a watermarking scheme with robustness
to adversarial edits. At a high level, this reduction uses rejection sampling at each step of the language
model generation to make the output of the model align with a PRC codeword. To formally state the
result, we need the notion of empirical entropy: given a token sequence t ∈ ΣL and i, j ∈ [L], the
empirical entropy of Model on the subsequence [i, j] is

H [i:j]
e (t,Model) := − log Pr

t′i:j∼Model(·|t1:i−1)
(t′i:j = ti:j | t1:i−1),

where the probability is over a sequence that is drawn, token by token, from the per-token distributions
induced by Model (see Definition B.1 for discussion). The empirical entropy quantifies the degree to
which the sequence ti:j is “far from being deterministic” under Model given the prefix t1:i−1.

The watermarking schemes we derive from PRCs satisfy a stronger property known as substring
robustness [CGZ24, CG24], which means that if any sufficiently high-entropy substring of water-
marked text is passed through a channel inducing a bounded number of edits, then the watermark
will still be detected. More precisely, for a function β : N → N, a watermarking procedure
W = (Setup,Wat,Detect) over an alphabet Σ is β-substring robust to a channel E if

Pr
sk←Setup(1λ)

t←Wat(1λ,sk),t′←E(t)

(
∃i, ` s.t. Detect(1λ, sk, t′) = False and H [i:i+`−1]

e (t) ≥ β(`) · ln |Σ|
)
≤ negl(λ).

We remark that the channel E is required to be non-adaptive in that it cannot depend on the particular
draw of the secret key sk. Some details are omitted; see Definition B.2 for a completely formal
definition of substring-robustness. Our main result of this section shows that a PRC with robustness
to edit-bounded channels yields a watermarking scheme with substring-robustness to edit-bounded
channels:

9

20653 https://doi.org/10.52202/079017-0652

Theorem 5.1 (Informal version of Theorem E.1). Let α ∈ (0, 1) be a given constant. Suppose PRC,
defined over alphabet ΣPRC, has block length n and is robust to any (1− α

16)-edit-bounded channel.
Further suppose Model is a language model over alphabet Σ satisfying |Σ| ≥ (8

α |ΣPRC|)2/α. Then
there is a watermarking schemeW[PRC,Model] (Algorithm 3) which is sound, undetectable, and
β(`)-substring robust to any α2

48 -edit-bounded channel, for β(`) := 8n+ 6α`.

Theorem 5.1 establishes that, as long as the entropy from a substring of generated text is roughly a
Ω(α)-fraction of the maximum possible entropy, then a constant (O(α2)) fraction of edits to that
substring cannot remove the watermark. We remark that this constant fraction of edits cannot be
impoved to beyond an α-fraction (as is evident from the example in Footnote 4). The proof of
Theorem 5.1 builds off of the reduction of [CG24], for which Σ = ΣPRC = {0, 1}. Their reduction,
however, breaks down in the setting when ΣPRC is no longer binary, and we introduce some new
ideas (roughly, involving a hashing technique) to deal with the setting of larger alphabets. Details
of the proof may be found in Appendix E. Finally, we remark that by combining Theorems 3.2, 4.1
and 5.1, we obtain Theorem 1.1, which establishes the existence of edit-robust watermarking schemes
under Assumption 3.1.

On implementation of the watermarking scheme. A natural question is how feasible it is to
implement the watermarking schemeW[PRC,Model] of Theorem 5.1. The main limitation of our
present theoretical results which may complicate a practical implementation is as follows: The
alphabet size |Σ(λ)| is required to grow exponentially in the inverse of the parameter α (see the
statement of Theorem E.2). In turn, the parameter α is proportional to the entropy rate of the text
needed to guarantee substring robustness (see Definition B.2 and the setting of βλ(`) � α · ` in
Theorem E.2). For typical LLMs, the alphabet size is likely smaller than our required value of
|Σ(λ)| given the entropy rates observed empirically in natural language. On the other hand, we
believe that future work aimed at developing modifications of our watermarking scheme with an eye
towards practical implementation will be successful. One idea which seems promising is to simulate
a larger alphabet by grouping tokens together, and to aim accordingly for a slightly weaker robustness
guarantee.

Acknowledgements

NG was supported by a Fannie & John Hertz Foundation Fellowship and an NSF Graduate Fellowship.
AM is supported in part by a Microsoft Trustworthy AI Grant, an ONR grant and a David and Lucile
Packard Fellowship. We thank Gabe Schoenbach for helpful comments on an earlier draft of this
work.

References

[AK22] Scott Aaronson and Hendrik Kirchner. Watermarking gpt outputs, 2022. Available at
https://www.scottaaronson.com/talks/watermark.ppt.

[AKO10] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic approxi-
mation for edit distance and the asymmetric query complexity, 2010.

[AN20] Alexandr Andoni and Negev Shekel Nosatzki. Edit distance in near-linear time: it’s a
constant factor. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 990–1001, 2020.

[AO11] Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-linear time,
2011.

[ARC+01] Mikhail J. Atallah, Victor Raskin, Michael Crogan, Christian Hempelmann, Florian Ker-
schbaum, Dina Mohamed, and Sanket Naik. Natural language watermarking: Design,
analysis, and a proof-of-concept implementation. In Ira S. Moskowitz, editor, Informa-
tion Hiding, pages 185–200, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[ARH+02] Mikhail J. Atallah, Victor Raskin, Christian F. Hempelmann, Mercan Topkara, Radu
Sion, Umut Topkara, and Katrina E. Triezenberg. Natural language watermarking and
tamperproofing. In Information Hiding, 2002.

10

20654https://doi.org/10.52202/079017-0652

https://www.scottaaronson.com/talks/watermark.ppt

[BFJ+94] Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and
Steven Rudich. Weakly learning dnf and characterizing statistical query learning using
fourier analysis. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory
of Computing, STOC ’94, page 253–262, New York, NY, USA, 1994. Association for
Computing Machinery.

[BFKL94] Avrim Blum, Merrick Furst, Michael Kearns, and Richard J. Lipton. Cryptographic
primitives based on hard learning problems. In Douglas R. Stinson, editor, Advances in
Cryptology — CRYPTO’ 93, pages 278–291, Berlin, Heidelberg, 1994. Springer Berlin
Heidelberg.

[BGH17] Boris Bukh, Venkatesan Guruswami, and Johan Håstad. An improved bound on the
fraction of correctable deletions. IEEE Transactions on Information Theory, 63(1):93–
103, 2017.

[Bib09] Douglas Biber. 159 Corpus-Based and Corpus-driven Analyses of Language Variation
and Use. In The Oxford Handbook of Linguistic Analysis. Oxford University Press, 12
2009.

[Blu03] Avrim Blum. Learning a function of r relevant variables. In Bernhard Schölkopf and
Manfred K. Warmuth, editors, Learning Theory and Kernel Machines, pages 731–733,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[BR17] Andrej Bogdanov and Alon Rosen. Pseudorandom functions: Three decades later.
Cryptology ePrint Archive, Paper 2017/652, 2017. https://eprint.iacr.org/
2017/652.

[CBD+24] Liang Chen, Yatao Bian, Yang Deng, Deng Cai, Shuaiyi Li, Peilin Zhao, and Kam fai
Wong. Watme: Towards lossless watermarking through lexical redundancy, 2024.

[CG24] Miranda Christ and Sam Gunn. Pseudorandom error-correcting codes. In Proceedings
of the 44th Annual International Cryptology Conference (CRYPTO). COLT, 2024.

[CGZ24] Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language
models. In Proceedings of the 37th Annual Conference on Learning Theory (COLT),
2024.

[Cha16] Sourav Chatterjee. Concentration inequalities with exchangeable pairs (ph.d. thesis),
2016.

[FGJ+23] Jaiden Fairoze, Sanjam Garg, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody,
and Mingyuan Wang. Publicly detectable watermarking for language models, 2023.

[FGKP09] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. On
agnostic learning of parities, monomials, and halfspaces. SIAM Journal on Computing,
39(2):606–645, 2009.

[FKQR23] Dylan J. Foster, Sham M. Kakade, Jian Qian, and Alexander Rakhlin. The statistical
complexity of interactive decision making, 2023.

[FS95] Yoav Freund and Robert E. Schapire. A desicion-theoretic generalization of on-line
learning and an application to boosting. In Paul Vitányi, editor, Computational Learning
Theory, pages 23–37, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

[GL16] Venkatesan Guruswami and Ray Li. Efficiently decodable insertion/deletion codes for
high-noise and high-rate regimes, 2016.

[GLLH24] Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tatsunori Hashimoto. On the learnability
of watermarks for language models. In The Twelfth International Conference on
Learning Representations, 2024.

[GRS19] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential Coding Theory. 2019.

[GRV11] Elena Grigorescu, Lev Reyzin, and Santosh Vempala. On noise-tolerant learning of
sparse parities and related problems. In Jyrki Kivinen, Csaba Szepesvári, Esko Ukkonen,
and Thomas Zeugmann, editors, Algorithmic Learning Theory, pages 413–424, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[GW17] Venkatesan Guruswami and Carol Wang. Deletion codes in the high-noise and high-rate
regimes. IEEE Transactions on Information Theory, 63(4):1961–1970, 2017.

11

20655 https://doi.org/10.52202/079017-0652

https://eprint.iacr.org/2017/652
https://eprint.iacr.org/2017/652

[HCW+24] Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng
Huang. Unbiased watermark for large language models. In The Twelfth International
Conference on Learning Representations, 2024.

[HS21a] Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings and codes for
insertions and deletions – a survey, 2021.

[HS21b] Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: Codes for
insertions and deletions approaching the singleton bound. J. ACM, 68(5), sep 2021.

[HZZ+24] Baihe Huang, Hanlin Zhu, Banghua Zhu, Kannan Ramchandran, Michael I. Jordan,
Jason D. Lee, and Jiantao Jiao. Towards optimal statistical watermarking, 2024.

[Imp95] R. Impagliazzo. A personal view of average-case complexity. In Proceedings of
Structure in Complexity Theory. Tenth Annual IEEE Conference, pages 134–147, 1995.

[KGW+23] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom
Goldstein. A watermark for large language models. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors,
Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages 17061–17084. PMLR, 23–29 Jul
2023.

[KGW+24] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi
Kong, Kasun Fernando, Aniruddha Saha, Micah Goldblum, and Tom Goldstein. On the
reliability of watermarks for large language models, 2024.

[KTHL23] Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust
distortion-free watermarks for language models, 2023.

[LB24] Yepeng Liu and Yuheng Bu. Adaptive text watermark for large language models, 2024.
[LPH+24a] Aiwei Liu, Leyi Pan, Xuming Hu, Shuang Li, Lijie Wen, Irwin King, and Philip S. Yu.

An unforgeable publicly verifiable watermark for large language models. In The Twelfth
International Conference on Learning Representations, 2024.

[LPH+24b] Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and Lijie Wen. A semantic invariant
robust watermark for large language models. In The Twelfth International Conference
on Learning Representations, 2024.

[Nav01] Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,
33(1):31–88, mar 2001.

[ODo14] Ryan ODonnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
[OR07] Rafail Ostrovsky and Yuval Rabani. Low distortion embeddings for edit distance. J.

ACM, 54(5):23–es, oct 2007.
[PHZS24] Qi Pang, Shengyuan Hu, Wenting Zheng, and Virginia Smith. Attacking llm watermarks

by exploiting their strengths, 2024.
[RS23] Upul Rupassara and Bishnu Sedai. On the convergence of hypergeometric to binomial

distributions. Computer and Information Science, 16:15, 07 2023.
[RvdOV19] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity

images with vq-vae-2. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[SHB16] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of
rare words with subword units. In Katrin Erk and Noah A. Smith, editors, Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 1715–1725, Berlin, Germany, August 2016. Association for
Computational Linguistics.

[TJY+24] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregres-
sive modeling: Scalable image generation via next-scale prediction, 2024.

[TTI05] Mercan Topkara, Cuneyt M. Taskiran, and Edward J. Delp III. Natural language
watermarking. volume 5681, pages 441–452. SPIE, 2005.

[Val15] Gregory Valiant. Finding correlations in subquadratic time, with applications to learning
parities and the closest pair problem. J. ACM, 62(2), may 2015.

12

20656https://doi.org/10.52202/079017-0652

[WHZH23] Yihan Wu, Zhengmian Hu, Hongyang Zhang, and Heng Huang. Dipmark: A stealthy,
efficient and resilient watermark for large language models, 2023.

[YLK+22] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku,
Yuanzhong Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling
with improved VQGAN. In International Conference on Learning Representations,
2022.

[YXK+22] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang,
Vijay Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson,
Wei Han, Zarana Parekh, Xin Li, Han Zhang, Jason Baldridge, and Yonghui Wu.
Scaling autoregressive models for content-rich text-to-image generation. Transactions
on Machine Learning Research, 2022. Featured Certification.

[ZALW24] Xuandong Zhao, Prabhanjan Vijendra Ananth, Lei Li, and Yu-Xiang Wang. Provable
robust watermarking for AI-generated text. In The Twelfth International Conference on
Learning Representations, 2024.

[Zam24] Or Zamir. Excuse me, sir? your language model is leaking (information), 2024.
[ZEF+23] Hanlin Zhang, Benjamin L. Edelman, Danilo Francati, Daniele Venturi, Giuseppe

Ateniese, and Boaz Barak. Watermarks in the sand: Impossibility of strong watermarking
for generative models, 2023.

13

20657 https://doi.org/10.52202/079017-0652

A Additional related work

Watermarking has a long history, dating back to the work of [TTI05, ARC+01, ARH+02]: generally
speaking, these early works considered procedures which embed a watermark into a given text,
by altering the text in some subtle way. Spurred by the remarkable abilities of generative models,
in particular large language models (LLMs), there has been a recent resurgence of interest in
watermarking. In contrast to the classical works, most recent works (including this paper) aim to
embed the watermark in a way that does not significantly alter the distribution of the generated
content. This task is enabled by the autoregressive nature of LLMs, which generate each successive
token using some fresh randomness.

Recent works [ZALW24, AK22, KGW+23] construct watermarking schemes by pereferentially
generating certain tokens at each step of generation. For instance, [ZALW24] partitions tokens
into two equal-sized sets, a “green set” and a “red set”. It slightly increases the probabilities of
green tokens while slightly decreasing the probabilities of red tokens. A watermark is then detected
if the proportion of green tokens in a text segment is noticeably higher than 1

2 . The works of
[AK22, KGW+23] build on this protocol by generating the green and red sets at each position using a
pseudorandom function seeded with a window of some number k of previous tokens. These schemes
all introduce some degree of noticeable bias to the watermarked model’s output, by increasing the
probability of certain k-grams.

Distortion-freeness vs undetectability. [KTHL23] introduced a notion called distortion-freeness,
which posits that a single text sample from the watermarked model is distributed identically to a
single sample from the true model. [KTHL23] construct watermarking schemes satisfying distortion-
freeness, with nontrivial edit-robustness guarantees: their watermarks have robustness to a constant
fraction of substitutions (Lemma 2.5 within), but only to a slightly sub-constant fraction of edits
when insertions and deletions are also allowed (Lemma 2.6 within).7 [HCW+24, WHZH23] also
developed a similar approach to [KTHL23].

[CGZ24] defined the stronger notion of undetectability (the focus of the present work), which requires
that no computationally efficient algorithm which makes any number of queries to the language
model can distinguish between the watermarked model and the original one. [CGZ24] constructed
the first provably undetectable watermark by using a similar technique to [AK22, KGW+23] with
the modification that they dynamically adjust the parameter k denoting the length of text used to
seed the pseudorandom function. This dynamic adjustment ensures that the sequence of k tokens has
sufficiently high entropy, which ensures undectability.8 Undetectable watermarking schemes were
also constructed by [Zam24], which focused specifically on the application to steganography (see
also [CG24] for robust steganography schemes), and [FGJ+23], which concentrated on schemes with
public attribution.

It is natural to wonder: why should one should prefer undetectable watermarking schemes over
distortion-free ones? The simplest reason is that, as a requirement on generative models, distortion-
freeness is very weak, as illustrated in the below example.

Example A.1 (Distortion-freeness). Consider the alphabet Σ = {0, 1} and suppose that Model is the
uniformly random distribution on outputs t ∈ {0, 1}n, for some n ∈ N. Consider the watermarking
scheme which draws a key sk ∼ Unif({0, 1}n) and at each call to Wat(sk), simply returns sk. This
scheme is distortion-free since the distribution of sk is uniform, but has the property that once Wat is
called once, the output of all future calls is determined (and so it is clearly not undetectable).

Example A.1 indicates that distortion-free watermarks may suffer from insufficient diversity in model
outputs: in Example A.1 there is no variation whatsoever in the outputs. The distortion-free schemes
of [KTHL23] are only slightly better on this front: they sample a long random key sk and then

7In particular, in order for [KTHL23, Lemma 2.6] to be nonvacuous, the parameter γ must be chosen so that
γ > log k, which necessitates ε < 1/γ < 1/ log k, and k must grow faster than a constant for the probability in
[KTHL23, Lemma 2.6] to decay to 0.

8Notice that undetectability is not strictly speaking stronger than distortion-freeness, since an undetectable
watermarking scheme can perturb the distribution of even a single text sample output by the model, though
only in a way that can not be detected by any computationally efficient algorithm. Since in practice, any
downstream applications of language model outputs will proceed via computationally efficient algorithms, we
view undetectability as stronger than distortion-freeness “for all intents and purposes”.

14

20658https://doi.org/10.52202/079017-0652

generate a sequence of text from Model in a way that aims to be close to a random shift of sk. Having
fixed the key sk, the output text from the scheme of [KTHL23] is a deterministic function of the
shift, meaning that at most len(sk) distinct sequences of text can be generated altogether. Moreover,
by the birthday paradox, one would expect to see a repeat answer after only

√
len(sk) calls. The

effective number of distinct samples of the distribution of output text of [KTHL23] may be even
smaller than len(sk), if different shifts of sk lead to similar text sequences (as they will for, e.g., the
uniform Model in Example A.1).

Beyond avoiding the issue of insufficient diversity, the stronger guarantees afforded by undetectability
offer a more compelling argument for adopting watermarking in the first place. Watermarking is
just one of many technologies that can be built into AI models to achieve better alignment with
human values. Even if each of these degrades performance in minor but non-negligible ways, the
aggregate impact of all of these additions could potentially potentially be substantial. The guarantee
of undetectability, namely that no matter what efficient downstream algorithms are applied to the
model’s output, the result will be essentially the same, means that the addition of a watermark can
only be blamed for a negligible amount of the overall performance degradation.

Additional work on watermarking. [HZZ+24] formulate a variant of the watermarking problem
which is purely statistical in nature, and characterize the optimal rate of watermarking. [GLLH24]
show that watermarking schemes can be learned, using a student-teacher framework. [KGW+23,
CG24, PHZS24, ZEF+23] develop various attacks on watermarking schemes. Generally speaking,
these attacks are relatively expensive in terms of calls to the language model (as in [CG24, PHZS24])
or an additional “quality oracle” (as in [ZEF+23]). Moreover, a sufficiently motivated adversary
could simply train their own (unwatermarked) AI model and generate content from it. Therefore,
we view robust watermarking as targeted more at “honest” or “lazy” adversaries who are making
edits to either improve the quality of content without explicitly trying to remove a watermark (e.g.,
for AI-generated news articles) or have very few resources to remove the watermark (e.g., a student
asking an LLM to write their essay right before the deadline).

Finally, we remark that there is a sizeable body of work focusing on empirical approaches to
watermarking (e.g., [LPH+24b, LPH+24a, LB24, CBD+24, KGW+24]).

Error-correcting codes for insertions and deletions. A recent line of work (e.g., [GL16, BGH17,
GW17, HS21a, HS21b]) has focused on developing error-correcting codes for insertions and deletions.
We remark that the idea of indexing is implicit in some of this work. One focus of these papers has
been on obtaining codes which can correct a constant fraction of insertions and deletions with smaller
(e.g., constant-size) alphabets. A common technique for this task is that of of synchronization strings
[HS21a, HS21b]: it proceeds by increasing the alphabet size by a constant factor and attaching to
each message character an “auxiliary character” coming from a so-called synchronization string,
which has certain properties that make it easier to align a noisy codeword with the clean codeword.
Unfortunately, the same synchronization string must be used with each call to the encoding algorithm,
which makes it unclear how to construct such codes that are pseudorandom.

B Additional preliminaries

B.1 Watermarking language models

A language model Model over alphabet Σ which, for any positive integer i, takes as input a sequence
of tokens t1:i−1 = (t1, . . . , ti−1) already output by the model and produces a distribution Model(ti =
· | t1:i−1) ∈ ∆(Σ), representing the distribution of the next token, conditioned on t1:i−1. We assume
that Model is computationally efficient, meaning that it runs in time poly(i, log |Σ|). We also
assume that there is some token END ∈ Σ representing the end of the model’s response. As a
matter of convention, we assume that all subsequent tokens after a END token are also END (i.e.,
Model(END | t1:i−1) = 1 if some tj for j < i is END). Given a language model Model, we introduce
the notation Model: given any sequence t1:i−1 ∈ Σi−1 (which may be the empty sequence) and
m > 0, the distribution Model(ti:i+m−1 = · | t1:i−1) ∈ Σm is defined as follows: we sequentially
generate ti, . . . , ti+m−1, where for each 0 ≤ j < m, tj is distributed as Model(tj = · | t1:j−1). In
the case i = 1 (i.e., t1:i−1 = ∅), then we denote an output of Model as t ∼ Model.

15

20659 https://doi.org/10.52202/079017-0652

An intuitive requirement on Model that allows for watermarking is that outputs of Model must be high-
entropy; indeed, a model that outputs a deterministic sequence of text is impossible to watermark,
since the only distribution which is indistinguishable from its output is that same deterministic
sequence of text. As we aim to measure the entropy of individual model outputs, we use the following
notion of empirical entropy, following [CGZ24]:
Definition B.1 (Empirical entropy). Given a language model Model, a sequence t ∈ ΣL, and i, j ∈ t,
we define the empirical entropy of Model for t on subsequence [i, j] to be:

H [i:j]
e (t,Model) := − log Model(ti:j | t1:i−1).

By definition of Model, we have − log Model(ti:j | t1:i−1) = − log Pr̄t∼Model(̄ti:j = ti:j | t̄1:i−1 =
t1:i−1). When Model is clear from context, we typically drop Model from the notation, so that
H

[i:j]
e (t) := H

[i:j]
e (t,Model), and moreover write Hi

e(t) := Hi
e(t,Model), H [i:j)

e (t) := H
[i:j−1]
e (t).

Finally, note that from the chain rule of probability, H [i:j]
e (t) =

∑j
a=iH

a
e (t).

Our main goal in this paper is to construct a watermarking scheme for Model, which is a tupleW =
(Setup,Wat,Detect) of probabilistic polynomial-time algorithms with the following semantics:

• Setup(1λ) takes as input a security parameter λ ∈ N and outputs a secret key sk.

• Wat(1λ, sk) takes as input λ, sk and outputs a sequence t = t1:L ∈ ΣL, for some L ∈ N.

• Detect(1λ, sk, t) takes as input a sequence t ∈ Σ` for some ` ∈ N and outputs either True
or False, denoting whether t is detected as being watermarked.

We next define the security properties we desire in our watermarks, in terms of a security parameter
λ ∈ N. Some of our results operate in the “large-alphabet” setting, meaning that the size of
the alphabet for the language model can depend (polynomially) on λ. Formally, we consider a
language model family indexed by λ, (Model(λ))λ∈N, where the alphabet for Model(λ) is denoted
by Σ(λ). Our watermarking procedure should produce a string in Σ(λ)? which is computationally
indistinguishable from an output of Model(λ). In order for us to establish a computational separation
between the process of outputting watermarked text and an adversary running in time given by an
arbitrarily large polynomial in λ, we assume that the length of an output t ∼ Model(λ) is bounded by
Lmax(λ), where Lmax(λ) is some function growing as poly(λ).9 When the value of λ is clear from
context, we drop the argument λ and simply write Model,Σ.
Definition B.2 (Soundness, Undetectability, E -Robustness). Consider a language model family
Model(λ) together with a watermarking schemeW = (Setup,Wat,Detect). We define the following
properties ofW:

• W is sound if for all λ ∈ N and t ∈ Σ≤Lmax(λ),
Pr

sk←Setup(1λ)

(
Detect(1λ, sk, t) = True

)
≤negl(λ).

• W is undetectable if for all λ ∈ N and any probabilistic polynomial time algorithm Dist,∣∣∣Pr
(

DistModel(1λ) = 1
)
− Pr

(
DistWat(1λ,sk)(1λ) = 1

)∣∣∣ ≤ negl(λ),

where DistO means that Dist can make repeated calls to O, which generate a sample from
the corresponding distribution (either t ∼ Model or t ∼Wat(1λ, sk)).

• Fix some family of channels (E (λ))λ∈N, where each E (λ) is a collection of channels
E : Σ(λ)? → ∆(Σ(λ)?), and a family of functions βλ : N→ N. ThenW is defined to be
β-substring robust to the family (E (λ))λ if for each λ ∈ N, and each channel E ∈ E (λ),

Pr
sk←Setup(1λ)

t←Wat(1λ,sk),t′←E(t)

(
∃i, j ∈ [Lmax(λ)] s.t. Detect(1λ, sk, t′) = False and H [i:j)

e (t) ≥ βλ(j − i) · ln |Σ(λ)|
)
≤ negl(λ).

Above, we use the convention that t is to be interpreted as an element of ΣLmax(λ) by padding
it with instances of the terminal token END. Thus, substring robustness requires that if we
choose any substring of length ` from the output of Wat and pass it through an channel E ,
then the output of the channel is still detected as watermarked with high probability.

9This requirement appears to be implicit in [CG24], though it is not explicitly stated therein.

16

20660https://doi.org/10.52202/079017-0652

B.2 Notation

Given n ∈ N together with a mapping π : [n] → [n] and a string x = (x1, . . . , xn) ∈ Σn, we
write π ◦ x := (xπ(1), . . . , xπ(n)) ∈ Σn. Given a mapping φ : X → Y for (finite) sets X ,Y
and a distribution P ∈ ∆(X), we let φ ◦ P ∈ ∆(Y) be the push-forward distribution for φ, i.e.,
(φ ◦ P)(y) = P (φ−1(y)).

Given a mapping ψ : X → Y for finite sets X ,Y , we let ψ(X) := {ψ(x) : x ∈ X} ⊂ Y , and for
any Y ′ ⊂ Y , ψ−1(Y ′) := {x ∈ X : ψ(x) ∈ Y ′}. Finally, for a tuple x = (x1, . . . , xn) ∈ Xn, we
let ψ(x) := (ψ(x1), . . . , ψ(xn)) ∈ Yn.

For y ∈ ΣN and J = (j1, . . . , jt), we let yJ ∈ Σt denote the vector yJ := (yj1 , . . . , yjt). Given a
set S , m ∈ N, and a string y ∈ Sm, we define Unique(y) := {yi : i ∈ [m]} ⊂ S , i.e., Unique(y) is
the set of distinct elements of y.

C Secret-key substitution PRCs

C.1 Hardness assumptions

In this section, we discuss several standard conjectures on the hardness of PAC learning which imply
Assumption 3.1. We first recall the definition of PAC learning with respect to the uniform distribution:

Definition C.1 (PAC learning for the uniform distribution). Suppose that for each n ∈ N, we are
given a classFn of boolean functions indexed by strings s ∈ {0, 1}`(n), for some function ` : N→ N;
write Fn = {Fs : {0, 1}n → {0, 1}}s∈{0,1}`(n) . Given q ∈ [0, 1/2), we say that F = (Fn)n is
(ε(n), δ(n))-PAC learnable with noise level q if there is a poly(n)-time algorithm Alg which, for
some m(n) ∈ N, takes as input a dataset D = ((xi, yi))i∈[m(n)] and X ∈ {0, 1}n, and satisfies
the following with probability 1 − δ over s ∼ Unif({0, 1}`(n)), xi ∼ Unif({0, 1}n), yi = Fs(xi)
(i ∈ [m(n)]):

Pr
X∼Unif({0,1}n)

(
Alg((xi, yi)i∈[m(n)], X) 6= Fs(X)

)
≤ ε.

Proposition C.1. Suppose that a family of functions F = (Fn)n∈N is not (1/3, 1/3)-PAC learnable
with noise level q ∈ [0, 1/2) (per Definition C.1). Then, with n(λ) = λ, the family of functions
(Fn(λ))λ is a weak PRF with noise level q (per Definition 3.1).

Proposition C.1 is essentially folklore (see, e.g., [BR17]), but we provide a proof sketch for complete-
ness:

Proof sketch of Proposition C.1. Suppose that a polynomial-time adversary Adv satisfies∣∣∣∣Es∼{0,1}n(λ)

[
Ãdv

Fs(·)
(1n(λ)) = 1

]
− EFUnif

[
Ãdv

FUnif

(1n(λ))
]∣∣∣∣ ≥ λ−O(1),

where FUnif : {0, 1}n → {0, 1} denotes a uniformly random function. Suppose that Adv makes
at most m(λ) queries to its oracle (either Fs(·) or FUnif). Consider the algorithm which re-
ceives m(n) samples (xi, yi) with xi ∼ Unif({0, 1}n), yi = Fs(xi) for an unknown s together
with X ∼ Unif({0, 1}n(λ)), chooses a uniformly random index m′ ∈ [m(λ) − 1], and then
runs Adv with the oracle responses given by (((xi, yi))i∈[m′], (X, b), (xj , yj)j∈[m′+2,n(λ)]), where
xj ∼ Unif({0, 1}n), yj ∼ Unif({0, 1}) for j ≥ m′ + 2, for each value of b ∈ {0, 1}. By a hybrid
argument, for some b ∈ {0, 1}, this algorithm must have λ−O(1) advantage at predicting Fs(X). A
standard boosting argument [FS95] then establishes the existence of a polynomial-time algorithm
that (1/3, 1/3)-PAC learns the family F .

By Proposition C.1, either of the two assumptions below implies Assumption 3.1:

Assumption C.2 (Sparse noisy parity). There is no polynomial-time algorithm which (1/3, 1/3)-PAC
learns the family (Fn)n of log(n)-sparse parities with noise level q = 1/3, i.e., Fn = {Fs(x) =⊕

i∈[n] xisi : s ∈ {0, 1}n, ‖s‖1 = log(n)}.

17

20661 https://doi.org/10.52202/079017-0652

It is straightforward to see (using a hybrid argument) [Blu03] that Assumption C.2 is equivalent to
the assumption that there is no polynomial-time algorithm which identifies the hidden log(n)-sparse
string s ∈ {0, 1}n with constant probability.

Assumption C.3 ([BFKL94], Section 2.3). There is no polynomial-time algorithm which (1/3, 1/3)-
PAC learns the family (Gn)n defined below, with noise level q = 0:

Gn =

{
GS1,S2

(x) = Maj(xi : i ∈ S1)⊕
⊕
i∈S1

xi | S1,S2 ⊂ [n] are disjoint subsets of size log(n)/2

}
.

Similarly to the case for Assumption C.2, Assumption C.3 is equivalent to the assumption that there
is no polynomial-time algorithm which identifies the function GS1,S2 with constant probability. We
remark that [FGKP09, Theorem 3] shows that an algorithm which learns log(n)-sparse parities at
noise level 1

2 −O(1/n) implies the existence of an algorithm which learns (noiseless) log(n)-juntas
(with both learning algorithms being over the uniform distribution). Notice, though, that Assumption
C.2 assumes there is no efficient algorithm which learns log(n)-sparse noisy parities with noise level
q bounded away from 1/2, which is stronger than assuming hardness of learning log(n)-sparse noisy
parities with noise level q = 1/2−O(1). Thus, even given the reduction of [FGKP09], Assumption
C.3 does not appear to imply Assumption C.2.

C.2 Additional preliminaries

Weakly substitution-bounded channels. We will show that our PRCs are robust to a slightly more
broad class of channels which are only guaranteed to introduce a bounded number of substitutions
with high probability with respect to a uniformly random string from the channel’s alphabet. The
codes of [CG24] also enjoy robustness to such channels; thus, the robustness guarantee for our
substitution codes is directly comparable to that of [CG24].

Definition C.2 (Weakly substitution bounded channel). We say that a channel E over an alphabet
Σ is p-weakly-substitution-bounded if for any n ∈ N, Pry∼Unif(Σn),z∼E(y) (DHam(y, z) > pn) ≤
negl(n).

Noise sensitivity. For x ∈ {0, 1}n, we let Nρ(x) ∈ ∆({0, 1}n) denote the distribution over y,
where yi = xi with probability 1/2+ρ/2 (and yi = 1−xi with probability 1/2−ρ/2), independently
for each i. Note that y ∼ N1−2δ(x) is generated by flipping each bit of x with probability δ. Define
NSδ[f] := Prx∼Unif({0,1}n),y∼N1−2δ(x) (f(x) 6= f(y)). Also write Wi[f] =

∑
S⊂[n],|S|=i f̂(S)2.

Lemma C.4 (Theorem 2.49 of [ODo14]). For any f : {0, 1}n → {−1, 1}, we have NSδ[f] =
1
2

∑n
i=0(1− (1− 2δ)i) ·Wi[f].

Corollary C.5. For any f : {0, 1}n → {0, 1}, we have NSδ[f] = 1
2 −

∑n
i=0 φi · (1 − 2δ)i, for

some φ0, . . . , φn ≥ 0 satisfying φ0 + · · ·+ φn = 1/2.

Proof. The corollary is an immediate consequence of Lemma C.4 applied to the mapping x 7→
2f(x)− 1, together with the fact that any f : {0, 1}n → {−1, 1} satisfies

∑n
i=0 W

i[f] = 1.

C.3 Proof of Theorem 3.2

Proof overview. The proof of soundness Lemma C.6 is straightforward; see Appendix C.3 for
details. The proof of undetectability (Lemma C.7) of PRF-PRC[F , p, q] uses Assumption 3.1: if
undetectability failed to hold as witnessed by some adversary Adv, then we could construct an
adversary which violates pseudorandomness of F (per (2)) by simulating Adv, using computational
efficiency of Encode together with the PRF oracle to implement the oracle calls for Adv.

The bulk of the proof lies in establishing robustness to p-bounded substitution channels (Lemma C.8).
Let us first make sure that Decode(1λ, sk, y) returns ∅ with high probability if its input y is simply
an output of Encode(1λ, sk, ∅) (i.e., if the channel E does nothing to its input). Indeed, the tuples
(xi, wi) (for i ∈ [m(λ)]) computed in Line 11 of Decode are exactly equal to (xi, Fs(xi)⊕ ei). As
long as the noise rate q of ei is bounded away from 1/2, the statistic W computed in Decode will be
larger than m(λ)/2 + ln(m(λ))

√
m(λ) with all but negligible probability, as desired.

18

20662https://doi.org/10.52202/079017-0652

Algorithm 2 PRF-PRC[F , p, q]: Generic PRF-based PRC

Require: Weak PRF family F = (Fλ)λ, where Fλ = {Fs : {0, 1}n(λ) → {0, 1}} indexed by
s ∈ {0, 1}`(λ), parameters p, q ∈ (0, 1). Functions n(λ), `(λ),m(λ), N(λ) : N→ N satisfying
N(λ) ≥ (n(λ) + 1)m(λ),

1: function KeyGen(1λ)
2: Sample s ∼ Unif({0, 1}`(λ)) and z ∼ Unif({0, 1}N(λ).
3: Let π : [N(λ)]→ [N(λ)] be a uniformly random permutation.
4: Return sk := (s, z, π).

5: function Encode(1λ, sk = (s, z, π), ∅)
6: Sample x1, . . . , xm(λ) ∼ Unif({0, 1}n(λ)) and e1, . . . , em(λ) ∼ Ber(q).
7: Sample r ∼ Unif({0, 1}N(λ)−(n(λ)+1)m(λ)).
8: Define a := ((x1, Fs(x1)⊕ e1), . . . , (xm(λ), Fs(xm(λ))⊕ em(λ)), r).
9: return the string π ◦ (a⊕ z).

10: function Decode(1λ, sk = (s, z, π), y)
11: Let x1, . . . , xm(λ) ∈ {0, 1}n(λ) and w1, . . . , wm(λ) ∈ {0, 1} be defined by

((x1, w1), . . . , (xm(λ), wm(λ))) = ((π−1 ◦ y)⊕ z)1:(n(λ)+1)m(λ).
12: Let W :=

∑m(λ)
j=1 1{wj = Fs(xj)}.

13: If W > m(λ)
2 + ln(m(λ))

√
m(λ), return ∅; otherwise, return ⊥.

Now what if y is drawn from E(y0), for y0 ← Encode(1λ, sk, ∅), for some p-bounded substitution
channel E? Then the tuples computed in Line 11 of Decode may be written as (x′i, w

′
i) (for i ∈

[m(λ)]), where (x′i, w
′
i) are “perturbed” versions of (xi, wi), where xi ∼ Unif({0, 1}n(λ)), wi =

Fs(xi) ⊕ ei are as computed in Encode. Although the channel E may introduce substitutions in
an adversarial fashion (i.e., it may not introduce substitutions at each position independently with
probability p), by virtue of the fact that the output string of Encode is π◦(a⊕z) for uniformly random
z ∈ {0, 1}N(λ), π : [N(λ)] → [N(λ)], we can show that (x′i, w

′
i) is close to being distributed by

perturbing each bit of (xi, wi) independently with some probability p′ ≤ p. The proof of this fact uses
an approximation of a Hypergeometric distribution with a Binomial distribution: roughly speaking,
the permutation π allows us to “pick out”, for each i, a uniformly random subset of n(λ)+1 positions
corresponding to (x′i, w

′
i), out of N(λ) total positions of the string y. Of these, p′ ·N(λ) ≤ p ·N(λ)

are changed by E , and as long as N(λ) � n(λ), applying E thus has nearly the same effect as
changing each of the n(λ) + 1 positions of (xi, wi) independently with probability p′.

Given the above, we then use the fact that if xi ∼ Unif({0, 1}n(λ)) and x′i is formed by flipping each
bit of xi with probability p′ ≤ p, then Pr[Fs(xi) = Fs(x

′
i)] ≥ 1

2 + (1− 2p)τ ≥ 1
2 + (1− 2p)logn(λ).

This is a basic consequence of the Fourier analytic expression for the noise sensitivity of Boolean
functions (Lemma C.4), together with the fact that Fs(·) is τ -local for some τ ≤ log(n(λ)). Note
that (1 − 2p)logn(λ) ≥ n(λ)−Ωp(1); thus, as long as m(λ) is a large enough polynomial in n(λ),
we can show that the statistic

∑m(λ)
i=1 1{w′i = Fs(x

′
i)} will be bounded away from m(λ)/2, which

implies that Decode returns ∅ with high probability.

One complication of the above argument comes from the fact that, due to the adversarial nature
of the channel E , the random variables (xi, ei, x

′
i, w
′
i) may not be independent across different i.

Thus, to ensure concentration of the sum
∑m(λ)
i=1 1{w′i = Fs(x

′
i)} to its mean, we use Dobrushin’s

concentration inequality for weakly dependent data (Theorem F.3) and bound the dependence of
these random variables for different i using the fact that N(λ) is sufficiently large.

Formal proof. Suppose that we are given some p < 1/2 together with a weak PRF family
F = {Fs : {0, 1}n(λ) → {0, 1}}λ∈N,s∈{0,1}`(λ) with noise level q < 1/2 which verifies Assumption
3.1, i.e., for some function τ(λ) ≤ log n(λ), the family is τ(λ)-local. We consider the construction
PRF-PRC[F , p, q] in Algorithm 2. We let the functions n(λ), `(λ) be as given by the PRF family F ,

19

20663 https://doi.org/10.52202/079017-0652

and choose

m(λ) := C0 · (1− 2q)−4 · n(λ)4 log 1
1−2p , N(λ) := 3m(λ) · (n(λ) + 1)2, (3)

where C0 is a constant chosen sufficient large as specified in the proof below. By Definition 2.1, to
prove Theorem 3.2, it suffices to establish soundness, undetectability, and robustness to p-weakly-
substitution-bounded channels: we do so in Lemma C.6, Lemma C.7, Lemma C.8, respectively,
below.

Lemma C.6 (Soundness). For any function family F = {Fs}s on {0, 1}n(λ) indexed by s ∈
{0, 1}`(λ), and p, q ∈ (0, 1), PRF-PRC[F , p, q] is sound.

Proof. Fix λ ∈ N, and write n = n(λ), ` = `(λ),m = m(λ), N = N(λ). Fix any y ∈
{0, 1}N . Let x1, . . . , xm ∈ {0, 1}n, w1, . . . , wm ∈ {0, 1} be defined as in Decode(1λ, sk, y), i.e.,
((x1, w1), . . . , (xm, wm)) = ((π−1 ◦y)⊕z)1:(n+1)m, where sk = (s, z, π). Since π, z are uniformly
random in their respective domains, it follows that W =

∑m
j=1 1{wj = Fs(xj)} is distributed as

Bin(m, 1/2) for any fixed s, meaning that, for any δ ∈ (0, 1), Prz,π(W > m/2 +
√
m log 1/δ) ≤ δ.

Choosing δ = 2− log2 m ≤ negl(λ) yields that Prsk←KeyGen(1λ)(W > m/2+log(m)
√
m) ≤ negl(λ),

as desired.

Lemma C.7 (Undetectability). Fix p, q ∈ [0, 1/2). Suppose that F = {Fs}s is a weak PRF on
{0, 1}n(λ) with noise level q (Definition 3.1), indexed by s ∈ {0, 1}`(λ). Then PRF-PRC[F , p, q] is
undetectable.

Proof. Fix λ ∈ N, and write n = n(λ), ` = `(λ),m = m(λ), N = N(λ). Consider any probabilistic
polynomial-time adversary Adv. Let sk = (s, z, π) ← KeyGen(1λ) denote the secret key for the
PRC. Suppose that the adversary makes a total of Q queries to Encode(1λ, sk, ∅); its view consists of
Q tuples π ◦ (((x

(i)
1 , Fs(x

(i)
1)⊕ e(i)

1), . . . , (x
(i)
m , Fs(x

(i)
m)⊕ e(i)

m))⊕ z), for i ∈ [Q]. If Adv satisfies∣∣∣∣ Pr
sk∼KeyGen(1λ)

(
AdvEncode(1λ,sk,∅)(1λ) = 1

)
− Pr
U

(
AdvU (1λ) = 1

)∣∣∣∣ ≥ λ−c (4)

for some constant c > 0, then we could construct an adversary Adv′ which violates security of
Fs (namely, Definition 3.1), as follows: Adv′ makes Qm calls to Fs(·) on random inputs, which
gives it samples (x

(i)
j , Fs(x

(i)
j)⊕ e(i)

j) for j ∈ [m], i ∈ [Q], draws a uniformly random permutation
π : [N]→ [N] and a uniformly random string z ∈ {0, 1}N , and outputs the result of Adv given the
Q tuples y(i) := π ◦ (((x

(i)
1 , Fs(x

(i)
1) ⊕ e(i)

1), . . . , (x
(i)
m , Fs(x

(i)
m) ⊕ e(i)

m), r(i)) ⊕ z), where r(i) are
uniformly random strings of length N − (n+ 1)m (for i ∈ [Q]). Note that if the mQ calls made by
Adv′ were generated by a random function, then the strings y(i) are uniformly random in {0, 1}N ,
conditioned on the event that x(i)

j are all distinct, for j ∈ [m], i ∈ [Q]. The probability that all x(i)
j

are distinct is at least 1 −mQ/2n ≥ 1 − negl(λ), meaning that, by (4), Adv′ achieves advantage
λ−c − negl(λ) on distinguishing a random element of the family {Fs}s from a uniformly random
function, thus contradicting the security of F .

Given N, t ∈ N, let JN,t denote the distribution of t-tuples J = (j1, . . . , jt) where j1, . . . , jt are
drawn uniformly from [N] without replacement.

Lemma C.8 (Robustness). Fix p, q ∈ [0, 1/2), and that F = {Fs}s∈{0,1}`(λ),λ∈N is a τ(λ)-local
function family. Then PRF-PRC[Fp, q] is robust to any p-weakly-substitution-bounded channel.

Proof. Fix λ ∈ N, and write n = n(λ), ` = `(λ),m = m(λ), N = N(λ). Let E be a p-
weakly-substitution-bounded channel over {0, 1}. Given xj , ej (j ∈ [m]) drawn as in Line 6
of Algorithm 2 and a uniformly random string r ∼ Unif({0, 1}N−(n+1)m), consider the string
a := ((x1, Fs(x1)⊕ e1), . . . , (xm, Fs(xm)⊕ em), r), and note that the output of Encode(1λ, sk, ∅)
given that x1, . . . , xm, e1, . . . , em, r are sampled is ȳ := π ◦ (a ⊕ z). Given v ∈ {0, 1}n, we let,

20

20664https://doi.org/10.52202/079017-0652

with slight abuse of notation, E(v) ∈ {0, 1}n denote a random variable drawn from the eponymous
distribution E(v) ∈ ∆({0, 1}n). We have

u := (π−1 ◦ E(ȳ))⊕ z =
(
π−1 ◦ E(π ◦ (a⊕ z))

)
⊕ z

=π−1 ◦ ((π ◦ z)⊕ E((π ◦ a)⊕ (π ◦ z))) .
Since z and π are chosen uniformly at random in their respective domains and independent of a, it
follows that the distribution of u is the same as the distribution of

u′ := π−1 ◦ ((π ◦ a)⊕ v ⊕ E(v)) = a⊕ (π−1 ◦ (v ⊕ E(v))),

where v ∼ Unif({0, 1}n) is uniformly at random and independent of π, a. (In particular, we have
used the reparametrization that sets v := (π ◦ a)⊕ (π ◦ z).)

Let us unpack (π−1 ◦ (v⊕E(v)))1:(n+1)m = ((x′1, w
′
1), . . . , (x′m, w

′
m)), where x′j ∈ {0, 1}m, w′j ∈

{0, 1} for j ∈ [m]. Note that the distribution of the statistic W computed in Decode(1λ, sk, E(ȳ)) is
exactly the distribution of

m∑
j=1

1{w′j ⊕ ej ⊕ Fs(xj) = Fs(xj ⊕ x′j)}. (5)

By our assumption that the family Fs is τ -local, for each s ∈ {0, 1}` there is some Js ∈ [n]τ

and Gs : {0, 1}τ → {0, 1} so that Fs(x) = Gs(xJs) for all x ∈ {0, 1}n. Define t = τ + 1 and
G′s : {0, 1}t → {0, 1} by G′s(x) = Gs(x1, . . . , xt−1)⊕ xt.

For each j ∈ [m] and fixed s ∈ {0, 1}`, we have that

Pr
(
w′j ⊕ ej ⊕ Fs(xj) = Fs(xj ⊕ x′j)

)
=(1− 2q) · Pr

(
Fs(xj) = w′j ⊕ Fs(xj ⊕ x′j)

)
+ q

=(1− 2q) · Pr
(
G′s((xj)Js , 0) = G′s((xj)Js ⊕ (x′j)Js , w

′
j)
)

+ q,
(6)

where the probability is taken over xj ∼ Unif({0, 1}n), ej ∼ Ber(q), z ∼ Unif({0, 1}n), the
uniformly random permutation π, and the randomness in E (which together determine w′j , x

′
j). We

now apply Lemma C.9 to the function

(z1, . . . , zt) 7→ 1{G′s((xj)Js , 0) = G′s((z1, . . . , zt−1)⊕ (xj)Js , zt)}.
Note that, for fixed v, E(v), since π is chosen uniformly at random (and independent of v, E(v), a),
the distribution of ((x′j)Js , w

′
j) is exactly the distribution of yJ for J ∼ JN,t, for y = v ⊕ E(v). Let

us write p(y) := wt(y)/N , for y ∈ {0, 1}N . Thus, for any fixed s, we have

Pr
(
G′s((xj)Js , 0) = G′s((xj)Js ⊕ (x′j)Js , w

′
j)
)

=Exj ,v,E(v)E J∼JN,t
y=v⊕E(v)

[1{G′s((xj)Js , 0) = G′s(((xj)Js , 0)⊕ ȳJ)} | xj , v, E(v)]

≥Exj ,v,E(v)Ex̄∼Ber(p(v⊕E(v)))t [1{G′s((xj)Js , 0) = G′s(((xj)Js , 0)⊕ x̄)}]− 2t√
N − t

=Ev,E(v)ExjEx̄∼Ber(p(v⊕E(v)))t1{Gs((xj)Js) = Gs((xj)Js ⊕ (x̄1, . . . , x̄t−1))⊕ x̄t} −
2t√
N − t

=Ev,E(v)

[
p(v ⊕ E(v)) + (1− p(v ⊕ E(v)))ExjEx̄∼Ber(p(v⊕E(v)))t−11{Gs((xj)Js) = Gs((xj)Js ⊕ (x̄))}

]
− 2t√

N − t

=Ev,E(v)

[
p(v ⊕ E(v)) + (1− 2p(v ⊕ E(v)) ·

(
1−NSp(v⊕E(v))[Gs]

)]
− 2t√

N − t

≥Ev,E(v)

[
p(v ⊕ E(v)) + (1− 2p(v ⊕ E(v))) ·

(
1

2
+

1

2
· (1− 2 · p(v ⊕ E(v))τ)

)]
− 2t√

N − t

=Ev,E(v)

[
1

2
+

1

2
· (1− 2 · p(v ⊕ E(v)))τ+1

]
− 2t√

N − t

≥1

2
+

1

2
· (1− 2p)τ+1 − 2t√

N − t
− negl(N), (7)

21

20665 https://doi.org/10.52202/079017-0652

where the first inequality uses Lemma C.9, the fourth equality uses the fact that xj ∼ Unif({0, 1}n)
independently of v, E(v) and the definition of noise sensitivity, the second equality uses Corollary C.5,
and the final inequality uses the fact that wt(v⊕E(v)) ≤ pN with probability 1− negl(N) since the
marginal distribution of v is Unif({0, 1}n) and E is p-weakly-substitution-bounded. Since we have

2t√
N−t + negl(N) ≤ 1

4 · (1− 2p)τ+1 by our choice of N in (3) (which ensures that, as long as C0 is

sufficiently large N ≥ C0 · (1 − 2p)−4 log(n), and in particular that N − t ≥ 16t(1 − 2p)−τ−1 as
long as the security parameter λ is sufficiently large) , it follows from Eqs. (6) and (7) that for each
j ∈ [m], for sufficiently large λ,

Pr(w′j ⊕ ej ⊕ Fs(xj) = Fs(xj ⊕ x′j)) ≥ (1− 2q) ·
(

1

2
+

1

4
· (1− 2p)τ+1

)
+ q ≥ 1

2
+

1

4
(1− 2q)(1− 2p)τ+1.

(8)

Finally, we use Dobrushin’s inequality to analyze the concentration of the sum (5); we utilize the
notation of Appendix F.1 (in particular the influences defined in (43)). For each j ∈ [m], define
Γj = (xj , ej , w

′
j , x
′
j). Let PΓ1,...,Γm denote the joint law of (Γ1, . . . ,Γm), and PΓi|Γ−i denote the

conditional law of Γi conditioned on Γ−i. For any distinct i, j ∈ [m], we have that

Ij→i(Γ1:m) = max
γ−i−j ,γj ,γ′j

dTV(PΓi|Γ−i(· | γj , γ−i−j), PΓi|Γ−i(· | γ
′
j , γ−i−j)) ≤

(n+ 1)2

N −m(n+ 1)
,

since if, for any i ∈ [m], we condition on x−i, e−i, v ⊕ E(v), and S := {π−1((a − 1)(n + 1) +
b) : a ∈ [m]\{i}, b ∈ [n + 1]}, the distribution of Γi = (xi, ei, w

′
i, x
′
i) is given as follows:

xi ∼ Unif({0, 1}n), ei ∼ Ber(q), and (w′i, x
′
i) is distributed (independently of xi, ei) as a tuple of

n+ 1 distinct elements of v ⊕ E(v) which are not indexed by coordinates in S . Moreover, changing
the value of xj , ej , and {π−1((j − 1)(n+ 1) + b) : b ∈ [n+ 1]} changes only n+ 1 elements of S ,
so by Lemma C.10 with k = n + 1 and the data processing inequality for total variation distance,
changes the conditional distribution of (w′i, x

′
i) by at most (n+1)2

N−m(n+1) .

Thus
∑
j∈[m]\{i} Ij→i(Γ1:m) ≤ m(n+1)2

N−m(n+1) ≤ 1/2 and
∑
i∈[m]\{j} Ij→i(Γ1:m) ≤ m(n+1)2

N−m(n+1) ≤
1/2 since we have chosen N = 3m(n + 1)2 in (3). It then follows from Theorem F.3 that for any
δ > 0, with probability 1− δ over the draw of Γ1:m,

W =

m∑
j=1

1{w′j ⊕ ej ⊕ Fs(xj) = Fs(xj ⊕ x′j)} ≥
m∑
j=1

Pr(w′j ⊕ ej ⊕ Fs(xj) = Fs(xj ⊕ x′j))−
√

4m ln(2/δ).

(9)

Choosing δ = 2 exp(− ln2(m)) ≤ negl(m) ≤ negl(λ), and combining Eqs. (8) and (9) and the
choice of m in (3), we see that as long as the constant C0 in (3) is sufficiently large,

Pr
(
W ≥ m

2
+ ln(m)

√
m
)
≥ Pr

(
W ≥ m

2
+m · (1− 2q)(1− 2p)τ+1/4− ln(m)

√
4m
)
≥ 1− δ.

(In particular, we have used that our choice of m ensures that m · (1 − 2q)(1 − 2p)τ+1/4 ≥
3 ln(m)

√
m.) Since Decode(1λ, sk, y) outputs ∅ exactly when W ≥ m

2 + log(m)
√
m, we have

established robustness, as desired.

Lemma C.9. Fix N, k ∈ N and let y ∈ {0, 1}N be given with wt(y) = k. Fix t ∈ N, and let
f : {0, 1}t → {0, 1} be a given function. Then∣∣EJ∼JN,t [f(yJ)]− Ex∼Ber(k/N)t [f(x)]

∣∣ ≤ 2t√
N − t

.

Proof. It suffices to upper bound the total variation distance between the distribution of yJ and the
distribution of x ∼ Ber(k/N)t. By symmetry, this total variation distance is the total variation
distance between Bin(t, k/N) and Hyp(N, k, t), where Hyp denotes the hypergeometric distribution

(so that, in particular, W ∼ Hyp(N, k, t) satisfies Pr(W = w) =
(kw)(N−kt−w)

(Nt)
). By [RS23, Theorem

1] (restated in Lemma G.2), this total variation distance is bounded above by 2t√
N−t .

22

20666https://doi.org/10.52202/079017-0652

Lemma C.10. Let S0,S1 be sets of size N so that |S0 ∩ S1| = N − k, for some k < N . Let n < N
be given. For b ∈ {0, 1} let Jb denote the distribution of a tuple J = (j1, . . . , jn) of n elements of
Sb drawn uniformly without replacement. Then dTV(J0,J1) ≤ nk

N−n .

Proof. For any tuple J all of whose elements belong to S0 ∩ S1 (which we write as J ⊂ S0 ∩ S1),
we have J0(J) = J1(J) by symmetry. Thus we have

dTV(J0,J1) ≤ Pr
J∼J0

(J 6⊂ S0 ∩ S1) = 1−
(
N−k
n

)(
N
n

) = 1− (N − k) · · · (N − k − n+ 1)

N · · · (N − n+ 1)

≤1−
(
N − n− k
N − n

)n
≤ nk

N − n
.

D Insertion/Deletion PRCs from substitution PRCs

Suppose that PRCSub is a PRC which is robust to (1/2 − p0)-substitution-bounded channels, for
some p0 > 0. Choose ρ := 2CD.8/p0, where CD.8 is the constant defined in Lemma D.8. Note that
PRCIdx[PRCSub, ρ] (defined in Algorithm 1) has block length m(λ) := dn(λ) · ln(2)e and alphabet
size |Σ(λ)| = q(λ) = ρ · n(λ) = 2CD.8

p0
· n(λ). Thus, to prove Theorem 4.1, it suffices to show that

PRCIdx[PRCSub, ρ] satisfies undetectability (Lemma D.3), soundness (Lemma D.1), and robustness
to all (1 − Crobp0, p0)-edit-bounded channels (Lemma D.8), where Crob is a constant defined in
Lemma D.8.

Additional notation. Fix q,m ∈ N. For integers j ≥ 1, we define Uniquej(y) := {a ∈ [q] :
|{i : yi = a}| = j}, i.e., Uniquej(y) is the set of elements a ∈ [q] so that exactly j elements
of y are equal to a. Given j ∈ N, we define Unique≥j(y) =

⋃
j′≥j Uniquej′(y). Note that

Unique(y) = Unique≥1(y).

Lemma D.1 (Soundness). Let PRCSub be a PRC for substitutions. Then the PRC PRCIdx[PRCSub]
in Algorithm 1 is sound.

Proof. Fix λ ∈ N, and consider z ∈ [q(λ)]m(λ). Define y′ ∈ {0, 1}n(λ) as in Line 12 of Algorithm 1.
Since PRCSub is sound, we have

Pr
(sk,ψ)∼KeyGen(1λ)

(
Decode(1λ, (sk, ψ), z) =⊥

)
= Pr

sk∼KeyGenSub(1λ)

(
DecodeSub(1λ, sk, y′) =⊥

)
≥ 1− negl(λ).

To establish undetectability, we first need the following lemma which states that
PerturbDifference(n,m, y0) outputs a uniformly random string in [n]m when its input y0 is uniform
over {0, 1}n.

Lemma D.2. Given positive integers m ≤ n, the distribution of z ← PerturbDifference(n,m, y0)
(Algorithm 1), for y0 ∼ Unif({0, 1}n), is exactly Unif([n]m).

Proof. Suppose y0 ∼ Unif({0, 1}n), y1 ∼ Unif([n]m), and write S0 = {i ∈ [n] : y0
i = 1}, S1 =

Unique(y1) as in PerturbDifference.

Given y ∈ [n]m, denote its frequency mapping freq(y) = f : [m] → N≥0 by f(j) = |Uniquej(y)|
for j ∈ [m]. Note that freq(y1) = freq(y) with probability 1, where y denotes the output string of
PerturbDifference (this holds since the maps σ, τ are necessarily injective). Thus, the distribution of
freq(y) is exactly the distribution of freq(y1) for y1 ∼ Unif([n]m).

Next, we claim that any two strings z, z′ ∈ [n]m with freq(z) = freq(z′) have equal probability
of being output by PerturbDifference. To see this, we may choose a permutation π : [n] → [n]
and σ : [m] → [m] so that π(zσ(i)) = z′i for i ∈ [m]. Next, it is straightforward to see from the
definition of PerturbDifference that the distribution of its output remains unchanged if its input y0 is

23

20667 https://doi.org/10.52202/079017-0652

replaced with the string ỹ0 defined by ỹ0
π(i) := y0

i , i ∈ [n], and the sample y1 in Line 16 is replaced
with the string ỹ1 defined by ỹ1

i := π(y1
σ(i)), i ∈ [m]. The distribution of the sets S0,S1 ⊂ [n]

under this modified procedure is exactly the distribution of π(S0), π(S1) when S0,S1 are drawn
according to the original procedure. Thus, the probability of observing z under the original execution
of PerturbDifference is the same as the probability of observing z′ under this modified execution of
PerturbDifference.

It follows from the two previous paragraphs that each string in [n]m has equal probability of being
output by PerturbDifference(n,m, y0), under y0 ∼ Unif([n]m), as desired.

Lemma D.3 (Undetectability). Let PRCSub = (KeyGenSub,EncodeSub,DecodeSub) be a PRC for
substitutions. Then the PRC PRCIdx[PRCSub] in Algorithm 1 is undetectable.

Proof. Fix λ ∈ N, and let us write q := q(λ), n := n(λ). Consider any ψ : [q]→ [n] which satisfies
|ψ−1(j)| = q/n for each j ∈ [n].

Given a string y0 ∈ {0, 1}n, let Eψ(y0) ∈ [q]n denote the random variable which is the output of
the following procedure: given y0, let y ← PerturbDifference(n,m, y0), then sample z ∈ [q]m as
on Line 8 of Algorithm 1 (using ψ), and output the resulting string z.

Claim D.4. For any fixed ψ as above, the distribution of Eψ(y0), for y0 ∼ Unif({0, 1}n), is uniform
on [q]m.

Proof. By Lemma D.2, the distribution of y ← PerturbDifference(n,m, y0) is uniform on [n]m.
Since |ψ−1(j)| = q/n for each j ∈ [n], it follows that the distribution of the output string z is
uniform on [q]m.

Now consider any probabilistic polynomial-time adversary Adv, and suppose that∣∣∣∣ Pr
(sk,ψ)←KeyGen(1λ)

(
AdvEncode(1λ,(sk,ψ),·)(1λ) = 1

)
− Pr
U

(
AdvU (1λ) = 1

)∣∣∣∣ = ν(λ)

for some function ν : N → R≥0. We construct an adversary Adv′ for the substitution PRC
PRCSub, as follows: Adv′ first generates ψ : [q] → [n] conditioned on |ψ−1(j)| = q/n for each
j ∈ [n]. Adv′ then simulates Adv, where each time Adv calls its oracle O(m) for some message
m, Adv′ performs the following. It calls y0 ← O′(m) (using its oracle O′ which is either a
random oracle or EncodeSub(1λ, sk,m)), then applies y ← PerturbDifference(n,m, y0), samples
zj ∼ Unif({a : ψ(a) = yj}) for each j ∈ [m], and then uses z as the simulated output for O(m).
By definition of Encode in Algorithm 1, the adversary Adv′ faithfully simulates the execution of
AdvEncode(1λ,sk,m) when the oracle O′(·) for Adv′ is EncodeSub(1λ, sk, ·). When the oracle O′ for
Adv′ is a random oracle U (i.e., which outputs a uniformly random string y0 ∼ Unif({0, 1}n)), then
Claim D.4 ensures that the adversary Adv′ generates a uniformly random string in [q]m. Thus, we
have that∣∣∣∣ Pr

sk←KeyGenSub(1λ)

(
(Adv′)EncodeSub(1λ,sk,·)(1λ) = 1

)
− Pr
U

(
(Adv′)U (1λ) = 1

)∣∣∣∣ = ν(λ),

and since PRCSub is undetectable, we have ν(λ) = negl(λ), meaning that which implies that
PRCIdx[PRCSub] is undetectable.

D.1 Lemmas for robustness

Next, we will establish several lemmas in the aim of showing robustness of PRCIdx[PRCSub, ρ]. The
below lemma bounds the number of replacements PerturbDifference has to perform in Line 20 or
Line 23 of Algorithm 1.
Lemma D.5. There is a sufficiently large constant CD.5 ≥ 1 so that the following holds. Fix positive
integers n,m with m = dn · ln(2)e and ε ∈ (0, 1) so that n ≥ CD.5 ln2(1/ε)/ε2. For z ∈ [n]m,
write D(z) ∈ {0, 1}n to be the string D(z)i := 1{i ∈ Unique(z)}. Then

Pr
y0∼Unif({0,1}n)

z←PerturbDifference(n,m,y0)

(
DHam(y0, D(z)) ≥ εn

)
≤ 1− negl(n).

24

20668https://doi.org/10.52202/079017-0652

Proof. Given y0, let S0 = {i ∈ [n] : y0
i = 1} be defined as in Line 15 of PerturbDifference. By a

Chernoff bound, for any δ ∈ (0, 1),

Pr
y0∼Unif({0,1}n)

(∣∣∣|S0| − n

2

∣∣∣ ≥√n log(2/δ)
)
≤ δ (10)

Now consider y1 ∼ Unif([n]m) and S1 = Unique(y1) as in Lines 15 and 16 of PerturbDifference.
By our choice of m,n and Lemma D.6 with q = n, y1 is typical with probability 1 − negl(m) ≥
1− negl(n), which implies that

∣∣|S1| − n
2

∣∣ ≤ 2
√
m ln(m) + 1. Combining this fact with (10) and

choosing δ = 2 exp(− ln2(n)) ≤ negl(n) gives that

Pr
y0∼Unif({0,1}n),y1∼Unif([n]m)

(∣∣|S0| − |S1|
∣∣ ≥ εn)

≤ Pr
y0∼Unif({0,1}n),y1∼Unif([n]m)

(∣∣|S0| − |S1|
∣∣ ≥ 2

√
m ln(m) + 1 +

√
n ln(n)

)
≤ negl(n),

where we have used that εn ≥ 3
√
n ln(n) + 1 ≥ 2

√
m ln(m) + 1 +

√
n ln(n) as a result of our

assumption that n ≥ C ln2(1/ε)
ε2 for a sufficiently large constant C. The conclusion of the lemma

follows by noting that
∣∣|S0| − |S1|

∣∣ = DHam(y0, D(z)) with probability 1.

Definition D.1 (Typical string). Fix q,m ∈ N. A string z ∈ [q]m is defined to be typical if the
following inequalities hold:

q · (1− exp(−m/q))− 2
√
m lnm ≤ |Unique(z)| ≤ q · (1− exp(−m/q)) + 2

√
m lnm.

Lemma D.6. Suppose that q ≥
√
m/ ln(m). With probability 1 − negl(m), a uniformly random

string z ∼ Unif([q]m) is typical.

Proof. Consider a string z ∈ [q]m, and define

F1(z) := |Unique≥1(z)| =
q∑
a=1

1{|{i ∈ [m] : zi = a}| ≥ 1}.

Note that F1 satisfies the bounded differences property with constants ci = 1, for each i ∈ [m]. Note
also that

Ez∼Unif([q]m)[F1(z)] = q ·

(
1−

j−1∑
k=0

(
m

k

)
· q−k · (1− 1/q)m−k

)
= q ·

 m∑
k=j

(
m

k

)
· q−k · (1− 1/q)m−k

 .

We have that E[F1(z)] = q · (1 − (1 − 1/q)m), and using the bounds exp(−1/q) ≥ 1 − 1/q ≥
exp(−1/q − 1/q2) for q ≥ 1, we conclude that

q · (1− exp(−m/q)) ≤ E[F1(z)] ≤ q · (1− exp(−m/q −m/q2)) ≤ q · (1− exp(−m/q)) +m/q.

By Theorem F.1, for any δ ∈ (0, 1), we have that with probability 1− δ over z ∼ Unif([q]m),

|E[F1(z)]− F1(z)| ≤
√
m ln(2/δ).

Choose δ = 2 exp(− ln2(m)) (so that δ ≤ negl(m)), and note that our assumption that q ≥√
m/ lnm gives that m/q ≤

√
m ln(2/δ). Combining the two displays above gives that with

probability 1− negl(m) over z ∼ Unif([q]m), we have

q · (1− exp(−m/q))− 2
√
m lnm ≤ F1(z) ≤ q · (1− exp(−m/q)) + 2

√
m lnm.

Given integers n < q so that q/n ∈ N, let P ptn
n,q denote the uniform distribution over mappings

ψ : [q] → [n] conditioned on the event that |ψ−1(j)| = q/n for each j ∈ [n]. For sets S, T ⊂ Ω,
define ∆(S, T) := (S\T) ∪ (T \S).

25

20669 https://doi.org/10.52202/079017-0652

Lemma D.7. There is a constant CD.7 > 0 so that the following holds. Consider n, ρ, q ∈ N
satisfying q/ρ = n, let Z1,Z2 ⊂ [q] be given, and write Z := Z1 ∩ Z2. Define Z := |Z|, Z1 :=
|Z1|, Z2 := |Z2|, and suppose that 0 ≤ ε ≤ p ≤ 1/10 are given so that

8

ε
≤ ρ ≤ n1/4,

Z1

n
∈ [ln(2)− ε, ln(2) + ε],

Z2

n
≤ 2 ln(2) + ε, Z ≥ pn, n ≥ CD.7

ε3
.

(11)

Then

Pr
ψ∼P ptn

n,q

(
|∆(ψ(Z1), ψ(Z2))| ≥ n ·

(
1

2
− p

5
+ 23ε

))
≤ negl(n).

Proof. The fact that 2/ε ≤ ρ and max{Z1/n, Z2/n} ≤ 2 implies that max{Z1/ρ, Z2/ρ} ≤ εn.
Let us write ζ1 := exp(−Z1/n), ζ2 := exp(−Z2/n) so that ζ1 ∈ [(1 − ε)/2, 1/2 + ε] and ζ2 ∈
[(1− ε)/4, 1].

Note that the mapping ψ : [q] → [n] is specified by the random variables
ψ−1(1), ψ−1(2), . . . , ψ−1(n) ⊂ [q]. Let us define

F (ψ) := |∆(ψ(Z1), ψ(Z2))| =
n∑
i=1

1{i ∈ ∆(ψ(Z1), ψ(Z2))} =

n∑
i=1

G(ψ−1(i);Z1,Z2),

where G(T ;Z1,Z2) ∈ {0, 1} (for some T ⊂ [q]) is defined to be equal to 1 if and only if either (a)
T ∩ Z1 6= ∅ but T ∩ Z2 = ∅ or (b) T ∩ Z2 6= ∅ but T ∩ Z1 = ∅.

Step 1: Bounding the expectation of F . Fix any i ∈ [n], and note that ψ−1(i) ⊂ [q] is a uniformly
random subset of size ρ. Note that

Pr
ψ∼P ptn

n,q

(ψ−1(i) ∩ Z1 6= ∅, ψ−1(i) ∩ Z2 = ∅)

= Pr
ψ∼P ptn

n,q

(ψ−1(i) ∩ Z1 6= ∅ | ψ−1(i) ∩ Z2 = ∅) · Pr
ψ∼P ptn

n,q

(ψ−1(i) ∩ Z2 = ∅). (12)

By Lemma D.9, we have

Pr
ψ∼P ptn

n,q

(ψ−1(i) ∩ Z2 = ∅) ≤ exp(−ρZ2/q) = exp(−Z2/n) = ζ2 (13)

and

Pr
ψ∼P ptn

n,q

(ψ−1(i) ∩ Z1 6= ∅ | ψ−1(i) ∩ Z2 = ∅)

≤1− exp

(
− ρ(Z1 − Z)

q − Z2 − ρ
− ρ(Z1 − Z)2

(q − Z2 − ρ)2

)
≤1− exp

(
− Z1 − Z
n− Z2/ρ− 1

− ρZ2
1

(q − Z2 − ρ)2

)
≤1− exp (−(1 + 4ε)Z1/n) · exp(p) · exp(−Z2

1 (1 + 4ε)2/(ρn2))

≤1− exp(ln(ζ1)− 8ε) · exp(p) · exp(−8/ρ)

≤1− ζ1 · (1 + p) · exp(−9ε) ≤ 1− ζ1 · (1 + p) · (1− 9ε) ≤ (1− ζ1)− pζ1 + 10ε, (14)

where we have used the fact that, conditioned on ψ−1(i) ∩ Z2 = ∅, ψ−1(i) is distributed as a
uniformly random subset of [q]\Z2, which has size q − Z2. Moreover, the third inequality above
uses the upper bound Z2/ρ ≤ εn and the lower bound Z ≥ pn in (11), the fourth inequality uses
the upper bound Z1/n ≤ 2 from (11), and the remaining inequalities simplify and use the fact that
ε, p ∈ (0, 1/10) and 8/ρ ≤ ε.

26

20670https://doi.org/10.52202/079017-0652

Using Eqs. (12) to (14) together with a symmetrical argument to bound Pr(ψ−1(i)∩Z2 6= ∅, ψ−1(i)∩
Z1 = ∅),10 we see that, for each i ∈ [n],

Eψ∼P ptn
n,q

[G(ψ−1(i);Z1,Z2)] ≤ζ2 · ((1− ζ1)− pζ1 + 10ε) + ζ1 · ((1− ζ2)− pζ2 + 10ε)

≤ζ1 + ζ2 − 2ζ1ζ2(1 + p) + 20ε

≤
(

1

2
+ ε

)
+ ζ2 − (1− ε)ζ2 · (1 + p) + 20ε

=

(
1

2
+ ε

)
+ εζ2 − ζ2(1− ε) · p+ 20ε

≤1

2
− p

5
+ 22ε,

where the second inequality uses that ζ1, ζ2 ≤ 1, the third inequality uses that ζ1 ∈ [(1−ε)/2, 1/2+ε],
and the final inequality uses that ζ2 ∈ [(1− ε)/4, 1]. It follows that

Eψ∼P ptn
n,q

[F (ψ)] ≤ n ·
(

1

2
− p

5
+ 22ε

)
. (15)

Step 2: Concentration of F to its expectation. Consider any subsetH ⊂ [n] of size H0 := |H|
satisfying 4ρH0 ≤ n, and define FH(ψ) :=

∑
i∈HG(ψ−1(i);Z1,Z2). Note that FH satisfies the

bounded differences property with respect to the random variables ψ−1(i), i ∈ H, with constants
ci = 1 for each i ∈ H. For any distinct i, j ∈ H, we have

max
ψ−1(k)⊂[q], k∈H\{i,j}
ψ−1(j),ψ̃−1(j)⊂[q]

dTV(P ptn
n,q (ψ−1(i) = · | ψ−1|H\{i,j}, ψ−1(j)), P ptn

n,q (ψ−1(i) = · | ψ−1|H\{i,j}, ψ̃−1(j)))

≤ max
ψ−1(k)⊂[q], k∈H\{i,j}
ψ−1(j),ψ̃−1(j)⊂[q]

P ptn
n,q (ψ−1(i) ∩ ψ̃−1(j) 6= ∅ | ψ−1|H\{i,j}, ψ−1(j)) (16)

≤1−
(

1− ρ

q − (H0 − 1)ρ

)
· · ·
(

1− ρ

q −H0ρ+ 1

)
≤1− (1− 2ρ/q)ρ ≤ 2ρ2/q ≤ 1/(2H0), (17)

where we use ψ−1|H\{i,j} to denote the collection of tuples (k, ψ−1(k)) for k ∈ H\{i, j}. In (16),
the probability is over ψ−1(i), whose conditional distribution is that of a uniformly random subset
of [q]\(ψ−1(j) ∪ (ψ−1(H\{i, j}))) of size ρ. The second inequality above uses Lemma D.9, and
the second-to-last inequality uses the fact that q −H0ρ+ 1 > q −H0ρ ≥ q/2, since 2H0ρ ≤ q by
assumption, and the final inequality uses that q ≥ 4ρ2H0, by assumption.

The above chain of inequalities (17) guarantees that Ij→i(ψ−1|H) ≤ 1/(2H0) for all i, j ∈ H with
i 6= j. By Theorem F.3, it follows that for any δ ∈ (0, 1),

Pr
ψ∼P ptn

n,q

(
|FH(ψ)− EP ptn

n,q
[FH(ψ)]| ≥

√
4H0 ln(2/δ)

)
≤ δ. (18)

WriteH := C1 ln2 n
ε2 , for a sufficiently large constant C1 to be specified below. Note that 4ρ(H+1) ≤

n as long as n ≥ 8C1ρ ln2 n
ε2 , which in turn, since ρ ≤ n1/4, holds when n ≥ C/ε3 for a sufficiently

large constant C (chosen as a function of C1). Let H1, . . . ,Hbn/Hc denote a partition of [n] for
which |Hj | ∈ {H,H + 1}. Since 4ρ(H + 1) ≤ n, we may apply (18) to each Hj and use a union
bound, which yields

Pr
ψ∼P ptn

n,q

(
|F (ψ)− EP ptn

n,q
[F (ψ)]| ≥

n
√

4 ln(2/δ)√
H

)
≤ nδ

H
≤ nδ. (19)

Choosing δ = 2 exp(− ln2(n)) ≤ negl(n) gives that n
√

4 ln(2/δ)/
√
H ≤ 2n ln(n)/

√
H ≤ εn, as

long as the constant C1 is chosen sufficiently large. Combining Eqs. (15) and (19) yields that with
probability 1 − negl(n) over the draw of ψ ∼ P ptn

n,q , F (ψ) ≤ n ·
(

1
2 −

p
5 + 23ε

)
, which yields the

claimed bound.
10Note that, though our assumptions on Z1, Z2 in the lemma statement are not symmetric, to derive (14) we

only need the inequalities Z2/ρ ≤ εn and Z1/n ≤ 2, which hold when the roles of Z1, Z2 are flipped.

27

20671 https://doi.org/10.52202/079017-0652

D.2 Proof of robustness

We are ready to show robustness of our PRC PRCIdx[PRCSub] to edit-bounded channels (Defini-
tion 2.4).
Lemma D.8 (Robustness). There are some constants CD.8, Crob ≥ 1 so that the following
holds. Consider any ρ > 1 and security parameter λ ∈ N satisfying n(λ) ≥ CD.8ρ

4, and
p0 ∈ (CD.8/ρ, 1/(10Crob)) and any (1 − Crobp0)-edit-bounded channel E . Then for any PRC
PRCSub which is robust to (1/2− p0)-substitution-bounded channels, the PRC PRCIdx[PRCSub, ρ]
in Algorithm 1 is robust to E .

Proof of Lemma D.8. Fix λ ∈ N, and write n := n(λ), q := q(λ),m := m(λ), so that p0 >
CD.8/ρ ≥ 1/ρ. Fix any z ∈ [q]m which is typical (per Definition D.1), and consider any z′ ∈ [q]m

which can be obtained form z via a total of at most (1 − Crob · p0) · m substitutions, insertions,
and deletions (which has probability 1 over z′ ∼ E(z) since E is (1− Crobp0)-edit-bounded. Write
Z := Unique(z) ∩ Unique(z′), i.e., Z denotes those entries of z which are preserved in z′. Since z
is typical and m/q ≤ m/(nρ) ≤ 1/ρ, we have that

|Unique(z)| ≥ q · (1− exp(−m/q))− 2
√
m lnm (20)

≥ q · (m/q − (m/q)2)− 2
√
m lnm ≥ m · (1− 1/ρ)− 2

√
m lnm,

where the second inequality uses the fact that exp(−x) ≤ 1 − x + x2 for x ∈ [0, 1]. Since the
requirements n ≥ CD.8ρ

4 and m = dln(2) · ne ensure that that 2
√
m ln(m) ≤ m/ρ (as long as

CD.8 is large enough), we have that |Unique(z)| ≥ m · (1− 2/ρ). Note also that it is immediate that
|Unique(z)| ≤ m.

Step 1: Using Lemma D.7. Since z′ is obtained from z via at most 1−Crobp0 insertions, deletions,
and substitutions, we have |Z| ≥ |Unique(z)| −m · (1− Crobp0) ≥ m · (Crobp0 − 2/ρ). We also
have that |Unique(z′)| ≤ 2m. We now apply Lemma D.7 with

Z1 = Unique(z), Z2 = Unique(z′), ε = p0, p =
Crob − 2

2
· p0.

We must verify that the preconditions (11) are satisfied: first, we check that, as long as CD.8 ≥ 8,
8

ε
=

8

p0
<

8ρ

CD.8
≤ ρ ≤ n1/4,

where the final inequality follows from our choice of n ≥ ρ4. Next, we have

|Unique(z)| ∈ [m · (1− 2/ρ),m] ⊂ [(ln(2)− ε) · n, (ln(2) + ε) · n],

where we have used that m = dln(2) · ne and the fact that 2/ρ < p0 = ε and nε = np0 ≥ 1.
Similarly, we have

|Unique(z′)| ≤ 2m ≤ (2 ln(2) + ε) · n.

Next, we have |Z| ≥ m · (Crobp0 − 2/ρ) ≥ (Crob − 2)p0 ·m ≥ Crob−2
2 · p0n = pn, since m ≥ n/2.

Finally, we have that

n ≥ ρ4 ≥ (CD.8/p0)4 = (3CD.8/ε)
4 ≥ CD.7/ε3, (21)

as long as CD.8 is chosen sufficiently large. Thus, all constraints of Lemma D.7 are satisfied. Given
ψ : [q]→ [n] and z ∈ [q]?, define Dψ(z) ∈ {0, 1}n to be the vector defined by

Dψ(z)i := 1{i ∈ Unique(ψ(z))}.
Then Lemma D.7 gives that

Pr
ψ∼P ptn

n,q

(
DHam(Dψ(z), Dψ(z′)) ≥ n ·

(
1

2
− p

5
+ 23ε

))
= Pr
ψ∼P ptn

n,q

(
|∆(ψ(Unique(z)), ψ(Unique(z′)))| ≥ n ·

(
1

2
− p

5
+ 23ε

))
≤ negl(n). (22)

As long as Crob ≥ 300, we have
1

2
− p

5
+ 23ε ≤ 1

2
− Crob − 2

10
· p0 + 23p0 ≤

1

2
− 5p0.

28

20672https://doi.org/10.52202/079017-0652

Step 2: Averaging over z. Let us consider the following “idealized” variant of
Encode(1λ, (sk, ψ),m), which we denote by Encode′(1λ, ψ) (as the output of the below procedure
does not depend on sk or m):

1. Sample y ∼ Unif([n]m).

2. For each j ∈ [m], choose zj ∼ Unif({z : ψ(z) = yj}), so that zj ∈ [q].

3. return z = (z1, . . . , zm).

For any fixed z ∈ [q]m, note that Pr(Encode′(1λ, ψ) = z) = q−m, and in particular does not depend
on ψ: this holds since each element zj of z is drawn independently from the distribution which first
draws yj ∼ Unif([n]) and then draws zj ∼ Unif({z : ψ(z) = yj}); since |ψ−1(a)| = q/n for each
a ∈ [n], this distribution is simply Unif([q]). LetQ denote the joint distribution of (y, ψ, z, z′), where
y ∼ Unif([n]m), ψ ∼ P ptn

n,q , z is generated from y, ψ as in the above procedure Encode′(1λ, ψ),
and z′ ∼ E(z). For any z0 ∈ [q]m, it follows that the conditional distribution (under Q) of ψ given
z = z0 is P ptn

n,q . Since ψ and z′ are conditionally independent given z, we have furthermore that for
any z0, z

′
0 ∈ [q]m, the conditional distribution (under Q) of ψ given z = z0, z

′ = z′0 is P ptn
n,q . Thus,

by (22), if z0 is typical and z′0 can be obtained from z0 with at most (1− Crobp0) ·m subsitutions,
insertions, and deletions, then

Pr
Q

(
DHam(Dψ(z), Dψ(z′)) ≥ n ·

(
1

2
− 5p0

)
| z = z0, z

′ = z′0

)
≤ negl(n).

Since z is typical with probability 1− negl(n) under Q (by Lemma D.6) and and z′ can be obtained
from z using at most (1−Crobp0) ·m substitutions, insertions, and deletions with probability 1 under
Q, it follows that in fact

Pr
Q

(
DHam(Dψ(z), Dψ(z′)) ≥ n ·

(
1

2
− 5p0

))
≤ negl(n) ≤ negl(m). (23)

Step 3: using pseudorandomness. Let Q̃ denote the joint distribution of (y, ψ, z, z′) where y is
distributed as the random variable y defined in Line 7 of Algorithm 1, ψ ∼ P ptn

n,q , z is distributed
as the random variable z defined in Line 8 of Algorithm 1 given the value of ψ and y (i.e., zj ∼
Unif({a : ψ(a) = yj})), and z′ ∼ E(z). Using the fact a sample from E(·) may be produced by a
probabilistic polynomial-time algorithm together with Lemmas D.2 and D.3, we have that∣∣∣∣Pr
Q

(
DHam(Dψ(z), Dψ(z′)) ≥ n ·

(
1

2
− 5p0

))
− Pr

Q̃

(
DHam(Dψ(z), Dψ(z′)) ≥ n ·

(
1

2
− 5p0

))∣∣∣∣ ≤ negl(n).

(24)

In more detail, to arrive at (24), we reason as follows: if the difference in (24) were non-negligible,
then we could distinguish in polynomial time between a sample y0 ← EncodeSub(1λ, sk,m)
from a uniformly random string y0 ∼ Unif({0, 1}n), as follows: we first generate y ←
PerturbDifference(n,m, y0) (as in Line 7 of Algorithm 1, then sample ψ ∼ P ptn

n,q , then sample
z ∈ [q]m by zj ∼ Unif({a : ψ(a) = yj}) for j ∈ [m], then sample z′ ∼ E(z), and finally evaluate
DHam(Dψ(z), Dψ(z′)). In the event that y0 ← EncodeSub(1λ, sk,m), then the resulting distribution
of (y, ψ, z, z′) is Q̃, and in the event that y0 ∼ Unif({0, 1}n), Lemma D.2 gives that the induced
distribution over y is Unif([n]m) and thus the resulting distribution of (y, ψ, z, z′) is Q. Thus we
would get a contradiction to Lemma D.3.

Step 4: Wrapping up. We have from Eqs. (23) and (24) that

Pr
Q̃

(
DHam(Dψ(z), Dψ(z′)) ≥ n ·

(
1

2
− 3p0

))
≤ negl(m). (25)

29

20673 https://doi.org/10.52202/079017-0652

By our construction of the distribution Q̃, Dψ(z) = y with probability 1 under Q̃. Moreover, we
have that

Pr
(sk,ψ)←KeyGen(1λ)

(
Decode(1λ, (sk, ψ), E(z)) 6= m | z ← Encode(1λ, (sk, ψ),m)

)
= Pr

(sk,ψ)←KeyGen(1λ)

(
DecodeSub(1λ, sk, Dψ(E(z))) 6= m | z ← Encode(1λ, (sk, ψ),m)

)
= Pr

sk∼KeyGenSub(1λ),ψ∼P ptn
n,q

(
DecodeSub(1λ, sk, Ēψ(y0)) 6= m | y0 ← EncodeSub(1λ, sk,m)

)
≤ negl(λ),

(26)

where Ēψ : {0, 1}n → {0, 1}n denotes the (random) channel which, given y0 ∈ {0, 1}n, first
applies the procedure in Lines 7 and 8 of Algorithm 1 to generate z ∈ [q]m from y0, and then
outputs Dψ(z′) for z′ ∼ E(z). For future reference we let this distribution over (y0, z) where sk ∼
KeyGenSub(1λ), y0 ← EncodeSub(1λ, sk,m) be denoted by R. The first equality in the display above
uses that the output of Decode(1λ, (sk, ψ), z′) is given by DecodeSub(1λ, sk, Dψ(z′)). The second
equality uses the definition of Encode(1λ, (sk, ψ),m) in Algorithm 1. Finally, the inequality follows
since the PRC PRCSub is robust to (1/2−p0)-substitution bounded channels together with Lemma G.1
and the fact that with probability 1 − negl(λ) over the draw of ψ ∼ P ptn

n,q , sk ∼ KeyGenSub(1λ),
y0 ← EncodeSub(1λ, sk,m), and z′ ∼ Ēψ(y0), we have DHam(z′, y0) ≤ (1/2 − p0) · n. This fact
follows from the following observations:

• By Lemma D.5 and undetectability of PRCSub, for any ψ, with probability 1− negl(n)−
negl(λ) ≥ 1− negl(λ) over (y0, z) ∼ R, we have DHam(y0, Dψ(z)) ≤ p0n. (In particular,
Lemma D.5 ensures that DHam(y0, Dψ(z)) ≤ p0n when y0 ∼ Unif({0, 1})n and then z
is generated from y0 as in Lines 7 and 8 of Algorithm 1, and undetectability of PRCSub

ensures that this also holds when instead y0 ∼ EncodeSub(1λ, sk,m).) Here we have also
used the fact that ψ(z) is the output string y of PerturbDifference(n(λ),m(λ), y0) (defined
in Line 7), together with the fact that n ≥ CD.5 ln2(1/ε)/ε2 by (21), as long as the constant
CD.8 is chosen sufficiently large.

• By (25) together with the fact that the distribution of (ψ, z, z′) where ψ ∼ P ptn
n,q , z ∼

R, and z′ ∼ E(z) is exactly the marginal distribution of (ψ, z, z′) ∼ Q̃, we have that
DHam(Dψ(z), Dψ(z′)) ≤ 1

2 − 3p0 with probability 1− negl(n) ≥ 1− negl(λ).

• Combining the two points above, we see that with probability 1 − negl(λ) over sk ∼
KeyGenSub(1λ), y0 ∼ EncodeSub(1λ, sk,m), ψ ∼ P ptn

n,q , z
′ ∼ Ēψ(y0), DHam(y0, z′) ≤

(1/2− p0) · n, as desired.

Summarizing, we have established (26), which yields the desired robustness guarantee.

Remark D.2 (Removing computational efficiency of channel). Though the proof of Lemma D.8 uses
the fact that (per Definition 2.4), the channel E is sampleable in polynomial time (namely, in Step 3),
this assumption is not necessary, in the following sense. If we make the slightly stronger assumpgion
that PRCSub is in fact (1/2− p0)-weakly substitution bounded (per Definition C.2), then the proof of
Lemma D.8 can be modified as follows to remove the assumption that E is computationally efficient:
instead of showing that with probability 1 − negl(λ) over the draw of y0 ← EncodeSub(1λ, sk,m)
and z′ ∼ Ēψ(y0), we have DHam(z′, y0) ≤ (1/2 − p0) · n and using Lemma G.1, we would show
that DHam(z′, y0) ≤ (1/2− p0) · n with probability 1− negl(λ) when instead y0 ← Unif({0, 1}n),
which would imply that Ēψ is (1/2 − p0)-weakly robust. This latter argument avoids us to avoid
needing to reason about the distribution of y0 ← EncodeSub(1λ, sk,m), and so allows us to omit Step
3 in the proof of Lemma D.8. Moreover, we note that (as discussed in Appendix C.2) Theorem 3.2 in
fact establishes the existence of PRCs robust to weakly substitution bounded channels (as do [CG24,
Sections 5.3 & 5.4]).
Lemma D.9. Fix integers N, ρ ∈ N and a subset Z ⊂ [N] with Z := |Z|, and suppose Z ≤ N − ρ.
Let T ⊂ [N] be a uniformly random subset of size ρ. Then

Pr(Z ∩ T = ∅) =

(
1− Z

N

)
· · ·
(

1− Z

N − ρ+ 1

)
∈
[
exp

(
− ρZ

N − ρ
− ρZ2

(N − ρ)2

)
, exp

(
−ρZ
N

)]
.

30

20674https://doi.org/10.52202/079017-0652

Proof. We may choose T by selecting its elements without replacement from [N]. After i elements
of T (not intersecting Z) have been chosen, the i+ 1th element of T is distributed uniformly over a
set of sizeN− i, of which Z elements belong to Z . This establishes the equality. To see the following
containment, we use the fact that exp(−x) ≥ 1− x ≥ exp(−x− x2) for all x ∈ [0, 1].

E Watermarks from PRCs over larger alphabets

E.1 Overview of the algorithm and guarantee

In this section, we discuss how to use any PRC with security parameter λ and alphabet size poly(λ)
to produce a watermarking scheme meeting the requirements of Definition B.2. The reduction of
[CG24] for this task is limited to the case where the PRC has a binary alphabet. To extend to the
setting where the alphabet size of the PRC is larger, some new ideas are needed.

Suppose that we are given a zero-bit pseudorandom code, PRC, with block length n(λ) over an
alphabet ΣPRC(λ), with |ΣPRC(λ)| ≥ n(λ), which is robust to a constant fraction of substitutions,
insertions, and deletions (such a code is provided by Theorem 4.1). Given some constant α and a
family of language models (Model(λ))λ∈N over alphabet (Σ(λ))λ∈N with |Σ(λ)| ≥ |ΣPRC(λ)|, we
construct a watermarking schemeW[PRC,Model] (Algorithm 3), as the following tuple of algorithms
(Setup,Wat,Detect):

• Setup(1λ) produces a pair skWat = (sk, φ) as the secret key ofW . Here sk is a secret key generated
from PRC.KeyGen(λ), and φ : Σ(λ)→ ΣPRC(λ) is chosen uniformly at random, which can be
interpreted as a hash function.

• Wat(1λ, (sk, φ)) generates a sequence of tokens t1, t2, . . . in blocks of length n(λ), in the fol-
lowing manner: for each block of length n(λ), we sample a codeword x← PRC.Encode(1λ, sk)
(Line 13), and at each position i, we consider the pushforward distribution p̄i := φ ◦Model(ti =
· | t1:i−1) ∈ ∆(ΣPRC(λ)) of the next token under the hash function φ (Line 15 of the subroutine
EmbedChar). If p̄i puts enough mass on the corresponding token of the codeword x (denoted by
xj in Algorithm 3), then we let the output token of Wat at position i be a uniformly random token
which hashes to xj (Lines 16 and 21). Otherwise, we sample the output token of Wat at position i
in a way that will ensure it does not alter the conditional distribution of the ith token (Lines 19
and 21).
To obtain some intuition for the above procedure, it is straightforward to see that if the codewords
x are actually uniformly random, then the output of this procedure is identical to the distribution
Model (Lemma E.4). Thus, if x is drawn from a distribution computationally indistinguishable
from random (as will be the case for the output of a PRC), it is simple to show that this procedure
yields an undetectable watermark.

• Detect(1λ, (sk, φ), t) functions as follows, given a sequence t = t1:` ∈ Σ(λ)` of (potentially
watermarked) text. It searches through all contiguous substrings of t, denoted ti:j and checks
whether (φ(ti), . . . , φ(tj)) decodes to ∅ under PRC.Decode. If so, it returns True (and otherwise
False).

In the below theorem, we suppose that PRC is a zero-bit PRC with block length n(λ) over alphabet
ΣPRC(λ), satisfying |ΣPRC(λ)| ≥ n(λ). Furthermore, we suppose that (Model(λ))λ∈N is a family of
language models defined over alphabet Σ(λ).
Theorem E.1 (Watermarking from PRCs). Suppose that p, α ∈ (0, 1) are given, that PRC,Model(λ)
are as described above and satisfy |Σ(λ)| ≥ (8

α |ΣPRC(λ)|)2/α, and that PRC satisfies robustness to
any (1 − α

8 + 3p
α)-edit-bounded channel. Then the watermarking schemeW[PRC,Model] (Algo-

rithm 3) is sound, undetectable, and βλ(`)-substring robust to any p-edit-bounded channel, where
βλ(`) := 8n(λ) + 6α`.

Theorem E.1 shows that for any constant α, we can detect the watermark as long as the entropy rate of
the model’s text is at least Ω(α) and as long as the fraction of errors (adversarial deletions/insertions)
introduced to the watermarked text is at most O(α2). This latter statement follows since there are
PRCs robust to (1− α

8 + 3p
α)-edit-bounded channels for p = O(α2). In turn, the alphabet Σ(λ) of

the language model needs to have size roughly |ΣPRC(λ)|2/α, which is a polynomial in |ΣPRC(λ) as
long as α is a constant.

31

20675 https://doi.org/10.52202/079017-0652

By combining Theorems 3.2, 4.1 and E.1 we can show our main theorem, which guarantees substring-
robust watermarking schemes for edit-bounded channels under the existence of local weak PRFs
(Assumption 3.1). To simplify notation, given constants α, q > 0 together with a function family F
consisting of binary-valued functions on {0, 1}n(λ), let us define

Wcomp[F , q, α] :=W
[

PRCIdx

[
PRF-PRC

[
F , 1

2
− α

16Crob
, q

]
,

16CrobC0

α

]
,Model

]
, (27)

where C0, Crob ≥ 1 are the constants from Theorem 4.1. In words,Wcomp[F , q, α] chains together
the PRCs in Algorithms 1 and 2 and the watermarking scheme in Algorithm 3.
Theorem E.2 (Main theorem). There are absolute constants c, C1, C2 > 0 so that the following
holds. Fix any α > 0. Suppose there exists a function family F , consisting of binary-valued functions
on {0, 1}n(λ), which is a log n(λ)-local weak PRF for some noise level q ∈ [0, 1/2), per Assumption
3.1. Then for any language model family Model(λ) over alphabets Σ(λ), the watermarking scheme
Wcomp[F , q, α] ((27)) is sound, undetectable, and βλ(`)-substring robust to any cα2-edit-bounded
channel, as long as:

βλ(`) := 6α`+ 8 · n(λ)C1 log 1
α , |Σ(λ)| ≥ n(λ)C2

1
α log 1

α .

Notice that the exponent of n(λ) in the `-independent term of βλ(`) depends on α, as does the
exponent of n(λ) in the size of Σ(λ). While α is a constant (and so this only leads to a polynomial
blowup), it would be desirable to come up with more efficient reductions. We remark, however,
that this issue is quite subtle, since our criterion of undetectability (in Definitions 2.1 and B.2) is
phrased with respect to any polynomial-time algorithm, meaning that given a watermarking scheme
W = (Setup,Wat,Detect) we can construct a polynomially-more efficient watermarking scheme
W ′ = (Setup′,Wat′,Detect′) as follows. The algorithms Setup′,Wat′,Detect′, given a security
parameter λ, call the corresponding Setup,Wat,Detect algorithms with security parameter λα, for
some α < 1. Since any function which is negl(λα) is also negl(λ) and an algorithm running in time
poly(λ) is also poly(λα), the new scheme W ′ is sound, undetectable, and substring robust if W
is. Moreover, its various parameters (e.g., |Σ(λ)|) will typically be smaller than those ofW by a
polynomial. Of course, the guarantee afforded by undetectability of W ′ (due to its use of λα as
opposed to λ) is weaker than that ofW , though only by a polynomial.

Indeed, the approach of [CG24] implicity suffers from the same n(λ)O(log 1/α) dependence in their
substring-robustness function β(`), though it is not explicitly stated as such since they essentially
already scale down the security parameter. In particular, the sparsity parameter t in [CG24, Lemmas

4 & 5] is required to be O
(

logn
log 1

1
2
−p

)
(where p < 1/2 denotes the rate of substitutions for the

purpose of evaluating robustness; one can think of 1
2 − p as being roughly comparable to α in

Theorem E.2). Moreover, there is an algorithm which can distinguish the PRCs in [CG24] from
uniform strings which runs in time roughly nt. To formally reason about polynomial-sized differences
in the parameters, we would need to make fine-grained average case hardness assumptions, a direction
we do not pursue in the present work.

E.2 Proof overview for Theorem E.1

Fix a security parameter λ ∈ N; we will drop the argument λ in our notation for the proof overview.
In the algorithm description above we discussed the idea behind undetectability ofW , and the proof
of soundness is immediate. Therefore we focus on the (substring) robustness claim. The high-level
idea of the proof of robustness is to show that the procedure Wat can be viewed as a substitution
channel which (repeatedly) takes as input an output x of PRC.Encode and changes some of the
tokens to produce its output t. (Technically, we view it as a channel over ΣPRC by applying the hash
function φ to the output t of Wat.) Our goal is to show that for a codeword x ∈ ΣnPRC, Wat makes
at most (1 − Ω(α)) · n substitutions if the empirical entropy of the generated text derived from x
(i.e., the output of the channel) is at least Ω(α · n · log |Σ|). In such a case, we say that the “empirical
entropy rate” of the generated text is Ω(α).

The key technical difference between our watermarking procedure and that of [CG24] is the introduc-
tion of the hash function φ. Let us first see what goes wrong without such a φ, i.e., if Σ = ΣPRC and
φ is the identity map. Suppose that for each i, Model(ti = · | t1:i−1) is uniform over a fixed subset

32

20676https://doi.org/10.52202/079017-0652

Σ′ ⊂ Σ of size |Σ′| = |Σ|α. Then with high probability the output of Model will have empirical
entropy rate Ω(α). However, a codeword x produced by PRC will only have the property that a
roughly |Σ|α−1 fraction of its tokens belong to Σ′. Thus, the procedure in Algorithm 3 will only
be able to maintain roughly a |Σ|α−1 fraction of tokens of x (i.e., the if statement on Line 16 will
only succeed with probability |Σ|α−1), and thus the error rate of the corresponding substitution
channel will be roughly 1− |Σ|α−1 = 1− o(1), since |Σ| ≥ n. This error rate is too large, since our
pseudorandom codes (even over large alphabets) can only correct a 1− p fraction of errors, for any
constant p > 0.

To circumvent this issue, we make the following observation: if the entropy of the distribution
pi := Model(ti = · | t1:i−1) ∈ ∆(Σ) is at least α · ln |Σ|, then, if Σ is sufficiently large compared to
ΣPRC (roughly |Σ| ≥ |ΣPRC|Ω(1/α)), then for a uniformly random hash function φ : Σ→ ΣPRC, the
pushforward distribution p̄i = φ ◦ pi ∈ ∆(ΣPRC) will be “close to uniform” in the folloing sense: At
least an Ω(α) fraction of the mass of p̄i will be on tokens σ ∈ ΣPRC for which p̄i(σ) ≤ 1/|ΣPRC|.
This claim is proven formally in Lemma E.3, and may be seen as a consequence of concentration
of measure. Since each such token σ occurs with probability roughly 1/|Σ| under a codeword
output by the PRC (by undetectability), altogether such tokens account for a probability Ω(α) event
under which the condition on Line 16 of Algorithm 3 will evaluate to true. Thus, at least a fraction
Ω(α) of the tokens will not be substituted, as desired. This idea (together with the application of
various concentration inequalities) allows us to ensure that the substitution channel induced by Wat
introduces a fraction 1− Ω(α) of errors.

Next, the p-edit bounded channel referred to in the statement of Theorem E.1 introduces an additional
p fraction of errors in the sequence of watermarked text. However, because an output of Wat consists
of a sequence of text t consisting of multiple (say M) consecutive codewords of PRC (each of block
length n), we run into the following issue: suppose that all of the entropy of t is concentrated in α ·M
of the codeword blocks. Also suppose that the p-edit bounded channel concetrates all of its p ·Mn
errors in those same αM blocks, meaning that the effective rate of (edit) errors in those αM blocks is
in fact pMn

αMn = p/α. Thus, we need the PRC to in fact be robust to (1−Ω(α)+O(p/α))-edit-bounded
channels in order to detect the watermark. It is straightforward to see that the aforementioned scenario
is worst possible, meaning that such robustness is in fact sufficient. Full details of the proof may be
found in Appendix E.3.

E.3 Formal algorithm and guarantee

Algorithm 3 displays our watermarking procedureW[PRC,Model], given a pseudorandom code PRC
over alphabet ΣPRC(λ) and a family of language models (Model(λ))λ∈N over alphabet Σ(λ). When-
ever the security parameter λ is clear from context, we drop the argument λ, i.e., write ΣPRC,Σ,Model.
To aid in the analysis, given a language model Model over alphabet Σ, an alphabet ΣPRC for the PRC,
and a mapping φ : Σ→ ΣPRC, we define an embedding channel x 7→ EφEmb(x; t1:i−1) for each choice
of i ∈ N and t1:i−1 ∈ Σi−1, which maps x ∈ ΣnPRC to some (random) string EφEmb(x; t1:i−1) ∈ Σn

(as the input and output alphabets are different, our use of the term “channel” is a slight abuse
of terminology). Given x ∈ ΣnPRC and t1:i−1 ∈ Σi−1, EφEmb(x; t1:i−1) performs the following for
1 ≤ j ≤ n: for pj = Model(tj+i−1 = · | t1:j+i−2), it generates tj+i−1 ← EmbedChar(xj , pj , φ).
(If some token tj+i−1 is the terminal token END, then all remaining tokens are also the terminal token
END.) Note that this is exactly the procedure in Lines 9 and 10 for steps i through i + n − 1 of
Wat(1λ, (sk, φ), φ) of Algorithm 3.

Lemma E.3. Suppose Σ,Σ′ are finite alphabets, and P ∈ ∆(Σ) is fixed. Let φ : Σ → Σ′ be a
uniformly random function. Then

Pr
φ

(∑
σ′∈Σ′

min

{
1

|Σ′|
, φ ◦ P (σ′)

}
≥ H(P)

4 ln |Σ|

)
≥ 1− 2|Σ

′|−H(P)·exp(H(P)/2)
4 ln |Σ| .

Proof. Define η := 1
exp(H(P)/2) . Set T := {σ ∈ Σ : P (σ) ≤ η}. Note thatH(P) ≤ P (T)·ln |Σ|+

P (Σ\T) ·H(P)/2, meaning that P (T) ≥ H(P)
2 ln |Σ| . Writing M := |T |, we have M ≥ H(P)

2 ln |Σ|·η .

33

20677 https://doi.org/10.52202/079017-0652

Algorithm 3 Watermarking from PRCs for general alphabets: W[PRC,Model]

Require: Pseudorandom code PRC with security parameter λ over alphabet ΣPRC = ΣPRC(λ) and
block length n(λ), Model over alphabet Σ(λ), maximum length of model text Lmax(λ).

1: function Setup(1λ)
2: sk← PRC.KeyGen(1λ).
3: Let φ : Σ(λ)→ ΣPRC(λ) be chosen uniformly randomly.
4: return (sk, φ).

5: function Wat(1λ, (sk, φ))
6: x← PRC.Encode(1λ, sk). . x ∈ ΣnPRC

7: i← 1, j ← 1.
8: while END 6∈ {t1, . . . , ti−1} do
9: pi ← Model(ti = · | t1, . . . , ti−1). . pi ∈ ∆(Σ)

10: ti ← EmbedChar(xj , pi, φ).
11: i← i+ 1, j ← j + 1.
12: if j > n(λ) then
13: j ← 1, x← PRC.Encode(1λ, sk).

14: function EmbedChar(xj , pi, φ) . xj ∈ ΣPRC, pi ∈ ∆(Σ), φ : Σ→ ΣPRC

15: p̄i ← φ ◦ pi. . p̄i ∈ ∆(ΣPRC)

16: if Ber(min{1, |ΣPRC(λ)| · p̄i(xj)}) = 1 then
17: Set yi ← xj . . yi ∈ ΣPRC

18: else
19: Sample yi ∼ qi, where qi(σ) ∝

[
p̄i(σ)− 1

|ΣPRC|

]
+

.
20:

21: Sample ti from the distribution of σ ∼ pi | φ(σ) = yi.
22: return ti.

23: function Detect(1λ, (sk, φ), (t1, . . . , t`))
24: for i ∈ [`], j ∈ [i,min{i+ n− 1, `}] do
25: if PRC.Decode(sk, (φ(ti), . . . , φ(tj))) 6=⊥ then
26: return True.
27: return False.

Next, define Q ∈ ∆(Σ) by Q(σ) := 1{σ∈T }·P (σ)
P (T) , and let U denote the uniform distribution on Σ′.

For any subset S ⊂ Σ′, by Hoeffding’s inequality we have that

Pr
φ

(|φ ◦Q(S)− U(S)| ≥ ε) = Pr
φ

(∣∣∣∣∣U(S)−
∑
σ∈Σ

Q(σ) · 1{φ(σ) ∈ S}

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
− 2ε2∑

σ∈ΣQ(σ)2

)
,

where the randomness is over the draw of a uniformly random function φ : Σ→ ΣPRC. Using that∑
σ∈ΣQ(σ)2 ≤ maxσ∈ΣQ(σ) ≤ η

P (T) ≤
η·2 ln |Σ|
H(P) together with a union bound over all subsets

S ⊂ Σ′,11 we see that

Pr
φ

(dTV(U , φ ◦Q) ≥ ε) ≤ 2|Σ
′| · exp

(
−2ε2 ·H(P)

η · 2 ln |Σ|

)
≤ 2|Σ

′|−−ε
2·H(P)·exp(H(P)/2)

ln |Σ| .

Under the event that dTV(U , φ ◦Q) ≤ ε, we have that
∑
σ′∈Σ′ min{1/|Σ′|, φ ◦Q(σ′)} ≥ 1− ε, and

thus, since φ ◦ P ≥ P (T) · (φ ◦Q) pointwise,
∑
σ′∈Σ′ min{1/|Σ′|, φ ◦ P (σ′)} ≥ P (T) · (1− ε).

The conclusion of the lemma follows by setting ε = 1/2.
11Technically, we only need to do a union bound over half of all subsets, since φ◦Q and U are both probability

measures; hence the multiplicative factor in front is 2|Σ
′|−1 as opposed to 2|Σ

′|.

34

20678https://doi.org/10.52202/079017-0652

Lemma E.4. Fix any φ : Σ → ΣPRC, and i, n ∈ N. The distribution of EφEmb(x; t1:i−1), for
x ∼ Unif(ΣnPRC), is exactly the distribution of Model(ti:i+n−1 = · | t1:i−1).

Proof. We use induction on j ∈ [i, i+ n− 1]. Fix any j ∈ [i, i+ n− 1] together with a sequence
t1:j−1 ∈ Σj−1. Let pj ∈ ∆(Σ) denote the distribution of tj ∼ EφEmb(x; t1:i−1)j−i+1 | ti:j−1, i.e.,
the distribution of the j − i+ 1th token of the output EφEmb(x; t1:i−1), conditioned on ti:j−1. Let p?j
denote Model(tj = · | t1:j−1); we wish to show that pj = p?j .

By Line 21 of Algorithm 3, it suffices to show that φ ◦ pj = φ ◦ p?j . To do so, write p̄j := φ ◦ p?j
(i.e., the quantity computed in Line 15 of Algorithm 3), and write ρj := dTV(p̄j ,Unif(ΣPRC)) =∑

σ∈ΣPRC
[p̄j(σ)− 1/|ΣPRC|]+, so that ρj = 1−

∑
σ∈ΣPRC

min{p̄j(σ), 1/|ΣPRC|}. By definition, for
each σ ∈ ΣPRC, we have

φ ◦ pj(σ) =
1

|ΣPRC|
·min{1, |ΣPRC| · p̄j(σ)}+ ρj ·

[p̄j(σ)− 1/|ΣPRC|]+
ρj

p̄j(σ),

as desired.

Given integers a, b ∈ N with a < b, a mapping φ : Σ→ Σ′, and a sequence t = t1:b ∈ Σb, we define
the spread of the sequence with respect to φ to be

Sφ,[a:b)(t) :=

b−1∑
i=a

∑
σ∈Σ′

min

{
1

|Σ′|
, φ ◦ Pi(σ)

}
, (28)

where Pi(σ) := Model(ti = σ | t1:i−1).

Additionally, we define the mean entropy for the sequence t ∈ Σb in the interval [a : b) to be

H [a:b)
m (t) :=

b−1∑
i=a

H(Model(ti = · | t1:i−1)) =

b−1∑
i=a

E[Hi
e(t) | t1:i−1].

Lemma E.5. For any integers a < b, we have that

Pr
t←Model

(
3

2
H [a:b)

m (t) + 8 ln |Σ| · ln4(b− a) ≥ H [a:b)
e (t)

)
≥ 1− negl(b− a).

Proof. Let us write H̄ [a:b)
e (t) =

∑b−1
i=a min{Hi

e(t), ln |Σ|+ ln2(b− a)}. For each i, we have that

Pr(Hi
e(t)− H̄i

e(t) > 0) ≤ |Σ| · exp(− ln |Σ| − ln2(b− a)) = exp(− ln2(b− a)). (29)

By a union bound, it follows that Pr(H
[a:b)
e (t) > H̄

[a:b)
e (t)) ≤ (b − a) · exp(− ln2(b − a)). Next,

Theorem F.2 gives that, for any δ > 0,

Pr
t←Model

(
H̄ [a:b)

e (t)− 3

2

b−1∑
i=a

E
[
H̄i

e(t) | t1:i−1

]
> 4(ln |Σ|+ ln2(b− a)) · ln(2/δ)

)
≤ δ. (30)

Finally, since H̄i
e(t) ≤ Hi

e(t) with probability 1 for each i ∈ [a, b), we have

E[H̄i
e(t) | t1:i−1] ≤ E[Hi

e(t) | t1:i−1] = Hi
m(t). (31)

Combining Eqs. (29) to (31) and choosing δ = 2 exp(− ln2(b − a)), we see that with probability
1− 2(b− a+ 1) · exp(− ln2(b− a)) ≥ 1− negl(b− a), we have

H [a:b)
e (t) ≤ H̄ [a:b)

e (t) ≤3

2

b−1∑
i=a

E[Hi
e(t) | t1:i−1] + 4(ln |Σ|+ ln2(b− a)) · ln2(2/δ)

≤3

2
H [a:b)

m (t) + 8 ln |Σ| · ln4(b− a).

35

20679 https://doi.org/10.52202/079017-0652

Lemma E.6. Let alphabets Σ,Σ′ be given, and let φ : Σ→ Σ′ be a uniformly random function. For
any integers a < b and any α ∈ [0, 1] satisfying |Σ| ≥

(
8
α |Σ

′|
)2/α

, we have that

Pr
t←Model,φ

(
H[a:b)

e (t)≤3α·(b−a) ln |Σ|+8 ln |Σ|·ln4(b−a)

or Sφ,[a:b)(t)≥α·(b−a)
4

)
≥ 1− negl(b− a)− (b− a) · 2− 1

8α|Σ|
α

.

Proof. Let us fix any sequence t ∈ ΣL. For i ∈ [L], define Pi ∈ ∆(Σ) by Pi(σ) := Model(ti = σ |
t1:i−1). By Lemma E.3, for each i ∈ [a : b), we have, over a random (uniform) draw of φ, that

Pr
φ

(∑
σ′∈Σ′

min

{
1

|Σ′|
, φ ◦ Pi(σ′)

}
≥ H(Pi)

4 ln |Σ|

)
≥ 1− 2|Σ

′|−H(Pi)·exp(H(Pi)/2)

4 ln |Σ| ,

where c > 0 is a universal constant. Thus, for each index i ∈ [a, b− 1] for which H(Pi) = Hi
m(t) ≥

α ln |Σ|, we have

Pr
φ

(∑
σ′∈Σ′

min

{
1

|Σ′|
, φ ◦ Pi(σ′)

}
≥ H(Pi)

4 ln |Σ|

)
≥ 1− 2|Σ

′|− 1
4 ·α|Σ|

α/2

≥ 1− 2−
1
8α|Σ|

α/2

(32)

where the second inequality follows by our requirement that |Σ| ≥
(

8
α |Σ

′|
)2/α

. For any sequence
t for which H [a:b)

m (t) ≥ 2α · (b − a) ln |Σ|, we must have that
∑
i∈[a,b): Him(t)≥α ln |Σ|H

i
m(t) ≥

α · (b− a) ln |Σ|. Thus, for any such t, (32) together with a union bound gives that

Pr
φ

(
Sφ,[a:b)(t) ≥ α · (b− a)

4

)
≥ 1− (b− a) · 2− 1

8α|Σ|
α

.

Next, Lemma E.5 gives that

Pr
t←Model

(
H [a:b)

e (t) ≤ 3α · (b− a) ln |Σ|+ 8 ln |Σ| · ln4(b− a) or H [a:b)
m (t) ≥ 2α · (b− a) ln |Σ|

)
≥ 1− negl(b− a).

Combining the two above displays, we see that

Pr
t←Model,φ

(
H[a:b)

e (t)≤3α·(b−a) ln |Σ|+8 ln |Σ|·ln4(b−a)

or Sφ,[a:b)(t)≥α·(b−a)
4

)
≥ 1− negl(b− a)− (b− a) · 2− 1

8α|Σ|
α

.

Lemma E.7. Fix L ∈ N, alphabets Σ,ΣPRC, and integers a, b ∈ [L]. Suppose α ∈ [0, 1] satisfies
α ≥ 32·ln4(b−a)

b−a and |Σ| ≥ (8
α |Σ

′|)2/α. Then for x ∼ Unif(ΣLPRC) and φ : Σ → ΣPRC drawn
uniformly, it holds that

Pr
φ,x

t1:a−1∼Model(·|∅)
ta:b−1∼EφEmb(xa:b−1;t1:a−1)

(
H[a:b)

e (t)≤4α·(b−a) ln |Σ|
or DHam(xa:b−1,φ(ta:b−1))≤(b−a)·(1−α/8)

)
≥ 1− negl(b− a)− (b− a) · 2− 1

8α|Σ|
α

,

where we recall that φ(ta:b−1) denotes the string (φ(ta), . . . , φ(tb−1)).

Proof. For any fixed φ : Σ → ΣPRC and t1:a−1 ∈ Σ, Lemma E.4 gives that the distribution of
EφEmb(xa:b−1; t1:a−1), under xa:b−1 ∼ Unif(Σb−aPRC), is exactly the distribution of Model(ta:b−1 = · |
t1:a−1). Thus, by Lemma E.6 and the fact that α · (b− a) ln |Σ| ≥ 8 ln |Σ| · ln4(b− a), we have that

Pr
φ,x

t1:a−1∼Model(·|∅)
ta:b−1∼EφEmb(xa:b−1;t1:a−1)

(
H [a:b)

e (t) ≤ 4α · (b− a) ln |Σ| or Sφ,[a:b)(t) ≥ α · (b− a)

4

)

≥ Pr
φ,x

t1:a−1∼Model(·|∅)
ta:b−1∼EφEmb(xa:b−1;t1:a−1)

(
H[a:b)

e (t)≤3α·(b−a) ln |Σ|+8 ln |Σ|·ln4(b−a)

or Sφ,[a:b)(t)≥α·(b−a)
4

)

≥1− negl(b− a)− (b− a) · 2− 1
8α|Σ|

α

. (33)

36

20680https://doi.org/10.52202/079017-0652

(To be precise, the first inequality above uses the lower bound on α in the lemma statement and
the second inequality uses Lemma E.6.) For each i ∈ [L], let pi ∈ ∆(Σ) denote the distribution
Model(ti = · | t1, . . . , ti−1), which is itself a random variable (depending on t1, . . . , ti−1). For
i ∈ [a, b− 1], let Zi ∼ Ber(min{1, |ΣPRC| · (φ ◦ pi)(xi−a+1)}) be the random variable used in the
definition of EφEmb(xa:b−1; t1:a−1) (i.e., corresponding to Line 16 of Algorithm 3). Note that the
output ta:b−1 = EφEmb(xa:b−1; t1:a−1) of the embedding channel satisfies φ(ti−a+1) = xi−a+1 if
Zi = 1 for each i ∈ [a, b− 1]. Therefore,

DHam(xa:b−1, φ(ta:b−1)) ≤
b−1∑
i=a

(1− Zi). (34)

For each i ∈ [a, b− 1], note that

Ex∼Unif(ΣLPRC)[Zi | φ, t1:i−1, Z1:i−1] =
∑

σ∈ΣPRC

1

|ΣPRC|
·min{1, |ΣPRC| · (φ ◦ pi)(σ)},

and using the definition of the spread in (28) with Σ′ = ΣPRC, we see that
b−1∑
i=a

Ex∼Unif(ΣLPRC)[Zi | φ, t1:i−1, Z1:i−1] =

b−1∑
i=a

∑
σ∈ΣPRC

min

{
1

|ΣPRC|
, (φ ◦ pi)(σ)

}
= Sφ,[a:b)(t).

By Theorem F.2, for any fixed φ and for any δ ∈ (0, 1), with probability 1 − δ over the draw of
t1:a−1 ∼ Model(· | ∅), x ∼ Unif(ΣLPRC), ta:b−1 ∼ EEmb(xa:b−1; t1:a−1), and Zi, it holds that

b−1∑
i=a

Zi ≥
1

2
Sφ,[a:b)(t)− 4 log(2/δ). (35)

Choose δ = 2 exp(− ln2(b − a)) ≤ negl(b − a). In the event that Sφ,[a:b)(t) ≥ α·(b−a)
4 and (35)

both hold, using the lower bound on α in the lemma statement together with (34), we see that

DHam(xa:b−1, φ(ta:b−1)) ≤ (b− a)− α · (b− a)

4
+ 4 ln2(b− a) ≤ (b− a) · (1− α/8). (36)

Combining (33) and the fact that (35) holds with probability 1− negl(b− a) together with (36), we
see that

Pr
φ,x

t1:a−1∼Model(·|∅)
ta:b−1∼EφEmb(xa:b−1;t1:a−1)

(
H[a:b)

e (t)≤4α·(b−a) ln |Σ|
or DHam(xa:b−1,φ(ta:b−1))≤(b−a)·(1−α/8)

)
≥ 1− negl(b− a)− (b− a) · 2− 1

8α|Σ|
α

.

Lemma E.8 (Substring robustness of the watermark). Suppose that p, α ∈ (0, 1) are given, and
PRC is zero-bit PRC with block length n(λ) over alphabet ΣPRC(λ), satisfying |ΣPRC(λ)| ≥ n(λ).
Suppose further that PRC is robust to any (1 − α

8 + 3p
α)-edit-bounded channel. Let Model(λ) be

defined over some alphabet Σ(λ) satisfying |Σ(λ)| ≥ (8
α |ΣPRC(λ)|)2/α. Then the watermarking

schemeW[PRC,Model] (defined in Algorithm 3) is βλ(`)-substring robust to any p-edit-bounded
channel E , where βλ(`) = 8n(λ) + 6α`.

Proof. For convenience we write p1 := α/8, p0 := 3p/α; then PRC is robust to any (1− p1 + p0)-
bounded channel. Let λ denote the security parameter for the given PRC. We will show that for all
i, j ∈ [Lmax(λ)],

Pr
(sk,φ)←Setup(1λ)

t←Wat(1λ,(sk,φ)),t′←E(t)

(
Detect(1λ, (sk, φ), t′) = False and H [i:j)

e (t) ≥ βλ(j − i) · ln |Σ(λ)|
)
≤ negl(λ).

(37)

Using (37), the fact that Lmax(λ) ≤ poly(λ), and a union bound over all possible choices of i, j
will yield the desired claim of βλ(`)-substring robustness. To establish (37), fix λ ∈ N, and set
Model = Model(λ), n = n(λ),Σ = Σ(λ),ΣPRC = ΣPRC(λ), as well as i, j ∈ [Lmax(λ)]; we argue
in two parts:

37

20681 https://doi.org/10.52202/079017-0652

Step 1: defining channels. Let us write ` := j − i and let a1 < a2 < · · · < ah be the indices
in [i, j − 1] denoting the start positions of blocks for the PRC in the execution of Wat(1λ, (sk, φ))
(in particular, a1, . . . , ah are simply the integers in [i, j − 1] congruent to 1 (mod n)). We will
write t′ := E(ti:j−1) to denote the output of the edit-bounded channel E given ti:j−1 as input. Since
E is p0-edit-bounded, we have len(t′) ≤ `′ := b(1 + p0) · `c. Given a mapping φ : Σ → ΣPRC,
we let Fφ(x, t) (given x ∈ ΣLPRC, t ∈ ΣL) denote the joint distribution over random variables
(yg,b,b′)g∈[h−1],b,b′∈[`′]: b′−b∈[n(1−p0),n(1+p0)], defined as follows:

• It draws t′ ∼ E(ti:j−1).

• For each choice of g, b, b′ as above, it lets yg,b,b′ to be either: (a) the substring t′b:b′−1,
if φ(t′b:b′−1) can be obtained from xag :ag+1−1 via a sequence of at most (1 − p1 + p0)n
subsitutions, insertions, and deletions, or (b) if not, any string satisfying φ(yg,b,b′) =
xag :ag+1−1.12

Next, given φ, g, b, b′ as above, we let Eφg,b,b′ be the channel which, given as input a string x ∈ ΣnPRC,
performs the following operations:

• First, it generates (sk, φ) ∼ Setup(1λ), and generates t ∼ Wat(1λ, (sk, φ)), with
the following modification: when generating output for the block starting at index
ag, instead of using a fresh output of PRC.Encode(1λ, sk), it uses the given in-
put string x. Let x1, . . . , xdLmax(λ)/n(λ)e ∈ ΣnPRC denote the codewords (output by
PRC.Encode(1λ, sk)) used in the Wat procedure, so that in particular xag = x. Write
x̄ = (x1, . . . , xdLmax(λ)/n(λ)e).

• Then, it samples from the marginal yg,b,b′ ∼ Fφ(x̄, t) and outputs φ(yg,b,b′).

Claim E.9. For any g ∈ [h− 1], b, b′ ∈ [`′], and φ : Σ→ ΣPRC, the channel Eφg,b,b′ is (1− p1 + p0)-
edit-bounded.

Proof. It is immediate from the definition of Eφg,b,b′ and Fφ that, almost surely, for a sample yg,b,b′ ∼
Fφ(x, t), φ(yg,b,b′) can be obtained from x via a sequence of at most (1− p1 + p0)n substitutions,
insertions, and deletions.

Finally, an output of Eφg,b,b′ can be sampled in polynomial time: here we use that t ∼Wat(1λ, (sk, φ))
can be sampled in polynomial time (as Model is assumed to be computationally efficient), as well
as the fact that it can be determined in polynomial time if one string (namely, φ(t′b:b′−1) above) can
be obtained from another string (namely, xag:ag+1−1 above) via a sequence of a given number (i.e.,
(1− p1 + p0)n) substitutions, insertions, and deletions.

Claim E.10. For each g ∈ [h− 1], it holds that

Pr
(sk,φ)←Setup(1λ)

x1,x2,...,xdLmax(λ)/n(λ)e←PRC.Encode(1λ,sk)

x=(x1,x2,...,xdLmax(λ)/n(λ)e)

t∼EφEmb(x;∅)

(
H

[ag :ag+1)
e (t)≤4α·n ln |Σ|

or DHam(xag :ag+1−1,φ(tag :ag+1−1))≤n·(1−α/8)

)
≥ 1− negl(λ).

(38)

We emphasize that the notation x1, x2, . . . ← PRC.Encode(1λ, sk), t ∼ EφEmb(x; ∅) means that
PRC.Encode(1λ, sk) is called repeatedly to produce strings x1, x2, . . . ∈ ΣnPRC, and the concatenated
string x = (x1, x2, . . . , xdLmax(λ)/n(λ)e) is used as input to the embedding channel EφEmb(x; ∅). Notice
that this procedure is identical to Wat(1λ, (sk, φ)), meaning that the distribution of the output string
t is identical to the output distribution of Wat(1λ, (sk, φ)).

12If b or b′ are outside the length bounds of t′, then we let t′b:b′−1 denote the substring
t′min{b,len(t′)}:min{b′−1,len(t′)}, which may be empty.

38

20682https://doi.org/10.52202/079017-0652

Proof of Claim E.10. Let A denote the event that H
[ag:ag+1)
e (t) ≤ 4αn ln |Σ| or

DHam(xag :ag+1−1, φ(tag :ag+1−1)) ≤ n · (1 − α/8). We have that 32·ln4(n)
n ≤ α as long as

n = n(λ) ≥ Ω̃(1/α), which holds for all λ greater than a sufficiently large constant depending
on α (and it is sufficient for us to only consider such λ as the claimed failure probability is
negl(λ)). Thus, we may apply Lemma E.7 with a = i, b = j,Σ′ = ΣPRC; doing so, we see that if
φ : Σ → ΣPRC is drawn uniformly and x ∼ Unif(ΣLmax(λ)), the event A occurs with probability
1− negl(n)− n · 2− 1

8α|Σ|
α ≥ 1− negl(λ)− n · 2− 1

8α|Σ|
α

(here we have used n ≥ λ). Since a draw
of t ∼ EφEmb(x; ∅) may be implemented in polynomial time (as we have assumed that Model is com-
putationally efficient), and since H [ag:ag+1)

e (t), DHam(xag:ag+1−1, φ(tag :ag+1−1)) can be computed
in polynomial time, it follows that A must occur with probability 1− negl(λ)− n · 2− 1

8α|Σ|
α

when
x1, x2, . . . , xdLmax(λ)/n(λ)e ← PRC.Encode(1λ, sk). (Otherwise, we could violate undetectability
of PRC by generating codewords x1, x2, . . . from the encoding oracle O, representing either
PRC.Encode or a random oracle, and checking whether A occurs.)

Finally, we remark that n · 2− 1
8α|Σ|

α ≤ negl(n) ≤ negl(λ) by our requirement that |Σ|α ≥ |ΣPRC| ≥
n.

Since the channel E is p-edit-bounded, for most values of g ∈ [h− 1] indexing full blocks of ti:j−1,
there must be some b, b′ so that t′b:b′−1 can be obtained from tag :ag+1−1 by at most O(pn) insertions
and deletions; this is formalized in the below claim:

Claim E.11. Fix any C ≥ 1 and suppose h ≥ 2. For any string ti:j−1 ∈ Σ`, there are at least
b(h− 1) · (1− 1/C)c values of g ∈ [h− 1] so that there exist b, b′ ∈ [`′] for which t′b:b′−1 can be
obtained from tag:ag+1−1 by applying at most 3Cp · n substitutions, insertions, and deletions (where
we have t′ = E(ti:j−1)).

Proof of Claim E.11. For each g ∈ [h − 1] and ti:j−1 ∈ Σ`, the edit-bounded channel E sends
the substring tag :ag+1−1 to some substring t′bg :bg+1−1 of the (possibly random) channel output
t′ = E(ti:j−1). (In particular, bg denotes the index in t′ of the first token in tag :ag+1−1 which is not
deleted by E , or, if all of tag :ag+1−1 is deleted, the index in t′ of the first token following tag+1−1

which is not deleted by E .) Note that bg is a function of ti:j−1; we omit this dependence from the
notation to avoid clutter.

Fix ti:j−1 and t′ = E(ti:j−1). For each g ∈ [h − 1], let eg denote the number of substitutions,
insertions, and deletions applied by E to obtain t′bg :bg+1−1 from tag :ag+1−1. Since E is p-edit-

bounded, we have
∑h−1
g=1 eg ≤ p` ≤ p · (h+ 1)n. Therefore, at least b(h− 1) · (1− 1/C)c values of

g ∈ [h− 1] satisfy eg ≤ C
h−1 · p(h+ 1)n ≤ 3Cp · n, as desired.

Step 2: using robustness of the PRC. Since each channel Eφg,b,b′ (for any φ : Σ → ΣPRC, g ∈
[h− 1], b, b′ ∈ [`′] with b′ − b ∈ [n(1− p0), n(1 + p0)]) is (1− p1 + p0)-bounded (by Claim E.9),
it holds that

Pr
(sk,φ)←Setup(1λ)

x←PRC.Encode(1λ,sk)

y∼Eφ
g,b,b′ (x)

(
PRC.Decode(1λ, sk, y) 6=⊥

)
≥ 1− negl(λ). (39)

Note that the distribution of y ∼ Eφg,b,b′(x), for x ← PRC.Encode(1λ, sk), is the same as the
marginal distribution of φ(yg,b,b′) ∼ Fφ(x, t), for x1, x2, . . . ← PRC.Encode(1λ, sk), x :=

(x1, . . . , xdLmax(λ)/n(λ)e), t ∼ EφEmb(x; ∅). Therefore, using (39) together with a union bound over
the (polynomially many) choices of g, b, b′, we see that

Pr
(sk,φ)←Setup(1λ)

x1,x2,...,xdLmax(λ)/n(λ)e←PRC.Encode(1λ,sk)

x=(x1,x2,...,xdLmax(λ)/n(λ)e), t∼EφEmb(x;∅)
(yg,b,b′)g,b,b′∼F

φ(x,t)

(
∀g, b, b′ : PRC.Decode(1λ, sk, φ(yg,b,b′)) 6=⊥

)
≥ 1− negl(λ).

(40)

39

20683 https://doi.org/10.52202/079017-0652

For any i ∈ [Lmax(λ)], by Lemma E.5 with a = i, b = i+ n, there is some event Bi that occurs with
probability 1− negl(`) ≥ 1− negl(λ) under t← Model so that, under Bi,

H [i:i+n)
e (t) ≤ 3

2
H [i:i+n)

m (t) + 8 ln |Σ| · ln4(n) ≤ 3

2
n ln |Σ|+ 8 ln |Σ| · ln4(n) ≤ 2n ln |Σ|,

where the final inequality holds as long as λ is chosen sufficiently large so that n(λ) ≥ 20 ln4(n(λ)).
By undetectability of PRC, Lemma E.4, and efficiency of Model, the event Bi also holds with
probability 1− negl(λ) under the distribution of t specified in (38). Let us write B := Ba1−n ∩Ba1

∩
· · · ∩ Bah ; thus, under B, we have

H [i:a1)
e (t) ≤ 2n ln |Σ|, H

[ag:ag+1)
e ≤ 2n ln |Σ| ∀g ∈ [h− 1], H [ah:j)

e (t) ≤ 2n ln |Σ|.
Consider the distribution of (x, t, t′) where (x, t) are drawn as specified in (38) and t′ ∼
E(ti:j−1). Let A denote the event that for all g ∈ [h − 1], H [ag :ag+1)

e ≤ 4α · n ln |Σ| or
DHam(xag :ag+1−1, φ(tag :ag+1−1)) ≤ n·(1−α/8); by Claim E.10 and a union bound over g ∈ [h−1],
A holds with probability 1− negl(λ).

Under the event A∩B (which occurs with probability 1− negl(λ)), one of the following must be the
case:

• There are at least bα · (h − 1)c + 2 values of g ∈ [h − 1] so that
DHam(xag :ag+1−1, φ(tag :ag+1−1)) ≤ n · (1− α/8); let this event be denoted C1.

• It holds that H [i:j)
e ≤ 8n ln |Σ|+ 6α` ln |Σ|; let this event be denoted C2.

Indeed, under A ∩ B, if C1 does not occur, then we must have that C2 occurs since we would have:

H [i:j)
e =H [i:a1)

e (t) +H [ah:j)
e (t) +

h−1∑
g=1

H
[ag :ag+1)
e (t)

≤4n ln |Σ|+ (bα · (h− 1)c+ 2) · 2n ln |Σ|+ (h− 1− bα · (h− 1)c − 1) · 4αn ln |Σ|
≤8n ln |Σ|+ 2α` ln |Σ|+ 4α` ln |Σ| = 8n ln |Σ|+ 6α` ln |Σ|,

where the first inequality uses that A ∩ B occurs and the second inequality uses the fact that
(h− 1)n ≤ `.
Note that if h < 2, under the event B, the event C2 occurs.

Next, if h ≥ 2, by Claim E.11 with C = 1/α, for any string ti:j−1 ∈ Σ`, with probability 1
over t′ ∼ E(ti:j−1), there are at least b(h − 1) · (1 − α)c values of g ∈ [h − 1] so that there
exist b, b′ ∈ [`′] for which t′b:b′−1 can be obtained from tag :ag+1−1 by applying at most 3

α · pn
substitutions, insertions and deletions. Note that bα · (h− 1)c+ 2 + b(h− 1) · (1− α)c > h− 1.
Thus, under the event A ∩ B ∩ C1, there is some value of g? ∈ [h − 1] and b?, b′? ∈ [`′] so that
DHam(xag? :ag?+1−1, φ(tag? :ag?+1−1)) ≤ n · (1− α/8) = n · (1− p1) and t′b?:b′?−1 can be obtained
from tag? :ag?+1−1 by applying at most p0n = 3

α · pn substitutions, insertions and deletions. By
definition of Fφ(x, t), we may couple a draw of (yg,b,b′)g,b,b′ ∼ Fφ(x, t) to this distribution over
(x, t, t′) so that under the eventA∩B∩C1 that (g?, b?, b

′
?) as above exist, we have yg?,b?,b′? = t′b?:b′?−1.

Let the event of (40) (which holds with probability 1 − negl(λ)) be denoted by D. Then, if h ≥
2, under the event A ∩ B ∩ D ∩ C1, g?, b?, b′? are well-defined as above, and so we have that
PRC.Decode(1λ, sk, φ(t′g?,b?,b′?)) 6=⊥, and in particular, that Detect(1λ, (sk, φ), t′) = True. Under
the event A ∩ B ∩ D ∩ C2 ⊂ C2 (which must occur under the event B if h < 2), we have that
H

[i:j)
e (t) ≤ 8n ln |Σ|+ 6α` ln |Σ| = βλ(`) · ln |Σ|. Since (A∩B ∩D ∩ C1) ∪ (A∩B ∩D ∩ C2) ⊇
A ∩ B ∩ D occurs with probability 1− negl(λ), we have established (37).

Lemma E.12 (Soundness of the watermark). For any PRC PRC, the watermarking schemeW[PRC]
(defined in Algorithm 3) is sound.

Proof. Fix any sequence t ∈ Σ`, for some ` ≤ dLmax(λ)/n(λ)e. We wish to show that

Pr
(sk,φ)←Setup(1λ)

(
Detect(1λ, (sk, φ), t) 6=⊥

)
≤ negl(λ). (41)

40

20684https://doi.org/10.52202/079017-0652

By definition of Detect (in Algorithm 3), Detect(1λ, (sk, φ), t) 6=⊥ only if there are some i, j ∈ [`]
so that PRC.Decode(sk, φ(ti:j)) 6=⊥. Since PRC is sound, for each fixed choice of φ and i, j,

Pr
sk∼PRC.KeyGen(1λ)

(PRC.Decode(sk, φ(ti:j)) 6=⊥) ≤ negl(λ).

Taking expectation over φ (which is drawn independently from sk) and a union bound over i, j ≤
` ≤ poly(λ), we see that (41) holds.

Lemma E.13 (Undetectability of the watermark). For any PRC PRC, the watermarking scheme
W[PRC] (defined in Algorithm 3) is undetectable.

Proof. Suppose for the sake of contradiction that there is a polynomial-time adversary Adv so that∣∣∣∣Pr
(

AdvModel(1λ) = 1
)
− Pr

sk∼Setup(1λ)

(
AdvWat(1λ,sk)(1λ) = 1

)∣∣∣∣ ≥ 1

poly(λ)
. (42)

Using Adv, we can construct an adversary Adv′ to break the undetectability of PRC, as follows. Adv′

has access to an oracle O which is either PRC.Encode(1λ, sk) (where sk← PRC.KeyGen(1λ)) or
outputs a uniformly random string of length n(λ) at each call. Adv′ then draws φ : Σ → ΣPRC

uniformly at random and simulates Adv, simulating each call to Wat(1λ, (sk, φ)) as in Algorithm 3
but replacing each call to PRC.Encode(1λ, sk) (Line 13 of Algorithm 3) with a call to O. In the
case that O is PRC.Encode(1λ, sk), then this procedure is exactly AdvWat(1λ,sk). In the case that O
outputs uniformly random strings in response to each call, then Lemma E.4 gives that this procedure
is exactly AdvModel. Thus, (42) gives that Adv′ can distinguish with inverse polynomial advantage
between the two cases, a contradiction to undetectability of PRC. Note that in order to simulate Wat,
Adv′ needs to be able to evaluate Model(ti = · | t1:i−1) (Line 9 of Algorithm 3), which is possible in
polynomial time by assumption on Model (see Appendix B).

Proof of Theorem E.2. Fix α > 0 together with a function family F which is a log n(λ)-local weak
PRF for noise level q ∈ [0, 1/2), and a family of language models Model(λ) as in the theorem
statement. Write p0 := α

16Crob
, where Crob is the constant from Theorem 4.1.

By Theorem 3.2, PRC1 := PRF-PRC[F , 1
2 −p0, q] is a zero-bit binary alphabet PRC with robustness

to all (1
2 − p0)-bounded substitution channels. By definition in (3), the block length N(λ) of PRC1

satisfies:

N(λ) = O
(
n(λ)4 log(1/p0) · n(λ)2

)
≤ n(λ)O(log(1/p0)).

Next recall that C0, Crob ≥ 1 are the constants from Theorem 4.1. By Theorem 4.1, for ρ = C0/p0,
PRC2 := PRCIdx[PRC1, ρ] is a zero-bit PRC with block length at most N(λ) and alphabet ΣPRC(λ)
of size |ΣPRC(λ)| ≤ dC0

p0
·N(λ)e which has robustness to any (1− Crobp0)-edit-bounded channel.

Since 1 − Crobp0 ≥ 1 − α
8 + 3p

α by our choice of p0 and since p ≤ α2/48 (which can be ensured
by taking c = 1/48 in the theorem statement), PRC2 is robust to any (1 − α

8 + 3p
α)-edit-bounded

channel.

Finally, by Theorem E.1, as long as |Σ(λ)| ≥ (8
α |ΣPRC(λ)|)2/α the watermarking scheme W =

W[PRC2,Model] is sound, undetectable, and βλ(`)-substring robust to any p-edit-bounded channel,
for βλ(`) := 6α`+8N(λ) ≤ 6α`+n(λ)O(log 1/p0). To ensure that the lower bound on |Σ(λ)| holds,
we note that (

8

α
|ΣPRC(λ)|

)2/α

≤
(

8

α
·
⌈
C0

p0
·N(λ)

⌉)2/α

≤ n(λ)O(1
α log 1

α),

which is bounded above by n(λ)C2
1
α log 1

α ≤ |Σ(λ)| (for sufficiently large λ) as long as the constant
C2 in the theorem statement is sufficiently large.

41

20685 https://doi.org/10.52202/079017-0652

F Technical tools: concentration inequalities

Theorem F.1 (McDiarmid’s inequality). Let sets X1, . . . ,Xm equipped with sigma algebras be given,
and suppose f : X1 × · · · × Xm → R satisfies the bounded differences property, i.e., for each
j ∈ [m],

max
xi∈Xi ∀i∈[m],x′j∈Xj

|f(xj , x−j)− f(x′j , x−j)| ≤ cj ,

for some positive real numbers cj . Then given independent random variables Xi ∈ Xi (i ∈ [m]), it
holds that

Pr (|f(X1, . . . , Xm)− E[f(X1, . . . , Xm)]| ≥ ε) ≤ 2 exp

(
−2ε2∑m
i=1 c

2
i

)
.

Theorem F.2 (Corollary of Freedman’s inequality; see Lemma A.3 of [FKQR23]). Let (Xt)t≤T be
a sequence of random variables adapted to a filtration (Ft)t∈[T]. If 0 ≤ Xt ≤ R almost surely, then
each of the below inequalities holds with probability 1− δ:

T∑
t=1

Xt ≤
3

2

T∑
t=1

Et−1[Xt] + 4R ln(2/δ)

T∑
t=1

Et−1[Xt] ≤2

T∑
t=1

Xt + 8R ln(2/δ),

where Et−1[Xt] denotes E[Xt | Ft−1].

F.1 Concentration with weakly dependent random variables

Fix a set X equipped with a sigma-algebra together with a positive integer n. Let P ∈ ∆(Xn) denote
a distribution (where Xn is equipped with the product sigma algebra). For X = (X1, . . . , Xn) ∼ P ,
we define the influence of Xj on Xi to be

Ij→i(X) := max
x−i−j∈Xn−2

xj ,x
′
j∈X

dTV(P (Xi = · | X−i−j = x−i−j , Xj = xj), P (Xi = · | X−i−j = x−i−j , Xj = x′j)).

(43)

Definition F.1. Given a random variable X distributed according to some distribution P over Xn,
define the Dobrushin coefficient of X to be

α(X) := max

max
j∈[n]

∑
i 6=j

Ij→i(X),max
i∈[n]

∑
j 6=i

Ij→i(X)

 .

Theorem F.3 (Dobrushin’s concentration inequality; e.g., Theorem 4.3 of [Cha16]). Let P be a
distribution over Xn whose Dobrushin coefficient is α. Let f : Xn → R be a real-valued function
satisfying the following bounded differences condition, for some constants c1, . . . , cn ≥ 0:

max
(x1,...,xn)∈Xn,x′j∈X

|f(xj , x−j)− f(x′j , x−j)| ≤cj .

Then for all ε > 0,

Pr
X∼P

(|f(X)− E[f(X)]| ≥ ε) ≤ 2 exp

(
− (1− α)ε2

2
∑n
i=1 c

2
i

)
.

G Miscellaneous Lemmas

Lemma G.1. Suppose a PRC PRC = (KeyGen,Encode,Decode) is robust
to any p-substitution-bounded channel. Then for any channel E satisfying
Prsk∼KeyGen(1λ),x←Encode(1λ,sk,m),y∼E(x)(DHam(x, y) ≤ pn) ≥ 1 − negl(n), PRC is robust
to E .

42

20686https://doi.org/10.52202/079017-0652

Proof. Let E ′ be the channel which samples y ∼ E(x), outputs y if DHam(y, x) ≤ pn, and oth-
erwise outputs x. By assumption PRC is robust to E ′. Moreover, we can construct a joint distri-
bution of (sk, x, y, y′) where: (a) the marginal of (sk, x, y) is as follows: sk ∼ KeyGen(1λ), x ←
Encode(1λ, sk,m), y ∼ E(x); (b) the marginal of (sk, x, y′) is identical except that y′ ∼ E ′(x); (c)
y = y′ with probability 1− negl(λ). Then the robustness criterion for E ′ yields that PRC is robust to
E .

Lemma G.2 (Theorem 1 of [RS23]). For any positive integers t, k,N with k ≤ N and t ≤ N , it
holds that dTV(Bin(t, k/N),Hyp(N, k, t)) ≤ 2t√

N−t .

For completeness, we provide the proof of Lemma G.2 below.

Proof of Lemma G.2. Fix t, k,N as in the lemma statement and let P = Bin(t, k/N) ∈
∆({0, 1, . . . , t}) and Q = Hyp(N, k, t) ∈ ∆({0, 1, . . . , t}). Also write p = k/N . Then we
have P(w) =

(
t
w

)
· pw(1− p)t−w and

Q(w) =

(
k
w

)(
N−k
t−w

)(
N
t

) =

(
t

w

)
· (N − k) · · · (N − k − (t− w) + 1) · k · · · (k − w + 1)

N · · · (N − t+ 1)

=

(
t

w

)
·
(
k

N

)w
·
∏t−w−1
j=0 (1− p− j/N) ·

∏w−1
j=0 (1− j/k)∏t−1

j=0(1− j/N)
.

Then

Q(w)

P(w)
=

∏t−w−1
j=0 (1− p− j/N) ·

∏w−1
j=0 (1− j/k)

(1− p)t−w
∏t−1
j=0(1− j/N)

≤
t−1∏
j=0

1

1− j/N
, (44)

for each 0 ≤ w ≤ t. By Pinsker’s inequality,

dTV(Q,P) ≤2

√√√√ t∑
w=0

Q(w) · ln Q(w)

P(w)

≤2

√√√√ln

t−1∏
j=0

1

1− j/N

=2

√√√√t−1∑
j=0

ln
1

1− j/N

≤2

√√√√t−1∑
j=0

j

N − j

≤2

√
t2

N − t
,

where the second inequality uses (44), and the third inequality uses the fact that ln 1
1−x ≤

1
(1/x)−1

for all x ∈ [0, 1].

43

20687 https://doi.org/10.52202/079017-0652

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction give informal summaries of the results presented
in the main body and appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed following Theorem 1.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

44

20688https://doi.org/10.52202/079017-0652

Justification: Proofs are provided in the appendix, and the main computational assumption
is stated as Assumption 3.1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

45

20689 https://doi.org/10.52202/079017-0652

Answer: [NA]
Justification: The paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

46

20690https://doi.org/10.52202/079017-0652

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper is theoretical in nature and so any direct societal impacts are limited.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Broader societal impacts are discussed in the introduction. Due to the theoreti-
cal nature of our paper, any direct societal impacts are negligible.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

47

20691 https://doi.org/10.52202/079017-0652

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

48

20692https://doi.org/10.52202/079017-0652

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

49

20693 https://doi.org/10.52202/079017-0652

